Math 330 Section 6 - Spring 2020 - Homework 08

Published: Thursday, February 20, 2020 Running total: 35 points
Last submission: Friday, March 13, 2020

Status - Reading Assignments:

Here is the status of the reading assignments you were asked to complete by this date.
B/G (Beck/Geoghegan) Textbook:
ch.1-6

MF lecture notes:
ch.2, ch.3, ch. 5 - 8 (not the optional ch.8.3 and 8.5)

B/K lecture notes:
ch.1.1 (Introduction to sets) (optional)
ch.1.2 (Introduction to Functions) but skip ch.1.2.4: Floor and Ceiling Functions (optional)
New reading assignments:
Reading assignment 1 - due Monday, March 2:
a. Prepare for today's midterm.
b. Carefully read B/G ch.7.1, ch.7.2 until thm.7.17 (skip the proof), and ch.9.

Reading assignment 2 - due: Wednesday, March 4:

a. Carefully read MF ch.9.1-9.2.

Reading assignment 3 - due Friday, March 6: (no class)

a. Carefully read B/G ch.8.
b. Carefully read B/G ch. 10 through prop.10.13 in ch.10.4.
c. Carefully read MF ch.9.3 (VERY IMPORTANT!)

Written assignments are on the next page.

Written assignments:

You should not attempt to work on assignments 1 and 2 without knowledge of MF ch. 6.9 (The Division Algorithm).
\#1 and \#2 are about proving MF thm.6.9 (Division Algorithm for Integers - same as B/G thm.6.13): Let $n \in \mathbb{N}$ and $m \in \mathbb{Z}$. There exists a unique combination of two integers q ("quotient") and r ("remainder") such that

$$
m=n \cdot q+r \quad \text { and } 0 \leq r<n .
$$

Do not use induction for assignments 1 and 2. It would only make your task more difficult!

Written assignment 1 :

Prove uniqueness of the "decomposition" $m=q n+r$ such tbat $0 \leq r<n$: If you have a second such decomposition $m=\tilde{q} n+\tilde{r}$ then show that this implies $q=\tilde{q}$ and $r=\tilde{r}$. Start by assuming that $r \neq \tilde{r}$ which means that one of them is smaller than the other and take it from there.

Written assignment 2:

Much harder than \#1: Prove the existence of q and r.
Hints for \#2: Review the extended Well-Ordering principle MF thm.6.7. Its use will give the easiest way to prove this assignment: Apply thm. 6.7 to the set $A:=A(m, n):=\left\{r^{\prime} \in \mathbb{Z}_{\geq 0}: r^{\prime}=m-q^{\prime} n\right.$ for some $\left.q^{\prime} \in \mathbb{Z}\right\}$. Can you prove that A has a min? Once you have done that what can you do with $\min (A)$?

Hint for both \#1 and \#2: MF prop. 3.61 and cor.3.5 at the end of ch. 3 will come in handy in connection with $0 \leqq r<n$. They assert for the ordered integral domain $(\mathbb{Z},+, \cdot, \mathbb{N})$ the following. If $a, b \in[0, n[\mathbb{Z}$ then

$$
\begin{align*}
& |a-b| \leqq \max (a, b), \text { i.e., } \tag{3.46}\\
& -\max (a, b) \leqq a-b \leqq \max (a, b) \tag{3.47}\\
& -n<a-b<n \tag{3.48}
\end{align*}
$$

