Math 330 Section 6 - Fall 2020 - Homework 12

Published: Saturday, October 31, 2020
Last submission: Friday, November 13, 2020

Status - Reading Assignments:

Here is the status of the reading assignments you were asked to complete by this date.
B/G (Beck/Geoghegan) Textbook:
ch.1-7.1 (skip the remainder of ch.7), ch. 8-13

MF lecture notes:
ch.2-3, ch.5-12.1.7

B/K lecture notes:
ch.1.1 (Introduction to sets) (optional)
ch.1.2 (Introduction to Functions) but skip ch.1.2.4: Floor and Ceiling Functions (optional)
Other:
Stewart Calculus 7ed - ch.1.7: "The Precise Definition of a Limit". If you have a newer or older edition then you may have to search through the table of contents and/or consult the index.

New reading assignments:

Draw plenty of pictures when studying the material of ch. 12 and ch. 13 !

Reading assignment 1 - due Monday, November 2:

a. None - Prepare for the midterm!

Reading assignment 2 - due: Wednesday, November 4:

a. Reread MF ch.12.1.7 for a second time, as there is much subtlety! Work example 12.5 closed book a day after you have studied it!
b. Carefully read MF ch.12.1.8 and 12.1.9.
b. Carefully read MF ch.12.1.10 through theorem 12.9 (Completeness of $\left.\mathbb{R}^{n}\right)$.

Reading assignment 3 - due Friday, November 6:

a. Carefully read the remainder of MF ch.12.1.10.
b. Carefully read MF ch.12.2.1. Convince yourself that the definitions of $\varepsilon-\delta$ continuity and sequence continuity are compatible with those of MF ch.9.3.
c. Carefully read B/G appendix A (Continuity and Uniform Continuity).

Supplementary instructions for reading MF ch.12:

When you read or reread any topics in those chapters then the following is good advice:
a. MF ch.12.1: Draw as many pictures as possible to get a feeling for the abstract concepts. Use the metric spaces $\left(\mathbb{R}^{2},\left.d\right|_{\|\cdot\|_{2}}\right)$ and $\left(\mathscr{B}(X, \mathbb{R}),\left.d\right|_{\|\cdot\|_{\infty}}\right)$ for this. Do these drawings in particular for

- open sets and neighborhoods (ch.12.1.3)
- convergence, expressed with nhoods (the end of def. 12.10 in ch.12.1.4)
- metric and topological subspaces (ch.12.1.7): draw an irregular shaped subset $A \subseteq \mathbb{R}^{2}$ in two pieces $A=A_{1} \biguplus A_{2}$ which do not overlap. Draw some points $x_{j} \in A$ with ε-nhoods (circles with radius ε about x_{j}) so that some circles are entirely in A, one with $x_{j} \in A_{1}$ which reaches into A^{\complement} but not into A_{2}, and one with $x_{j} \in A_{2}$ which reaches both into A^{\complement} and A_{1}. What is $N_{\varepsilon}^{A}\left(x_{j}\right)$?
- Contact points, closed sets and closures (ch.12.1.8): Draw subsets $B \subseteq \mathbb{R}^{2}$ with parts of their boundary (periphery) drawn solid to indicate that points there belong to B and other parts drawn dashed to indicate that those boundary points belong to the complement. What is \bar{B} ?
Draw points "completetely inside" B, others "completetely outside" B, and others on the solid and dashed parts of the boundary. Which ones can you approximate from within B by sequences? Which ones can you surround by circles that entirely stay within B, ie., which ones are interior points of B ? Which ones can you surround by circles that entirely stay outside the closure of B, i.e., which ones are entirely within $\bar{B}^{\text {C }}$? Use those pictures to visualize the definitions in this chapter and the 12.6 and thm.12.7.
- Now repeat that exercise with an additional set A which is meant to be a metric subspace of \mathbb{R}^{2}.
b. MF ch.12.2: Draw as many pictures as possible to get a feeling for continuity, especially if you did not take multivariable calculus and are not used to dealing with continuous/differentiable functions of more than one variable. Here is a picture.

Figure 1: $\varepsilon-\delta$ continuity

Written assignments on next page.

Written assignment 1:

Prove MF thm. 9.8: If $m \in[0, \infty[\mathbb{Z}$ is not a perfect square then \sqrt{m} is irrational.
Written assignment 2: (3 points!) Prove MF prop.11.13 (Properties of the sup norm): $h \mapsto\|h\|_{\infty}=\sup \{|h(x)|:$ $x \in X\}$ defines a norm on $\mathscr{B}(X, \mathbb{R})$

This assignment is worth three points: One point each for pos.definite, absolutely homogeneous, triangle inequality!


```
math and not ordinary text. But I won't insist: I'll allow you drop the }\infty\mathrm{ subscript and simply write |h| for the sup-norm.
Note though that I keep writing |h\mp@subsup{|}{\infty}{}\mathrm{ in the remainder of this assignment.}
It is also OK if you use || (two absolute value bars) instead of the \Vert delimiter (BIG V!) for norms, as long as that stuff
is written in math mode (enclosed in $ .... $)
Here is the difference: Math mode: |x+y|. Text mode: || x y y ||.
```

Hint: Go for a treasure hunt in ch.9.2 (Minima, Maxima, Infima and Suprema), and look at the properties of $\sup (A)(A \subseteq \mathbb{R})$ to prove absolute homogeneity and the triangle inequality.

This assignment is worth three points, and you will have to earn them! The following exemplifies the level of detail I expect you to provide.

To prove that $\|\cdot\|_{\infty}$ satisfies the triangle inequality (11.27c) of a norm you will have to write something along the following lines:
c. Triangle inequality.

$$
\text { NTS: }\|f+g\|_{\infty} \leqq\|f\|_{\infty}+\|g\|_{\infty} \text { for all } f, g \in \mathscr{B}(X, \mathbb{R})
$$

Proof:

$$
\begin{aligned}
& \|f+g\|_{\infty}=\sup \{|f(x)|+|g(x)|: x \in X\} \quad \text { (definition of }\|\cdot\|_{\infty} \text {) } \\
& =\ldots \quad(\ldots \ldots) \\
& \leqq \ldots \quad(\ldots .) \\
& =\|f\|_{\infty}+\|g\|_{\infty} \quad(\ldots . .)
\end{aligned}
$$

(There may be fewer or more steps in your proof. The above only serves as an illustration!)
No need to justify properties of the absolute value $|\alpha|$ of a real number α, but you will need to justify why

$$
\sup \{|\alpha f(x)|: x \in X\}=|\alpha| \sup \{|f(x)|: x \in X\}
$$

and why

$$
\sup \{|f(x)+g(x)|: x \in X\} \leqq \sup \{|f(x)|: x \in X\}+\sup \{|g(x)|: x \in X\}
$$

An aside: DO NOT write $\|f(x)\|_{\infty}$ when you deal with the real number $f(x)$ (and you probably mean the absolute value $|f(x)|$).
$\|\cdot\|_{\infty}$ is defined for functions f, NOT for numbers $f(x)$!

