Math 330 Section 5 - Fall 2022 - Homework 06

Published: Tuesday, September 13, 2022
Last submission: Friday, September 23, 2022

Running total: 29 points

Status - Reading Assignments:

Here is the status of the reading assignments you were asked to complete by this date.
MF lecture notes:
ch. 2 - ch.3; skim ch.4; ch.5.1 - ch.5.2; ch.6.1 - ch.6.2

B/G (Beck/Geoghegan) Textbook:
ch. 1 - 2.2, ch. 3

B/K lecture notes:
ch.1.1 (Introduction to sets) (optional)
ch.1.2 (Introduction to Functions) but skip ch.1.2.4: Floor and Ceiling Functions (optional)

New reading assignments:

Reading assignment 1 - due Monday, September 19:

a. Read carefully BG ch.2.3. Note that " $d \mid n^{\prime \prime}$ for $d, n \in \mathbb{Z}$ and $d \neq 0$ means d divides n (evenly), i.e., the quotient $\frac{n}{d}$ is an integer.
b. Read carefully MF ch.6.3.
c. Read carefully BG ch.2.3. Note that " $d \mid n^{\prime \prime}$ for $d, n \in \mathbb{Z}$ and $d \neq 0$ means d divides n (evenly), i.e., the quotient $\frac{n}{d}$ is an integer.

Reading assignment 2 - due Wednesday, September 21:

a. Read carefully MF ch.6.4. You have already encountered much of the material in MF ch.2.4.
b. Skip MF ch. 6.5 but carefully read MF ch. $6.6-6.8$

Reading assignment 3 - due Friday, September 23:

a. Review B/G ch.2.4 through Prop.2.33 and skip the remainder of B/G ch.2.
b. Review B/G ch.4.1-4.5 and skim the remainder of B/G ch.4.

Written assignments are on the next page.

General note on written assignments: Unless expressly stated otherwise, to prove a proposition or theorem you are allowed to make use of everything in the book up to but NOT including the specific item you are asked to prove.

Written assignment 1 :

Let $X, Y \neq \emptyset$ and $f: X \rightarrow Y$.
(a) Prove that $R:=\left\{\left(x, x^{\prime}\right) \in X \times X: f(x)=f\left(x^{\prime}\right)\right\}$ is an equivalence relation on X.
(b) For the special case $f: \mathbb{R} \rightarrow \mathbb{R} ; \quad x \rightarrow x^{2}$ compute the equivalence classes $[2],[0],[-2]$ for this equivalence relation.

One point each for (a) and (b)!!

Written assignment 2:

Prove formulas (5.15) and (5.16) of Proposition 5.3: Let $f: X \rightarrow Y$. Then
(a) (5.15) $\quad A_{1} \subseteq A_{2} \subseteq X \Rightarrow f\left(A_{1}\right) \subseteq f\left(A_{2}\right)$
(b) (5.16) $\quad B_{1} \subseteq B_{2} \subseteq Y \Rightarrow f^{-1}\left(B_{1}\right) \subseteq f^{-1}\left(B_{2}\right)$

One point each for (a) and (b)!!

