Math 330 Section 1 - Fall 2024 - Homework 16

Published: Wednesday, November 20, 2024Running total: 58 pointsLast submission: Wednesday, December 4, 2024Running total: 58 points

Status - Reading Assignments:

The reading assignments you were asked to complete before the first one of this HW are: MF lecture notes: ch.1; ch.2.1 - 2.6, ch.3; skim ch.4; ch.5 - 15.3

B/G (Beck/Geoghegan) Textbook: ch.2 – 13.4

B/K lecture notes:

ch.1.1 (Introduction to sets) (optional)

ch.1.2 (Introduction to Functions) but skip ch.1.2.4: Floor and Ceiling Functions (optional)

New reading assignments:

Reading assignment 1 - due Monday, November 25:

Read carefully MF ch.15.4 and ch.15.5.1.

Reading assignment 2 - due: Tuesday, November 26:

Read carefully MF ch.15.5.2, but skip the proofs of Lemma 15.3 and Lemma 15.4 if you want.

Written assignments are on the next page

Written assignment 1: Let $X := \mathbb{R}$ equipped with the standard Euclidean metric d(x, x') = |x - x'|. Let $f_n : \mathbb{R} \to \mathbb{R}$ be the following sequence of functions:

$$f_n(x) := \begin{cases} 0 & \text{if } |x| > \frac{1}{n}, \\ nx + 1 & \text{if } \frac{-1}{n} \le x \le 0, \\ -nx + 1 & \text{if } 0 \le x \le \frac{1}{n}, \end{cases}$$

i.e., the point $(x, f_n(x))$ is on the straight line between $(-\frac{1}{n}, 0)$ and (0, 1) for $\frac{-1}{n} \leq x \leq 0$, it is on the straight line between (0, 1) and $(\frac{1}{n}, 0)$ for $0 \leq x \leq \frac{-1}{n}$, and it is on the *x*-axis for all other *x*. Draw a picture! Let f(x) := 0 for $x \neq 0$ and f(0) := 1.

- **a.** Prove that f_n converges pointwise to f on \mathbb{R} . In other words, prove that $\lim_{n \to \infty} f_n(x) = f(x)$ for all $x \in \mathbb{R}$.
- **b.** Prove that f_n does not converge uniformly to f on \mathbb{R} . You may use without proof that each of the functions f_n is continuous on \mathbb{R} .

One point each for (a) and (b)!

Hint for part (a): For fixed $x \neq 0$, what happens eventually, i.e., for big enough *n*? Transform the inequalities $\cdots \leq x \leq \ldots$ into inequalities for *n* and you should see what happens.

Example (NOT legit as a proof): If x = 0.01, what happens if n > 1000? Thus $\lim_{n \to \infty} f_n(0.01) = WHAT$?

No need to submit those hints as part of your HW. Just use them!

Hint for part (b): Look at the (very few propositions and theorems of Ch.13.2.1).