Math 330 Section 6 - Fall 2020 - Homework 06

Published: Thursday, September 17, 2020
Running total: 29 points
Last submission: Friday, October 2, 2020
Update September 19, 2020
Complemented Monday's reading assignment with some HTML links for \sum notation tutorials.

Status - Reading Assignments:

Here is the status of the reading assignments you were asked to complete by this date.
B/G (Beck/Geoghegan) Textbook:
ch.1, ch.2.1-2.3, ch.3, ch. 5

MF lecture notes:
ch. $2-3$, ch.5, ch.6.1-6.4
B / K lecture notes:
ch.1.1 (Introduction to sets) (optional)
ch.1.2 (Introduction to Functions) but skip ch.1.2.4: Floor and Ceiling Functions (optional)

New reading assignments:

Reading assignment 1 - due Monday, September 21:

a. Familiarize your self with the \sum notation $\sum_{j=m}^{n} x_{j}$ for the sum $x_{m}+x_{m+1}+\cdots+x_{n-1}+x_{n}$ of a finite or infinite sequence of numbers x_{j}. Here are some links you may want to look at if you have not worked with the \sum (Sigma) symbol before:

- http://onlinestatbook.com/2/introduction/summation.html
- http://www.columbia.edu/itc/sipa/math/summation.html
- http://www.purplemath.com/modules/series.htm
- http://www.purplemath.com/modules/series2.htm
- http://study.com/academy/lesson/summation-notation-rules-examples-quiz. html\#lesson
b. Carefully read MF ch.6.6-6.9.

Reading assignment 2 - due: Wednesday, September 23:

a. Carefully read B/G ch.2.4 and B/G ch.6.1-6.2 You have encountered the material already in MF ch.5.1 and ch.6.8-6.9.
b. Carefully read MF ch.6.10-6.12

Reading assignment 3 - due Friday, September 25:

a. Carefully read the remainder of MF ch.6.
b. Carefully read the remainder of B / G ch. 6 and then ch.7.1.

Written assignments are on the next page.

Written assignment 1:

Prove B/G Prop. 4.7(i) by induction: Let $k \in \mathbb{N}$. Then there exists $j \in \mathbb{Z}$ such that $5^{2 k}-1=24 j$. In other words, $24 \mid\left(5^{2 k}-1\right)$ according to MF def.6.11 in ch.6.6 (Divisibility) or the definitions that follow B/G prop.1.14.

Written assignment 2:

Prove MF Prop. 6.7a by induction on p : Let $\left(x_{j}\right)_{j \in \mathbb{N}}$ be a sequence in an ordered integral domain $R=(R, \oplus, \odot, P)$, and let $m, n, p \in \mathbb{Z}$ be indices such that $m \leq n<p$. Then

$$
\sum_{j=m}^{p} x_{j}=\sum_{j=m}^{n} x_{j} \oplus \sum_{j=n+1}^{p} x_{j}
$$

Hints: Think carefully about the base case: If $m=5$ and $n=8$, how would you choose p ? If $m=-4$ and $n=8$, how would you choose p ? For general $m \leqq n$, how would you choose p ?

Written assignment 3:

Let $x_{0}=8, x_{1}=16, x_{n+1}=6 x_{n-1}-x_{n}$ for $n \in \mathbb{N}$.
Prove that $x_{n}=2^{n+3}$ for every integer $n \geq 0$.
Hint: Use strong induction.

