Math 330 Section 6 - Fall 2019 - Homework 05

Published: Thursday, September 12, 2019
Last submission: Friday, September 27, 2019

Running total: 24 points

Status - Reading Assignments:

Here is the status of the reading assignments you were asked to complete by Friday, Sept. 13.
B/G (Beck/Geoghegan) Textbook:
ch.1, ch.2.1-2.3, ch.3, ch.5,

MF lecture notes:
ch.2, ch.3, ch.5, ch.6.1 and ch.6.2, skim ch.6. 3
B / K lecture notes:
ch.1.1 (Introduction to sets) (optional)
ch.1.2 (Introduction to Functions) but skip ch.1.2.4: Floor and Ceiling Functions (optional)
New reading assignments:
Reading assignment 1 - due Monday, September 16:
a. Read carefully MF ch. 6.4 through ch.6.8.

Reading assignment 2 - due: Wednesday, September 18:

a. Read carefully the remainder of B / G ch.2. There should be nothing you have not already encountered in MF ch. 3 and ch. 6 .
b. Carefully read B/G ch.4. You have seen almost all of it in MF ch.6.

Reading assignment 3 - due Friday, September 20:

a. Carefully read MF ch.6.9 through 6.12.

Written assignments:

General note on written assignments: Unless expressly stated otherwise, to prove a proposition or theorem you are allowed to make use of everything in the book up to but NOT including the specific item you are asked to prove.

Written assignment 1:

Negate the following statement (see B/G ch.3.3):
$\forall \varepsilon>0 \exists \delta>0$ such that $\forall x \in N_{\delta}(a)$ it is true that $f(x) \in N_{\varepsilon}(f(a))$.

Written assignment 2:

Prove B/G Prop. 4.7(i) by induction: Let $k \in \mathbb{N}$. Then there exists $j \in \mathbb{Z}$ such that $5^{2 k}-1=24 j$. In other words, $24 \mid\left(5^{2 k}-1\right)$ according to MF def.6.11 in ch6.4 (Divisibility) or the definitions that follow B/G prop.1.14.
Written assignment 3: Prove MF Prop. 6.3.1 by induction on c : Let $\left(x_{j}\right)_{j \in \mathbb{N}}$ be a sequence in \mathbb{Z} and let $a, b, c \in \mathbb{Z}$ such that $a \leq b<c$. Then

$$
\sum_{j=a}^{c} x_{j}=\sum_{j=a}^{b} x_{j}+\sum_{j=b+1}^{c} x_{j} .
$$

Hints: Think carefully about the base case: If $a=5$ and $b=8$, how would you choose c ? If $a=-4$ and $b=8$, how would you choose c ? For general $a \leqq b$, how would you choose c ?

