Math 330 Section 5 - Spring 2022 - Homework 08

Published: Thursday, March 3, 2022 Last submission: Friday, March 25(!), 2022 Running total: 35 points

Status - Reading Assignments:

Here is the status of the reading assignments you were asked to complete by this date.

MF lecture notes: ch.2.1 - 2.4, ch.3, ch.4 (skim), ch.5 - 7.2 (skip 6.5)

B/G (Beck/Geoghegan) Textbook: ch.1 - 7.1

B/K lecture notes:

ch.1.1 (Introduction to sets) (optional) ch.1.2 (Introduction to Functions) but skip ch.1.2.4: Floor and Ceiling Functions (optional)

New reading assignments:

Reading assignment 1 - due Monday, March 7:

• Prepare for the midterm.

Reading assignment 2 - due: Wednesday, March 9:

• Read carefully the remainder of MF ch.7.

Reading assignment 3 - due Friday, March 11:

- **a.** Read carefully MF ch.8.1. Be sure you understand the connection between arbitrary intersections and the \forall quantifier and the connection between arbitrary unions and the \exists quantifier.
- **b.** Skim MF ch.8.2.
- c. Read carefully MF ch.8.3.

General note on written assignments: Unless expressly stated otherwise, to prove a proposition or theorem you are allowed to make use of everything in the book up to but NOT including the specific item you are asked to prove.

Written assignment 1: Prove prop.6.10(c): Let $\beta \in (R, \oplus, \odot, P)$ and $k, m \in [0, \infty[\mathbb{Z}]$. Then $(\beta^m)^k = \beta^{mk}$.

Hint: Use induction on *k*.

#2 and #3 are about proving MF thm.6.9 (Division Algorithm for Integers): Let $n \in \mathbb{N}$ and $m \in \mathbb{Z}$. There exists a unique combination of two integers q ("quotient") and r ("remainder") such that

 $m = n \cdot q + r$ and $0 \le r < n$.

Do not use induction for assignments 2 and 3. It would only make your task more difficult!

Written assignment 2:

Prove uniqueness of the "decomposition" m = qn + r such that $0 \le r < n$: If you have a second such decomposition $m = \tilde{q}n + \tilde{r}$ then show that this implies $q = \tilde{q}$ and $r = \tilde{r}$. Start by assuming that $r \ne \tilde{r}$ which means that one of them is smaller than the other and take it from there.

Written assignment 3:

Much harder than #2: Prove the existence of q and r.

Hints for #3: Review the Extended Well–Ordering principle MF thm.6.8. Its use will give the easiest way to prove this assignment: Let

$$A := A(m,n) := \{r' \in [0,\infty[_{\mathbb{Z}}: r' = m - q'n \text{ for some } q' \in \mathbb{Z}\}.$$

Show that $A \neq \emptyset$ by separately examining the cases

- $m \ge 0$ (easy)
- m < 0 (probably the hardest part of the proof!)

Now you can apply the Extended Well–Ordering principle to the set A. What can you do with $\min(A)$?

Hint for both #2 and #3: MF prop. 3.61 and cor.3.5 at the end of ch.3.5 will come in handy in connection with using or proving $0 \le r < n$. They assert for the ordered integral domain $(\mathbb{Z}, +, \cdot, \mathbb{N})$ the following.

If $a, b \in [0, n[_{\mathbb{Z}} \text{ then }$

(3.46)
$$|a-b| \leq \max(a,b), \text{ i.e.,}$$

(3.47) $-\max(a,b) \leq a-b \leq \max(a,b),$
(3.48) $-n < a-b < n.$