Math 330 Section 5 - Fall 2022 - Homework 13

Published: Saturday, October 29, 2022
Last submission: Friday, November 18, 2022

Running total: 46 points

Status - Reading Assignments:

Here is the status of the reading assignments you were asked to complete by this date.
MF lecture notes:
ch. 2 - ch.3; skim ch.4; ch.5.1 - ch.5.2; ch.6-12.1-12.3

B/G (Beck/Geoghegan) Textbook:
ch. 1 - ch.6; skim ch.7; ch.8, ch.10.1 - 11.2; skip ch.11.3
B / K lecture notes:
ch.1.1 (Introduction to sets) (optional)
ch.1.2 (Introduction to Functions) but skip ch.1.2.4: Floor and Ceiling Functions (optional)

New reading assignments:

The HW12 reading assignments were not in proper order, The assignments for this week reflect that.

Reading assignment 1 - due Monday, November 7:

a. Review one more time MF ch.11.2.2 and ch.12.1-12.3.

Reading assignment 2 - due: Wednesday, November 9:

a. Carefully read MF ch. 12.4 and 12.5. The better students are encouraged to at least skim ch.12.6

Reading assignment 3 - due Friday, November 11:

a. Carefully read MF ch.12.7 (very subtle! read more than once!) and ch.12.8.

Supplementary instructions for reading MF ch.12:

When you read or reread any topics in those chapters then the following is good advice:
a. MF ch.12.1: Draw as many pictures as possible to get a feeling for the abstract concepts. Use the metric spaces $\left(\mathbb{R}^{2},\left.d\right|_{\|\cdot\|_{2}}\right)$ and $\left(\mathscr{B}(X, \mathbb{R}),\left.d\right|_{\|\cdot\|_{\infty}}\right)$ for this. Do these drawings in particular for

- open sets and neighborhoods (ch.12.1.3)
- convergence, expressed with nhoods (the end of def.12.10 in ch.12.1.4)
- metric and topological subspaces (ch.12.1.7): draw an irregular shaped subset $A \subseteq \mathbb{R}^{2}$ in two pieces $A=A_{1} \biguplus A_{2}$ which do not overlap. Draw some points $x_{j} \in A$ with ε-nhoods (circles with radius ε about x_{j}) so that some circles are entirely in A, one with $x_{j} \in A_{1}$ which reaches into A^{\complement} but not into A_{2}, and one with $x_{j} \in A_{2}$ which reaches both into A^{\complement} and A_{1}. What is $N_{\varepsilon}^{A}\left(x_{j}\right)$?
- Contact points, closed sets and closures (ch.12.1.8): Draw subsets $B \subseteq \mathbb{R}^{2}$ with parts of their boundary (periphery) drawn solid to indicate that points there belong to B and other parts drawn dashed to indicate that those boundary points belong to the complement. What is \bar{B} ?
Draw points "completetely inside" B, others "completetely outside" B, and others on the solid and dashed parts of the boundary. Which ones can you approximate from within B by sequences? Which ones can you surround by circles that entirely stay within B, i.e., which ones are interior points of B ? Which ones can you surround by circles that entirely stay outside the closure of B, i.e., which ones are entirely within \bar{B}^{\complement} ? Use those pictures to visualize the definitions in this chapter and thm 12.6 and thm.12.7.
- Now repeat that exercise with an additional set A which is meant to be a metric subspace of \mathbb{R}^{2}.
b. MF ch. 12.2 (Continuity): Draw as many pictures as possible to get a feeling for continuity, especially if you did not take multivariable calculus and are not used to dealing with continuous/differentiable functions of more than one variable. Here is a picture.

Figure 1: $\varepsilon-\delta$ continuity

Written assignments on page 3

General note on written assignments: Unless expressly stated otherwise, to prove a proposition or theorem you are allowed to make use of everything in the book up to but NOT including the specific item you are asked to prove.

Written assignment 1:

Let $f(x)=x^{2}$. Prove by use of " $\varepsilon-\delta$ continuity" that f is continous at $x_{0}=1$. You MUST work with $\varepsilon-\delta$ continuity (thm.9.7) NOT WITH SEQUENCE CONTINUITY, and you cannot use any "advanced" knowledge such as the product of continuous functions being continuous, etc.

This assignment is worth up to 3 points. Partial credit will be given and you can turn it in repeatedly.
Special instructions for assignment 1: Turn in your scratchpaper where you solve for δ (see the hints below).

Hints:

a. What does $d\left(x, x_{0}\right)<\delta$ and $d\left(f(x), f\left(x_{0}\right)<\varepsilon\right.$ translate to?
b. $x^{2}-1=(x+1)(x-1)$.
c. Do the following on scratch paper: Work your way backward by establishing a relationship between $\varepsilon>0$ and δ and then "solving for δ " That part should not be in your official proof.
c1. Only small neighborhoods matter (see Proposition 9.24 at the end of the chapter on convergence and continuity.): Given $0<\varepsilon<1$ try to find δ that works for such ε. Restrict your search to $\delta<1$. What kind of bounds do you get for $\left|x^{2}-1\right|,|x+1|,|x-1|$ if $0<\delta<1$? In particular what kind of bounds to you get for $|x+1|$?
c2. Put all the above together. Show that you obtain $\left|f(x)-f\left(x_{0}\right)\right| \leq 3 \delta$?. How then do you choose δ when you consider ε as given? You'll get the answer by "solving $\left|f(x)-f\left(x_{0}\right)\right| \leq 3 \delta$ for $\delta^{\prime \prime}$.
c3. All of the above was done under the assumption that $\delta<1$. Satisfy it by replacing δ with $\delta^{\prime}:=$ $\min (\delta, 1)$
d. Only now you are ready to construct an acceptable proof: Let $\varepsilon>0, \delta:=\ldots$, and $\delta^{\prime}:=\min (\delta, 1)$. Then \qquad

Written assignment 2: Prove MF Thm. 9.8: If $m \in[0, \infty[\mathbb{Z}$ is not a perfect square then \sqrt{m} is irrational.
Hint: Work with lowest term representations. See the proof that $\sqrt{2}$ is irrational.
No partial credit for this one!

