Math 330 Section 7 - Spring 2019 - Homework 08

Published: Thursday, February 21, 2019 Running total: 34 points
Last submission: Friday, March 8, 2019

Status - Reading Assignments:

Here is the status of the reading assignments you were asked to complete so far:
B/G (Beck/Geoghegan) Textbook:
Preface and ch. 1 - ch5

MF lecture notes:
ch. 1 - ch.3; ch. 5 - ch. 6 (skim ch.6.3); ch.7.1 - ch.7.2

B/K lecture notes:
ch.1.1 (Introduction to sets)
ch.1.2 (Introduction to Functions) but skip ch.1.2.4: Floor and Ceiling Functions

New reading assignments:

Before I lecture about MF ch. 7 (Cardinality I: Finite and Countable Sets) I will also talk about some material of B / G ch. 6 and 7 which is not part of the MF doc.

Reading assignment 1 - due Monday, February 25:

a. Read carefully B/G ch.6.1-6.3. Cross reference the material with MF ch.6.

Reading assignment 2 - due: Wednesday, February 27:

a. Read carefully B/G ch.6.4 and ch.7.1
b. Read carefully MF ch. 19.7 (AoP Ch.7: Arithmetic in Base Ten) which contains some addenda to B/G ch.7.

Reading assignment 3 - due Friday, February 29:

a. Read carefully the remainder of MF ch. 7 (i.e., ch.7.3)

Written assignments:

You should not attempt to work on assignments 1 and 2 without knowledge of MF ch. 6.7 (The Division Algorithm) and you should not attempt to work on assignment 3 without knowledge of MF ch. 6.10 (Prime Numbers).
\#1 and \#2 are about proving MF thm.6.7 (Division Algorithm for Integers - same as B/G thm.6.13): Let $n \in \mathbb{N}$ and $m \in \mathbb{Z}$. There exists a unique combination of two integers q ("quotient") and r ("remainder") such that

$$
m=n \cdot q+r \quad \text { and } 0 \leq r<n
$$

Do not use induction for assignments 1 and 2. It would only make your task more difficult!

Written assignment 1:

Prove uniqueness of the "decomposition" $m=q n+r$ such tbat $0 \leq r<n$: If you have a second such decomposition $m=\tilde{q} n+\tilde{r}$ then show that this implies $q=\tilde{q}$ and $r=\tilde{r}$. Start by assuming that $r \neq \tilde{r}$ which means that one of them is smaller than the other and take it from there.

Written assignment 2:

Much harder than \#1: Prove the existence of q and r.
Hints for \#2: Review the extended Well-Ordering principle MF thm.6.5. Its use will give the easiest way to prove this assignment: Apply thm. 6.5 to the set $A:=A(m, n):=\left\{x \in \mathbb{Z}_{\geq 0}: x=m-k n\right.$ for some $\left.k \in \mathbb{Z}\right\}$.

Hint for both \#1 and \#2: MF prop. 3.57 and cor.3.5 at the end of ch. 3 will come in handy in connection with $0 \leqq r<n$. They assert for the ordered integral domain $(\mathbb{Z},+, \cdot, \mathbb{N})$ the following. If $m, n \in \mathbb{Z}_{\geq 0}$ then

$$
\begin{align*}
& |n-m| \leqq \max (m, n), \text { i.e., } \tag{3.41}\\
& -\max (x, y) \leqq x-y \leqq \max (x, y) \tag{3.42}\\
& -n<y-x<n \tag{3.43}
\end{align*}
$$

Written assignment 3:

Use strong induction to prove MF prop.6.37: Any integer $\geqq 2$ has a prime factorization.

