Math 330 Section 5 - Fall 2022 - Homework 09

Published: Saturday, October 1, 2022
Last submission: Wednesday, October 19, 2022

Running total: 34 points
(Extended from Friday, Oct 14)

Status - Reading Assignments:

Here is the status of the reading assignments you were asked to complete by this date.
MF lecture notes:
ch. 2 - ch.3; skim ch.4; ch.5.1 - ch.5.2; ch.6-8.4

B/G (Beck/Geoghegan) Textbook:
ch. 1 - ch.6; skim ch. 7

B/K lecture notes:
ch.1.1 (Introduction to sets) (optional)
ch.1.2 (Introduction to Functions) but skip ch.1.2.4: Floor and Ceiling Functions (optional)

New reading assignments:

Reading assignment 1 - due Monday, October 10:

a. Skim MF ch. 8.5 but visualize the definition of an indicator function and the bijectivity between 2^{Ω} and $\{0,1\}^{\Omega}$.
b. Read carefully MF ch.9.1.

Reading assignment 2 - due: Wednesday, October 12:

- Prepare for midterm 1!

Reading assignment 3 - due Friday, October 14:

a. Read carefully MF ch.9.2.
b. Read extra carefully MF ch. 9.3 through Proposition 9.17 (Rules of arithmetic for limits).

The written assignments are about proving MF thm.6.9 (Division Algorithm for Integers): Let $n \in \mathbb{N}$ and $m \in \mathbb{Z}$. There exists a unique combination of two integers q ("quotient") and r ("remainder") such that

$$
m=n \cdot q+r \quad \text { and } 0 \leq r<n
$$

Do not use induction for assignments 2 and 3. It would only make your task more difficult!

Written assignment 1:

Prove uniqueness of the "decomposition" $m=q n+r$ such tbat $0 \leq r<n$: If you have a second such decomposition $m=\tilde{q} n+\tilde{r}$ then show that this implies $q=\tilde{q}$ and $r=\tilde{r}$. Start by assuming that $r \neq \tilde{r}$ which means that $|r-\tilde{r}| \geqq \ldots$ and find a contradiction. More hints further down!

Written assignment 2:

Much harder than \#1: Prove the existence of q and r.
Hints for \#2: Review the Extended Well-Ordering principle MF thm.6.8. Its use will give the easiest way to prove this assignment: Let

$$
A:=A(m, n):=\left\{r ^ { \prime } \in \left[0, \infty\left[\mathbb{Z}: r^{\prime}=m-q^{\prime} n \text { for some } q^{\prime} \in \mathbb{Z}\right\}\right.\right.
$$

Show that $A \neq \emptyset$ by separately examining the cases

- $m \geqq 0$ (easy)
- $m<0$ (probably the hardest part of the proof!)

Now you can apply the Extended Well-Ordering principle to the set A. What can you do with min (A) ?
Hint for both \#1 and \#2: MF prop. 3.61 and cor.3.5 at the end of ch. 3.5 will come in handy in connection with using or proving $0 \leqq r<n$. They assert for the ordered integral domain $(\mathbb{Z},+, \cdot, \mathbb{N})$ the following.

If $a, b \in[0, n[\mathbb{Z}$, then $|a-b| \leqq \max (a, b)$, i.e., $-n<a-b<n$.

