Math 330 Section 4 - Fall 2021 - Homework 13

Published: Tuesday, November 2, 2021
Last submission: Friday, November 19, 2021

Running total: 49 points

Status - previously assigned reading Assignments:

B/G (Beck/Geoghegan) Textbook:
ch.1-7 (until Theorem 7.17), ch.8-11.3, ch.13.1
MF lecture notes:
ch.2-3, ch. 4 (skim), ch.5-10
B / K lecture notes:
ch.1.1 (Introduction to sets) (optional)
ch.1.2 (Introduction to Functions) but skip ch.1.2.4: Floor and Ceiling Functions (optional)

New reading assignments:

Reading assignment 1 - due: Monday, November 8:

a. Prepare for your midterm!

Reading assignment 2 - due: Wednesday, November 10:

a. Read MF ch.11.1 and ch.11.2.1. This should be a quick read since all of you have taken or are taking a linear algebra course. pay particular attention to example 11.11 (Vector spaces of real-valued functions) since we will work extensively with the function spaces $\mathscr{F}(X, \mathbb{R}), \mathscr{B}(X, \mathbb{R}), \mathscr{C}(X, \mathbb{R})$.
b. Read carefully MF ch.11.2.2 until before Proposition 11.14.

Reading assignment 3 - due Friday, November 12:

a. Read carefully the remainder of MF ch.11.2.2.
b. Skim MF ch. 11.3 (the remainder of ch.11).

Written assignments are on the next page.

Written assignments:

Written assignment 1: Prove MF prop.9.18(b): If y_{n} is a sequence of real numbers that is nonincreasing, i.e., $y_{n} \geqq y_{n+1}$ for all n, and bounded below, then $\lim _{n \rightarrow \infty} y_{n}$ exists and coincides with $\inf \left\{y_{n}: n \in \mathbb{N}\right\}$.

Do the proof by modifying the proof of prop.9.18(a). You are NOT ALLOWED to apply prop.9.18(a) to the sequence $x_{n}:=-y_{n}$!

Written assignment 2:

Let $f(x)=x^{2}$. Prove by use of " $\varepsilon-\delta$ continuity" that f is continous at $x_{0}=1$. You MUST work with $\varepsilon-\delta$ continuity (thm.9.7) NOT WITH SEQUENCE CONTINUITY, and you cannot use any "advanced" knowledge such as the product of continuous functions being continuous, etc.

Special instructions for assignment 1: Turn in your scratchpaper where you solve for δ (see the hints below).

Hints:

a. What does $d\left(x, x_{0}\right)<\delta$ and $d\left(f(x), f\left(x_{0}\right)<\varepsilon\right.$ translate to?
b. $\quad x^{2}-1=(x+1)(x-1)$.
c. Do the following on scratch paper: Work your way backward by establishing a relationship between $\varepsilon>0$ and δ and then "solving for δ " That part should not be in your official proof.
c1. Only small neighborhoods matter: Given $\varepsilon>0$ try to find δ that works for $0<\varepsilon<1$. Restrict your search to $\delta<1$. What kind of bounds do you get for $\left|x^{2}-1\right|,|x+1|,|x-1|$? if $0<\delta<1$?
c2. Put all the above together. Show that you obtain $\left|f(x)-f\left(x_{0}\right)\right| \leq 3 \delta$?. How then do you choose δ when you consider ε as given? You'll get the answer by "solving for δ ".
c3. All of the above was done under the assumption that $\delta<1$. Satisfy it by replacing δ with $\delta^{\prime}:=$ $\min (\delta, 1)$
d. Only now you are ready to construct an acceptable proof: Let $\varepsilon>0, \delta:=\ldots$, and $\delta^{\prime}:=\min (\delta, 1)$. Then \qquad

