Math 330 Section 1 - Fall 2024 - Homework 07

Published: Tuesday, September 17, 2024 Rt Last submission: Wednesday, October 9, 2024

Running total: 31 points

Status - Reading Assignments:

The reading assignments you were asked to complete before the first one of this HW are:

MF lecture notes:

ch.1; ch.2.1 - 2.6, ch.3; skim ch.4; ch.5 - 6

B/G (Beck/Geoghegan) Textbook: ch.2 – 6.3, ch.9.2

B/K lecture notes:

ch.1.1 (Introduction to sets) (optional)

ch.1.2 (Introduction to Functions) but skip ch.1.2.4: Floor and Ceiling Functions (optional)

New reading assignments:

Reading assignment 1 - due Monday, September 23:

a. Read carefully MF ch.7.1 - 7.3.

Reading assignment 2 - due: Wednesday, September 25:

- **a.** Read carefully the remainder of MF ch.7.
- **b.** Carefully read MF ch.8.1. **You have been warned:** I love to ask the students in the major exams to prove (parts of) De Morgan!
- **c.** Those of you with an academic bend are encouraged to study the optional Chapter 8.2: $(2^{\Omega}, \Delta, \cap)$ as a CRU (Remark 8.1)(5)) (But 2^{Ω} is not an integral domain: If A, B are disjoint and nonempty, then $A \cap B = \emptyset$. Thus, A and B are zero divisors.)
- **d.** Carefully read MF ch.8.3. Be sure to understand formula (8.7): $Y^X = \{f : f \text{ is a function with domain } X \text{ and codomain } Y\}.$

Reading assignment 3 - due Friday, September 27:

a. Study for the midterm!

Written assignments: See next page

General note on written assignments: Unless expressly stated otherwise, to prove a proposition or theorem you are allowed to make use of everything in the book up to but NOT including the specific item you are asked to prove.

Written assignment 1:

Prove B/G Prop. 4.7(i) by induction: Let $k \in \mathbb{N}$. Then there exists $j \in \mathbb{Z}$ such that $5^{2k} - 1 = 24j$. In other words, $24 \mid (5^{2k} - 1)$.

Written assignment 2:

Let $x_0 = 8$, $x_1 = 16$, $x_{n+1} = 6x_{n-1} - x_n$ for $n \in \mathbb{N}$. Prove that $x_n = 2^{n+3}$ for every integer $n \ge 0$.

Hint: Use strong induction.

Written assignment 3:

Prove MF Prop. 6.7(a) by induction on p: Let $(x_j)_{j \in \mathbb{N}}$ be a sequence in an ordered integral domain $R = (R, \oplus, \odot, P)$, and let $m, n, p \in \mathbb{Z}$ be indices such that $m \leq n < p$. Then

$$\sum_{j=m}^p x_j = \sum_{j=m}^n x_j \oplus \sum_{j=n+1}^p x_j.$$

Hints: Think carefully about the base case: If m = 5 and n = 8, how would you choose p? If m = -4 and n = 8, how would you choose p? For general $m \leq n$, how would you choose p?