Math 330 Section 6 - Spring 2020 - Homework 11

Published: Sunday, March 22, 2020
Last submission: Friday, April 3, 2020

Running total: 41 points

Status - Reading Assignments:

Here is the status of the reading assignments you were asked to complete by this date.
B/G (Beck/Geoghegan) Textbook:
ch. 1 - 13 (ch. 7.2 until thm.7.17),

MF lecture notes:

ch.2, ch.3, ch. 5 - 11

B/K lecture notes:
ch.1.1 (Introduction to sets) (optional)
ch.1.2 (Introduction to Functions) but skip ch.1.2.4: Floor and Ceiling Functions (optional)

Reading assignment 1 - due Monday, March 23:

- No reading assignment

Reading assignment 2 - due: Wednesday, March 25:

a. Carefully read MF ch.12.1.1-12.1.2. You need to remember what you studied about norms in ch.11.2.2!

Reading assignment 3 - due Friday, March 27:

a. Carefully read MF ch.12.1.3-12.1.4. Draw plenty of pictures!

Supplementary instructions for reading MF ch.12:

When you read or reread any topics in those chapters then the following is good advice:
a. MF ch.12.1: Draw as many pictures as possible to get a feeling for the abstract concepts. Use the metric spaces $\left(\mathbb{R}^{2},\left.d\right|_{\|\cdot\|_{2}}\right)$ and $\left(\mathscr{B}(X, \mathbb{R}),\left.d\right|_{\|\cdot\|_{\infty}}\right)$ for this. Do these drawings in particular for

- open sets and neighborhoods (ch.12.1.3)
- convergence, expressed with nhoods (the end of def.12.10 in ch.12.1.4)
- metric and topological subspaces (ch.12.1.7): draw an irregular shaped subset $A \subseteq \mathbb{R}^{2}$ in two pieces $A=A_{1} \biguplus A_{2}$ which do not overlap. Draw some points $x_{j} \in A$ with ε-nhoods (circles with radius ε about x_{j}) so that some circles are entirely in A, one with $x_{j} \in A_{1}$ which reaches into A^{\complement} but not into A_{2}, and one with $x_{j} \in A_{2}$ which reaches both into A^{\complement} and A_{1}. What is $N_{\varepsilon}^{A}\left(x_{j}\right)$?
- Contact points, closed sets and closures (ch.12.1.8): Draw subsets $B \subseteq \mathbb{R}^{2}$ with parts of their boundary (periphery) drawn solid to indicate that points there belong to B and other parts drawn dashed to indicate that those boundary points belong to the complement. What is \bar{B} ?
Draw points "completetely inside" B, others "completetely outside" B, and others on the solid and dashed parts of the boundary. Which ones can you approximate from within B by sequences? Which ones can you surround by circles that entirely stay within B, ie., which ones are interior points of B ? Which ones can you surround by circles that entirely stay outside the closure of B, i.e., which ones are entirely within \bar{B}^{\complement} ? Use those pictures to visualize the definitions in this chapter and the 12.6 and thm.12.7.
- Now repeat that exercise with an additional set A which is meant to be a metric subspace of \mathbb{R}^{2}.
b. MF ch.12.2: Draw as many pictures as possible to get a feeling for continuity, especially if you did not take multivariable calculus and are not used to dealing with continuous/differentiable functions of more than one variable. Here is a picture.

Figure 1: $\varepsilon-\delta$ continuity

Written assignments:

New policy:

Your written assignments must be submitted as .xt files or .xdoc files. If you know how to, you may also submit them as LaTex files. In that case I want you to submit the .tex source file. I should be able to run your xyz.tex file as "pdflatex xyz". You can find a link to the instructions on the Homework page.

Written assignment 1: Prove MF prop.9.17.b: Let y_n be a sequence of real numbers that is nonincreasing, ie., $y _n>=y _(n+1)$ for all n, and bounded below.

Then lim[y_n : n-> infty] exists and coincides with inf[y_n : n in \$N\$].
Do the proof by modifying the proof of prop.9.17.a. You are NOT ALLOWED to apply prop.9.17.a to the sequence $x _n$:= -y_n!

Written assignment 2: Prove MF the. 9.8: If m in $\$ \mathrm{~N} \$$ is not a perfect square then $\operatorname{sqrt}(\mathrm{m})$ is irrational.

