Math 330 Section 5 - Spring 2022 - Homework 08

Published: Thursday, March 3, 2022
Last submission: Friday, March 25(!), 2022

Running total: 35 points

Status - Reading Assignments:

Here is the status of the reading assignments you were asked to complete by this date.
MF lecture notes:
ch.2.1-2.4, ch.3, ch. 4 (skim), ch. $5-7.2$ (skip 6.5)

B/G (Beck/Geoghegan) Textbook:
ch.1-7.1
B / K lecture notes:
ch.1.1 (Introduction to sets) (optional)
ch.1.2 (Introduction to Functions) but skip ch.1.2.4: Floor and Ceiling Functions (optional)
New reading assignments:

Reading assignment 1 - due Monday, March 7:

- Prepare for the midterm.

Reading assignment 2 - due: Wednesday, March 9:

- Read carefully the remainder of MF ch.7.

Reading assignment 3 - due Friday, March 11:

a. Read carefully MF ch.8.1. Be sure you understand the connection between arbitrary intersections and the \forall quantifier and the connection between arbitrary unions and the \exists quantifier.
b. Skim MF ch.8.2.
c. Read carefully MF ch.8.3.

General note on written assignments: Unless expressly stated otherwise, to prove a proposition or theorem you are allowed to make use of everything in the book up to but NOT including the specific item you are asked to prove.

Written assignment 1:

Prove prop.6.10(c): Let $\beta \in(R, \oplus, \odot, P)$ and $k, m \in\left[0, \infty\left[\mathbb{Z}\right.\right.$. Then $\left(\beta^{m}\right)^{k}=\beta^{m k}$.
Hint: Use induction on k.
$\# 2$ and \#3 are about proving MF thm.6.9 (Division Algorithm for Integers): Let $n \in \mathbb{N}$ and $m \in \mathbb{Z}$. There exists a unique combination of two integers q ("quotient") and r ("remainder") such that

$$
m=n \cdot q+r \quad \text { and } 0 \leq r<n
$$

Do not use induction for assignments 2 and 3. It would only make your task more difficult!

Written assignment 2:

Prove uniqueness of the "decomposition" $m=q n+r$ such tbat $0 \leq r<n$: If you have a second such decomposition $m=\tilde{q} n+\tilde{r}$ then show that this implies $q=\tilde{q}$ and $r=\tilde{r}$. Start by assuming that $r \neq \tilde{r}$ which means that one of them is smaller than the other and take it from there.

Written assignment 3:

Much harder than \#2: Prove the existence of q and r.
Hints for \#3: Review the Extended Well-Ordering principle MF thm.6.8. Its use will give the easiest way to prove this assignment: Let

$$
A:=A(m, n):=\left\{r ^ { \prime } \in \left[0, \infty\left[\mathbb{Z}: r^{\prime}=m-q^{\prime} n \text { for some } q^{\prime} \in \mathbb{Z}\right\}\right.\right.
$$

Show that $A \neq \emptyset$ by separately examining the cases

- $\quad m \geqq 0$ (easy)
- $m<0$ (probably the hardest part of the proof!)

Now you can apply the Extended Well-Ordering principle to the set A. What can you do with min (A) ?
Hint for both \#2 and \#3: MF prop. 3.61 and cor.3.5 at the end of ch. 3.5 will come in handy in connection with using or proving $0 \leqq r<n$. They assert for the ordered integral domain $(\mathbb{Z},+, \cdot, \mathbb{N})$ the following.
If $a, b \in[0, n[\mathbb{Z}$ then

$$
\begin{align*}
& |a-b| \leqq \max (a, b) \text {, i.e., } \tag{3.46}\\
& -\max (a, b) \leqq a-b \leqq \max (a, b) \tag{3.47}\\
& -n<a-b<n \tag{3.48}
\end{align*}
$$

