Math 330 Section 5 - Spring 2022 - Homework 06

Published: Thursday, January 14, 2022 Running total: 29 points

Last submission: Friday, March 4, 2022

Status - Reading Assignments:

Here is the status of the reading assignments you were asked to complete by this date.
MF lecture notes:
ch.2.1-2.4, ch.3, ch. 4 (skim), ch.5-6.2

B/G (Beck/Geoghegan) Textbook:
ch.1, ch.2.1-2.3, ch.3, ch. 5
B / K lecture notes:
ch.1.1 (Introduction to sets) (optional)
ch.1.2 (Introduction to Functions) but skip ch.1.2.4: Floor and Ceiling Functions (optional)
New reading assignments:
Reading assignment 1 - due Monday, February 21:
a. Read carefully MF ch. 6.3 and ch.6.4.
b. Skip MF ch. 6.5 but carefully read MF ch. $6.6-6.8$

Reading assignment 2 - due: Wednesday, February 23:

a. Review B/G ch.2.4 through Prop.2.33 and skip the remainder of B/G ch.2.
b. Review B/G ch.4.1-4.5 and skim the remainder of B/G ch.4.

Reading assignment 3 - due Friday, February 25:

a. Carefully read MF ch.6.9-6.11.
b. Review B/G ch.6.1-6.3.

Written assignments are on the next page.

General note on written assignments: Unless expressly stated otherwise, to prove a proposition or theorem you are allowed to make use of everything in the book up to but NOT including the specific item you are asked to prove.

Written assignment 1 :

Let $X, Y \neq \emptyset$ and $f: X \rightarrow Y$.
(a) Prove that $R:=\left\{\left(x, x^{\prime}\right) \in X \times X: f(x)=f\left(x^{\prime}\right)\right\}$ is an equivalence relation on X.
(b) For the special case $f: \mathbb{R} \rightarrow \mathbb{R} ; \quad x \rightarrow x^{2}$ compute the equivalence classes $[2],[0],[-2]$ for this equivalence relation.

One point each for (a) and (b)!!

Written assignment 2:

Prove formulas (5.15) and (5.16) of Proposition 5.4: Let $f: X \rightarrow Y$. Then
(a) (5.15) $\quad A_{1} \subseteq A_{2} \subseteq X \Rightarrow f\left(A_{1}\right) \subseteq f\left(A_{2}\right)$
(b) (5.16) $\quad B_{1} \subseteq B_{2} \subseteq Y \Rightarrow f^{-1}\left(B_{1}\right) \subseteq f^{-1}\left(B_{2}\right)$

One point each for (a) and (b)!!

