Math 330 Section 5 - Spring 2022 - Homework 13

Published: Tuesday, April 12, 2022
Last submission: Friday, April 29, 2022

Running total: 50 points

Update April 14, 2022
Last submission date is April 29, NOT April 30 Chapter 12 references were ERRONEOUS and have been replaced with ch. 11 references!

Status - Reading Assignments:

Here is the status of the reading assignments you were asked to complete by this date.
MF lecture notes:
ch.2.1-2.4, ch.3, ch. 4 (skim), ch. $5-8$ (skip 6.5, skim 8.2, 8.4 after Prop.8.11, ch.8.5), ch. 9 skim/skip after Prop.9.44), ch.10.1-10.2, ch.11-11.2.1

B/G (Beck/Geoghegan) Textbook:
ch.1-7.1, ch.8-11, ch. 13
B / K lecture notes:
ch.1.1 (Introduction to sets) (optional)
ch.1.2 (Introduction to Functions) but skip ch.1.2.4: Floor and Ceiling Functions (optional)
Other:
Stewart Calculus 9ed - ch.1.7: "The Precise Definition of a Limit". If you have a newer or older edition then you may have to search through the table of contents and/or consult the index.

New reading assignments:

Reading assignment 1 - due Monday, April 19 (optional):

- Review ch. 10 and the beginning of B/G ch. 13 (the part that deals with cardinality)

Reading assignment 2 - due Wednesday, April 20:

a. OUT OF SEQUENCE: Read carefully ch. 14.1 and ch.14.3 but skip ch.14.2.
b. For the better students: Read ch.5.4 (Right Inverses and the Axiom of Choice).
c. Read carefully ch.11.2.2 (NOT ch.12.2.2) until before Definition 11.14.

Reading assignment 3 - due Friday, April 22:

a. Carefully read the remainder of MF ch.11.2.2 (NOT ch.12.2.2).
b. For the better students: Read the optional ch.11.2.3 (NOT ch.12.2.3) and notice how ingeneously the three properties of a norm are put to work.

Written assignments are on p.2.

General note on written assignments: Unless expressly stated otherwise, to prove a proposition or theorem you are allowed to make use of everything in the book up to but NOT including the specific item you are asked to prove.

Written assignment 1:

Let $f(x)=x^{2}$. Prove by use of " $\varepsilon-\delta$ continuity" that f is continous at $x_{0}=1$. You MUST work with $\varepsilon-\delta$ continuity (thm.9.7) NOT WITH SEQUENCE CONTINUITY, and you cannot use any "advanced" knowledge such as the product of continuous functions being continuous, etc.

This assignment is worth up to 3 points. Partial credit will be given and you can turn it in repeatedly.
Special instructions for assignment 1: Turn in your scratchpaper where you solve for δ (see the hints below).

Hints:

a. What does $d\left(x, x_{0}\right)<\delta$ and $d\left(f(x), f\left(x_{0}\right)<\varepsilon\right.$ translate to?
b. $x^{2}-1=(x+1)(x-1)$.
c. Do the following on scratch paper: Work your way backward by establishing a relationship between $\varepsilon>0$ and δ and then "solving for δ " That part should not be in your official proof.
c1. Only small neighborhoods matter (see Proposition 9.24 at the end of the chapter on convergence and continuity.): Given $0<\varepsilon<1$ try to find δ that works for such ε. Restrict your search to $\delta<1$. What kind of bounds do you get for $\left|x^{2}-1\right|,|x+1|,|x-1|$ if $0<\delta<1$?
c2. Put all the above together. Show that you obtain $\left|f(x)-f\left(x_{0}\right)\right| \leq 3 \delta$?. How then do you choose δ when you consider ε as given? You'll get the answer by "solving $\left|f(x)-f\left(x_{0}\right)\right| \leq 3 \delta$ for $\delta^{\prime \prime}$.
c3. All of the above was done under the assumption that $\delta<1$. Satisfy it by replacing δ with $\delta^{\prime}:=$ $\min (\delta, 1)$
d. Only now you are ready to construct an acceptable proof: Let $\varepsilon>0, \delta:=\ldots$, and $\delta^{\prime}:=\min (\delta, 1)$. Then \qquad

Written assignment 2: Prove MF Thm. 9.8: If $m \in[0, \infty[\mathbb{Z}$ is not a perfect square then \sqrt{m} is irrational.
Hint: Work with lowest term representations. See the proof that $\sqrt{2}$ is irrational.
No partial credit for this one!

