Math 330 Section 5 - Fall 2022 - Homework 15

Published: Monday, November 14, 2022
Running total: 55 points

Last submission: Monday, December 5, 2022
Update December 3, 2022
Last submission date was moved from Fri Dec 2 to Mon Dec 5

Status - Reading Assignments:

Here is the status of the reading assignments you were asked to complete by this date.
MF lecture notes:
ch. 2 - ch.3; skim ch. 4 ; ch.5.1 - ch.5.2; ch.6-12; ch.13.1.1-13.1.3

B/G (Beck/Geoghegan) Textbook:
ch. 1 - ch.6; skim ch.7; ch.8, ch.10.1-11.2; skip ch.11.3; ch.13.1-13.4

B/K lecture notes:
ch.1.1 (Introduction to sets) (optional)
ch.1.2 (Introduction to Functions) but skip ch.1.2.4: Floor and Ceiling Functions (optional)
New reading assignments:
Reading assignment 1 - due Monday, November 21:
a. Carefully read MF ch.13.2.1 and 13.2.2 through Theorem 13.7. Skim the remainder of ch.13.2.2.

Reading assignment 2 - due: Wednesday, November 23:

- Carefully read MF ch.15.1 and 15.3 and skim ch.15.2.

Reading assignment 3 - due Friday, November 25:

a. Carefully read MF ch.14.1 through Proposition 14.1 (but skip its optional proof).

Written assignments on the next page.

Written assignment 1: Let $A:=\left\{\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}: x_{1}>0, x_{2}>0\right\}$ be the first quadrant in the plane (the points on the coordinate axes are excluded). Prove that each element of A is an inner point, i.e., A is open in \mathbb{R}^{2}.

Hint: Find for $\vec{a}=\left(a_{1}, a_{2}\right)$ small enough ε such that $N_{\varepsilon}(\vec{a}) \subseteq A$ The drawing shows that $\varepsilon=\min \left(a_{1}, a_{2}\right)$ works, but I want you to be precise with inequalities to prove this.

Written assignment 2 (2 points):

Let $X:=\mathbb{R}$ equipped with the standard Euclidean metric $d\left(x, x^{\prime}\right)=\left|x-x^{\prime}\right|$. Let $f_{n}: \mathbb{R} \rightarrow \mathbb{R}$ be the following sequence of functions:

$$
f_{n}(x):= \begin{cases}0 & \text { if }|x|>\frac{1}{n} \\ n x+1 & \text { if } \frac{-1}{n} \leqq x \leqq 0 \\ -n x+1 & \text { if } 0 \leqq x \leqq \frac{1}{n}\end{cases}
$$

i.e., the point $\left(x, f_{n}(x)\right)$ is on the straight line between $\left(-\frac{1}{n}, 0\right)$ and $(0,1)$ for $\frac{-1}{n} \leqq x \leqq 0$, it is on the straight line between $(0,1)$ and $\left(\frac{1}{n}, 0\right)$ for $0 \leqq x \leqq \frac{-1}{n}$, and it is on the x-axis for all other x. Draw a picture! Let $f(x):=0$ for $x \neq 0$ and $f(0):=1$.
a. Prove that f_{n} converges pointwise to f on \mathbb{R}. In other words, prove that $\lim _{n \rightarrow \infty} f_{n}(x)=f(x)$ for all $x \in \mathbb{R}$.
b. Prove that f_{n} does not converge uniformly to f on \mathbb{R}. You may use without proof that each of the functions f_{n} is continuous on \mathbb{R}.

One point each for (a) and (b)!

Hint for part (a): For fixed $x \neq 0$, what happens eventually, i.e., for big enough n ? Example (NOT legit as a proof): If $x=0.01$, what happens if $n>1000$? Thus $\lim _{n \rightarrow \infty} f_{n}(0.01)=$ WHAT?

