Math 330 Section 6 - Fall 2019 - Homework 14

Published: Thursday, November 7, 2019
Last submission: Friday, November 22, 2019

Running total: 47 points

Updates November 19, 20, 2019
Hints were added for written assignment 1 on November 19, 2019, and to \#2 on November 20, 2019.

Status - Reading Assignments: You were asked to complete the following reading so far:
B/G (Beck/Geoghegan) Textbook:
ch. 1 - ch. 8 (ch. 7 only until thm.7.17), ch. 13

MF lecture notes:
ch.2, ch. 3, ch. 5 - ch. 10 , ch. 11 , ch. 12 through ch.12.1.3
B / K lecture notes:
ch.1.1 (Introduction to sets) (optional)
ch.1.2 (Introduction to Functions) but skip ch.1.2.4: Floor and Ceiling Functions (optional)
Stewart Calculus 7ed - ch.1.7: "The Precise Definition of a Limit".

New reading assignments:

Reading assignment 1 - due Monday, November 11:

a. Carefully read B/G ch.10. You have encountered that material, some of it in a more abstract setting, in MF ch. 3 and ch. 9 .

Reading assignment 2 - due: Wednesday, November 13:

a. Carefully read B/G ch.9. You have encountered that material, some of it in a more abstract setting, in MF ch. 5 and ch.6.16.
b. Carefully read B/G ch.11.1 and 11.2 You have encountered that material in MF ch.9.
c. Skim B/G ch.11.3. This material will not be on any quiz or test.

Reading assignment 3 - due Friday, November 15:

a. Carefully read B/G ch.12. You have encountered that material in MF ch.9.

Written assignment 1: Prove the following which was stated in example 9.9:
If $A_{n} \subseteq \Omega$ such that $A_{n} \nearrow$ then $\liminf _{n \rightarrow \infty} A_{n}=\limsup _{n \rightarrow \infty} A_{n}=\bigcup_{n \in \mathbb{N}} A_{n}$.

Hints:

a) Prove that $\bigcap_{j \geqq n} A_{j}=A_{n}$ (easy).
b) Prove that $\bigcup_{j \geqq n} A_{j}=\bigcup_{j \geqq 1} A_{j}$ for all n (needs some work). Thus $\bigcup_{j \geqq n} A_{j}=\ldots$
c) Use both (a) and (b) to prove the limsup result.
d) You only need one of (a), (b) to prove the liminf result.

Written assignment 2: Prove prop.10.1:
If X, Y are two sets such that $\operatorname{card}(X)=\operatorname{card}(Y)$ then $\operatorname{card}\left(2^{X}\right)=\operatorname{card}\left(2^{Y}\right)$.

Hints:

a) If both $X, Y \neq \emptyset$: Use prop.8.9 + thm.5.1, but NOT on a bijection $X \rightarrow Y$ (domain and codomain are 2^{X} and 2^{Y} !).
b) If both $X, Y=\emptyset$: Then $2^{X}=$ \qquad $=2^{Y}$
c) If one is empty and the other is not: Not possible if $\operatorname{card}(X)=\operatorname{card}(Y)$ (why)?

