Math 330 Section 4 - Fall 2021 - Homework 09

Published: Thursday, October 7, 2021
Last submission: Friday, October 22, 2021

Running total: 39 points

Status - previously assigned reading Assignments:

B/G (Beck/Geoghegan) Textbook:
ch.1-7 (until Theorem 7.17)
MF lecture notes:
ch.2-3, ch. 4 (skim), ch.5-6
B/K lecture notes:
ch.1.1 (Introduction to sets) (optional)
ch.1.2 (Introduction to Functions) but skip ch.1.2.4: Floor and Ceiling Functions (optional)

New reading assignments:

Reading assignment 1 - due: Monday, October 4:

- Read carefully MF ch.7.1-7.3. Chapter 7.1 is particularly important!

Reading assignment 2 - due: Wednesday, October 6:

a. Read carefully the remainder of MF ch.7.
b. Read carefully MF ch.8.1. Be sure you understand the connection between arbitrary intersections and the \forall quantifier and the connection between arbitrary unions and the \exists quantifier.

Reading assignment 3 - due Friday, October 8:

a. Read carefully MF ch.8.3
b. Read carefully MF ch. 8.4 until before Proposition 8.11 and skim the remainder of this chapter.

Written assignments are on the next page.

Written assignments:

Written assignment 1: Prove Lemma 6.5: Let p be prime and let $n \in \mathbb{N}$. Then
(a) Either $\operatorname{gcd}(p, n)=1 \operatorname{or} \operatorname{gcd}(p, n)=p$.
(b) If $p \nmid n(p$ does not divide $n)$ then $\operatorname{gcd}(p, n)=1$.

One point each for (a) and (b).
\#2 and \#3 are about proving MF thm.6.8 (Division Algorithm for Integers - same as B/G thm.6.13): Let $n \in \mathbb{N}$ and $m \in \mathbb{Z}$. There exists a unique combination of two integers q ("quotient") and r ("remainder") such that

$$
m=n \cdot q+r \quad \text { and } 0 \leq r<n
$$

Do not use induction for assignments 2 and 3. It would only make your task more difficult!

Written assignment 2:

Prove uniqueness of the "decomposition" $m=q n+r$ such tbat $0 \leq r<n$: If you have a second such decomposition $m=\tilde{q} n+\tilde{r}$ then show that this implies $q=\tilde{q}$ and $r=\tilde{r}$. Start by assuming that $r \neq \tilde{r}$ which means that one of them is smaller than the other and take it from there.

Written assignment 3:

Much harder than \#2: Prove the existence of q and r.
Hints for \#3: Review the Extended Well-Ordering principle MF thm.6.7. Its use will give the easiest way to prove this assignment: Show that $A \neq \emptyset$. That probably is the hardest part of the proof! Now you can apply thm. 6.7 to the set

$$
A:=A(m, n):=\left\{r ^ { \prime } \in \left[0, \infty\left[\mathbb{Z}: r^{\prime}=m-q^{\prime} n \text { for some } q^{\prime} \in \mathbb{Z}\right\}\right.\right.
$$

What can you do with $\min (A)$?
Hint for both \#2 and \#3: MF prop. 3.61 and cor.3.5 at the end of ch. 3.5 will come in handy in connection with using or proving $0 \leqq r<n$. They assert for the ordered integral domain $(\mathbb{Z},+, \cdot, \mathbb{N})$ the following.

If $a, b \in[0, n[\mathbb{Z}$ then

$$
\begin{align*}
& |a-b| \leqq \max (a, b), \text { i.e., } \tag{3.45}\\
& -\max (a, b) \leqq a-b \leqq \max (a, b) \tag{3.46}\\
& -n<a-b<n \tag{3.47}
\end{align*}
$$

