Math 330 Section 5 - Fall 2022 - Homework 05

Published: Thursday, April 21, 2022
Last submission: Wednesday, September 21, 2022

Running total: 25 points

Status - Reading Assignments:

Here is the status of the reading assignments you were asked to complete by this date.
MF lecture notes:
ch. 2 - ch.3; skim ch.4; ch.5.1 - ch.5.2; ch.6.1 - ch.6.2

B/G (Beck/Geoghegan) Textbook: ch. 1 - 2.2, ch. 3

B/K lecture notes:
ch.1.1 (Introduction to sets) (optional)
ch.1.2 (Introduction to Functions) but skip ch.1.2.4: Floor and Ceiling Functions (optional)
New reading assignments: None
Written assignments are on the next page.

Written assignments:

> These written assignments are graded only once, and partial credit is given. The entire set is worth 6 points.

Written assignment 1 :

Injectivity and Surjectivity

- Let $f: \mathbb{R} \longrightarrow\left[0, \infty\left[; \quad x \mapsto x^{2}\right.\right.$.
- Let $g:\left[0, \infty\left[\longrightarrow\left[0, \infty\left[; \quad x \mapsto x^{2}\right.\right.\right.\right.$.

In other words, g is same function as f as far as assigning function values is concerned, but its domain was downsized to $[0, \infty[$.

Answer the following with true or false.
a. f is surjective
b. f is injective
c. g is surjective
d. g is injective

If your answer is false then give a specific counterexample.
Written assignment 2: Find $f: X \longrightarrow Y$ and $A \subseteq X$ such that $f\left(A^{\complement}\right) \neq f(A)^{\complement}$.
Hint: Use $f(x)=x^{2}$ and choose Y as a one element only set (which does not leave you a whole lot of choices for X). See MF example 5.19 with the "arrows diagram". Start this problem as follows: Let $X:=\{\ldots . .\}, A:.=$ $\{\ldots . .\}, Y:.=\{\ldots . .$.$\} .$

Written assignment 3: Let $f:]-10,10\left[\longrightarrow \mathbb{R} ; \quad x \mapsto x^{2}\right.$.
a. what is the range of f ?
b. Is f injective?
c. Is f surjective?
d. $f(\{1\} \cup[4,6])=$?
e. $f([2,5]) \cap f([4,7])=$?
f. $f^{-1}([4,25]) \cap f^{-1}([16,49])=$?

Hint: For d, e, f, review examples 5.24-5.27.

Written assignment 4:

You have learned in MF ch. 5 that injective \circ injective $=$ injective, surjective \circ surjective $=$ surjective.
The following illustrates that the reverse is not necessarily true.
Assume that $b_{1} \neq b_{2}$. Find functions $f:\{a\} \rightarrow\left\{b_{1}, b_{2}\right\}$ and $g:\left\{b_{1}, b_{2}\right\} \rightarrow\{a\}$ which satisfy the following: The composition $h:=g \circ f:\{a\}$ is bijective but it is not true that both f, g are injective, and it is also not true that both f, g are surjective. You are NOT ALLOWED use any other sets (symbols) when doing this problem!

Hint: There are not a whole lot of possibilities. Draw all possible candidates for f and g in arrow notation as you see in MF example 5.19. There are only very few choices!

