Math 330 Section 7 - Spring 2019 - Homework 18

Published: Thursday, May 2, 2019
Last submission: Friday, May 10, 2019(!!)

Status - Reading Assignments:

Here is the status of the reading assignments you were asked to complete so far:
B/G (Beck/Geoghegan) Textbook:
Preface and ch. 1 - ch.6, ch.7.1, ch. 8 - ch.13, appendix A

MF lecture notes:
ch. 1 - ch.3; ch. 5 - ch. 7 (skim ch.6.3); ch.8.1 - 8.2; ch.9.1 through prop.9.7; ch.9.2;
ch. 10 - ch. 13 (skip ch.12.2.3); ch.14.1 - 14.2 ch.19.7(!)
B / K lecture notes:
ch.1.1 (Introduction to sets)
ch.1.2 (Introduction to Functions) but skip ch.1.2.4: Floor and Ceiling Functions
Other:
Stewart Calculus 7ed - ch.1.7: "The Precise Definition of a Limit". If you have a newer or older edition then you may have to search through the table of contents and/or consult the index.

New reading assignments:

Reading assignment 1 - due Monday, May 6:

- Read carefully ch. 14.3 - ch.14.5, but skip the proof of prop.14.2.

Reading assignment 2 - due: Wednesday, May 8:

a. Read carefully the end of ch.14.
b. Read carefully ch.15.1-15.4.

Reading assignment 3 - due Friday, May 10:

- Time off for good behavior

Draw plenty of pictures!

Written assignment 1: One point each for \mathbf{a} and \mathbf{b} !
Let $X:=\mathbb{R}$ equipped with the standard Euclidean metric $d\left(x, x^{\prime}\right)=\left|x-x^{\prime}\right|$. Let $f_{n}: \mathbb{R} \rightarrow \mathbb{R}$ be the following sequence of functions:

$$
f_{n}(x):= \begin{cases}0 & \text { if }|x|>\frac{1}{n} \\ n x+1 & \text { if } \frac{-1}{n} \leqq x \leqq 0 \\ -n x+1 & \text { if } 0 \leqq x \leqq \frac{1}{n}\end{cases}
$$

i.e., the point $\left(x, f_{n}(x)\right)$ is on the straight line between $\left(-\frac{1}{n}, 0\right)$ and $(0,1)$ for $\frac{-1}{n} \leqq x \leqq 0$, it is on the straight line between $(0,1)$ and $\left(\frac{1}{n}, 0\right)$ for $0 \leqq x \leqq \frac{-1}{n}$, and it is on the x-axis for all other x. Draw a picture! Let $f(x):=0$ for $x \neq 0$ and $f(0):=1$.
a. Prove that f_{n} converges pointwise to f on \mathbb{R}.
b. Prove that f_{n} does not converge uniformly to f on \mathbb{R}.

You may use without proof that each of the functions f_{n} is continuous on \mathbb{R}.

