Math 330 Section 5 - Fall 2022 - Homework 11

Published: Tuesday, October 18, 2022
Last submission: Friday, November 4, 2022

Running total: 40 points

Status - Reading Assignments:

Here is the status of the reading assignments you were asked to complete by this date.
MF lecture notes:
ch. 2 - ch.3; skim ch.4; ch.5.1 - ch.5.2; ch.6-9.5

B/G (Beck/Geoghegan) Textbook:
ch. 1 - ch.6; skim ch.7; ch.8, ch.10.1-10.4
B / K lecture notes:
ch.1.1 (Introduction to sets) (optional)
ch.1.2 (Introduction to Functions) but skip ch.1.2.4: Floor and Ceiling Functions (optional)

New reading assignments:

Reading assignment 1 - due Monday, October 24:

a. Read carefully MF ch.9.6, 9.7.
b. Skim the following B/G chapters: B/G 10.5 and ch.11.1-11.2

Reading assignment 2 - due: Wednesday, October 26:

a. Read carefully MF ch. 9.8 until before Proposition 9.43 and skim the optional remainder.
b. Skip the optional MF ch. 9.9 (Sequences of Sets and Indicator functions and their liminf and limsup). The stronger students are encouraged to skim the contents, in particular the last remark.
c. Skim the optional MF ch.9.10. The stronger students are encouraged to look closely at this very short chapter (less than a full page).

Reading assignment 3 - due Friday, October 28:

a. Read carefully MF ch.10.1 and ch.10.2. It is brief but contains many very important results concerning the size of certain subsets of \mathbb{R}.
b. Skip the remainder of MF ch.10.

Written assignments are on the next page.

General note on written assignments: Unless expressly stated otherwise, to prove a proposition or theorem you are allowed to make use of everything in the book up to but NOT including the specific item you are asked to prove.

Written assignment 1: Prove Proposition 7.13: Every infinite set contains a proper subset that is countably infinite.

Written assignment 2: Prove the following part of De Morgan's Law:
Let there be a universal set Ω which contains all elements of an indexed family of sets $\left(A_{\alpha}\right)_{\alpha \in I}$. Then

$$
\left(\bigcap_{\alpha} A_{\alpha}\right)^{\complement} \subseteq \bigcup_{\alpha} A_{\alpha}^{\complement}
$$

Written assignment 3: Prove formula (8.32):
If X, Y, Z be arbitrary, nonempty sets and $f: X \rightarrow Y, g: Y \rightarrow Z, U \subseteq X$, and $W \subseteq Z$, then

$$
(g \circ f)(U) \subseteq g(f(U)) \text { for all } U \subseteq X
$$

