Math 330 Section 6 - Fall 2019 - Homework 09

Published: Thursday, October 3, 2019 Last submission: Friday, October 18, 2019 Running total: 36 points

Status - Reading Assignments:

Here is the status of the reading assignments you were asked to complete so far

B/G (Beck/Geoghegan) Textbook: ch.1 – ch.7 (ch.7 only until thm.7.17)

MF lecture notes: ch.2, ch.3, ch.5 – ch.7.3

B/K lecture notes: ch.1.1 (Introduction to sets) (optional) ch.1.2 (Introduction to Functions) but skip ch.1.2.4: Floor and Ceiling Functions (optional)

New reading assignments:

Reading assignment 1 - due Monday, October 7:

a. Read carefully the remainder of MF ch.7 (i.e., ch.7.4)

Reading assignment 2 - due: Wednesday, October 9: (no class)

a. Read carefully MF ch.8.1 and 8.3, and skim the optional ch.8.2

Reading assignment 3 - due Friday, October 11:

a. Read carefully MF ch.8.4 (but only through prop.8.10: the remainder is optional)

Written assignment 1: Prove B/G prop.6.17: Let $n \in \mathbb{Z}$. Then *n* is even if and only if n^2 is even.

Hint: It suffices to show that if *n* is odd then n^2 is odd, and if *n* is even then n^2 is even: See the proof strategy of the proof of prop.?? on p.??.

Written assignment 2: Prove exercise 6.4 of the MF document:

For $m, n \in \mathbb{Z}$ let $S := S(m, n) := \{k \in \mathbb{N} : k = mx + ny \text{ for some } x, y, \in \mathbb{Z}\}.$

Then *S* is empty if and only if m = n = 0.

Hint: The difficult part is proving that *S* is not empty if at least one of *m*, *n* is not zero. What does *S* look like if m = 0 and $n \neq 0$? Do that case first, then do the case where both *m* and *n* are not zero. Play around with specific number to see what happens before you attempt to do the proof. \Box