Math 330 Section 6 - Fall 2020 - Homework 07

Published: Thursday, September 24, 2020
Running total: 32 points

Last submission: Friday, October 16, 2020
Update October 14, 2020
Deadline moved from 10/16 to 10/23.
Update September 30, 2020
Added the written assignments. Deadline moved from 10/9 to 10/16.

Status - Reading Assignments:

Here is the status of the reading assignments you were asked to complete by this date.
B/G (Beck/Geoghegan) Textbook: ch.1-4, ch.3, ch.6-7.1

MF lecture notes:
ch.2-3, ch.5-6
B / K lecture notes:
ch.1.1 (Introduction to sets) (optional)
ch.1.2 (Introduction to Functions) but skip ch.1.2.4: Floor and Ceiling Functions (optional)

New reading assignments:

Reading assignment 1 - due Monday, September 28:

a. Carefully read B/G ch.4.1-4.5 and skim ch.4.6. You have seen all this material in MF ch.6.
b. Carefully read B/G ch.5. The few things you will find there have been covered in MF ch.5.

Reading assignment 2 - due: Wednesday, September 23:

a. Carefully read MF ch.7.1-7.3.

Reading assignment 3 - due Friday, September 25:

a. Carefully read the remainder of MF ch.7.
b. Carefully read MF ch.8.1, skim ch.8.2, and then carefully read MF ch.8.3, in particular, def.8.6 and the subsequent remarks. (Cartesian Product of a family of sets).

Written assignments are on the next page.

Written assignments:

\#2 and \#3 are about proving MF thm.6.8 (Division Algorithm for Integers - same as B/G thm.6.13): Let $n \in \mathbb{N}$ and $m \in \mathbb{Z}$. There exists a unique combination of two integers q ("quotient") and r ("remainder") such that

$$
m=n \cdot q+r \quad \text { and } 0 \leq r<n
$$

Do not use induction for assignments 2 and 3. It would only make your task more difficult!

Written assignment 1:

Prove prop.5.9.a: Let $X, Y \neq \emptyset$, and $f: X \rightarrow Y$ bijective. Let $\emptyset \neq A \subseteq X, B:=\left.f\right|_{A}(A)=\{f(a): a \in A\}$. ${ }^{1}$ Let $f^{\prime}: A \rightarrow B ; \quad x \mapsto f(x)$, i.e., $f^{\prime}=\left.f\right|_{A^{\prime}}$ except that we have shrunken the codomain Y to B. Then f^{\prime} is bijective.

Written assignment 2:

Prove uniqueness of the "decomposition" $m=q n+r$ such tbat $0 \leq r<n$: If you have a second such decomposition $m=\tilde{q} n+\tilde{r}$ then show that this implies $q=\tilde{q}$ and $r=\tilde{r}$. Start by assuming that $r \neq \tilde{r}$ which means that one of them is smaller than the other and take it from there.

Written assignment 3:

Much harder than \#2: Prove the existence of q and r.
Hints for \#3: Review the extended Well-Ordering principle MF thm.6.7. Its use will give the easiest way to prove this assignment: Apply thm. 6.7 to the set $A:=A(m, n):=\left\{r^{\prime} \in \mathbb{Z}_{\geq 0}: r^{\prime}=m-q^{\prime} n\right.$ for some $\left.q^{\prime} \in \mathbb{Z}\right\}$. Can you prove that A has a min? Once you have done that what can you do with $\min (A)$?

Hint for both \#2 and \#3: MF prop. 3.61 and cor.3.5 at the end of ch. 3.5 will come in handy in connection with using or proving $0 \leqq r<n$. They assert for the ordered integral domain $(\mathbb{Z},+, \cdot, \mathbb{N})$ the following.

If $a, b \in[0, n[\mathbb{Z}$ then

$$
\begin{align*}
& |a-b| \leqq \max (a, b) \text {, i.e., } \tag{3.45}\\
& -\max (a, b) \leqq a-b \leqq \max (a, b) \tag{3.46}\\
& -n<a-b<n \tag{3.47}
\end{align*}
$$

[^0]
[^0]: ${ }^{1}$ i.e., $B=f(A)$

