Math 330 Section 5 - Fall 2022 - Homework 14

Published: Monday, November 11, 2022
Last submission: Monday, November 28, 2022

Running total: 52 points

Status - Reading Assignments:

Here is the status of the reading assignments you were asked to complete by this date.
MF lecture notes:
ch. 2 - ch.3; skim ch.4; ch.5.1 - ch.5.2; ch.6-12.1-12.8

B/G (Beck/Geoghegan) Textbook:
ch. 1 - ch.6; skim ch.7; ch.8, ch.10.1 - 11.2; skip ch.11.3
B / K lecture notes:
ch.1.1 (Introduction to sets) (optional)
ch.1.2 (Introduction to Functions) but skip ch.1.2.4: Floor and Ceiling Functions (optional)

New reading assignments:

Reading assignment 1 - due Monday, November 14:

a. Carefully read MF ch. 12.9 and 12.10. Compare the completeness definition given here to the completeness axiom for \mathbb{R} !
b. Review B/G ch.13.1-13.4. Might help to prepare for the midterm.

Reading assignment 2 - due: Wednesday, November 16:

- Study for the midterm!

Reading assignment 3 - due Friday, November 18:

a. Carefully read MF ch.13.1.1 (VERY IMPORTANT!) and ch.13.1.2.
b. Skim MF ch.13.1.3.

Supplementary instructions for reading MF ch.12:

When you read or reread any topics in those chapters then the following is good advice:
a. MF ch.12.1: Draw as many pictures as possible to get a feeling for the abstract concepts. Use the metric spaces $\left(\mathbb{R}^{2},\left.d\right|_{\|\cdot\|_{2}}\right)$ and $\left(\mathscr{B}(X, \mathbb{R}),\left.d\right|_{\|\cdot\|_{\infty}}\right)$ for this. Do these drawings in particular for

- open sets and neighborhoods (ch.12.1.3)
- convergence, expressed with nhoods (the end of def.12.10 in ch.12.1.4)
- metric and topological subspaces (ch.12.1.7): draw an irregular shaped subset $A \subseteq \mathbb{R}^{2}$ in two pieces $A=A_{1} \biguplus A_{2}$ which do not overlap. Draw some points $x_{j} \in A$ with ε-nhoods (circles with radius ε about x_{j}) so that some circles are entirely in A, one with $x_{j} \in A_{1}$ which reaches into A^{\complement} but not into A_{2}, and one with $x_{j} \in A_{2}$ which reaches both into A^{\complement} and A_{1}. What is $N_{\varepsilon}^{A}\left(x_{j}\right)$?
- Contact points, closed sets and closures (ch.12.1.8): Draw subsets $B \subseteq \mathbb{R}^{2}$ with parts of their boundary (periphery) drawn solid to indicate that points there belong to B and other parts drawn dashed to indicate that those boundary points belong to the complement. What is \bar{B} ?
Draw points "completetely inside" B, others "completetely outside" B, and others on the solid and dashed parts of the boundary. Which ones can you approximate from within B by sequences? Which ones can you surround by circles that entirely stay within B, i.e., which ones are interior points of B ? Which ones can you surround by circles that entirely stay outside the closure of B, i.e., which ones are entirely within \bar{B}^{\complement} ? Use those pictures to visualize the definitions in this chapter and the 12.6 and thm.12.7.
- Now repeat that exercise with an additional set A which is meant to be a metric subspace of \mathbb{R}^{2}.
b. MF ch. 12.2 (Continuity): Draw as many pictures as possible to get a feeling for continuity, especially if you did not take multivariable calculus and are not used to dealing with continuous/differentiable functions of more than one variable. Here is a picture.

Figure 1: $\varepsilon-\delta$ continuity

Written assignments on pages 3 and 4

Written assignment 1: (3 points!) Prove MF prop.11.13 (Properties of the sup norm): $h \mapsto\|h\|_{\infty}=\sup \{|h(x)|:$ $x \in X\}$ defines a norm on $\mathscr{B}(X, \mathbb{R})$

This assignment is worth three points: One point each for pos.definite, absolutely homogeneous, triangle inequality!

Hint: Go for a treasure hunt in ch.9.2 (Minima, Maxima, Infima and Suprema), and look at the properties of $\sup (A)(A \subseteq \mathbb{R})$ to prove absolute homogeneity and the triangle inequality.

This assignment is worth three points, and you will have to earn them! The following exemplifies the level of detail I expect you to provide.

To prove that $\|\cdot\|_{\infty}$ satisfies the triangle inequality (11.27c) of a norm you will have to write something along the following lines:
c. Triangle inequality.

$$
\text { NTS: }\|f+g\|_{\infty} \leqq\|f\|_{\infty}+\|g\|_{\infty} \text { for all } f, g \in \mathscr{B}(X, \mathbb{R})
$$

Proof:

$$
\begin{aligned}
& \|f+g\|_{\infty}=\sup \{|f(x)|+|g(x)|: x \in X\} \quad \text { (definition of }\|\cdot\|_{\infty} \text {) } \\
& =\ldots \quad(\ldots .) \\
& \leqq \ldots \quad(\ldots .) \\
& =\|f\|_{\infty}+\|g\|_{\infty} \quad(\ldots . .)
\end{aligned}
$$

(There may be fewer or more steps in your proof. The above only serves as an illustration!)
No need to justify properties of the absolute value $|\alpha|$ of a real number α, but you will need to justify why

$$
\sup \{|\alpha f(x)|: x \in X\}=|\alpha| \sup \{|f(x)|: x \in X\}
$$

and why

$$
\sup \{|f(x)+g(x)|: x \in X\} \leqq \sup \{|f(x)|: x \in X\}+\sup \{|g(x)|: x \in X\}
$$

An aside: DO NOT write $\|f(x)\|_{\infty}$ when you deal with the real number $f(x)$ (and you probably mean the absolute value $|f(x)|$).
$\|\cdot\|_{\infty}$ is defined for functions f, NOT for numbers $f(x)$!

Written assignment 2 (3 points):

Prove MF thm.12.1 (Norms define metric spaces): Let $(V,\|\cdot\|)$ be a normed vector space. Then the function

$$
d_{\|\cdot\|}(\cdot, \cdot): V \times V \rightarrow \mathbb{R}_{\geqq 0} ; \quad(x, y) \mapsto d_{\|\cdot\|}(x, y):=\|y-x\|
$$

defines a metric space $\left(V, d_{\|\cdot\|}\right)$.
This assignment is worth three points: One point each for pos.definite, symmetry, triangle inequality!
Hint: You will have to show for each one of (12.1a), (12.1b), (12.1c) how it follows from def. 11.15: Which one of (11.31a), (11.31b), (11.31c) do you use at which spot?

Careful with symmetry: What is the reason that $\|a-b\|=\|b-a\|$?

This assignment is worth three points, and you will have to earn them! The following exemplifies the level of detail I expect you to provide.

To prove, e.g., that $d_{\|\cdot\|}(\cdot, \cdot)$ satisfies the triangle inequality (12.1c) of a metric you will have to write something along the following lines:
c. Triangle inequality.

NTS: $d_{\|\cdot\|}(x, z) \leqq d_{\|\cdot\|}(x, y)+d_{\|\cdot\|}(y, z)$ for all $x, y, z \in X$.
Proof:

$$
\begin{aligned}
& \left.d_{\|\cdot\|}(x, z)=\|z-x\| \quad \text { (definition of the metric } d_{\|\cdot\|}\right) \\
& =\ldots \quad(\ldots . .) \\
& \leqq \ldots \quad(\ldots .) \\
& =d_{\|\cdot\|}(x, y)+d_{\|\cdot\|}(y, z) \quad(\ldots . .)
\end{aligned}
$$

(There may be fewer or more steps in your proof. The above only serves as an illustration!)

