Math 330 Section 7 - Spring 2019 - Homework 05

Published: Thursday, February 7, 2019 Last submission: Friday, February 22, 2019 Running total: 23 points

Status - Reading Assignments:

Here is the status of the reading assignments you were asked to complete so far:

B/G (Beck/Geoghegan) Textbook: Preface and ch.1 – ch.3

MF lecture notes:

ch.1 – ch.3; ch.5 through ch.5.2.7

B/K lecture notes (optional but **very useful for hwk 3**):

ch.1.1 (Introduction to sets)

ch.1.2 (Introduction to Functions) but skip ch.1.2.4: Floor and Ceiling Functions

New reading assignments:

Reading assignment 1 - due Monday, February 11:

- **a.** Read carefully MF ch.5.2.8 (finish ch.5)
- **b.** Read carefully B/G ch.5 (nothing new!)
- c. Read carefully MF ch.6.1 and reread B/G ch.2.3 and 2.4

Reading assignment 2 - due: Wednesday, February 13:

- a. Read carefully MF ch.6.2 and skim through (the optional) ch.6.3
- **b.** Read carefully MF ch.6.4–6.6

Reading assignment 3 - due Friday, February 15:

a. Read carefully B/G ch.4.

General note on written assignments: Unless expressly stated otherwise, to prove a proposition or theorem you are allowed to make use of everything in the book up to but NOT including the specific item you are asked to prove.

Written assignment 1:

Negate the following statement (see B/G ch.3.3):

 $\forall \varepsilon > 0 \ \exists \delta > 0 \ \text{such that} \ \forall x \in N_{\delta}(a) \ \text{it is true that} \ f(x) \in N_{\varepsilon}(f(a)).$

Written assignment 2:

Let *X*, *Y* be two nonempty sets and let $f : X \longrightarrow Y$. For $a, b \in X$ we write $a \sim b$ iff f(a) = f(b).

- **a:** Prove that \sim is an equivalence relation on *X*.
- **b:** Write $[x]_f$ for the equivalence class of $x \in X$ with respect to "~". Express $[x]_f$ in terms of the function $f: [x]_f = \{x' \in X : f(x').....\}$. (I do not want to see " $[x]_f = \{x' \in X : x' \sim x\}$ ".)

You'll get one point each for **a** and **b**.

Written assignment 3:

Let A, B, C, D be sets. Prove that $(A \times B) \cap (C \times D) = (A \cap C) \times (B \cap D)$. as follows:

a. Prove " \subseteq "; **b.** Prove \supseteq . You'll get one point each for **a** and **b**.