Math 330 Section 6 - Fall 2019 - Homework 03

Published: Wednesday, September 4, 2019Running total: 17 pointsLast submission: Wednesday, September 11, 2019NO RESUBMISSIONS(two days before the last submission date for hwk 2!)NO RESUBMISSIONS

Status - Reading Assignments:

Here is the status of the reading assignments you were asked to complete by Friday, Sept. 6.

B/G (Beck/Geoghegan) Textbook: ch.1, ch.2.1 – 2.2, ch.3

MF lecture notes:

ch.2, ch.3, ch.5 through ch.5.2.3 (Examples of Functions)

B/K lecture notes:

ch.1.1 (Introduction to sets) (optional)

ch.1.2 (Introduction to Functions) but skip ch.1.2.4: Floor and Ceiling Functions (optional)

New reading assignments:

None - see homework 2 and 4 (once published)

Helpful hints for the written assignments:

- **a.** No matter what *A* stands for, it is never true that $A = \{A\}$. Not even if $A = \emptyset$ (the empty set): $\{A\} = \{\emptyset\}$ is a set which contains an element (exactly one): The empty set! Because $\{\emptyset\}$ is not empty it follows that $\{\emptyset\} \neq \emptyset$. By the way: It is true that $\emptyset \subseteq \{\emptyset\}$!
- **b.** No matter what *A* stands for, it is never true that $A \in A$. Again, not even if $A = \emptyset$ (the empty set): The empty set contains nothing at all; in particular, it does not contain any set; in particular, it does not contain the set that has no elements, i.e., the empty set. Thus $\emptyset \notin \emptyset$.
- c. CAREFUL HERE: It is possible to have both $a \in U$ and $\{a\} \in U$. Matter of fact, the first assignment of this homework contains such an example.

Written assignments 1-5 Partial credit will be given. You can earn as many as 10 points!

Note the following:

A. In the MF doc refer to def.2.10 for the preliminary definition of the size of a set *S*: If *S* is finite then |S| is the number of elements of *S*, otherwise $|S| = \infty$.

B. Refer to MF doc def.2.21 (Preliminary definition: cartesian product) for the definition of $X \times Y$.

Written assignment 1:

Let $A = \{u, w, \{w\}, \{u, w\}\}$. True or false?

 $\begin{array}{lll} \mathbf{a}. \ \{w\} \subseteq A & \mathbf{c}. \ \{ \ \{w\} \ \} \subseteq A & \mathbf{e}. \ \{u\} \subseteq A & \mathbf{g}. \ u \subseteq A \\ \mathbf{b}. \ \{w\} \in A & \mathbf{d}. \ \{ \ w\} \ \} \in A & \mathbf{f}. \ \{u\} \in A & \mathbf{h}. \ u \in A \\ \end{array}$

Written assignment 2:

Find the size of each of the following sets:

a.
$$A = \{6, \{6\}, \{-6\}\}$$

b. $B = \{4, \{4\}, \pi, \{4\}, \{\pi\}, \{4, \pi\}\}$
c. $C = \{5z - 3z^2 : z \in \mathbb{Z}\}$
e. $E = \{(-1)^k : k \in \mathbb{Z}\}$
f. $F = \{\sin(x) : x \in \mathbb{R}\}$

Written assignment 3:

Let $X = \{p, \{q\}\}$ and $Y = \{p, q, \{p\}, \{p, q\}\}$. True or false?

Written assignment 4:

Let $X = \{x, y, z\}$ and let $Y = \{7, 8\}$.

a. What is $X \times Y$? **c.** What is $|X \times Y|$? **e.** Is $(8, x) \in X \times Y$? **g.** Is $z \cdot 7 \in X \times Y$? **b.** What is $Y \times X$? **d.** What is $|Y \times X|$? **f.** Is $(8, x) \in Y \times X$? **h.** Is $z \cdot 7 \in Y \times X$?

Written assignment 5:

Let $X = \{5\}$.

- **a.** What is 2^X ?
- **b.** What is $2^{(2^{X})}$?