Math 330 Section 6 - Fall 2019 - Homework 03

Published: Wednesday, September 4, 2019
Last submission: Wednesday, September 11, 2019
(two days before the last submission date for hwk 2!)

Running total: 17 points
NO RESUBMISSIONS

Status - Reading Assignments:

Here is the status of the reading assignments you were asked to complete by Friday, Sept. 6.
B/G (Beck/Geoghegan) Textbook:
ch.1, ch.2.1-2.2, ch. 3

MF lecture notes:
ch.2, ch.3, ch. 5 through ch.5.2.3 (Examples of Functions)

B/K lecture notes:
ch.1.1 (Introduction to sets) (optional)
ch.1.2 (Introduction to Functions) but skip ch.1.2.4: Floor and Ceiling Functions (optional)

New reading assignments:

None - see homework 2 and 4 (once published)

Helpful hints for the written assignments:

a. No matter what A stands for, it is never true that $A=\{A\}$. Not even if $A=\emptyset$ (the empty set): $\{A\}=\{\emptyset\}$ is a set which contains an element (exactly one): The empty set! Because $\{\emptyset\}$ is not empty it follows that $\{\emptyset\} \neq \emptyset$. By the way: It is true that $\emptyset \subseteq\{\emptyset\}$!
b. No matter what A stands for, it is never true that $A \in A$. Again, not even if $A=\emptyset$ (the empty set): The empty set contains nothing at all; in particular, it does not contain any set; in particular, it does not contain the set that has no elements, i.e., the empty set. Thus $\emptyset \notin \emptyset$.
c. CAREFUL HERE: It is possible to have both $a \in U$ and $\{a\} \in U$. Matter of fact, the first assignment of this homework contains such an example.

Written assignments 1-5 Partial credit will be given. You can earn as many as 10 points!
Note the following:
A. In the MF doc refer to def.2.10 for the preliminary definition of the size of a set S :

If S is finite then $|S|$ is the number of elements of S, otherwise $|S|=\infty$.
B. Refer to MF doc def.2.21 (Preliminary definition: cartesian product) for the definition of $X \times Y$.

Written assignment 1:

Let $A=\{u, w,\{w\},\{u, w\}\}$. True or false?
a. $\{w\} \subseteq A$
b. $\{w\} \in A$
c. $\{\{w\}\} \subseteq A$
d. $\{\{w\}\} \in A$
e. $\{u\} \subseteq A$
f. $\{u\} \in A$
g. $u \subseteq A$
h. $u \in A$

Written assignment 2:

Find the size of each of the following sets:
a. $A=\{6,\{6\},\{-6\}\}$
b. $B=\{4,\{4\}, \pi,\{4\},\{\pi\},\{4, \pi\}\}$
c. $C=\left\{5 z-3 z^{2}: z \in \mathbb{Z}\right\}$
d. $D=\{2,3,4,3,2\}$
e. $E=\left\{(-1)^{k}: k \in \mathbb{Z}\right\}$
f. $F=\{\sin (x): x \in \mathbb{R}\}$

Written assignment 3 :

Let $X=\{p,\{q\}\}$ and $Y=\{p, q,\{p\},\{p, q\}\}$. True or false?
a. $\{q\} \in X \cap Y$
b. $p \in X \cap Y$
c. $\{q\} \in X \cup Y$
d. $p \in X \cup Y$
e. $\{q\} \in X \backslash Y$
f. $p \in X \backslash Y$
g. $\{q\} \in X \Delta Y$
h. $p \in X \Delta Y$

Written assignment 4:

Let $X=\{x, y, z\}$ and let $Y=\{7,8\}$.
a. What is $X \times Y$?
c. What is $|X \times Y|$?
e. Is $(8, x) \in X \times Y$?
g. Is $z \cdot 7 \in X \times Y$?
b. What is $Y \times X$?
d. What is $|Y \times X|$?
f. Is $(8, x) \in Y \times X$?
h. Is $z \cdot 7 \in Y \times X$?

Written assignment 5:

Let $X=\{5\}$.
a. What is 2^{X} ?
b. What is $2^{\left(2^{x}\right)}$?

