Math 330 Section 5 - Spring 2022 - Homework 07

Published: Thursday, February 24, 2022 Running total: 32 points
Last submission: Friday, March 11, 2022

Status - Reading Assignments:

Here is the status of the reading assignments you were asked to complete by this date.
MF lecture notes:
ch.2.1-2.4, ch.3, ch. 4 (skim), ch.5-6.11 (skip 6.5)

B/G (Beck/Geoghegan) Textbook:
ch.1-6.3
B / K lecture notes:
ch.1.1 (Introduction to sets) (optional)
ch.1.2 (Introduction to Functions) but skip ch.1.2.4: Floor and Ceiling Functions (optional)

New reading assignments:

Reading assignment 1 - due Monday, February 28:

a. Read carefully the remainder of MF ch. 6 .
b. Read carefully B/G ch.6. You will find there some proofs missing from MF ch.6.10 and 6.11.

Reading assignment 2 - due: Wednesday, March 2:

a. Read carefully MF ch.7.1 and ch.7.2.

Reading assignment 3 - due Friday, March 4:

a. \quad Read B/G ch.7.1.
b. Prepare for the first midterm!

General note on written assignments: Unless expressly stated otherwise, to prove a proposition or theorem you are allowed to make use of everything in the book up to but NOT including the specific item you are asked to prove.

Written assignment 1:

Prove B/G Prop. 4.7(i) by induction: Let $k \in \mathbb{N}$. Then there exists $j \in \mathbb{Z}$ such that $5^{2 k}-1=24 j$. In other words, $24 \mid\left(5^{2 k}-1\right)$ according to MF def.6.11 in ch.6.6 (Divisibility) or the definitions that follow B/G prop.1.14.

Written assignment 2:

Prove MF Prop. 6.7(a) by induction on p : Let $\left(x_{j}\right)_{j \in \mathbb{N}}$ be a sequence in an ordered integral domain
$R=(R, \oplus, \odot, P)$, and let $m, n, p \in \mathbb{Z}$ be indices such that $m \leq n<p$. Then

$$
\sum_{j=m}^{p} x_{j}=\sum_{j=m}^{n} x_{j} \oplus \sum_{j=n+1}^{p} x_{j} .
$$

Hints: Think carefully about the base case: If $m=5$ and $n=8$, how would you choose p ? If $m=-4$ and $n=8$, how would you choose p ? For general $m \leqq n$, how would you choose p ?

Written assignment 3:

Let $x_{0}=8, x_{1}=16, x_{n+1}=6 x_{n-1}-x_{n}$ for $n \in \mathbb{N}$.
Prove that $x_{n}=2^{n+3}$ for every integer $n \geq 0$.
Hint: Use strong induction.

