Math 330 Section 7 - Spring 2019 - Homework 15

Published: Tueday, April 9, 2019
Running total: 47 points
Last submission: Friday, April 26, 2019
Update April 7, 2019
Correction to reading assignment 3: Changed from MF ch.13.1 - 13.2 to ch.13.1.1 - 13.1.2!

Status - Reading Assignments:

Here is the status of the reading assignments you were asked to complete so far:
B/G (Beck/Geoghegan) Textbook:
Preface and ch. 1 - ch.6, ch.7.1, ch. 8 - ch. 13

MF lecture notes:
ch. 1 - ch.3; ch. 5 - ch. 7 (skim ch.6.3); ch.8.1 - 8.2; ch.9.1 through prop.9.7; ch.9.2;
ch. 10 - ch.11; ch.12.1; ch.19.7(!)
B / K lecture notes:
ch.1.1 (Introduction to sets)
ch.1.2 (Introduction to Functions) but skip ch.1.2.4: Floor and Ceiling Functions
Other:
Stewart Calculus 7ed - ch.1.7: "The Precise Definition of a Limit". If you have a newer or older edition then you may have to search through the table of contents and/or consult the index.

New reading assignments:

Reading assignment 1 - due Monday, April 15:

a. Read ch.12.2.1 None of the definitions and propositions will be on any quiz and exam unless they have a direct bearing on the material in ch.12.2.2.
b. Read carefully MF ch.12.2.2 until before def.12.18 (net area and area).

Reading assignment 2 - due: Wednesday, April 17:

- Read carefully the remainder of MF ch.12.2.

Reading assignment 3 - due Friday, April 19:

- Read carefully MF ch.13.1.1 and ch.13.1.2. Almost everything there can be traced back to ch.12.2.2 on norms via the equation $d(\vec{x}, \vec{y})=\|\vec{x}-\vec{y}\|$.

Written assignment 1: Prove prop 11.1: Let X, Y be two sets such that $\operatorname{card}(X)=\operatorname{card}(Y)$.
Then $\operatorname{card}\left(2^{X}\right)=\operatorname{card}\left(2^{Y}\right)$.
Hint: Use prop.9.6 to prove that the set function $f: 2^{X} \rightarrow 2^{Y}$ is bijective. Why does that help?

Written assignment 2: Prove prop.11.6: The relation $X \sim Y \Leftrightarrow X=Y$ or both X and Y are nonempty and there is a bijective function $f: X \rightarrow Y$ is an equivalence relation on 2^{Ω}.

Hint: Examine the case $X=\emptyset$ separately!

