Math 330 Section 5 - Fall 2022 - Homework 03

Published: Tuesday, August 30, 2022
Last submission: Wednesday, September 14, 2022

Running total: 16 points

Status - Reading Assignments:

Here is the status of the reading assignments you were asked to complete by this date.
MF lecture notes:
ch.2.1-2.4, ch.3.1-3.4 until Def.3.12 (Absolute value).

B/G (Beck/Geoghegan) Textbook:
ch. 1 - 2.2
B / K lecture notes:
ch.1.1 (Introduction to sets) (optional)
ch.1.2 (Introduction to Functions) but skip ch.1.2.4: Floor and Ceiling Functions (optional)

New reading assignments:

Reading assignment 1 - due Tuesday(!), September 6:

a. Read carefully the remainder of MF ch.3.

Reading assignment 2 - due Wednesday, September 7:

a. Read very carefully B/G ch. 3 on logic. It is extremely short and covers about all I'll teach you on the subject with the exception of truth tables (which you already have encountered when we proved that $A \triangle B$ is associative).
b. Skim MF ch.4.1-4.4, just so you have an idea what's in there. Note that I have marked all of ch. 4 as optional, but you will be tested on B/G ch.3!

Reading assignment 1 - due Friday, September 9:

a. Skim the remainder of MF ch.4. but look a little bit more closely at ch.4.5.4 (Quantifiers and Negation).
b. Carefully read MF ch. 5 through ch.5.2.3. You already encountered some of the material on functions in ch.2.3.

Written assignments are on the next page.

General note on written assignments: Unless expressly stated otherwise, to prove a proposition or theorem you are allowed to make use of everything in the book up to but NOT including the specific item you are asked to prove.

Written assignment 1 :

Let (R, \oplus, \odot) be an integral domain. Use anything up-to and including MF prop. 3.27 to prove MF prop.3.28: Let $x \in R$. If $x \odot x=x$ then $x=0$ or $x=1$.

Hint: Prove the following: If $x \odot x=x$ and $x \neq 0$ then $x=1$. Why is that enough?

Written assignment 2:

Let (R, \oplus, \odot, P) be an ordered integral domain. Use anything up-to and including MF prop. 3.34 to prove MF prop.3.35: The multiplicative unit 1 of R belongs to P.

Hint: This is an indirect proof! Part of it: Show that you cannot have $\ominus 1 \in P$. Why will this help you?
You are strongly advised to study the proof of Proposition 3.33 (newly added to MF version 2021-09-01) very thoroughly before working on this problem.

