Math 330 Section 6 - Spring 2020 - Homework 04

Published: Saturday, February 1, 2020
Running total: 21 points
Last submission: Friday, February 14, 2020
Update February 7, 2020
Error in reading assignment 1: "Carefully read MF ch.5.4-5.6" was meant to read: "Carefully read MF ch.5.2.4-5.2.6" This has been corrected.

Status - Reading Assignments:

Here is the status of the reading assignments you were asked to complete by this date.
B/G (Beck/Geoghegan) Textbook:
ch.1, ch.2.1-2.2, ch. 3

MF lecture notes:
ch.2, ch.3, ch. 5 through ch.5.2.3
B / K lecture notes:
ch.1.1 (Introduction to sets) (optional)
ch.1.2 (Introduction to Functions) but skip ch.1.2.4: Floor and Ceiling Functions (optional)

New reading assignments:

Reading assignment 1 - due Monday, February 10:

a. Carefully read MF ch.5.2.4-5.2.6. (corrected!) The concepts discussed there will be used throughout during the remainder of the course.

Reading assignment 2 - due: Wednesday, February 12:

a. Carefully read the remainder of MF ch.5.
b. Carefully read B/G ch. 5 and ch.6.1

Reading assignment 3 - due Friday, February 14:

a. Carefully read MF ch.6.1.
b. Carefully read the remainder of MF ch.2.
b. Carefully read the remainder of B / G ch.2.

General note on written assignments: Unless expressly stated otherwise, to prove a proposition or theorem you are allowed to make use of everything in the book up to but NOT including the specific item you are asked to prove.

Written assignment 1:

Prove the following part of MF prop.3.56: Let (R, \oplus, \odot, P) be an ordered integral domain and $\emptyset \neq A \subseteq R$. If A has a maximum then it also has a supremum, and $\max (A)=\sup (A)$.

Written assignment 2:

Use the rules of working with quantifiers to negate the following statement (see B/G ch.3.3). No need at all to understand the meaning of this statement.
$\forall \varepsilon>0 \exists \delta>0$ such that $\forall x \in N_{\delta}(a)$ it is true that $f(x) \in N_{\varepsilon}(f(a))$.

Written assignment 3:

One point each for \mathbf{a} and \mathbf{b} :
Let $X, Y \neq \emptyset$ and $f: X \rightarrow Y$.
a. Prove that $R:=\left\{\left(x, x^{\prime}\right) \in X \times X: f(x)=f\left(x^{\prime}\right)\right\}$ is an equivalence relation on X.
b. For the special case $f: \mathbb{R} \rightarrow \mathbb{R} ; \quad x \rightarrow x^{2}$ compute the equivalence classes $[2],[0],[-2]$ for this equivalence relation.

