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1 Some Preliminaries

1.1 About This Document

These lecture notes are supporting material to the required text of this Math 447 course on prob-
ability theory. This text is [5] Wackerly, D. and Mendenhall, W. and Scheaffer, R.L.: Mathematical
Statistics with Applications, 7th edition.

At this point in time (December, 2023) it focuses on some of the foundations of probability theory
which cannot be found at a sufficient level of generality in that text. Examples are preimages and
o—algebras. It has not been determined at this point in time what further topics will be included at
some future time.

Note the uses of the symbol for material that will not appear on exams, quizzes and other
graded assignments. Unless you see this symbol in a footnote, please understand that I will utilize
such material and build on it in my lectures. Thus, you should understand this material well enough
to follow my lectures, even though you will not be directly tested on it.

Also we use colored boxes according to the following. Generally speaking,

These boxes contain important definitions or parts thereof.

These boxes contain important theorems and proposiitions or parts thereof.

These boxes contain other kinds of important items that are worth while to know.

1.2 A First Look at Probability

“All models are wrong, but
some are useful”.

Attributed to the statistician George E. P. Box
(1919-2013)

This quote certainly applies to the probabilistic models and the role they play in answering statis-
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tical questions such as “How do I collect data to predict next month’s average unemployment rate
and what is the risk that I'll be off by more than 0.5 percent?”

The concept of probability serves as a model for quantifying how likely an event will happen that
depends on chance. When we say that the probability of obtaining an even number when rolling a
die equals 0.5, then we mean the following.

Assume that

e X, denotes the action of rolling that die for the first time.

e X, denotes the action of rolling that die for the second time.

e ... X} denotes the action of rolling that die for the kth time.
Then we expect that in the long run, i.e., for large k, close to half of X, X», ..., X}, result in an even
outcome. In the language of mathematics, if we write P for probability, and nj, for the number of
even outcomes during those £ rolls, we define

P{rolling the die yields an even outcome } = klim —

(and we expect this particular limit to be 0.5.) More precisely, this would be our method to deter-
mine the empirical probability of that event.

We also could have used the concept of a fair die instead, i.e., a die for which each of the outcomes
1,2,...,6is equally likely, so each outcome must have the same likelihood (probability) of 1/6, so
1 1 1
P{even outcome } = P{2,4,6} = 6 + 6 + i 0.5.

Note that fair dice do not exist in the real world. Matter of fact, if we had a sample of 100 dice and we
were able to determine with infinite precision the probability that a throw of die #; comes up even,
chances are that we would obtain 100 different answers, due to imperfections in the manufacturing
process.

We model the random action of rolling a fair die as follows.

We write (2 for the set of all potential outcomes, !i.e., Q = {1,2,3,4,5,6}.
We associate with each element w of €2 the probability P({w}) = 1/6.

o LetA C (), ie., Aisasubsetof €, ie., each element of A also belongs to 2. We associate with A

the probability P(A) = > P({w}).
weA

Example: Let A = {2,4, 6}, the set of all even outcomes. Then, no different from above,

P(A) = P({2}) + P({4}) + P({6}) = 1/6 + 1/6 + 1/6 =1/2.

Observe that this assignment A — P(A) satisfies the following.

0 < P(A) < 1. Here () denotes the empty set which contains no elements.
P(() = 0. Here () denotes the empty set which contains no elements.
P(Q) = 6(1/6) = 1.

union P(A U B) satisfies
P(AUB) = P(A) + P(B).

() denotes the Greek capital letter Omega. For a list of all Greek letters see Section 12.1 (Greek Letters) on page 187.

5 Version: 2023-12-07
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We are ready for a formal definition of probability. It is PRELIMINARY and will be amended!

Definition 1.1 (Sets). [Probability - Preliminary Definition]
A probability P on a set (2 is a function ? which assigns to each subset A of  a real number P(A)
between 0 and 1 such that

e P(0)=0 and P(Q2) = 1. Here () denotes the empty set which contains no elements.

o If the subsets A, B of (2 have no elements in common, then probability is additive:

P(AUB) = P(A) + P(B). O

Note the following about this definition.
e It says nothing about how one should interpret the number P(A)!
e Empirical probability satisfies those three conditions. This is obvious for the first two. As to #3, let
A and B be two events with nothing in common, and for which we want to determine P(A) and
P(B) empirically. for k = 1,2, ... let ny(A) be the number of times an outcome in A is observed
during k trials, and let and nj(B) be defined likewise for B. Since an outcome w is in AU B if and
only if w either belongs to A or to B, we have n;(A U B) = ni(A) + ni(B), hence,

If the subsets A, B of 2 have no elements in common, then empirical probability satisfies

AUB A B
PAUB) = Jim AYB) A me(B)

— P(A) + P(B).

2we'll review functions briefly in Section 2.1 (Sets, Numbers, Sequences and Functions) on page 8.
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1.3 Blank Page after Ch.1

This page is intentionally left blank!
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2 Sets, Numbers, Sequences and Functions

Introduction 2.1. O

The student should read this chapter carefully, with the expectation that it contains material
that they are not familiar with, as much of it will be used in lecture without comment. Very

likely candidates are power sets, a function f : X — Y where domain X and codomain Y
are part of the definition.

2.1 Sets — The Basics

An entire book can be filled with a mathematically precise theory of sets. For our purposes the
following “naive” definition suffices:

Definition 2.1 (Sets).

e Asetisa collection of stuff called members or elements which satisfies the following
rules: The order in which you write the elements does not matter and if you list an
element two or more times then it only counts once.

e We write z; € X to denote that an item z; is an element of the set X and x5 ¢ X to
denote that an item x5 is not an element of the set X.

e Occasionally we are less formal and write z; in X for ; € X and x2 not in X for
xIo ¢ X.

We write a set by enclosing within curly braces the elements of the set. This can be done by listing
all those elements or giving instructions that describe those elements. For example, to denote by X
the set of all integer numbers between 18 and 24 we can write either of the following:

X = {18,19,20,21,22,23,24} or X := {n:nisanintegerand 18 <n < 24}

Both formulas clearly define the same collection of all integers between 18 and 24. On the left the
elements of X are given by a complete list, on the right setbuilder notation, i.e., instructions that
specify what belongs to the set, is used instead.

For the above example we have 20 € X, 27— 6 € X, 38 ¢ X, 'Jimmy’ ¢ X.

It is customary to denote sets by capital letters and their elements by small letters We try to adhere
to this convention as much as possible. [

Example 2.1. We looked in the introduction at the set @ = {1,2, 3,4, 5,6} of potential outcomes for
theroll ofadie. Then3 € Q,5€Q, —2¢ Q,234 ¢ Q. O
Example 2.2 (No duplicates in sets). The following collection of alphabetic letters is a set:

S1 ={a,e,i,0,u}

and so is this one:
So ={a,e,e,i,i,i,0,0,0,0,u,u,u,u,u}

Did you notice that those two sets are equal? [
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Remark 2.1. The symbol n in the definition of X = {n : nisanintegerand 18 < n < 24} isa
dummy variable in the sense that it does not matter what symbol you use. The following sets all
are equal to X:

{z : zis an integer and 18 < x < 24},
{a: aisaninteger and 18 < a < 24},
{3 :3isaninteger and 18 < 3 <24} O

Definition 2.2 (empty set).

() denotes the empty set. It is the set that does not contain any elements. [J

Definition 2.3 (subsets and supersets).

o We say that a set A is a subset of the set B and we write A C B if any element of A
also belongs to B. Equivalently we say that B is a superset of the set A and we write
B O A . We also say that B includes A or A is included by B. Note that A C A and
() C Ais true for any set A.

e If AC BbutA # B,i.e, thereis at least one x € B such that z ¢ A, then we say that
A is a strict subset or a proper subset of B. We write “A C B” Alternatively we say
that B is a strict superset or a proper superset of A and we write “B 2> A”)

B

()

Figure 2.1: Set inclusion: AC B, BD> A O

Remark 2.2. (a) We STRONGLY discourage the use of “A C B” in place of “A C B” and of “B D A”
in place of “A O B”. These are outdated symbols for A C Band A O B

(b) Two sets A and B are equal means that they both contain the same elements. In other words,
since U C V means that the set V' contains all elements of the set U,

(2.1) A=B & [ACBand BC A].

In the above, “<* denotes the phrase “if and only if”: The expression to the left (“A = B”)
means the same as the expression to the right (“A C B and B C A”). The square brackets
only serve to clarify that everything inbetween belongs to the scope of the right-hand side
of “&“. [
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Definition 2.4 (unions, intersections and disjoint unions). Given are two arbitrary sets A and B. No
assumption is made that either one is contained in the other or that either one is not empty!

e Theunion AUB (pronounced "A union B") is defined as the set of all elements which
belong to at least one of A, B.

e The intersection A N B (pronounced "A intersection B") is defined as the set of all
elements which belong to both A and B.

e Wecall Aand B disjoint, also mutually disjoint, if AN B = (). We then often write
AW B (pronounced “A disjoint union B”) rather than AU B.

AU B: AUBUC: AN B: ANnBNC:

» @ v &

Figure 2.2: Union and intersection of sets

Since AUB=BUAand ANB =BnNnAand AW B = BW A4, it is obvious how to specify those
operations to any finite or infinite collection of sets. Let J be a nonempty, finite or infinite subset of
the set Z = {0,+1,+2,+3,...} of all integers. In particular, J = Z is allowed. Assume that each
j € J is associated with a set A;. 3> We say that

e Theunion J A; is defined as the set of all elements which belong to at least one A4,

jE€J
where j € J.
e The intersection () A; is defined as the set of all elements which belong to each A4,
jE€J
where j € J.

e We call this collection of sets disjoint , also mutually disjoint , if A; N A; = () when-

ever i,j € J and i # j. We then often write [t} A; rather than (J A;. O
j€J JjeJ

Remark 2.3. If J = {ky, ks + 1,k +2,...,k* — 1,k*}, we also write

k* k* k*
U Aj, ﬂ Aj, L—l_-J Aj, for UA]‘, ﬂAjv LﬂAJ

j=kx j=kx j=kx jedJ jeJ jedJ

*You might call this a collection of sets A; which is indexed by the elements of J and write (Aj)j ., for this indexed
collection.
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If J={ke,ke+1,ke+2,...,}, wealso write

U Aj, ﬂ Aj, L‘H Aj, fOI‘ UA]', ﬂAjv L—HAJ

J=kx J=kx J=k« Jj€J JjeJ Jj€J

2
Examples: If I = {—1,0,1,2},then N 4; = (] 4 = A 1NA;N A NA.

el i=—1
IfU =1{5,6,7,...},then | C; = ij=C5UCGUC7U'”. O
jeu Jj=b

Remark 2.4. Convince yourself that for any sets A, B and C.

(2.2) ANB C A C AUB,
(2.3) ACB = ANB=Aand AUB = B,
(2.4) ACB = ANC € BnCand AUC C BUC.

The symbol = stands for “allows us to conclude that”. So A € B = AN B = A means
“From the truth of A C B we can conclude that AN B = A is true”. Shorter: “From A C B
we can conclude that AN B = A”. Shorter: “If A C B, then it follows that AN B = A”.
Shorter: “If A C B, then AN B = A”. More technical: A C B implies AN B =A. O

Definition 2.5 (set differences and symmetric differences). Given are two arbitrary sets A and B.
No assumption is made that either one is contained in the other or contains any elements!

e The difference set or set difference A\ B (pronounced "A minus B") is defined as
the set of all elements which belong to A but not to B:

(2.5) A\B:={zxecA:x ¢ B}

e The symmetric difference AAB (pronounced "A delta B") is defined as the set of all
elements which belong to either A or B but not to both A and B:

(2.6) AAB :=(AUB) \ (AnB) O

Definition 2.6 (Universal set).

Usually there always is a big set 2 that contains everything we are interested in and we
then deal with all kinds of subsets A C Q. Such a set is called a “universal” set. [

11 Version: 2023-12-07
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Example 2.3.

(a) Often the context are the real numbers and their subsets. An appropriate universal
set will then be R. 4

(b) We will discuss at length why the set {1,2,3,4,5,6} can be considered a universal
set in the context of rolling a die. See Section 1.2 (A First Look at Probability). [

If there is a universal set, it makes perfect sense to talk about the complement of a set:

Definition 2.7 (Complement of a set). Let €2 be a universal set. The complement of a set A C 2
consists of all elements of (2 which do not belong to A. We write AP, In other words:

(2.7) AL = 0\A={weQ:z¢ A} O

A\ B: AAB: Universal set: A

: ¢ ; @

Figure 2.3: Difference, symmetric difference, universal set, complement

Remark 2.5. Note that for any kind of universal set (2 it is true that

(2.8) o =9, " =q O

Example 2.4 (Complement of a set relative to the unit interval). Assume we are exclusively dealing
with the unit interval, i.e., Q =[0,1] ={z € R: 0 <z < 1}. Leta € [0,1] and § > 0 and

(2.9) A={ze0,1]:a—d<z<a+d}

the “0-neighborhood” ° of a (with respect to [0, 1] because numbers outside the unit interval are not
considered part of our universe). Then the complement of A is

AC = {xe0,1]:z<a—-dorx>a+d}. O

Draw some Venn diagrams to visualize the following formulas. It is very important that you un-
derstand each one of them rather than simply trying to memorize them.

4R is the set of all real numbers, i.e., the kind of numbers that make up the z-axis and y-axis in a beginner’s calculus
course (see Section 2.3 (Numbers) on p.16).

°Draw a picture: The d—neighborhood of a is the set of all points (in the universal set [0, 1]) with distance less than &
from a.
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Proposition 2.1. Let A, B, X be subsets of a universal set Q) and assume A C X. Then

(2.10a) AUD = A; ANP=10
(2.10b) AUQ =Q; ANQ=A
(2.10¢) Aual=q;, Anal=90
(2.10d) AAB = (A\ B)w (B\ A)
(2.10e) A\A=0

(2.10f) AND=A; AAA=0
(2.10g) XAA=X\4

(2.10h) AUB = (AAB)W (AN B)
(2.10i) ANB=(AUB)\ (AAB)
(2.10j) AAB =10 ifandonlyif B= A

PROQOF: The proof is left as exercise 2.2. See p.29. W

Next we give a very detailed and rigorous proof of a simple formula for sets. You definitely want
to remember the formulas, but it’s perfectly OK to skip the proof.

Proposition 2.2 (Distributivity of unions and intersections for two sets). Let A, B, C be sets. Then

(2.11) (AUB)NC =(ANnC)U (BN CO),
(2.12) (ANBUC=(AUC)N (BUO).

PROQOF: We only prove (2.11). The proof of (2.12) is left as exercise 2.1.

PROQOF of “C”: Letx € (A U B) N C. It follows from (2.2) on p.11 thatz € (A U B),ie., x € Aor
x € B (or both). It also follows from (2.2) that x € C. We must show thatz € (A N C) U (B N C)
regardless of whether x € Aorz € B.

Case 1: z € A. Since also z € C, we obtain x € ANC, hence, againby (2.2),z € (AN C) U (BN C),
which is what we wanted to prove.

Case 2: x € B. We switch the roles of A and B. This allows us to apply the result of case 1, and we
againobtainz € (A N C) U (B N C).

PROOF of “D”: Letz € (A N C) U (BN C),ie,zr€ AN Corz e B N C (or both). We must
show thatz € (A U B) N C regardless of whetherz € A N Corz e B N C.

Casel: z € A N C. It follows from A C A U Band (24)onp.11thatz € (A U B) N C, and we
are done in this case.

Case 2: x € B N C. This time it follows from A C A U Bthatxz € (A U B) N C. This finishes the
proof of (2.11).

Epilogue: The proofs both of “C” and of “2>” were proofs by cases, i.e., we divided the proof into
several cases (to be exact, two for each of “C” and “2”), and we proved each case separately. For
example we proved that x € (AU B) N C implies x € (AN C) U (B N C) separately for the cases
x € Aand x € B. Since those two cases cover all possibilities for = the assertion “if x € (AUB)NC
thenz € (ANC)uU(BNC)”isproven. W
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Proposition 2.3 (De Morgan’s Law for two sets). Let A, B C ). Then the complement of the union is
the intersection of the complements, and the complement of the intersection is the union of the complements:

(2.13) a. (AUB)t = ACn B b. (AnB)t = AbuBE

PROOF:
1) First we prove that (AU B)t c AL n Bt
Assume that 2 € (AU B)t. Then z ¢ AU B, which is the same as saying that 2 does not belong to

at least one of A and B. That in turn means that x belongs to all complements, i.e., to both AL and
B and hence, also to the intersection ACn B,

2) Now we prove that (AU B)t D AL n BE:

Let 2 € A® N BL. Then z belongs to each one of A%, BY, hence to none of A, B, hence = ¢ AU B.
Therefore x belong to the complement of AU B. This completes the proof of formula a.

PROOF of b: The proof is very similar to that of formula a and left as an exercise. W

Definition 2.8 (Power set).

The power set
2 = {A:ACQ}

of a set (2 is the set of all its subsets. Note that many older texts also use the notation B (€2)
for the power set. [

Remark 2.6. Note that () € 2 for any set 2, even if Q = (: 2? = {}. It follows that the power set of
the empty set is not empty. [J

Definition 2.9 (Partition). Let 2 be a set and 2 C 29, i.e., the elements of 2 are subsets of ).

We call 2 a partition or a partitioning of (2 if
(@ If A, B € Asuch that A # B then AN B = (). In other words, 2 consists of mutually
disjoint subsets of 2.
(b) Each z € Q1is an element of some A € . [

Remark 2.7. Let Q be asetand 2 C 2. Then A is a partition of 2 if and only if

For each x € (), there exists a UNIQUE A € A suchthatz € A. O

Example 2.5.

a. Forn e Zlet A, := {n}. Then A := {A, : n € Z} is a partition of Z. A is not a partition
of N because not all its members are subsets of N and it is not a partition of Q or R. The
reason: % € Q and hence % € R, but % ¢ A, for any n € Z, hence condition b of def.2.9 is
not satisfied.

b. ForneNletB,:

=[n%(n+1)}[= {z€R:n? <z < (n+1)?}. ThenB := {B, : n € N}
is a partition of [1, ocol.

0
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Definition 2.10 (Size of a set).
a. Let X be a finite set, i.e., a set which only contains finitely many elements. We write | X |
for the number of its elements, and we call }X ] the size of the set X.
b. For infinite, i.e., not finite sets Y, we define |Y| := co. O

More will be said about sets later.

2.2 The Proper Use of Language in Mathematics: Any vs All, etc

Mathematics must be very precise in its formulations. Such precision is achieved not only by means
of symbols and formulas, but also by its use of the English language. We will list some important
points to consider early on in this document.

2.2.0.1 Allvs. ANY

Assume for the following that X is a set of numbers. Do the following two statements mean the
same?

(1) Itis true for ALL x € X that x is an integer.

(2) Itistrue for ANY z € X that z is an integer.
You will hopefully agree that there is no difference and that one could rewrite them as follows:

(3) ALL x € X are integers.
(4) ANY z € X is an integer.
(5) EVERY z € X is an integer.
(6) EACH z € X is an integer.
(7) IFz € X THEN z is an integer.
Is it then always true that ALL and ANY means the same? Consider

(8a) Itis NOT true for ALL z € X that z is an integer.

(8b) Itis NOT true for ANY z € X that z is an integer.
Completely different things have been said: Statement (8) asserts that as few as one item and as
many as all items in X are not integers, whereas (9) states that no items, i.e., exactly zero items in
X, are integers.
My suggestion: Express formulations like (8b) differently. You could have written instead

(8c) Thereisno z € X such that z is an integer.

2.2.0.2 AND vs. IF ... THEN

Some people abuse the connective AND to also mean IF ... THEN. However, mathematicians use
the phrase “p AND q” exclusively to mean that something applies to both p and q. Contrast the use
of AND in the following statements:

(9)  “Jane is a student AND Joe likes baseball”. This phrase means that both are true: Jane is
indeed a student and Joe indeed likes baseball.

(10) “You hit me again AND you'll be sorry”. Never, ever use the word AND in this con-
text! A mathematician would express the above as “IF you hit me again THEN you'll be
sorry”.

2.2.0.3 ORvs. EITHER ... OR
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The last topic we address is the proper use of “OR”. In mathematics the phrase
(11) “pistrue OR q is true”
is always to be understood as

(12) “pis true OR qis true OR BOTH are true”, i.e., at least one of p, q is true.
This is in contrast to everyday language where “p is true OR q is true” often means that exactly one
of p and q is true, but not not both.
When referring to a collection of items then the use of “OR” also is inclusive If the items a, b, c, . ..
belong to a collection ¥, e.g., if those items are elements of a set, then

(13) “a OR b OR ¢ OR ...” means that we refer to at least one of a, b, ¢, . ...

Note that “OR” in mathematics always is an inclusive or, i.e., “A OR B” means “A OR B
OR BOTH”. More generally, “A OR B OR ...” means “at least one of A, B, ...”.

To rule out that more than one of the choices is true you must use a phrase like “EXACTLY
ONE OF A, B, C, ...” or “EITHER A OR B OR C OR ...”. We refer to this as an exclusive or.

2.2.04 Some Convenient Shorthand Notation We have previously encountered the notation
“P = Q" for “if P then Q”, i.e.,if P is true, then () is true, and “P < Q” for “P iff Q”,i.e., P is true
exactly when @ is true”. We list them here again wich some additional convenient abbreviations.

Forall z...
There exists an x such that . ..
There exists a UNIQUE x such that . ..

If P then Q)
Piff Q, ie., Pif and only if @

It is important that you are clear about the difference between 3 and J!.

Jz:  you can find at least one = but there might be more; potentially infinitely many!
dlz:  you can find one and only one z; not zero, not two, not 200, ... [

2.3 Numbers

We start with an informal classification of numbers.

Definition 2.11 (Types of numbers). Here is a definition of the various kinds of numbers in a nut-
shell.

N :={1,2,3,...} denotes the set of natural numbers.

Z:={0,+1,£2,43,... } denotes the set of all integers.

Q:={n/d:n € Z,d € N} (fractions of integers) denotes the set of all rational numbers.

R := {all integers or decimal numbers with finitely or infinitely many decimal digits} de-
notes the set of all real numbers.

R\ Q = {all real numbers which cannot be written as fractions of integers} denotes the set
of all irrational numbers. There is no special symbol for irrational numbers. Example: V2
and 7 are irrational. I
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Here are some customary abbreviations of some often referenced sets of numbers:

No == Z, =250 :={0,1,2,3,...} denotes the set of nonnegative integers,
Ry := R>p := {z € R:x >0} denotes the set of all nonnegative real numbers,
Rt := R.g := {x € R:z > 0} denotes the set of all positive real numbers,

Ri = {xreR:2#0}. O

Examples of rational numbers are
3,-0.75, -1, .3, I, 16, L2, —5, 2.999, —372.
Note that a mathematician does not care whether a rational number is written as a fraction

numerator
denominator

or as a decimal numeral. The following all are representations of one third:
(2.14) 0.3 = .3 = 0.33333333333... = § = =} = 2,
and here are several equivalent ways of expressing the number minus four:

— — 0 — 12 _ 4 _ -4 _ 12 __ _ 400
(2.15) —4 = —4000 = -39 = -2 = 4 = 4 = 12 - 40

Definition 2.12 (Intervals of Numbers). For a,b € R we have the following intervals.

b] := {z € R:a <z < b} is the closed interval with endpoints a and b.
e Ja,b[:={zr €R:a <z <b}isthe open interval with endpoints a and b.
o [a,b[:={r€R:a<z<b}and]a,b]:={x € R:a < x < b} are half-open intervals
with endpoints a and b.

The symbol “oo” stands for an object which itself is not a number but is larger than any (real)
number, and the symbol “—oc0” stands for an object which itself is not a number but is smaller than
any number. We thus have —oo < = < oo for any number z. This allows us to define the following
intervals of “infinite length”:

| —o00,al :={z €R:x<a}, |—o0,a[:={r€R:x<a}l,

(2.16) Ja,0[:=={z €R:z>a}, [a,00[:={z€R:z>a}, |-o00,00[:=R

You should always work with a < b. In case you don’t, you get

[a,a] = {a}; [a,a[=]a,a[=]a,a] = 0
e [a,b] = [a,b]=]a,b[=]a,b] = 0 for a>b O
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Notation 2.1 (Notation Alert for intervals of integers or rational numbers).

It is at times convenient to also use the notation [...], |...[, [...[, ]...], for intervals of
integers or rational numbers. We will subscript them with Z or Q. For example,

[3,n]z =[3,n|NZ = {keZ:3<k<n},
]—00,7]2 :]—00,7]ﬂZ = {k:eZ:k;g?} = Z§7,
la,blo =1a,b[NQ = {g€Q:a < q< b}
An interval which is not subscripted always means an interval of real numbers, but we

will occasionally write, e.g., [a, b]r rather than [a, b], if the focus is on integers or rational
numbers and an explicit subscript helps to avoid confusion. [J

Definition 2.13 (Absolute value, positive and negative part). Let 2,y € R. We define the following.

ifx >0
absolute value: |z]| = {:c ne=5

—z ifz <O.
. z ifx >y,
maximum: max(z,y) = .
y ifx <uy.
.. . y ifz >y,
minimum: min(z,y) = .
x ifx<y. O

Assumption 2.1 (Square roots are always assumed nonnegative). Remember that for any number
a it is true that
a-a = (—a)(—a) = a? eg., 22=(-2?%=4,

or that, expressed in form of square roots, for any number b > 0

(+VB)(+VB) = (~VB)(~Vb) =b.

We will always assume that “1/b” is the positive value unless the opposite is explicitly
stated.

Example: V9 =43, not—3. O

Remark 2.8. For any real number x we have

(2.17) Va? = |z. O

Proposition 2.4 (The Triangle Inequality for real numbers). The following inequality is used all
the time in mathematical analysis to show that the size of a certain expression is limited from above:

(2.18) Triangle Inequality : lar + az + -+ an| < |a1| + |az| + -+ |an|

This inequality is true for any list of real numbers ay,az, . . ., ap.
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PROOF:

It is easy to prove this for n = 2: Just look separately at the three cases where both numbers are
nonnegative, both are negative, or one of each is positive and negative. W

2.4 Functions and Sequences

Introduction 2.2. You are familiar with functions from calculus. Examples are fi(z) = /= and
fo(z,y) = In(x — y). Sometimes fi(z) means the entire graph, i.e., the entire collection of points
(z,/7) in the plane and sometimes it just refers to the function value /z for a “fixed but arbitrary”
number z. In case of the function f>(z): Sometimes f>(x, y) means the entire graph, i.e., the entire
collection of points ((z,y), In(z — y)) in threedimensional space. At other times this expression just
refers to the function value In(z — y) for a pair of “fixed but arbitrary” numbers (z,y).

To obtain a usable definition of a function there are several things to consider. In the following f;(z)
and f(z,y) again denote the functions fi(z) = /z and fa(z,y) = In(x — y).
a. The source of all allowable arguments (z—values in case of fi(x) and (z, y)-values in case

of fa(z,y)) will be called the domain of the function. The domain is explicitly specified
as part of a function definition and it may be chosen for whatever reason to be only a
subset of all arguments for which the function value is a valid expression. In case of the
function f(x) this means that the domain must be a subset of the interval [0, co[ because
the square root of a negative number cannot be taken. In case of the function f>(z, y) this
means that the domain must be a subset of

{(z,y): z,yeRandz —y >0},

because logarithms are only defined for strictly positive numbers.

b. The set to which all possible function values belong will be called the codomain of the

function. As is the case for the domain, the codomain also is explicitly specified as part
of a function definition. It may be chosen as any superset of the set of all function values
for which the argument belongs to the domain of the function.
For the function fi(x) this means that we are OK if the codomain is a superset of the
interval [0, oo[. Such a set is big enough because square roots are never negative. It is OK
to specify the interval | — 3.5, co[ or even the set R of all real numbers as the codomain. In
case of the function fa(x,y) this means that we are OK if the codomain contains R. Not
that it would make a lot of sense, but the set R U { all inhabitants of Chicago } also is an
acceptable choice for the codomain.

c. A function y = f(z) is not necessarily something that maps (assigns) numbers or pairs
of numbers to numbers. Rather domain and codomain can be a very different kind of
animal. The following example will be very relevant for the remainder of the course:

At the end of Section 1.2 (A First Look at Probability) We informally defined the
probability associated with rolling a die as a function A — P(A) which maps
subsets A of 2 = {1,2,...,6} to a real number 0 < P(A) < 1. Thus, the domain
here is 2, the power set of (2; the codomain is [0, 1] (or any superset of [0, 1]).
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d. Considering all that was said so far one can think of the graph of a function f(x) with
domain D and codomain C (see earlier in this note) as the set

Iy :={(z f(z)) : 2z € D}.

Alternatively one can characterize this function by the assignment rule which specifies
how f(x) depends on any given argument z € D. We write “z — f(z)” to indicate this.
You can also write instead f(z) = whatever the actual function value will be.

This is possible if one does not write about functions in general but about specific func-
tions such as fi(z) = v/z and fa(z,y) = In(x — y). We further write

f:C—D

as a short way of saying that the function f(z) has domain D and codomain C.

In case of the function f;(x) = /= for which we might choose the interval X :=[2.5,7]
as the domain (small enough because X C [0,00[) and Y := |1, 3] as the codomain (big
enough because 1 < \/z < 3 for any = € X) we specify this function as

either f1:[25,7] =]1,3[; z— vz  or f1:[257] =113 f(z)=+x.

Let us choose U := {(z,y) : z,y € Rand 1 < z < 10 and y < —2} as the domain
and V := [0, o[ as the codomain for fa(x,y) = In(z — y). These choices are OK because
x —y > 1forany (z,y) € U and hence in(x —y) > 0, i.e., fo(z,y) € V forall (z,y € U.
We specify this function as

either fo: U =V, (z,y)— In(z—1y) or fo:U—=V, f(z,y)=In(z—y). O

We incorporate what we noted above into this definition of a function.

Definition 2.14 (Function).

A function f consists of two nonempty sets X and Y and an assignment rule z — f(z)
which assigns any « € X uniquely to some y € Y. We write f(x) for this assigned value
and call it the function value of the argument z. X is called the domain and Y is called
the codomain of f. We write

(2.19) fX-=>Y, x — f(x).

We read “a — b” as “a is assigned to b” or “a maps to b” and refer to — as the maps to
operator or assignment operator. The graph of such a function is the collection of pairs

(2.20) Ly = {(z, f(2)) : ® € X},

and the subset f(X) := {f(z):x € X} of Y is called the range of the function f. O

Note that the codomain) Y of f and its range f(X) can be vastly different. For example, if f : R — R
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is given by the assignment f(z) = sin(z) then f(R) = [—1, 1] is a very small part of the codomain!

Remark 2.9. The name given to the argument variable is irrelevant. Let fi, f2, X,Y,U,V be as
defined in d of the introduction to ch.2.4 (A First Look at Functions and Sequences). The function

g:X =Y, p=p
is identical to the function f;. The function
g2:U—=V, (t,s)—1In(t—ys)
is identical to the function f, and so is the function
g3: U=V, (s, t)—In(s—1t).

The last example illustrates the fact that you can swap function names as long as you do it consis-
tently in all places. O

We all know what it means that f : R —]0, ]; = + ¢® has f~!(z) = In(x) as its inverse function:

e The arguments of f~! will be the function values of f and the function values of f~!
will be the arguments of f: f(z) =e* =y < ¢(y) =In(y) = 2.
e fand f~! cancel each other, i.e.,

i) =y and  f(fM(2) = =

e Not so obvious but very useful: We want both codomains to be so small that
1 (f(y)) = y is true for all y in the codomain of f and f(f_l(m)) = x is true for
all x in the codomain of f~!. One can show that this requires

domain of f = codomain of f~! and domain of f~! = codomain of f.

This leads to the following definition for the inverse of a function.

Definition 2.15 (Inverse function).

Given are two nonempty sets X and Y and a function f : X — Y with domain X and
codomain Y. We say that f has an inverse function if it satisfies all of the following condi-
tions which uniquely determine this inverse function, so that we are justified to give it the
symbol f~1:

(@ f':Y = X, ie., f!hasdomain Y and codomain X.

b) f'(f(z)) = zforallz € X,and f(f'(y)) = yforallyeY. O

Remark 2.10. that One can show that a function f has an inverse f~! if and only if

(@) fis“onto” or surjective: for each y € Y there is at least one € X such that f(z) =y,
(b) f is “one—one” or injective: for each y € Y there is at most one x € X such that

flx)=y. O
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Remark 2.11. that If the inverse function f~! exists and if z € X and y € Y, then we have the
relation
y = flz) & z=f".

Example 2.6. If h is a function, we write Domj, and Cod), for its domain and codomain. Be sure you
understand the following:
(@ f:R — R; z — e* doesnothave aninverse f~!(y) = In(y) since its domain Dom g
would have to be the codomain R of f and In(y) is not defined for y < 0.
(b) ¢:R —]0,00[; z — €® has the inverse g~! :]0,00[ = R; g~ !(y) = In(y) since

Domg-1 = Cod, =0, 00|, Cod,— = Domy =R,
W) =y for 0 < y < oo, In(e”) =z forallz e R. O

Definition 2.16 (Restriction/Extension of a function). Given are three nonempty sets A, X

and Y such that A C X, and a function f : X — Y with domain X. We define the restriction of f
to A as the function

(2.21) f‘A :A—=Y defined as f‘A(:r) = f(z) forallz € A.

Conversely let f : A — Y and ¢ : X — Y be functions such that f = ¢ |4. We then call ¢ an
extension of fto X. O

We now briefly address sequences and subsequences.

Definition 2.17. Let n, be an integer and assume that an item z; associated

o either with each integer j > n,, In other words, we have an item z; assigned to each
J=NeNe+1,n,e+2,....
e or with each integer j such that n, < j < n*. In this case an item z; is assigned to each
j=ngne+1,...,n%
Such items can be anything, but we usually deal with numbers or outcomes or sets of outcomes of
an experiment.

o In the first case we usually write x,,, Zn,,,, Tn, 5, .- OF (Tn)n>n, for such a collection
of items and we call it a sequence with start index 7n,.

e In the second case we speak of a finite sequence, which starts at n, and ends at n*.
We write (2y,)n, <n<n* OF Ty, , Tn,.,,- ., Zn+ for such a finite collection of items.

o If we refer to a sequence (z,), without qualifying it as finite then we imply that we
deal with an infinite sequence, z,,,%y, ,,Tn, ... U

Example 2.7.

(1) Ifuy = k% for k € Z, then (uy)x>_2 is the sequence of integers 4, 1,0,1,4,9,16, . ...
@ IfAj=[-1-51+:]={reR:-1-3 <z <1+ 3} then (4));>3 is the sequence of
4 4 55 6 6

intervals of real numbers [—3,3], [~7, 7], [=3,],.... Thisis a sequence of sets! [J
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Remark 2.12 (Sequences are functions). that

e One can think of a sequence (z;);>y, in terms of the assignment ¢ — x;. This sequence can
then be interpreted as the function

x(-) : [Ny, 00[z — suitable codomain; ¢+ z(i) := xz;,

where that “suitable codomain” depends on the nature of the items x;.
e In Example 2.7(1), we could chose Z as that codomain. In Example 2.7(2) 2R, the power set
of R would be an appropriate choice. [

Definition 2.18.

e If (z,), is a finite or infinite sequence and one pares down the full set of indices to a
subset {n1, ng, ns, ...} suchthatn; <ny < nz < ..., then we call the corresponding
thinned out sequence (7., );jen a subsequence of that sequence.

e If this subset of indices is finite, i.e., we have n1 < ng < --- < ng for some suitable
K € N, then we call (z,) ;<K a finite subsequence of the original sequence. [

Note that subsequences of finite sequences are necessarily finite whereas subsequences of infinite
sequences can be finite or infinite.

Remark 2.13. Does it matter whether we look at a sequence (acj)j ¢, or at the corresponding set

{z; : j € J}? The answer: THIS CAN MATTER GREATLY! Consider the sequence
r1=—1,19=123=-1, 29 =-1, ...; ie, x,=(—1)"forneN

The sequence is infinite, since the index set N is infinite

Let A := {z; : j € N}. Since sets have no duplicates, A = {—1,1} has only two elements.

The ordering of the indices j is lost when considering the set: There is no difference between

{-1,1} and {1, —1}!
Considering the last point, do not confuse the ordering of the indices j with a possible ordering of
the z;! The order may be reversed (e.g., x; = 5 — j), neither increasing nor decreasing (x; = sin(j)),
or there is no ordering (z; = eye color of person j). [

There are different degrees of infinity for the size of a set. Finite sets and many inifinite sets are
“small enough” to list all their elements in a finite or infinite sequence. Other infinite sets are too
big for that.

Definition 2.19 (Countable and uncountable sets). Let X be a set.

(@) We call X countable if its elements can be written as a finite sequence (those are the
finite sets) X = {z1,x2,...,2,} or as an infinite sequences. X = {z,z2,...}.

(b) We call a nonempty set uncountable if it is not countable, i.e., its elements cannot
be sequenced.

() By convention the empty set, (), is countable. [J
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Fact 2.1. One can prove the following important facts:

The integers are countable. (Easy: Z = {0,—1,1,—2,2,-3,3,...}) lists all elements of Z
in a sequence.

Subsets of countable sets are countable. (Easy: If X = {x1,22,...} and A C X, then
remove all x; that are not in A. That subsequence lists the elements of A.

Countable unions of countable sets are countable: If A1, As, . .. is a finite or infinite sequence
of sets, then Ay U Ay U - - - is countable.

The rational numbers Q are countable. A proof is given below.

The real numbers R are uncountable! [

Here is a proof that Q is countable. For fixed d € N, let A; := {n/d : n € Z} (“d” for
denominator). Then is countable since it can be sequenced as follows.

11 22
Ad - {Oaigagaigag""}

The assertion follows from fact (c) and Q = |J 45 (WHY?)
d=1

Example 2.8. Fora,b,r eR,let A, ;) = {(z,y) € R?} suchthat (z—a)® + (y—b)* = 12,
i.e., A(gp,) is the circle with radius |r| around the point (a, b) in the plane. It is not possible to write
the indexed collection

(A(a,b,r)) (a,b,r)ER3

as a sequence, since R? is bigger than the uncountable set R, hence cannot be sequenced. [

There is a name for those “generalized sequences” (x@)l cI which have an index set that not neces-
sarily consists of integers n.,n, + 1,...,n* or n.,n. + 1,... or of a subset of such a set. The next
definition is marked as optional and you not need remember it for quizzes or exams. But you must
remember it well enough to understand problems and propositions which refer to families.

Definition 2.20 (Families).

Let I and X be nonempty sets such that each i € I is associated with some z; € X. Then
a. (i), is called an indexed family or simply a family in X.
b. [Iis called the index set of the family.
c. Foreachi e IJ,z;is called a member of the family (z;);c;. O

Remark 2.14 (Families are functions). that

We saw in example 2.12 on p.23 that sequences (a:n)n can be interpreted as functions with domain
= index set and codomain = a set that contains all members xz,,. This also holds true for families and
is particularly easily understood if the family (3:@)Z ¢ In X is written in a way that each member

explicitly tracks the index that it is associated with, i.e., we write (i, mz)z el The set
Ty o= {(i,2;) :iel}
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is the graph I'y of the function

f:I —X; i f(i) = z;.

At the end of Definition 2.4 on p.10 we defined unions and intersections of any collection of sets
(A;)ies which is indexed by integers, i.e., J C Z. We did so by saying that °

JAi = {z:TFipeJstred,} and ()4 ={z:Vie]:  zcA}.

i€J ieJ
This allows us to generalize unions and intersections of finite and infinite sequences of sets to col-
lections of sets with an arbitrary index set. Note the following:

e The next definition is NOT marked as OPTIONAL
e It contains Definition 2.4 as a special case!

Definition 2.21 (Arbitrary unions and intersections). Let J be an arbitrary, nonempty set and
(A45) ;; a family of sets with index set .J. We define

e Theunion | A4; := {z : Jip e Jst.x € A4}

jE€J
e Theintersection (| A4; = {z :VieJ : ze A}
JE€J
o If the sets A; are disjoint, we often write | A; rather than |J A;.
jeJ j€J

o Let (Bj)j  be a family of subsets of a set X. We call this family a partition or a

partitioning of X if the corresponding set of sets {B; : i € J} is a partition of X:

@ i#j = BnNBj=0 () X = |4 Bj. SeeDefinition2.9onp.14. O
JjeJ

Remark 2.15. For typographical reasons I sometimes use the following notation.
i€l

Analogous notation exists for ), |4 and even summation. For example, assume that g : R — R is
some rel-valued function of real numbers, and that the indices of interest are

I .={ze€R:z>5and0<g(x) <5}.

Then () B, can also be expressed as follows:

zel
(1B: = ()[B:: #>5and0 < g(x) <5] = N B,.= () B..O
zel z>5 and 0<g(z)<5 z>5

0<g(x)<5

Be sure to understand the following example (draw a picture!)

®See paragraph 2.2.0.4 (Some Convenient Shorthand Notation) on p.16 about ¥ and 3.
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Example 2.9. For a,b € R, let Qo) = {(z,y) € R® : |z —a| <3/2, |[y—0b| < 3/2}.
Thus, Q4 ) is the square in the plane with center (a,b) and side length 3. Compute () Q)

(a,b)eK
and U Q(a,b) .
(a,b)eK

For K = {(a,b) €R*: =1 <a,b<1}, compute ()| Qup and ] Quuy-

(a,b)eK (a,b)eK
Solution:
LetU = ﬂ Q(a,b) and V := U Q(a,b)~
(a’7b)eK (a,b)EK
Fix by € [~1,1] and consider the squares Q(,;,) moving from the left (a = —1) all the way to the

right (a = +1). Even Q_;4,) as the leftmost square has z values as big as 1/2, and Q(; 3, as the
rightmost square has z values as small as —(1/2), Thus,

1 1 3 3
(z,y) € ﬂ Qaby) < [—2 <z < B and bg — B <y < bo+ 5|
—1<a<1
Likewise, if we now also move the squares vertically from b = —1 to b = 1, then the y values of

points in the intersection are exactly those that satisfy —(1/2) <y < 1/2. Thus,
U ={(z,y): |zl < 1/2and |y < 1/2}.

One sees in likewise faxhion that the points in the union V' are exactly those with = values and y
values between —1 — (3/2) = —5/2 and 1 + (3/2) = 5/2. Thus,

V={(z,y) : llz] <5/2and |y| < 5/2}. O
We finish this section with two very useful propositions. The first one (De Morgan) you already
have encountered for two sets (see Proposition 2.3 on p.2.3). 7

Proposition 2.5 (De Morgan’s Law for sequences of sets). Let (Ay,)y be a finite or infinite sequence
of subsets of a set ). Then the complement of the union is the intersection of the complements, and the
complement of the intersection is the union of the complements:

C C
222) (a) (U Ak> = N 4E: ®) (ﬂ Ak) = U4
k k k k

PROOF:
Not very complicated, but we skip it W

Note that the order of the sequencing does not matter for De Morgan and the next proposition.

"Matter of fact, both propositions extend to arbitrary families.
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Proposition 2.6 (Distributivity of unions and intersections). Let (A;,), be a finite or infinite sequence
of sets and let B be a set. Then

(2.23) U Bn4;) =Bnl 4,
J J
(2.24) (| (BUAj) =BU[)4;
Jel J
PROOF: R

2.5 Cartesian Products

We next define cartesian products of sets. Those mathematical objects generalize rectangles
la1,b1] x [ag,b2] = {(z,y) 12,y € R,a1 <z <bjanday <y < by}
and quads
[a1,b1] X [ag,bo] X [as,b3] = {(z,y,2) : x,y,2 € Rya; <x <bj,as <y <byand az < z < b3}.
which you certainly have encountered in multivariable calculus.
Definition 2.22 (Cartesian Product). Let X and Y be two sets The set
(2.25) X XY ={(z,y):x e X,yeY}
is called the cartesian product of X and Y. We write X? as an abbreviation forX x X.
Note that the order is important: (z,y) and (y, ) are different unless x = y.

This definition generalizes to more than two sets as follows:

Let X1, X5, ..., X, be sets. The set
(2.26) X1 x Xo---x Xy :i={(®1,22,...,2,) :xj € Xjforeach j =1,2,...n}

is called the cartesian product of X1, X»,..., X,,.
We write X™ as an abbreviation forX x X x --- x X.

Example 2.10. In your multivariable calculus course you have learned about twodimensional vec-
tors and threedimensional vectors. Convenient notations would often be

(2.27) (z,y) €R*, (a,b) €R*, (2,9,2) €R®, (a,b,c) €R’.

Note that those vectors are elements of the cartesian products R? = R x RR®> = R xR x R.
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In general, any finite list of real numbers (Bl, Ba, ... ,Bm) is an element of R™ which we call an
m~—dimensional vector of real numbers.

(8,-3,0,4,—7)

is a 5—dimensional vector of Integers. Since integers are special cases of rational numbers which
themselves are also real numbers, this vector is an element of each one of Z°, Q%, R®.

The notation used in (2.27) does not scale for higher dimensional vectors, in particular, if the di-
mension is arbitrary. On the other hand, (ﬁl, Bo,y ..., ﬁm) is very suitable. But this is very lengthy
notation, so we use the symbol for the subscripted components (that’s 3) and write an arrow on top
to indicate that we are dealing with a vector.

We will use as much as possible this arrow notation for vectors. Here are some examples.

—

F = (v1,22,...,00), b= (bi,ba,b3,bs), Z = (Z1,2,...,24).

Assuming that each subscripted item belongs to R we have & € R", beRY ZeRd

Notational conveniences for vectors: Unless something else is stated, we will always assume the
following. If X is a nonempty set (usually, X is a set of numbers),

Z € X" isshorthand for # = (x1,22,...,2,) € X" (ie,z; € X forj=1,2,...,n.)

We also extend this convention to the case X; x --- x X, with potentially different sets X;. This is
best explained by example. Having pairs of numbers a; < b; fori =1,2,...,d,

¥ € a1, b1] X -x]ag, by] is shorthand for
7= (y1,y2,--.,v4), wherea; <y; <b; fori=1,...,d. O

Example 2.11. Cartesian products occur in a natural manner in probability theory when one models
the outcomes of repeated experiments.

(@) If the experiment is three rolls of a die, then the set
Q = (1,6)2)° = {1,2,3,4,5,6}

is a natural container for the outcomes of this experiment. For example, (4,2,6) € 2 is the
outcome of having rolled a 4 followed by a 2 followed by a 6.
(b) n tosses of a coin (n € N) are mopdeled as follows. Let H stand for Heads and T for Tails.
Then let
Q= {HT}"

For example, if n = 5, then (H, H,T, H,T) € 2 models the outcome of having tossed Heads
followed by Heads followed by Tails followed by Heads followed by Tails. This example
demonstrates that cartesian products are also defined for sets that do not necessarily consist
of numbers [

8We borrow that notation from physics.
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Here is an abstract example.

Example 2.12. The graph I'y of a function with domain X and codomain Y (see def.2.20) is a subset
of the cartesian product X x Y. O

Proposition 2.7. Let X1, X, X,, be finite, nonempty sets. Then,

The size of the cartesian product is the product of the sizes of its factors, i.e.,

(2.28) | X1 x Xg x - x Xp | = |Xa| - | Xa| - [X3] -+ | X

PROOF:

Case n = 2: This trivial for two sets, since the proposition simply states that a matrix (a rectangular
grid) of m rows and n columns possesses mn entries.

Case n = 3: For three sets X, Xo, X3, we arrange the | X |-| X3 | entries of X x X5 into a single row. In

other words, we consider the members (mgl), m§.2) , x,(:’)) of X7 x X5 x X3 as members ((asgl) , :135.2)), x,(:’))

of (X1 x X3) x X3. We apply the result for two sets to the cartesian product of X; x X3 and X3 and
obtain

‘X1XX2XX3‘ = ‘(X1><X2)XX3‘ = ‘X1XX2‘-‘X3‘. = ‘X1||X2“X3|

We repeat this procedure for n = 3,4, 5, ... sets.

Case n: We arrange the elements of X; x X3 x xX,,_; into a single row and
interpret each (z1,...,z,) € X1 X X, as ((21,...,Zn-1),2n) € (X1 X Xp1) X Xy

Thus, the sets X; x X;, and (X7 x X,—1) x X, have the same size. We know from the prior step,
casen — 1, that | X x -+ x X, 1| = |Xy|---|X,_1|. Hence,

| Xix o x X | = (X1 x Xno) x X | = (| X1 x - X1 ]) - [ Xan
= (1] XX = |X0] | Xo] [ Xs] - [ X[ W

2.6 Exercises for Ch.2

2.6.1 Exercises for Sets
Exercise 2.1. Prove (2.12) of prop.2.2 on p.13.
Exercise 2.2. Prove the set identities of prop.2.1.

Exercise 2.3. Prove that for any three sets A, B, C'itis true that (A\ B) \C = A\ (BUC(C).
Hint: use De Morgan’s formula (2.13.a). W

Exercise 2.4. Let X = {z,y,{z},{z,y} }. True or false?

a{r}eX c{{z}}eX eyeX g {yteX
b.{z}CX d{{z}}CX fyCX h{yycX O
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For the subsequent exercises refer to Definition 2.10 on p.15 of the size | A| of a set A and to Definition
2.22 on p.27 of Cartesian products.

Exercise 2.5. Find the size of each of the following sets:

a. A= {xz,y, {z}, {z,y}} < C= {u,v,v,v,u} e. E = {sin(kn/2): ke Z}
b. B = {1, {0}, {1} } d.D={32-10:2€2} f. F= {mzx:x€R} O

Exercise 2.6. Let X = {z,y,{z},{z,y} } and Y = {z, {y} }. True or false?
a.zeXNY creXUY exzeX\Y g axeXAY
b.{y}e XNY d.{yteXUY £ {yteX\Y h. {y} € XAY O

Exercise 2.7. Let X = {1,2,3,4} and letY = {z,y}.
a. Whatis X x Y? ¢ Whatis | X xY[|? els(z,3) e X xY? gIs3-2€ X xY?
b. Whatis Y x X? d.Whatis | X xV|? fIs(z,3) €Y x X? h.Is2-yeY xX? O

Exercise 2.8. Let X = {8}. What is 2(27)?

Exercise 2.9. Let A = {1,{1,2},2,3,4} and B = {{2,3},3,{4},5}. Compute the following.
a.ANB b.AUB ¢ A\B d.B\A e AAB O

Exercise 2.10. Let A, X be sets such that A C X and let z € X. Prove the following;:

a. IfreAthen A = (A\ {a}) W {a}.
b. Ifz ¢ Athen A = (Aw{a})\ {a}.
O

2.7 Addenda to Ch.2

Definition 2.23. We give some convenient definitions and notations for monotone sequences of

numbers, functions and sets.
(@) Let x, be a sequence of extended real-valued numbers.

e We call z,, a nondecreasing or increasing sequence, if j < n = z;
e We call z, a strictly increasing sequence,if j < n = z; < z,.

e We call z,, a nonincreasing or decreasing sequence,if j < n = z;
o We call z,, a strictly decreasing sequence,if j < n = z; > z,.

e We write z,, T for nondecreasing z,, and z,, 1 = to indicate that sup,, z,, = =,
e We write z,, | for nonincreasing z,, =, | « to indicate that inf,, z, = 2. O

A

Ty .

1AV

Ty .

Example 2.13.
(@) The sequence z,, = —1 is strictly increasing.
(b) The sequence y, = = is strictly decreasing.
() Thesequencea; =1, a1 = ay forevenn and a1 = —% for odd n, is nonincreasing.
(¢) The sequence by =1, b,41 = by, for even n and by, 1 = % for odd n, is nondecreasing.
]
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2.8 Blank Page after Ch.2
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3 The Probability Model

3.1 Probability Spaces

In Section 1.2 (A First Look at Probability) we used throws of a die to illustrate the concepts of
random actions and their potential outomes and let this motivate us to give a preliminary definition
of probability as a function

P:2% —[0,1]

which assigns to each element A in the power set of a given set {2 a number P(A) between zero and
one, such that

(@ P(0)=0 and P(2) = 1. Here () denotes the empty set which contains no elements.
(b) If the subsets A, B of (2 are disjoint, then probability is additive:

P(Al{B) = P(4) + P(B).

Note that additivity holds for three disjoint sets A, B, C' € 2 since,
)  PAlBHC) =PlAlYB)HC] = P(AWY)B) + P(C) = P(A) + P(B) + P(C).
From (%) you get additivity for four disjoint A, B, C, D € 2% since,
pAlYBHC D) =PlAlHBHO) I D]
=P(A{BlHC)+ P(D) = P(A)+ P(B)+ P(C) + P(D).

Now that you have additivity for four disjoint sets, you get it by the same method for five, and then
for six, ... and thus, for any finite number of disjoint subsets A;, ..., A, of Q.
But we are not satisfied since it has proven extremely fruitful to replace (b) with the stronger con-
dition

(b") If (4,), . is a sequence of disjoint subsets of (2, then probability is “o—-additive”:

(U) S ).
j=1 j=1

9

Unfortunately, this comes with a trade-off. Consider the following example.

Example 3.1. A point located somewhere at | — oo, 0] starts moving to the right at a constant velocity
and is stopped completely at random somewhere in the unit interval [0, 1] in the following sense:
It is stopped just as likely in the left half, [0, ], as in the right half, [3,1]. More generally, for any
n € N, it is stopped equally likely in each one of the intervals [£=1, %] (k = 1,2,...,n).

It should be obvious that the only reasonable probability function on Q := [0, 1] is

P:[0,1] — [0,1]; [, ] — B —«,

% (“sigma”) is a greek letter. See the appendices for a complete list.
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since it is the only one that assigns probabilities proportionate to interval length (including
P([a, @) = 0 for intervals of length zero) and also satisfies P(Q2) = 1.

Unfortunately, it has been proven '° that no o—additive function that satisfies those properties exists
on the entire power set of [0, 1].

The only way out of this dilemma without sacrificing o-additivity is to relax the condition that
P(A) mustexistforall A C Q. O

It follows from this example that we must define probability as a function
P:§—[0,1], where § is a suitable subset of 2,

which satisfies P(#)) =0 and P(Q) =1 and

P (L‘H Ak) = ZP(Ak) for disjoint A;, Ag,--- € §.
k=1 k=1

To answer the question what conditions a useful domain § for a probability function P should
satisfy, it helps to remember De Morgan’s Law for finite or infinite sequences of sets. See Proposition
2.5 on p.26. Also, the following proposition which shows how to rewrite any countable union (finite
or infinite) as a DISJOINT union will be relevant.

Proposition 3.1 (Rewrite unions as disjoint unions). Let (A;);en be a sequence of sets which all are
contained within the universal set §). Let

Bn = UAJ:AlLJAQUUAn(nGN),
j=1
Cy =41 = B, Cpy1 = Apy1\ B (n€N).

Then

(a) The sequence (By); is increasing: m < n = By, C By,.
n n
(b) ForeachneN, |J A; = U B;.
j=1 j=1

(c) The sets C; are mutually disjoint and |J A; = i Cj.
j=1 j=1

(d) Thesets C;(j € N) form a partitioning of the set |J Aj.
j=1

PROOF: (a) and (b) are trivial. For the proof of (c) and (d), convince yourself that
C, = A, \ (A1UA2U---UAn_1).

Thus, C;, precisely contains those elements of A,, that have not previously been encountered! W

We return to the question what the domain § of a probability should satisfy.

such a proof is outside the scope of these notes.
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If A has a probability P(A), then A should have probability 1 — P(A). Since probabilities can only
be assigned to elements of §, we want

(A) AcF = Aleg.

If A,, € § are pairwise disjoint, then ( A; should have probability > P(A;). Since probabilities
j=1 j=1
can only be assigned to elements of §, we want

A, € Fdisjoint = [H 4; €35.
j=1

Since we have seen that any union of a sequence of events can be written as a disjoint union, we
need more than the above. We really want

(B) A, € § arbitrary = U A;jeF.
j=1

Also, it is very reasonable to demand that P(()) = 0 for the impossible event which contains no
potential outcomes, i.e., the empty set. it is just as reasonable to ask that P(2) = 1 for the sure
event, (), since it contains all potential outcomes. Thus, we ask that

(¢ fegF and Q€3F.

All this leads to the definition of a o—algebra.

Definition 3.1 (0—-algebra). Let {2 be a nonempty set and § C 2% 4 collection of subsets of €2, such
that

@ AeF = Aleg.

(b) A, € §arbitrary = |J 4, €F.
j=1

© 0eg.

Then we call § a o—algebra.

§ is also called a o—field, but this is considered old—fashioned terminology. [J

Proposition 3.2. o—algebras § satisfy the following.

(a) Qeg.
b) A, Ay... Ay €F = AHAUAU---UA, €F.

(¢c) LetneNand Ay, Ag,---€F. Let A= (Vand B= (). Then Ac Fand Be §. O

k=1 k=1
PROOF:

PROOF of (a): True, since ) = ¢t and complements of elements of § belong to § and 0 € §.
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PROOF of (b): Since any finite list A1, ..., A, can be written as an infinite sequence

B1:A17BQZA27"'7Bn:AnaBn+1:Bn+2:':®

and since B; € § for each j € N, it follows from Def.3.1(b) that |J B; € §. Since
j=1

n

J

A; = | J4;u0u0u-00 = B
1 j=1 j=1

it follows that |J A; € §. This proves (b).

j=1
PROOF of (¢): According to De Morgan’s laws, any countable intersection can be written as the
union of its complements. Thus we automatically get from (A) and (B) that countable intersections
of a sequence in § will again belong to §.

Here is a detailed argument. For each j let C; := AE. Further,let C := |J Cjand D := |J Cj.
j=1 j=1
Since each each Cj is the complement of a member of §, we have C; € §. Thus, D € § by the
definition of §, and we have seen in part (b) of this proposition that C' € §
It follows from De Morgan’s laws that Ct = Aand D' = B.

Thus, both A, B belong to § as complements of elements of §. We have shown (c). W

Definition 3.2 (Probability measures and probability spaces).

Given are a nonempty set (2 with a o—algebra § C 2% and a function

P:§ — [0,1]; A~ P(A4) as follows.
(3.1) P®) = 0, (32) PQ) = 1,
(33) (An)nen € Fdisjoint = P(L—lj An> - iP(An) = Y P(A,). (o-additivity)
neN n=1 neN

We call P a probability measure or simply a probability

The triplet (€2, 3§, P) is called a probability space.

If Q is countable, we call (2, §, P) a discrete probability space.

We call the elements of 2 outcomes and the subsets of 2 events. [

We will later on talk about discrete and continuous random variables, but note that there is no such
thing as a “continuous probability space”.

Remark 3.1. The WMS text uses different notation
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What we call a probability space, WMS calls a sample space.
WMS uses the letter S rather than Q for the “carrier set” and completely ignores o—
algebras. Thus, WMS refers to a sample space (S, P) rather than to a probability space
(2.5, P)
o WMS typically writes z,y, . .. rather than w for the outcomes.
I prefer to use the term “probability space” since we we usually think of a sample as a list of items
that that has been picked in some random fashion from an underlying “population”. We will con-
sider probability spaces in this lecture where it would require a huge stretch of the imagination to
consider their elements as such samples. However I give you a choice in this matter.

You may refer in your quizzes, exams and homework to sample spaces and the symbol S,

but you must write (.5, §, P) rather than (S, P) if the role of a o—algebra § matters.

And more good news: We have introduced o-algebras to properly deal with the issue that was
raised in Example 3.1 on p.32 It won’t be long and we will on only few occasions deal with o—
algebras and usually refer to a probability space (2, P) O

Remark 3.2. How do we interpret formula (3.3) for o—additivity in the definition of a probability

o0
measure, P( L-_I-J An> = Z P(A,) = Z P(A;)? What is the meaning of 4 A, as opposed to
neN n=1 neN neN

[o¢] o0

¥ A;; and what is the meaning of )  P(A,), as opposed to > P(A,)?
n=1 neN n=1

(a) Unions are defined without any reference to an order “first A;, then A,, then As,...”, since the
definition of a € |4 A, is the existence of at least one index iy such that a € A;,. No reference to an
neN

o0

ordering is made. The only justification for the notation (¢ A, is that it looks more familiar. By the
n=1

way, what was said here about disjoint unions also applies to arbitrary unions and to intersections.

(b) But what about the summation ) P(A,)? Does it really not matter in which order we add the
neN
terms of an inifinite series? The answer is that this depends. If you are curious, look at this optional

footnote. 11 You will find there the following. Because P(A;) > 0 for all j, the value of the infinite

series ) P(A,) does not depend on the order in which the terms P(A;) are arranged. [
n=1

In Section 1.2 (A First Look at Probability) we used throws of a die to illustrate the concepts of

51 | Let 3 aj be an infinite series. Then (1) If > io1 lajl = la| +|az| + - - - < oo, (we call such a series absolutely

convergent), then the original series converges (to a finite limit), and any rearrangement Y °° | an; = any + Gny + -+
converges to the same limit. (2) If >27 | b; converges to a real number (# +o0), but 3272 [bj| = oo, then the following
is true: Pick any —oo < x < oco. Then you can rearrange the terms b; in such a way that the rearranged sequence, call it
Z;’;l bn;, converges to z. In other words, you can jumble the terms such that the limit is 7. A different permutation of

the indices has limit 0, yet another converges to —ve39, ... (3) For brevity, let p; := P(A;). Then0 < p; <1 = p; = |p;|
and hence,

D il =2 p = P(UA) =< PO = 1 < o
j=1 =1 j
Thus, )" p; converges absolutely and the order of the p; is immaterial. But then the order of the A; is immaterial, and

this allows us to write >, P(A,) for i P(A,).
n=1

neN
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random actions and their potential outomes and let this motivate us to give a preliminary definition
of probability as a function

Example 3.2. (a) We model & rolls of a fair die (k € N) as follows. Let
Q = {1,2,3,4,5,6}* = {(a1,a2,...,a;) :a; = 1,2,...,6 foreach j = 1,2,... ,k}.

For example, let k£ = 5. then w; = (2,6,2,1,4) € Q. On the other hand, wy = (2,6,2,9,4) ¢ €, since

a; =1,2,...,6is not true for j = 4 (because a4 = 9).
(1 is a finite set, and you will learn later that its size is 6*. Thus, Q = {wy,ws, ... ,wgk } Where, e.g.,
wi=(1,1,...,1,1), wo=(1,1,...,1,2), ..., wegr_y = (6,6,...,6,5), wg = (6,6,...,6,6).

Since the die is fair, each one of those 6* elements of {2 should have the same probability p := P({w})
for all w € €. Since P(f2) = 1 and

Q=H[{w}:weq] = Lﬂ{wj}.

is a union of a sequence of disjoint set, we obtain from the oc—additivity of P(-) the following:

6k‘
1
1=PQ) =) Plw} =6p = p= o
j=1
e So then, how does one define a probability measure P : § — [0, 1]?
e And what is that o-algebra § going to be?

To answer those questions, we define the function P : 2¢ 4 R as follows.

A A
(3.4) P(A) = :Q} - |6k’

Observe the following.

1M ACQ = 0<|A<|Q=6F = 0< P(A) <1
(2) The empty set has size |}] = 0 and || = 6% Thus, P() = 0 and P(Q) = 1.

(3) Assume that A;, Ay, ... are disjoint subsets of €. Since (2 is finite, only finitely many
A; are not empty (THINK!),
(4) We rearrange the sequence such that the nonempty members will be A;, Ay, ..., Ay,

for some suitable m.
(5) Then, A= AW Ay W ---W A, is a finite union
and disjointness of the A; = |A]| = [A1] + |A2| + - + |An|

(6) Thus, o—additivity: P(A) = |A|/6F = Z(]Aj]/Gk) = > P(4;) = > P(4))
j=1 j=1 all j
Last equation: The omitted sets A, 11, Ap42,... were empty,

thus P(A;) = 0/6% = 0 for those ;.
We obtain from (1) - (6) that P(A) = | A|/6* is a probability measure on 2.

(b) One easily sees the generalization to arbitrary finite sets:
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Let Q be a finite set of size N := || < cc. Let the function P : 2® — R be given as

_ AL A
(3.5) P(A) = o - N
Then everything stated in (1) - (6) of (a) remains valid if we replace 6* with N, and this shows that
P is a probability measure on 2.

(c) The finiteness of Q2 was crucial: If Q is infinite and countable, then Q@ = {w;,w2,...} can be
written as an infinite sequence of distinct(!) members. It is not possible to define a “uniform”
probability measure on §2 as we did in parts (a) and (b), i.e., a number p such that P(w;) = p for all
7 € N. How so?
(1) pwould have to be strictly positive: Otherwise,
P(Q) =3, P(wj) =p+p+--- <0, but we require P(Q2) = 1.
(2) Thus, p > 0. Thus, P(2) =3, P(w;) =p+p+ - = oo, but we require P(2) = 1.

(d) We will see that the most important probability measures on the uncountable set R 12 satisfy
P(z) = 0 for all z € R. That is no contradiction to c—additivity and P(R) = 1, since one cannot

write the real numbers as a countable union R = x; U z2 U - - - Rather, P often is characterized by
X

integrals P([a,b]) = fbgp(t)dt. (This explains P(z) = [¢(t)dt =0.) O

xT

Example 3.3. For the most general example of a countable probability space, let
Q = {w1,wq,ws,...} for some finite or infinite sequence (wj)j )

Let us write Iq for the corresponding index set {1,2,...}, so that Q = {w; : j € In}.

(@) Assume that P : 2 — [0,1] is a probability measure. We abbreviate p; := P(wj). Any
nonempty subset A of 2 is of the form A = {wy,,wn,, ...} for a suitable, finite or infinite, subse-
quence of the w;. We write 14 for the corresponding set of indices {n1,ns, ... }. With that notation,
P satisfies

36) A= [H{w} = PA) =D Pwn) = > b, (o-additivity)
JEI 4 VIS0 JEIA
(3.7) In particular, P(Q) = Z P(w;) = ij =1, (full sequence wy,ws,...)
J€ln Jj€ln
(3.8) 0 <pj <1. (since 0 < P(B) < 1 forall arguments B)

(b) Inreverse, associate with each w; a number p; such that the sequence (pj)j satisfies

(3.9 0 <p; < 1foralljy, and ij =1.
J

Recall that each nonempty subset U of 2 is of the form U = {wy,,,wp,, ...} for a suitable, finite or
infinite, index set Iy = {n1,na,...}. Note that k € Iy then means that k¥ must be either n; or ng or
... We use that notation to define the function

> ker, e forU #0,

P:2% 3 R; U +—
0 forU = ().

2the so-called distributions of continuous random variables
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Clearly, p; > 0Vj implies P(U) > 0. Also Iy C Iq yields P(U) < P(2) = > p; = 1. Since
all 5

P(0) by definition, we have seen that P satisfies all properties of a probability measure, except for

o—additivity. That one follows from general calculus rules for sequences of series with nonnegative

terms.

(c) We summarize (a) and (b) as follows.

If © is countable and nonempty, i.e., @ = {w; : j € In} for some finite or infinite index set
Io = {1,2,...}, then each probability measure P on 2 determines a sequence of numbers
(pj)j c1, Such that p; > 0 forall jand }°,; p; = 1, by means of the equations

pi = P({w;}) (€la).

In reverse, each sequence (pj) that satisfies p; > 0 for all j and ) | i =1, determines a

j€lq
probability measure on 2% by means of

> pr for A#0,
P(A) = ( k€la
0 for A = ().

Note that this yields, for A = {w;}, that P({w;}) = p;. O

Remark 3.3. The probability spaces (2,5, P) we will be faced with are in one of the following
categories:
(@) Qs countable, i.e.,, @ = {w;,ws,...}. for some suitable, finite or infinite sequence
(wn)n- Then P(A) is defined for all sets A € Q (and thus, § = 2%).
(b) € is uncountable, but there is a finite or infinite sequence w, € £ such that
> nP(wp) = 1. In other words, P is concentrated on the countable set U :=
{wi,ws, ...} in the sense that P(U) = 1 and thus P(U%) = 0. again, P(4) is de-
fined for all sets A € Q (and thus, § = 2).
(0 Q2 =Rand P(A) is known (at a minimum) for intervals such as [a, b] or |a, b] or [a, b]
or |a, bl.
(d € = R"and P(A) is known (at a minimum) for n—dimensional rectangles such as
[a1,b1] X [ag,b2] X -+ X [an, by] (cartesian products of onedimensional intervals!)
It is important that we can assign probabilities to Intervals in (¢) and n—dimensional rectangles in
(d), for the following reason.
(') the most important probabilities P defined for sets in R come with a so—called prob-
ability density function f : R — [0, co[ which assigns to an interval ]a, b] the proba-
bility

b
P(la,b]) = / f(u)du.

This makes it plausible that the o—algebra 95 for such P should contain all intervals
Ja, b].
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(d’) Likewise, the most important probabilities P defined for sets in R” come with a
probability density function f : R® — [0, 00[ which assigns to an n—dimensional
rectangle |a1, b]x]ag, ba] X - - - X]ay,, b,] the probability

bn bn—1
P(]al,bl]x}ag,bg] X .- an, / / ) f ﬁ) du

bn n—1
/ / . ful,...,un)dulduQ-~dun,1dun.

Thus, the o—algebra B" for such P should contain all rectangles ]ai, b1]x]ag, ba] x

-+ X]an, by
You may have Nnticed that we could have worked with either of ]a;, b;[, [a;, b;[, [a;, b;] instead of
Jaj, b;], since [ ..da is always zero. Nevertheless, it is more convenient to work with intervals
that are open on the left and closed on the right. We will see that when we deal with the so-called
cumulative distribution functions on R and R". [

Note that the next definition is marked as optional.

Definition 3.3. One can show that that there are such things as

o the smallest o—algebra of subsets of R which contains all intervals of real numbers.
It is denoted B.

o the smallest o—algebra of subsets of R” which contains all n-dimensional rectangles.
It is denoted B".

We call B and 8" the Borel o—algebras of R and of R" Borel c—-algebra and we call their
members Borel sets. Borel set

It is sufficient for this course that you just remember that

o The Borel sets are the sufficiently well behaved sets of R and R™
e The intervals and n—dimensional rectangles are amon those sets.
e Only completely weird and useless sets are not Borel. [J

Remark 3.4 (0—algebras will be ignored). Consider this a continuation of Remark 3.3. We can sum-
marize it as follows.
There are only two kinds of probability spaces (£, §, P).

e There is a countable subset C' = {w;,wy,...} of Q@ such that >  P({w}) = 1. Then
weC

5 = 29| since the above allows us to define P(A) for arbitrary A C Q as

PA) = 3 PHw}).

weCNA

e O=RorQ=R". Then‘ § = the Borel sets. ‘

Now that we understand the structure of the domain § of the probability measures P we will be
dealing with, there is no more need to keep carrying this baggage with us.
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Henceforth, we will, with very few exceptions, do the following.

We will ignore that probability measures cannot always be given on the entire power set 2
(true only we deal with (R, B, P) or (R",8", P)) and that this necessitated us to introduce
a o-algebra § as the domain of that probability measure. Accordingly, we will ignore the

o—algebra and talk about

probability spaces (€2, P), rather than (2, §, P).

g

Notational conveniences for probabilities:

If we have a set that is written as {... }, i.e., with curly braces as delimiters, then we may
write its probability as P{...} instead of P({...}). Specifically for singletons {w}, it is OK

to write P{w}.

Remark 3.5. The following is preliminary and will be expanded.

MF terminology WMS terminology

o-algebra § concept DNE [J

probability space (2, §, P) with “underlying set” | sample space S with a probability P(A) de-

(), o—algebra §, probability measure P(A) defined | fined for all sets of interest A C S

forAecgF
® XX yy U

Remark 3.6. This remark is preliminary.
(A) Randomness specifically:

(1) Random number generator of a statistics package: Generate a random a number 0 < z < 1
with a precision of k decimals (can have big £ like £ = 25. For such a high precision we can
model the potential outcomes (2 as the continuum [0, 1[.

(2) Rolladie: 2] =6

(3) Roll a die 3 times: || = 63

(4) 20 coin tosses: || = 220 ~ 100 since 2'° = 1,024 ~ 103,

8 8
(5) 10 coin tosses: || = 210" = 21010° — (210) 1~ (10%) 107 = qp310°
(6) A selection of n items from a population is a sample of size n.

(B) A supreme being decides to pick “this” w. This pick seems random to us since we do not know
what choice this being will make. [
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3.2 Preimages and Indicator Functions

Introduction 3.1. The major part of this course will be about functions w — f(w) which assign the
outcomes (= elements) w of a probability space to items f(w) which are usually numbers or vectors
of numbers. In other words, the codomain will usually be (a subset of) R or R”. We illustrate this
with the following example.

Let the probability space (€2, P) '3 represent the outcomes of two rolls of a fair die:

o O ={1,2,...,6}% Interpret w = (w1, w2) as die; yields w;, diey yields ws. 14

[ Thus, w = (5, 2) represents the outcome of die; giving a 5 and die; giving a 2.
e Probability measure P is determined by P(wi,w2) = 1/|2| = 1/36. See Example 3.3 on p.38.
Consider the function which associates with each outcome (w1, ws) the sum of the throws, i.e.,
o V:0 > {2,3,4,...,11,12}; (wi,w2) = Y ((w1,w2)) 1= w1 + wo.
Get used to the notation! WMS loves to use the letters (X, Y, Z) for function names.
We will create a probability measure P’ on ' := {2,3,4,...,11,12}, the codomain of the function
Y.
e Since (Y is countable, it suffices to specify P'({2}), P'({3}),..., P'({12}). (Again, Example
3.3.)
e Define P'({10}) := P({(w1,w2) € Q : Y(wi,w2) = 10}) = P({(4,6), (5,5), (6,4)}) =
1/12. This is the probability that the sum of the throws is 10!
e Ingeneral, forw’ € ¥, define P'({(w')}) := P({(w1,w2) € Q: Y (wy,ws) = w'}). This is the
probability that the sum of the throws is w'!
e One can show quite easily 15 that, if B C V, then

(3.10) BCQ = P(B) = P{weQ:Y(w) € B}). (Wewrotew for (wy,ws).)

This is the probability that the sum of the throws is in B!

e We have created a probability measure P'(B) on the codomain of Y by assigning P, the
original probability on the domain (2, to the set

{weQ:Y(w)eB}

of all those arguments w € 2 which are mapped by Y into B.
That makes those sets so important that they warrant their own definition. O

Since the following definition is of interest not only for probabilistic topics, we will switch from the
function notation Y : Q — ' to the more familiar f : X — Y.

Definition 3.4.

'3 As promised, no more o—-algebra unless absolutely necessary!
“We often prefer to write w rather than @ if the the symbol 2 is involved, even if the elements are vectors.
Bwith the help of Proposition 3.4 (f ! is compatible with all basic set ops) further down, on p.45
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Let X,Y be two nonempty sets. Let f : X — Y and B C Y. Then

(3.11) f(B) :={zx e X: f(z) € B}

is a subset of X which we call the preimage of B under f. O

Remark 3.7. -

If we vary B C Y, i.e., B € 2¥, we can think of the preimage as a function 2¥ — 2% (since
J7L(B) € 2%).

e The symbol f~! is the same as that for the ordinary inverse function f~1(y) = =z, if this
inverse function exists!

e f71(B) exists for any choice of X,Y,f : X — Y, and B C Y, even if the inverse function
does not exist!

As an example, let

JiR o [-lool;  f(a) = 2%,
If there was an inverse function, then it would have to assign to EACH y € [—1,00] a UNIQUE
x € R (that = would be f~!(y)) such that f(x) = . But such is not the case:

If y = —0.5, then there is no = € R such that 22 =y
If y = 10, then there are too many z € R such that 22 = y.
Both z = /10 and = = —+/10 satisfy 22 = 10.

e Note that, for the preimages we obtain f~!({-0.5}) = 0
and f~!({10}) = {—V/10, v10}. Coincidence?

For a more extreme example, consider
g:10,00[— R; g(x) = sin(z).

If By = [5,10], B = {0}, what are ¢g~!(B;) and g~!(B2)? So, does each y € R have a unique
x € [0, 00] such that g(z) = y?

For an even more extreme example, consider
h:R = R; h(z) = 27.

If By = [5,10], B2 = {27}, B3 = [-500, 5], what are h~1(B;)(j = 1,2,3) ? Again, does each y € R
have a unique z € [0, oo[ such that h(z) = y? O

Notational conveniences I:

If we have a set that is written as {. ..} then we may write f~!{...} instead of f~1({...}).
Specifically for singletons {y} such that y € Y, it is OK to write f~*{y}.

You also are allowed to write f~!(y) instead of f~!{y}, even though this author thinks that
it is not a good idea to confound elements y and subsets {y} of Y.

VERY IMPORTANT: Work the following examples closed book and then check that your solutions
are correct!
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Example 3.4 (Preimages). Let f : R - R;  f(z) = 22

a. fY]-4,-2) = {xeRxe]—,—2[}:{—4<f<—2}:(2).

b f([1L2) = {zeR:?e[1,2]} = {1=/<2} = [—v2,—1] U [1,V3]

c. fl([7])—{w€R$€[ 6]} = {5<f<6} = [-V6,—V5] U [V5,V0]

d. f1(—-4-2U[1,2) U[56]) = {zeR:22¢c]—4,-2[orz?c[1,2] or2? € [5,6] }
:[\@,_1] [1:\/§]U[\f—\ﬂU[\f\f]-D

Example 3.5 (Preimages). Let f :R = R; f(z) = 22

a. f_(] 4,2) = {ze€R:2?€]-4,2[} = {z€R: —4<2? <2}:] 2,2].
b. f([1, ])—{meRxe[l?)]} {zeR:1<22<3} = [—V3,1] U [1,V3].
c¢ fH]—-4,2[n [13]) {zeR:2?€]—4,2[and 2% € [1,3] }
= {xeR 1<2?2<2} =]-v2,-1] U [1,V2].
Proposition 3.3. Some simple properties:
(3.12) 1o =0
(3.13) By € By C Y= fYBy) C f By (monotonicityof f~*{...})
(3.14) YY) = X always!

PROOF of 3.13:
We show that = € f~%(B;) = f~'(Bi1) as follows.

e B) Y r@eB Y fa)eB, Qre (B

In the above, (a) and (c) state the definition of a preimage and (b) follows from B; C B,
The proof of of 3.12 and 3.13 is left as an exercise. W

Remark 3.8 (Notational conveniences II:).

In probability theory the following notation is also very common:

{feB}Y:=f17'B), {f=y}:= "y}
Let A4 be either of Z,Q,R. Let a,b € A such that a < b. We write {a < f < b} :=

(. 0lp), {a < f <b} = f"1(la,bls),
{a<f<bli=f"a,bln) {a<f<b=f"1a,bly) {f <b}=f1(]~00,bls) et
O

Example 3.6. In the introduction we were examining
o P'({10}) = P({(w1,w2) € Q: Y (wy,w2) = 10}).

This can be written as  P'({10}) = P(Y~'{10}) = P{Y =10}
o P({(w)}) = P({(w1,w2) € Q: Y (w1, wa) =w'}).

This can be writtenas  P'({w'}) = P(Y " Huw'}) = P{Y =u'}.
e P'(B)=P({weQ:Y(w) € B}).

This can be writtenas P'(B) = P(Y'(B)) = P{Y € B}.
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It is very important that you remember the first three of the five formulas of the next proposition.

Proposition 3.4 (f~! is compatible with all basic set ops). Assume that X,Y be nonempty, f : X —Y,
J is an arbitrary index set. 16 Further assume that B C'Y and that B; CY forall j. Then

(3.15) FUOYB) = ('3

jeJ JjeJ
(3.16) AU B) = Uray

JjE€J jeJ
(3.17) B = (1B
(3.18) BiNBy=0 = fYB)Nf HBy) =0.
(3.19) fUBi\ Bs) = f1(B)\ fH(By)
(3.20) fUB1ABs) = fY(Bi)AfH(By)

Note that (3.18) implies that the preimages of a disjoint family form a disjoint family.

PROOF: MF330 notes, ch.8 W

Proposition 3.5 (Preimages of function composition). Let X, Y, Z be arbitrary, nonempty sets. Let
f:X—=>Yand g:Y — Z and h : X — Z the composition

h(z) = go f(z) = g(f(x)).
Let U C X and W C Z. Then

(3.21) (gof)™t =flogliie, (gof)'(W) = f (g7 (W)) forall W C Z.

PROOF: MF330 notes, ch.8 W

Try to understand the sbove with a simple example, suchas X =Y = R,
f(x) =3z —1,9(y) =vy% and W = [0,1], W = {—10} W = {10} (three different choices for V).

3.3 Indicator Functions
Indicator functions often are a great notational convenience, for example, when dealing with func-
tions that are defined differently in two or more parts of the domain.

Definition 3.5 (indicator function for a set). Let (2 be a nonempty setand A C 2. Let14 : © — {0,1}
be the function defined as

1 ifweAd
3.2 La(w) = ’
(322) Aw) {o ifuwd A

'If you have problems with the concept of a family, think of J as a set of integers which are bounded below, i.e., that
J is the index set of a finite or infinite sequence or subsequence of sets
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14 is called the indicator function of the set A. 17 [

Example 3.7. The so-called density function for the exponential distribution with parameter 3 > 0
is

f( ) _ %e_y/ﬁa 0§y<00a
V= 0, elsewhere .

This can also be written as f(y) = % e~v/P L10,00[(%)-

Proposition 3.6. Let A, B, C be subsets of ). Then

(3.23) ACB = 14,<1p,

(3.24) laup = max(1y4,1p),

(3.25) lanp = min(ly,1p),

(3.26) Ty =1-14,

(3.27) lawp = la+1p (A, Bdisjoint)

PROQF: The proof is an easy exercise.

3.4 Random Variables and their Probability Distributions

Introduction 3.2. We continue with an observation we made in the introduction 3.1 to Section 3.2
(Preimages and Indicator Functions, p.42). There,

e O = {1,2,...,6}? and @ = (wi,w2) represents a potential (two-number) outcome of two
rolls of a fair die, i.e., P({&}) = 1/|2| = 1/36.

e We defined the function Y : @ — @' :={2,3,4,...,11,12}; & — Y (&) := w1 + wy, which
associates with & = (w1, ws) the sum of the two rolls.

e This function lead to a probability measure P’ on 2’ by means of formula (3.10):

BCQ = P(B) = P{3eQ:Y(J) e B}.

Observe that the set 2’ has been transformed into a probability space, (€2, P")).
e With preimage notation and the notational shortcuts of Remark 3.8 on p.44, this can also be
written as
P'(B) = P(Y Y(B)) = P{Y € B}.

These formulas can be written for an arbitrary probability space (2, P), an arbitrary nonempty set
(Y, and an arbitrary function Y : Q@ — . Actually, that is not entirely true, but it will be true for the
situations we will deal with in this class. If you are curious, read this optional footnote. ¥ [

'7In abstract algebra this is often called the characteristic function of A. Some authors write y 4 or 14 instead of 14.

18 We have to recall that there really is a o-algebra § on 2 and that P(A) only exists if A € §. Whatif B C Q'
does not have a nice preimage, i.e., {Y € B} ¢ §? The only way out is not to allow arbitrary B € 2% but (a) to also
require a o—algebra §’ on the codomain €/, which (b) is so “small” that B € §' = Y ~'(B) € §; or, if you prefer, § must
be so “big” that B € ' = Y~ '(B) € §. There is a name for triplets [Y, §, §'] which satisfy this reltionship. The function
Y is called measurable with respect to § and §’ or (F, § )—measurable None of this will be an issue in this course!
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The next theorem and the subsequent definitions are very important.

Theorem 3.1.

Let (2, P) be a probability space, Y a nonempty set, and Y : Q — Q' a function. Then the formula
(3.28) Py(B) := P{Y € B} (BC )

defines a probability measure on §Y'.

PROOF: It follows from {Y € §} =  and {Y € Q'} = ©, that
Py(®) = P(#) =0 and Py(Q) = P(Q) = 1.
Let B C €. From (3.17) on p.45, we obtain
Py(BY = P{yeB'} = P(Yy '(BY) = P(v '(B)) =1 - P(Y(B)) = 1 — P(B).

To prove o—-additivity of Py, we apply (3.16) to the index set N of a sequence of disjoint subsets
Bi,Bs,... of . Let B := B, LﬂBQLﬂBgLﬂ'. Then

Py(B) = P(Y~! (L+J Bj) ) =P (U YI(BJ))

jEN jEN
By (3.18), the sets Y ~1(B;) are disjoint. Thus,
jEN jEN jEN

Py(B) = P (Lﬂ Yl(Bj)) =Y P(Y'(By) = D Pr(By).

This proves o—additivity. W

Definition 3.6 (Probability Distribution).

Let (2, P) be a probability space, 2’ a nonempty set, and Y : @ — Q' a function. Then the
probability measure Py on ' which is given by

(3.29) Py(B) := P{Y € B} (BC Q)

is called the probability distribution or just the distribution of Y with respect to P. Very
often the probability space (€2, P) is fixed for a long stretch. We then simply talk about the
probability distribution of Y, without referring to P. O

Definition 3.7 (Random Variables and Random Vectors). Let (€2, P) be a probability space and let
n € N.
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Let U C R. A function
Y:Q—U; w—Y(w)

is called a random variable on (2, §, P). Let V' C R™. A function
X =(X1,Xo,..., Xp) : Q@ —V; we X(w) = (Xw), ..., Xn(w)

is called a random vector on (2, §, P).

If there is a countable subset U* = {y1,y2,...} of U such that 3, Py {y;} = 1 (ie, P{Y ¢
U*} =0), wecall Y a discrete random variable. Likewise, if there is a countable subset
V* of V such that P{X ¢ V*} = 0, we call X a discrete random vector. [J

Note that random variables and vectors which have a countable range are discrete. Also, if you
found the footnote at the end of the introduction interesting, have a look at this (optional) one, '

Remark 3.9. In many instances the exact nature of the codomain U of a random variable Y is unim-
portant. Of course it must be a set of numbers, i.e., U C R, and it must be big enough to accommo-
date all function values Y (w), i.e., Y (w) C U. ?° Thus, here is some good news.

We often will just say something like “Let Y be a random variable on Q" or, “Let Y be a
discrete random vector on 2” and not even mention the codomain of Y. [

Not all interesting functions on a probability space take values in R or R". Here is an example.

Example 3.8. The following describes a (unnecessarily complicated) way to simulate n tosses of a
fair coin. Le Let Q := [0, 1], where we represent the real number w € 2 as a decimal 0.d;dad3 with
inifinitely many decimal digits. If necessary, we append infinitely many zeroes to the right. For
example, we write 0,25000. . . for the number 1/4. We write H for Heads and T for Tails and define
the following function on (€2, P).

X:Q— {HT"

Xi1(w) = H ifd; iseven, T else.
e Xs(w)=H ifdyiseven, T else.

e X,(w)=H ifd,iseven, T else.

Since Pg (%) = 1/2" for each & € {H,T}", each combination of a total of n Heads and Tails has the
same chance to occur. That is our understanding of a fair coin. [

Considering that last example, it seems awkward to call a function Q — € from a probability
space (€2, P) to a set ' a random variable only because its function values are not numbers. We
give a name to such functions of randomness.

The next definition is non-standard and you will not be quizzed on it. Note though that I will use
the term “’random item’ in these lecture notes and in my lectures,

9 Technically speaking, Y must be (§,B)-measurable and X must be (3, B")-measurable. In other words,

you must be able to assign probabilities to all preimages of Borel sets. Again, none of this will be an issue in this course!

2Tt only matters when we need the inverse function w = Y ' (y) of y = Y (w). (Do not confuse inverse function and
preimage, just because they use the same symbol Y1) Then Y ~!(y) must make sense for all y € U and that requires
that U is minimal: U = Y (Q2). The same thought also applies to random vectors.
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Definition 3.8 (Random item). Let (2,5, P) be a probability space and ' a nonempty set.
We call a function X : Q — Q' arandom item on Q. [J

Remark 3.10. We can phrase Theorem 3.1 and the subsequent Definition 3.6 as follows.

All random items X on a probability space (2, §, P) have a distribution
Px(B) = P{XeB} = P(X"}(B)) (BCQ). O

Remark 3.11. Consider the following of a philosophical rather than mathematical nature. Not all
mathematicians agree with it.

I like to think of a probability space (€2, P) as a seat of randomness in the following sense. Some all-
powerful supreme being or supreme force of nature, let’s call it ., decides to pick “this” particular
wp € Q. As aresult, all random items X,Y, Z,... are invoked with wy as argument, resulting in
the outcomes X (wp), Y (wo), Z(wo), - . .. With this interpretation it makes a lot of sense to talk about
functions on ({2, P) as random items since, when we interpret w € 2 as “randomness”,

r = X(w) simply means that =z is a function of randomness.

Only . knows what wy will be picked. But if we know, say, the distribution Py of a random variable
X, then we can at least quantify the likelihood that .# chose an w such that 17.8 < X (w) < 21.3 It
will be Py ([17.8,21.3]) = P{17.8 < X < 21.3}. O

Often it only is the distribution of a random item with values in a set 2’ that matters and there may
be many different choices of probability space plus random item which result in that same proba-
bility measure on §'. We illustrate that with two more settings for the modeling of the distribution
of n tosses of a fair coin on the space {H,T'}". See Example 3.8. We fix n = 3 since this example
illustrates all essential points.

Example 3.9. (a) Let Q; := {0, 1}3 with the probability measure P{(a,b,c)} = 1/|Q1| = 1/8.

Let Y} : Q; — {H,T}? the random item that changes each H into a 1 and each T into a 0. For
example, Y1(1,0,1) = (H,T,H) and Y1(0,0,1) = (T, T, H).

Then Py, is the same probability measure as Pg of Example 3.8, since both assign the number 1/8
to each element of {H, T}3.

(b) Let Q5 := {H,T}3 with the probability measure P{(a,b,c)} = 1/|Q] = 1/8. (Same as in (a),
except that now a, b, c represent either of H or T rather than 0 or 1.)

Let Y2 : Qo — {H, T} be the identity (also, identity function) on €. That is the “do nothing”
function which assigns each element of a set to itself, i.e., Y2(w) = w for all w € Q.

Clearly, Py, also assigns probability Py, ({w}) = 1/8 to each element of { H,T'}3.
(c) Let Q3 := {H,T}> x {1,2,3,4} with the probability measure P{(a,b,c,d)} = 1/|Q3] = 1/32.
(Same as in (a), except that now a, b, c represent either of H or 7" rather than 0 or 1.)

Let Y3 : Q3 — {H,T}? be the function defined as Y3(a, b, ¢, d) := (a, b, c). We compute the distribu-
tion Py, for the outcomes (a, b, ¢) of the probability space ({ H, T}3, Py;).

(a,b,c) € Y3 = Py,{(a,b,c,d)} = P{Ys= (a,b,c,d)}
= P{(a,b,c,1),(a,b,c,2),(a,b,¢c,3),(a,b,c,4)} = 4(1/32) = 1/8.
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We have have obtained in this example and Example 3.9 the probability P’ which models three
tosses of a fair coin, i.e., P’{(a,b,c)} = 1/8 for each (a,b,c) € {H,T}3, as the distribution of four
different random items X, Y7, Y5, Y3 which were defined on four different probability spaces. Thus,
you have multiple choices of probability spaces and random itens to model a distribution. you will
hopefully agree that Y; and Y3 are much better choices than X and Y3. [

3.5 Conditional Probability and Independent Events

A This section should be moved directly after Section 3.1 (Probability Spaces).
@@Author

Definition 3.9 (Conditional probability).

Given are a probability space (2, #, P) and two events A, B € #. We call

{P(AQB), if P(B) >0,

(3.30) P(A|B) = { P(B)

undefined, if P(B)=0,

(read: “probability of A given B” or “probability of A conditioned on B”) the conditional
probability of the event A, given that the event B has occurred. [

Theorem 3.2.
Given are a probability space (Q, #, P) and an event B € & such that P(B) > 0. Then

(3.31) P(-|B):3—10,1]; Aw P(A|B)

is another probability measure on (2, F).

In other words, P(- | B) satisfies (3.1) — (3.3) of Definition 3.2 (Probability measures and probability spaces)
on p.35.

PROQF: First, it follows from ) C AN B C B that P(AN B)/P(B) > 0and P(AN B)/P(B) < 1.
This shows that P(- | B) indeed takes values between 0 and 1.

PROOF of (3.1): Since P(0N B) =0, P(0 | B) = 0/P(B) = 0.

PROOF of (3.2): Since QN B =B, P(Q|B) = P(QN B)/P(B) = P(B)/P(B) = 1.

PROOF of (3.3): Assume that (A,),en € § is a sequence of disjoint events. Then, for i # j,

(AZ'QB)Q(A]'QB) gAiﬂAj = 0.
Thus, the sequence (A,, N B),en also is mutually disjoint. Further, by (2.23) on p.27,

W B4, = BnlH A,
neN neN
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It follows from this and the o—additivity of P that
_P(BNWwen4n) _ P (Waen (BN 4n))
i (Lﬂ An B) =T P®  ~ PB

neN

P(B) neN neN
We have shown that P(- | B) is c—additive and this proves (3.3). W
Proposition 3.7. If (2, §, P) is a probability space and A, B, C' € §, then
(3.32) P(AnBNC) = P(A|BNC)-P(B|C)-P(C).

PROOF:

P(ANnBNC) = P(A|BnC)-P(BNC). = P(A|BnC)-P(B|C)-P(C). 1

This generalizes to arbitrarily many sets as follows.

Proposition 3.8 (Iterative conditioning formula).

If (2,3, P) is a probability space, n € Nand Ay, ..., A, € §, then

P(AlﬂAgm“-ﬂAn) :P(AllAgﬂﬂAn)P(AglAgﬂAn)

(3.33) o P(Ap_o | A1 N AR) P(A,—1 | A1) P(AR).

PROOF:
It is easier to work with the reverse sequence A, N A,—1 N---N Ay instead of A; N A2 N --- N A,
Repeated use of P(UNV)=P(U |V)P(V)withU = Ajand V = A;_1N---N A; yields
P(AnﬂAn_l n--- ﬂAl)
:P(An ‘ An_lﬂ---ﬁAl)P(An_lﬂ~--ﬂA1)
:P(An ‘ An_lﬂ---ﬂAl)P(An_l ’An_Q"'mAl)P(An_Q"'ﬂAl)

:P(An|An,1ﬁ---ﬂA1)P(An,1 |An,2ﬁAl)P(A3|A2ﬂA1)P(A2|A1)P(A1).

Definition 3.10 (Two independent events).

Given are a probability space (€2, #, P) and two events A, B € &#. We say that A and B are
independent if

(3.34) P(ANB) = P(A)-P(B). O

Independence of three events is not defined as you may have guessed from that last definition.
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Definition 3.11 (Three independent events). Given are a probability space (£2,#, P) and three
events A, B,C' € &. We say that A, B and C are independent if

P(ANBNC) = P(A)- P(B)- P(C),
P(ANB) = P(4)- P(B),
439 P(ANC) = P(4) - P(C),
P(BNC) = P(B) - P(C). O

We can state (3.35) as follows. It must be true for any subsequence of events that the probability of
the intersection equals the product of the probabilities of the individual events.

Remark 3.12. It is possible to construct a probability measure P and events A, B, C' such that
P(ANnBNC) = P(A)-P(B)-P(C) and P(ANB) # P(A)-P(B) O
Definition 3.11 shows us how to generalize independence to any number of events.

Definition 3.12 (Finitely many independent events).

Given are a probability space (2, #, P), n € N and events A;, As, ..., A, € &F. We say that
A1, Ay, ... A, are independent if, for ANY subselection of indices

I<ji <j2 < - < jr <n,

it is true that

(3.36) P(Ajl n Ajl n Ajk) = P(Aj1) : P(Aj2) 'P(Ajk)' O

Finally, we define independence for infinitely many events.

Definition 3.13 (Independent events — the general case).

Given are a probability space (2, #, P) and a sequence of events Ay, Ay, --- € & We say
that this sequence is independent if, for ANY FINITE subselection of distinct indices
1,42, -5 Jr € N, it is true that

(3.37) P(Aj NA; NAj) = P(Aj) - P(A,) - P(4;,). O

Remark 3.13. Note that the number £ in Definition 3.12 and Definition 3.13 is not fixed. O

We did not really define independence for any collection of infinitely many events, only for a se-
quence, i.e., a countable collection of events. The truly general case deals with families (see Defini-
tion 2.20 on p.24) of events

Definition 3.14 (Independence of uncountably many events). || %
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Given are a probability space (Q2,.#, P) and a family (4;), ¢ of events A; € F. Here [
denotes an arbitrary set of indices. We say that this family is independent if, for ANY
FINITE subselection of distinct indices i1, 79, ..., € I, it is true that

(3.38) P(A;; NA; NA;) = P(Ay) - P(Ay,) - P(4;,). O

Next, we examine connections between conditional probabilities and independence.
Theorem 3.3.
Given are a probability space (0, F, P) and two events A, B € & such that P(B) > 0. Then

(3.39) A and B are independent < P(A|B) = P(A).

PROOF of “=":
Since A and B are independent and P(B) > 0,
P(ANB) P(A)- P(B)

PAIB) ==pg = —pm ~ P

PROOF of “<=":
Since P(A | B) = P(A) and P(B) > 0,

P(4)- P(B) = P(A|B)- P(B) = LANDE)

W-P(B) = P(ANB). A

Corollary 3.1.

If (2, %, P) is a probability space and A, B € & such that P(A) > 0 and P(B) > 0. Then

(3.40) A and B are independent << P(A|B) = P(A) < P(B|A) = P(B).

PROQOF: Obious W

The next theorem is marked optional, but it is just as easy to remember as the corollary that follows
it.

@@Author | formulas, ... is not affected.

Theorem 3.4 and Corollary 3.2 below belong directly after Definition 3.14 (Independence of
A uncountably many events), but they were moved here so the numbering of existing theorem,

Theorem 3.4. || %

Given are a probability space (Q, F, P) and a family (A;), ¢ Of independent events A; € F. Here
I denotes an arbitrary set of indices. Then we have the following:

If some or all of the A; are replaced by their complement AE, then the resulting family of events also
is independent.
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In other words, for each i € I, let B; be either A; or AC. Then independence of (4;)
implies that of (B;),_

i€l

I

PROQF: Utilizes advanced probabilistic methods that are outside the scope of this course W
Note that the following corollary is NOT marked as optional!

Corollary 3.2.

Given are a (2, §, P) is a probability space, n € N and independent events A, ..., A, € §.
If some or all of the A; are replaced by their complement AY, then the resulting family of events also
is independent.

In other words, for eachi = 1,2,...,n, let B; be either A; or AE. Then independence of Ay, ..., A,
implies that of By, . .., By,

PROOF: *

(A): The case n = 2 shows the essence of the proof: For convenience, let B := Ag. First, we show
that A; and B are independent.

A = (AN A)[H(A1NB) = P(A) = P(A1NA4y) + P(A1NB)
= P(41) - P(A2) + P(A1NB)

Thus, A; and Ag are independent. Since intersection is commutative (E N E' = E' N E), it follows
that Ag and A, also are independent.

Knowing that A¢ and A, are independent, we can apply the proof above to those two independent
events and obtain that A[f and Ag are independent. This finishes the proof for n = 2

(B): For general n, let Ay, ..., A, be independent. For convenience, let B := A; N --- N A,_.

Since P(BNA, = PANn---NA4, = P(A)---P(A,) = P(B)-P(A,), Band A, are
independent. We have shown in (A) that B and Al are independent, too.

We argue as in (A) and conclude from the commutativity of “N” that replacing any A; with its com-
plement, i.e., fixing an index j; and defining B; := A; for j # ji and B;, := AL that Biq,..., B, are

Jo’
independent In other words, replacing just one event with it complement maintains independence.

We apply this to the events C; := B; for j # j» and C}, := BEQ, where we assume that jo # j1. The
result is that Cy, ..., (), also are independent

At this point we know that replacing £ = 1 or £ = 2 events with their complements maintains
independence. We apply this to the events D; := C; for j # js and Dj, := BE3, where we assume
that jo ¢ {j1,j2. The resultis that Dy, ..., D, also are independent.

At this point we know that replacing k& < 3 events with their complements maintains independence.
We repeat the above with k = 4, then with k = 5, ....., then with £ = n. This completes the proof. W
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4 Combinatorial Analysis

In many important cases we find ourselves in the situation of Example 3.2(a) on p.37, where we
have a finite probability space (2, P), in which each outcome w € 2 as equal probability

1
and thus, for each event A C (),
A

Hence, all we need to determine P(A), is the knowledge of how to count the elements of 2 and of
A. Combinatorial analysis, also called combinatorics, , is a branch of mathematics that provides us
with tools to accomplish that task.

4.1 The Multiplication Rule

The first result is known under names such as the basic principle of counting ([3] Ross, Sheldon M.:
A First Course in Probability, 3rd edition) and the mn rule (WMS text).

Theorem 4.1 (Multiplication rule).

(A) Assume that two actions A and B are performed such that
o the first one has m outcomes, {ai,az,...,am},
e the second one has n outcomes {b1,ba, ..., by} for each outcome of the first one.

o Then the number of combined outcomes (a;,b;) is mn.

(B) Generalization. Assume that k actions Ay, ..., Ay are performed such that
action Ay has nq outcomes, {agl), agl), e a;?},
action Ao has no outcomes, {agz), aég), e a%)} for each outcome of Ay,
action As has ns outcomes, {ag?’), aég), e agf?} for each combined outcome (1, x2), where

x1 1s one of the Aj—outcomes and x5 is one of the As—outcomes,

action Ay, has ny, outcomes, {agk), aék), el ag?} for each combined outcome (z1, x2, Tj—1),
where each x; is one of the Aj—outcomes, i.e., z; is one of agj . aﬁf;.).

e Then there are ny - ngy - - - ny, combined outcomes (x1,xa, ..., Tk).
Here, each x; is one of the n; outcomes agj), s a,(%.) of Aj.

PROOF: We identify the actions with their outcomes, i.e., we define

Ay = {d?,. a9, for j=1,2,.. k.

n

Now, the multiplication rule merely states that | A; X Ay x --- x A, | = |A1|-|Ag| -+ |An|, and this

is true according to (2.28) on p.29. W
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Example 4.1 (Ross-prob-thy-3ed Example 2c). How many 7-digit license plates can be created if the
first three are letters (CAPS) and the Ist four are digits?

Answer: 263 - 10* = 175,760,000 O

Example 4.2 (Ross-prob-thy-3ed Example 2e). How many different 7-digit license plates can be
created if the first three are letters (CAPS) and the last four are digits and none of those symbols can
be repeated?

Answer: 26 -25-24-10-9-8-7 = 78,624,000 O

Example 4.3. How many 7-digit license plates can be created if the first three are letters (CAPS) and
the Ist four are digits and none of the letters can be repeated?

Answer: 26 - 25 - 24 -10* = 26 - 600 - 10* = 15,600 - 10* = 15,600,000. O

Example 4.4 (Ross-prob-thy-3ed Example 2d). If |2| = n, how many different functions ¢ : Q —
{0, 1}, i.e., how many functions on () that can only take the values 0 and 1, do exist?

Answer: If Q@ = {w1,ws,...,w,}, then

we have 2 choices for the 1)(w;) selection.

For each of those there are 2 choices for the 1) (w>) selection.

For each of those ) (w1), 1(w2) selections there are 2 choices for the ) (w3) selection.
@ === e e e e - - - - - - — - - -

e For each of those ¢)(w1), . .., ¥ (wn—1) selections there are 2 choices for the ¥ (w,,) selection.
Sowehave2-2-.-2 = 2" selections. [J

Example 4.5. If ‘Q‘ = n, how many subsets of €2, including () and 2, do exist?
Answer: If Q@ = {w;,ws,...,w,} and A C Q, then

e we have 2 choices: either w; € A orw; ¢ A.
e For each of those, either wy € A or wy ¢ A.

e For each of those n — 1 choicesw; € Aorw; ¢ A(j=1,2,...,n-1), either w, € Aorw, ¢ A.
Sowehave2-2---2 = 2" choices. O

4.2 Permutations

Definition 4.1 (WMS Ch.02.6, Definition 2.7 - Permutation).

An ordered arrangement of r distinct objects is called a permutation of size r. The number
of ways of ordering n distinct objects taken r at a time will be designated by the symbol P".
O
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Theorem 4.2 (WMS Ch.02.6, Theorem 2.2).

(4.1) Pl =nn-1)(n—2)-(n—r+1) =

Here, n! (“n factorial”) is defined as follows.

(4.2)

T

(n—r)l"

ol = nn—1)---2-1, ifneN,
' 1, ifn=0.

PROOF: We can consider each permutation as the result of the following actions Ay, ..., A,.

A is the selection of the first item. Since all n items are available for selection, A; has n
outcomes.

As is the selection of the second item. Since one item was already selected and duplicates
are not allowed, only n — 1 items are available for selection. Thus, A3 has n — 1 outcomes.
A, is the selection of item r. Since r — 1 items have been previously selected and duplicates
are not allowed, only n — (r — 1) = n — r + 1 items are available for selection. Thus, A, has
n — r + 1 outcomes.

It follows from the multiplication rule that there are n(n — 1) - - - (n — r + 1) different ways to select
r items without repeating a selection, i.e., of obtaining a permutation of size r of those n items. W

Example 4.6. Jenny has collected 20 post cards, all of them different: 4 from France, 2 from Peru,
8 from Japan, 6 from Kenia. She wants to place them into 4 numbered boxes according to their
country of origin.

(A) Jenny consider two arrangements different if, say, Esteban’s card takes a different spot in the
Peru box, but she does not care whether the Peru cards end up in box #1 or #2 or #3 or #4. How
many different arrangements are possible?

Answer:

4 choices for France card #1,

3 choices for France card #2 (into the same box),
2 choices for France card #3 (into the same box),
1 choice for France card #4 (into the same box).

Thus, there are 4! choices for the France cards.

For each one of those 4! choices we obtain in a similar manner that there are 2! choices for
Peru.

For each one of those 4! - 2! choices we obtain in a similar manner that there are 8! choices
for Japan.

For each one of those 4! - 2! - 8! choices we obtain in a similar manner that there are 6! choices
for Kenia.

Thus, 4! - 2! - 8! - 6! different arrangements are possible.
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(B) As before, Jenny considers two arrangements different if, say, Esteban’s card takes a different
spot in the Peru box. But this time it also matters in which box a country’s cards are placed.. How
many different arrangements are possible now?

Answer: There are 4! permutations of the 4 boxes. This amounts to 4! rearrangements of each choice
made in (A). Thus, 4! - 2! - 8! - 6! - 4! arrangements are possible. [J

4.3 Combinations, Binomial and Multinomial Coefficients

A simple application of the multiplication rule showed us that for a set € of finite size, its powerset
2% has size |Q| = 2I%l. (See example 4.5 on p.56.)

A related question would be how many elements of 2 have a given size k, i.e., how many subsets
of Q) have size k?

Examining how many permutations of size £ can be obtained from the elements wy, wo, . . . , w;, might
not be a bad idea, since permutations of distinct items remain free of duplicates, just as we require
for (sub—)sets. But rearrangements of the order in which the elements wy,,wy,,...,wy, of such a
subset lead to different permutations although the subset remains the same.

Thus, we must divide P}, the number of permutations of size k of the elements of (2, by the number
of rearrangements that one can obtain from a given set of its members. Since that number is Pf, we
have obtained the following result.

Theorem 4.3.
Let 0 < k < n. A set of size n has

n!
El(n — k)"
of size k.

PROOF: We saw in the discussion before the theorem that the number we are looking for is P}*/ PF.
But

PP nn—1)---(n+k—1) nn—1)-(n—(k—1)) (n—k) n!

Pk k! k! (n—k)!  kl(n—k)!"
This proves the theorem. W

Selections of size k from a collection of n distinct objects disregarding the order in which those &
items were selected (as is the case when selecting a subset of size k from a set of size n > k,) are so
important when counting is involved that they deserve a name of their own. For the following see
also WMS Ch.02.6, Definition 2.8.

Definition 4.2 (Number of combinations).

We call the number of selections of size k from a collection of n distinct items when the
order in which those k items were selected is ignored, the number of combinations of n
objects taken k at a time. We write (') for this number. [
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Remark 4.1.
(@) Some texts also use the symbol C} instead of (7). This is considered outdated terminology.
(b) We emphasize that both are true: (})
= number of selections of size k from n distinct items when disregarding order
= number of subsets of size k of a set of size n. [

Most of the remainder of this subsection will be about multiple selections from a collection of items.

Theorem 4.4.
Given are n items of which ny are alike, ng are alike, . .., n, are alike (n; + - - - + n, = n).
Then the number of distinguishable arrangements of those n items is
n . n!
ni,ng,...ny)  nilng! - nl’
PROOF:
o We tag the group 1 items as xgl), :cgl), ceey :nfmll),
e the group 2 items as x?), xg), . ,x%),
. _______________________________
e the group ritems as :I:Y),a:g), .. ,:1:52;),

to make all n items artificially distinguishable. We have learned that there are n! permutations.

When we only keep the superscripts that indicate the group but we remove the subscripts, since in
truth items belonging the same group cannot be distinguished, there will be a lot less arrangements
that are distinct.

To fix the ideas, assume that group 2 has 4 members and we have an arrangement
Arr#1: x x ajgf) * % K K * xg)ggf) . *x?) ..

and that we have another arrangement

Arr#2: x x % :(:%2) * K Kk K K xf) 1:52) * Kk *ng) * *

where all items that do not belong to group 2 (the ones marked “x”) occupy the same column in
both arrangements. To put it differently, we obtained Arr #2 from Arr #1 by permuting the items in
group 2 and leaving all other items in place.

In total there are ny! = 4! = 24 such permutations. Let us consider one of them as special. For
example, this one,

Arr#5: * x % x?) * Kk Kk K * x;2) xi(f) * * % *xf) * *

where the group 2 items are arranged, left to right, in increasing order of their subscripts.

We go through all n! permutations and discard all those where the group 2 items are ordered dif-

ferently from xgz) , a:g), x:(gz), mf).

n! .
Thenonly — arrangements remain,
ng:
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but for those the artificial distinction which was introduced by the subscipts is gone in group 2.

We repeat the above procedure to those survivors, but for group 1. We discard all those where the
group 1 items are not ordered :cgl), xgl), cee ac,(lll)

|
Then only i

arrangements remain,
ng: n1!

but for those the artificial distinction which was introduced by the subscipts is gone in groups 1 and
2.

We keep going with the remainin groups.

n!

Then only arrangements remain,

nl! 77,2! ce nT!

but for those the artificial distinction which was introduced by the subscipts is gone in all r groups.

It follows that there are n! /(ni!ny!- - - n,!) different arrangements if we cannot distinguish the items
belonging to the same group. W

Example 4.7. How many distinct permutations are there of the word SHANANANANA
Answer: We designate Groups 1-4 according to the letters S, H, A, N.
Then ny = ny = 1,n3 = 5,n4 = 4. Further,n =1+ 1+ 5 + 4 = 11. Thus, there are

11! 11-10-9-8-7-6  11-10-9-8-7-6
- = = 11-10-7-3 = 770-3 = 2,310
5141 3! 4.3.2.3.2 (3-3)(4-2)-2 ’

distinguishable arrangements of the word SHANANANANA. O

Definition 4.3 (Multinomial coefficients).

The numbers

n n!
(4.3) ( ) — ﬁ .
nyng - Ny nyngl-- Nyt

that appear in Theorem 4.4 are called multinomial coefficients. If r = 2, then there is some
integer 0 < k£ < n such that n; = k and ny = n — k. We write

(4.4) (Z) = k;(nnik)' dor <k,nn_ k)

and speak of binomial coefficients. Convention: We define (}) := 0 for k > n. O

The next theorem explains the appropriateness of the previous definition.
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Theorem 4.5.

Letr,n € Nsuchr < nand x1,x2,...2, € R. Then

n n
ny,ng,...MNyp
ni,...,nr >0

ni+-+nr=n

In particular, if n = 2, we obtain the binomial theorem:

n
(z1+ xQ)n = Z (:) :L‘jl mg_j.

PROOF:

First, we show that the case n = 2 follows from 4.5.

Sinceni,ng > 0and ni+ne =n = 0 < n; < nandny = n—ny, writing j for n; yields the binomial
theorem formula.

To prove the first formula, We start by "multiplying out" the product
and obtain in the resulting expansion terms of the form

ai - az---a, such thateach factor a; is either z; or x5 ... or ;.

In the following we consider the sizes n{,ns, ..., n, as fixed

Note that it is not possible to obtain two selections
a = (ai,a2,...,a,) and b = (b1,b2,...,b,) suchthat aj=b; forallj.

The reason: We multiply out the n factors (z1+ - - - z,) in such a way that for no two of the resulting
products we picked the same variable z; in each one of those n factors (wl 4 xr)

But then the following is true if we consider such a selection as a word a;as . . . a, where each lettter
is one of x; or x5 ... or x,. Any two of those words are distinguishable even though some or all of
the letters z; can occur multiple times.

For example, if n = 7,n1 = 2,ny = 3,n3 = 2 and we write X for x;, Y for x5, Z for 3, we
have this situation.

The word YXZZYY X is formed only once. But of course, we obtain other words with the
same sizes n;, e.g. the rearrangement ZY XZY XY which is distinguishable from the first
word.

Thus, in the general case, there are as many terms in the expansion of (z1+z2+---+2,)" containing
each symbol z; exactly n; times as there are distinguishable “words” that contain each z; exactly
n; times. According to Theorem 4.4, there are

< n > n!
N1,N, ... Ny ni!ng! -+ n,!
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such terms. Since this is the number of times the product z{'z5? - - - ]~ occurs in the expansion of
(z1 + a2 + -+ +2,)", it follows that
n
Ti+xo+--+a) = e A
( 1 2 r) Z (TLl,TLQ,---nr) 1 2 I
n1,...,Mr 20
ni+-+n,=n
Theorem 4.6.
Given are n distinct items and r distinct bins of fixed sizes ny, ng, . . ., n, such that ni+- - -+n, = n.

Then the number of distinguishable placements of the n items into those r bins, when disregarding
the order in which the items were placed into any one of those bins, is

( n ) n!
ni, N, . ..My ni!'ng! - - n,!

The proof is given after the following example which will help clarify how to interpret Theorem 4.6.

Example 4.8. Given are a list of n = 7 items and r = 3 bins as follows.

The 7 items are a, b, ¢, d, e, f, g.

Bin 1 has size 2, bin 2 has size 3, bin 3 has size 2 (thusn =2+3+3 =17).

Arr #1: bin 1 has b, ¢, bin 2 has e, a, g, bin 3 has f,d

Arr #2: bin 1 has ¢, b, bin 2 has a, g, ¢, bin 3 has d, f

Arr #3: bin 1 has b,d, bin 2 has a, g,e, bin 3 has ¢, f

Then Arr #1 and Arr #2 are considered the same since each bin contains the same items.
Only their order is different.

e On the other hand, both Arr #1 and Arr #2 both are considered different from Arr #3 since,
e.g., bin 1 contains item d for #3, but bin 1 does not contain item d for the other two arrange-
ments. [

PROOF of Theorem 4.6:
The proof is very similar to that of Theorem 4.4, so we keep the discussion brief.

e For each one of the n! permutations of all n items, there are n;! — 1 others which possess
the same n; elements in bin 1, only differently ordered, but have exactly the same item at
each other of the remaining n — n; spots. Removing those duplicates leaves us with n!/n;!
arrangements.

e Of those n!/n;! arrangements, there are ny! — 1 others which possess the same ns elements in
bin 2, only differently ordered, but have exactly the same item at each other of the remaining
n — ny — ng spots. Removing those duplicates leaves us with n!/(n;!ny!) arrangements.

e Having removed the duplicates from bins 1 through k — 1, we are left with m,”i;%_l arrange-
ments. For each one of those there are n;! — 1 others which possess the same n; elements in

bin k, only differently ordered. Removing those duplicates leaves us with ”!.nk arrange-
ments.

e For any two surviving arrangements the following is true: There is at least one bin that does
not contain the same elements (possibly rearranged) for both those arrangements.

nyl-
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to make all n items artificially distinguishable. We have learned that there are n! permutations.

When we only keep the superscripts that indicate the group but we remove the subscripts, since in
truth items belonging the same group cannot be distinguished, there will be a lot less arrangements
that are distinct.

To fix the ideas, assume that group 2 has 4 members and we have an arrangement

(2) (2) .(2) (2)

Arr#1: % % % Xy Kk ok ok ok ok Ty Ty Kk ok ok ATy K K
and that we have another arrangement
2 2) (2 2
Arr #2: ***xg)*****zg)xg)****:né)**

where all items that do not belong to group 2 (the ones marked “x”) occupy the same column in
both arrangements. To put it differently, we obtained Arr #2 from Arr #1 by permuting the items in
group 2 and leaving all other items in place.

In total there are ny! = 4! = 24 such permutations. Let us consider one of them as special. For
example, this one,

(2) 2 .2 (2)

Arr#5: % x x 2y Kk Kk Kk Kk Kk Ty Ty Kk ok ok kT Kk ok

where the group 2 items are arranged, left to right, in increasing order of their subscripts.

We go through all n! permutations and discard all those where the group 2 items are ordered dif-

ferently from xgz) , a:g), x:(f), xf).

n! .
Then only — arrangements remain
b)
n

9!
but for those the artificial distinction which was introduced by the subscipts is gone in group 2.
We repeat the above procedure to those survivors, but for group 1. We discard all those where the

group 1 items are not ordered x(ll), acgl), ce x%ll)

n!

Then only arrangements remain,

no!ng!

but for those the artificial distinction coming from the subscipts is gone in groups 1 and 2.

We keep going with the remaining groups....

n!

In the end only arrangements remain,

n1!n2! c -nT!

but for those the artificial distinction which was introduced by the subscipts is gone in all » groups.

It follows that there are n! /(ni!ny!- - - n,!) different arrangements if we cannot distinguish the items
belonging to the same group. W
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Proposition 4.1.

—1 . .
(A) There are <n 1) distinct integer—valued vectors ¥ = (xl, To,. .. ,:I}T) such that
o —

1+ x4+ -+ 2, =10 and x; >0,i=1,...,r.

n+r—1

r —

(B) There are ( > distinct integer—valued vectors i = (yl, Yo, . .. ,yr) such that

i+t ty=n  and y;>0,i=1,...,r.

PROOF of (A):
Each such equation corresponds to an arrangement of n symbols @ which denote the numbers
1,2,...,n in sequence, and r — 1 bars | which are places in-between those symbols, in such a way,

that no two bars are adjacent. For example, the arrangement
o |[ccece |00

expresses the equation 2 + 4 + 3 = 9. In the general case, one or zero bars can be placed in the n — 1
gaps between the n bullets:

(A) eROeROeNOeROeRNOeRN OG- ReR e

Thus, there are as many different integer equations as there are ways to select » — 1 of those n — 1
gaps for the r — 1 bars. This number is ("_}).

r—1
FIRST PROOF of (B):

,
An equation ) y; = n;y; > 0 of part (B) becomes an equation
) ;

J
setting z; := y; + 1.

xj = n+r;x; > 0 of part (A), by
=1

T T
In reverse, equation ) x; = n+r;z; > 0 of part (A) becomes an equation ) y; = n;y; > 0 of part
j=1 j=1
(B), by setting y; := z; — 1.

,
We have shown in (A) that there are ("/"|') different equations of the form 3" a; = n +r;z; > 0.
i=1

Thus, there also that many of the form ) y; = n;y; > 0. This proves (B).
=1

ALTERNATE PROOF of (B): We add two more placeholders ® for the separating bars. One to the
left of the leftmost bullet and another to the right of the rightmost bullet. The condition y; > 0
instead of z; > 0 implies that each one of those placeholders can be occupied by as few as zero bars
and as many as all r — 1 bars. To put it differently, any combination of bullets and bars is admissible.

We create a tagged list of n + r — 1 distinct placeholders for both bullets and bars and select » — 1
of them for the bars. Obviously, the order of the bars does not matter. Thus there are (”jﬁ;l) such
selections. W

Consider the issue of distributing n distinct items into r distinct bins where bin; contains 0 < n; <n
items and the n; are allowed to vary for different selections. (But of course, ny + - - - + n, = n.)
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Then each such selection corresponds to an integer vector 77 = (n1, ..., n,) which is a solution of the
'

equation ) n; =mn;n; > 0.
=1

If we demand in addition that each bin contains at least one item, then each such selection corre-
IS

sponds to an integer vector 77 = (n1,...,n,) which is a solution of the equation ) n; = n;n; > 0.
j=1

We obtain from Proposition 4.1 the following.

Proposition 4.2.

(A) There are <n

bin contains at least one item.

1) ways to select n indistinguishable items into r distinct bins such that each

r—1

(B) There are (n + ) ways to select n indistinguishable items into r distinct bins.

PROOF: This follows from from Proposition 4.1. W

Example 4.9. Mother Jones’ cookies and the stars & bars examples:

e How many ways are there to give 10 cookies to 4 kids if each one gets at least one cookie?
A:Thereare (', "') = (9-8-7)/(3-2-1) = 84 ways.
e How many ways are there to separate 6 stars by two bars into three parts, if one or more of

those parts may contain zero stars? A: There are (6;:311) =(8-7)/(2-1) =28 ways. O

Here is another example that employs binomial coefficients.

Example 4.10 (Ross-prob-thy-3ed Example 4c). Given are n antennas of which d are defective. They
will be arranged in a linear order and will relay signals. This chain will not function if two or more
defective items are placed next to each other.

How many ways are there to arrange the antennas so that we obtain a functioning arrangement?

Answer: We denote the n — m working antennas by the ® symbol, separate them by bullets e and
add one e each to the left of the leftmost and to the right of the rightmost.

e OeReReReR 6RO ---ReR e

Then the functioning relays are precisely those where one or zero defective antennas are placed at
each one of those e spots. Each such placement corresponds to a selection of size d of those n —d +1
bullets: The selected spots will get a defective antenna and nothing will happen to the others.

n—d-+1

Thus, there are ( d

> functioning arrangements. [J

We summarize the results of Theorem 4.4, Theorem 4.6, Proposition 4.1, and Proposition 4.2.

Remark 4.2. The multinomial coefficients

n n!
ning---nNg nllngl---nk!'
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of Definition 4.3 appear in the following settings:

Distinct selections of n items of which ny are alike, no are alike, ..., n; are alike.
Example: different rearrangements of the word “BANANA".

They are coefficients in the expansion of (z1 + 3 + -+ -2

Distinct selections of n items into k distinct bins of fixed sizes nq, . .., nj. That is the

WMS definition in their Theorem 2.3 of Ch.02.6.
Subdividing n indistinguishable items into k partitions, where the sizes n1, ..., ny of
those partitions are allowed to vary for different subdivisions. Example: number of
integer valued vectors (n1,...,ny) such thatn, > 0and ) n; =n. O

j

66 Version: 2023-12-07



Math 447 — MF Lecture Notes Student edition with proofs

5 More on Probability

This chapter corresponds to material found in WMS ch.2

5.1 Total Probability and Bayes Formula

Theorem 5.1 (Total Probability and Bayes Rule).

Assume that {B1, B, . .. } is a partition of 2 and that A C Q. such that P(Bj) > 0 for all j. Then
(5.1) P(A) = Y P(A| B;) P(B;).
j=1

(5.2) P(B;| A) =

P(A | B;)P(B))

P(A| B;) P(By) |
=i

7

PROOF: See WMS ch.2. R

5.2 Random Sampling and Urn Models With and Without Replacement

The following definition is PRELIMINARY and will be amended in Definition 5.2 (Sampling as a
Random item) below (see p.68).

Definition 5.1.

(a)

(b)

We call the action of picking n items z1, 2, ..., z, from a collection of N items a
sampling action of size n. Aternatively, we also use the phrases sampling process
and sampling procedure. Here,n € Nand N € Nor N = oo.

We call the specific outcome of such a sampling action (the list 21, x2, ..., z,) a sam-
ple of size n. [J

Example 5.1. Sampling actions are each of the following.

(a)
(b)
(c)

(d)

(e)

(f)

Drawing blindfolded a ball from an urn that contains N balls n = 5 times in a row recording
each time the outcome and then replacing the ball (putting it back).

Drawing blindfolded n = 5 balls from an urn that contains NV balls in one fell swoop, i.e.,
not replacing any of the balls

Rolling a die twice in a row and recording the outcome n = 5 times in a row recording each
time the outcome and then replacing the ball (putting it back).

Selecting in a random fashion n = 2,000 persons from all persons eligible to vote without
replacement, i.e., we want a sample of n distinct voters. Note that NV is huge when compared
to n.

Same as (d), but we only record their voting preference, their annual income and their age
and discard all other data.

Same as (f), but we only record their annual income.
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(g) The random numbers generator of a computer creates a sample of n numbers such that they
are uniformly distributed on the interval [0, 1]. (Computers can do that!) See Example 3.2(b)
on p.37. Since there are infinitely many such numbers and the computer can generate any
one of them, 2! N = oc.

(h) A factory mass—produces an item, e.g., screws, at a huge rate per hour. Quality control
randomly picks n = 50 every hour and checks for defective items. Since the number N of
screws from which the sample is obtained is so huge, one can, for all practical purposes, act
as if N = oco. (This will considerably simplify the mathematics involved in computing, e.g.,
the probability that such a sample contains 5 or more defective items) if the rate of defectives
is supposed to be 3.5%.

(i) We write down the numbers 1,2,;10. This creates a very boring sample as far as a course

called “Probability Theory” is concerned because no randomness is involved. [

Remark 5.1.

(@) We only are interested in sampling actions that involve randomness. In other words, if there
is a set U such that z; € U for all j, we have, for fixed n, a random item X (Q,P)— U™
Since deterministic actions also are (constant) random items, deterministic sampling actions
are also covered.

(b) Since the “population” from which each item is sampled is the set U from (a), it is possible
to choose Q2 = U as the carrier set of the probability space (€2, P). In other words, we could
narrow things down to X : (UN, P) — U". Matter of fact, you will be as specific as you can
when trying to find a formula or even a specific number for a given problem.

(c) But there are advantages to refer to an unspecified probability space (2, P) when dealing
with the general theory. A good example are the theorems and definitions about expectation
and variance in MF Chapter 6 (Discrete Random Variables and Random Items) where going
into specific settings would hinder rather than help the understanding. O

Here is the promised amended version of Definition 5.1.

Definition 5.2 (Sampling as a Random item). Let (£2, P) be a probability space. Let U # 0 be a
collection of N items (N € N or N = o0), which we can think of as the “population of interest”. Let
n€N,n <N (son < o0).

(@) Let X : (9, P) — U" be a random item with codomain U”. If we interpret X as
the action of picking n items

T = 21,3...,% = X(w) = X1(w), Xo(w),...,Xn(w)

from U, then we call X a sampling action of size n. Aternatively, we also use the
phrases sampling process and sampling procedure.

(b) We call the specific outcome (the list ¥ = (21, x2, ..., xy)) a sample of size n.

(¢) In yet another instance of notational abuse, some people will refer to both the sam-
pling action and an outcome of this action as a sample if the context makes it clear
what is being considered. [J

?lin theory, since there is no such thing as “infinitely many”) in our physical reality
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Remark 5.2.

(a)

(b)

(4]

(d

You may wonder about the difference between a U"-valued random item and a sample of n
items which are picked from a population U. The answer: Mathematically speaking, there
is no difference whatsoever. It is the interpretation that matters!

Going back to the practice of WMS to call any probability space a sample space, the author
likes to think not of (€2, P), but only of (U™, P ) as a sample space, since the latter hosts the
potential outcomes of the sampling action X. (And yes, the probability measure Py on that
sample space is the distribution of X).

Do those sample picks happen with or without replacement? In other words, can the same
x € U be picked more than once or are all sample picks distinct? The answer: The definition
does not say. This must always be explicitly stated or known from the context.

Consider items (d) and (h) of Example 5.1. If N > n, then the computational differences
between selecting the sample with or without replacement are so small that we can assume
sampling with replacement even if the sampled items are not returned to the population
after each pick. This often simplifies the computational effort involved. [

Remark 5.3. We switch focus to the role of proper randomization when picking a sample.

(a)

(b)

(c)

(d

Picking a small size sample that allows us to make inferences to the population from which
it was drawn, can require a lot of thought. The budget available for collecting that sample is
often limited and will limit the methods available. Of course, a smaller sample will cost less
than a bigger one if the procedure to collect the data is the same in both cases.

So let us assume that n is fixed. What will make the sample representative of the popula-
tion, i.e., what will be the best guarantee that the composition of the sample mirrors that
of the population? It certainly would not help if the sample has, e.g., 90% students if the
population of interest only has 20%. So, we can fix that by establishing quota and restrict
the proportion of students to 20%. Of course, there is also the ethnic composition of the
population that we want mirrored in the sample. And there is income distribution, gender
and 5, 000 or more atrributes for which we want to maintain close to identical proportions
reasonably well.

Clearly, a practical limit to the number of ways a (hopefully small) can be partitioned into
“strata” is reached quickly, so we must look for an alternative way to obtain a sample that is
not biased in favor of value a, say “is male” of attribute B (here: gender), when compared
to the proportion in the population. And we need this for all important a« and B.

The solution is to make the sample selection as random as possible. If we pick the first item
at random, i.e., with the same chance %, then pick #2 at random from the remaining NV — 1,
then pick #3 at random from the remaining N — 2, .... and finally pick #n at random from
the remaining N — n + 1 items, then this degree of randomness should prevent any kind of
gross distortion (bias) in the sample.

So then, that means that every item has equal chance of being selected, doesn’t it? The
answer is NO. Rather, any collection # = z1,...,z, should have the same chance of being
selected as any other collection ¥’ = z/,...,z],. By the way, we know that probability:

o If we do not worry about the order in which the n distinct items were selected, then there
are (]X ) different selections and that probability must be 1/ (]7\{ ).

e If order does matter and we deal with permutations, then the answer is 1/P..

Would the above requirement be the same as simply asking that each item in the population
has the same probability, 1/N, of being selected? Next comes a counterexample. [
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Example 5.2. We have a population of N = 600 students. 100 of them are freshmen, 100 of them
are sophomores, 100 of them are juniors, 100 of them are seniors, 100 of them are first year graduate
students, the others are second year graduate students.

A sample of n = 100 will be selected as follows. A fair die is rolled. If the outcome is 1, all freshmen
will be selected, On a 2, all sophomores will be selected, ..... On a 6, all second year graduate
students will be selected.
e In the resulting sample each student has the same probability 1/6 of being selected.
e But only 6 of the possible ((1588) possible outcomes have a non-zero chance (of 1/6 each) of
being selected: Those where each student belongs to the same group as all the others! [

There is a special name for the ideal kind of samples (with respect to randomness of the selection).
Note that the following definition is tied to sampling without replacement!

Definition 5.3 (Simple Random Sample).

(@) We call asampling action of size n (n € N) from a population of size N < oo a simple
random sampling action, in brief, an SRS action, if there are no duplicates allowed
(i.e., we sample without replacement) and each of the potential outcomes has equal
chance of being selected.

(b) We call the specific outcome of an SRS action a simple random sample of size n and
also, in brief, an SRS.

(¢) As in Definition 5.2 (Sampling as a Random item), as long as the context makes it
clear what is being considered, some people will call both the SRS action and an
outcome of this action as an SRS. [

Definition 5.4 (Urn models). SRS requires that a single item is selected with equal probability
|U| = 1/N. When abstracting from the specifics, this boils down to being blindfolded and selecting,
without replacement, n well shuffled balls from an urn containing N numbered balls. Some authors
also use the scenario of tickets in a box rather than balls in an urn.

(@) An urn model without replacement describes a mechanism by which a blindfolded
person selects a fixed number of balls from an urn in which the balls have been well
mixed. Note that the resulting sample will contain no duplicates.

(b) An urn model with replacement describes a mechanism by which ablindfolded per-
son selects a fixed number of balls from an urn as follows.

(1) The balls are well mixed.

(2) A ball is picked and the outcome is recorded.

(3) The ball is put back into the urn.

(4) The process is repeated until all » balls have been selected. [

More material may be added to this section at a later time.
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6 Discrete Random Variables and Random Items

This chapter corresponds to material found in WMS ch.3

6.1 Probability Mass Function and Expectation

We start with a trivial observation.

Proposition 6.1. A real-valued function of a random item is a random variable.

PROOF: Let X : (22, P) — ' be a random item on a probability space (2, P) and g : ' — R be
a real-valued function. Then w ~ g(X(w)) is a real-valued function of w, hence it is a random

variable. H

Definition 6.1 (Probability mass function).

For a discrete random item X on (£, P), define

(6.1) p(z) ==px(z) = Px{z} = P{X =z}.

write PMF for probability mass function. [J

We call px the probability mass function (WMS: probability function ) for X. We also

Theorem 6.1.

If px is the probability mass function of a discrete random item X, then

(6.2) 0 <px(z) <1; forallx

(6.3) >

z s.t. px (z)>0

px(xz) =1

Proof: See WMS ch.3. B

Next, we elaborate on the meaning of >
z s.t. px (z)>0

Definition 6.2 (Absolute Convergence). || %

We say that an infinite series ) | a;(a; € R) is absolutely convergent), if

o0
D lajl = laa] +lag] + -+ < o0, O
g=i
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Remark 6.1. We mentioned in a footnote of Remark 3.2(b) on p.36 that the following is true for an
absolutely convergent series ) _ a;:

o0
Any rearrangement ) a,; = apn, + apn, + - - converges to the same limit. [
j=1

We make the following blanket assumption.
Assumption 6.1 (All series are absolutely convergent).

Unless explicitly stated otherwise, all sequences are either known to be absolutely con-
vergent or assumed to be absolutely convergent. In particular, if px(x) is the probability
mass function of a discrete random item X which takes valuesinaset ), g: Q' — Risa

real-valued function and z,, is a sequence in €/, then the series ) g(z;)px (z;) is absolutely
convergent. []

Remark 6.2. Assume that px () is the probability mass function of a discrete random item X with
values in a set . Then there exists a countable set Q* C ' such that Px(Q*) = 1. Thus, the
probability mass function px (-) of X satisfies

px(z) =0 forallz e (2.
Let g : ' — R be a real-valued function. Clearly,
g(z) -px(z) =0 forall x € (Q*)E

(Y* being countable means that Q* = {x,z9,...} for some finite or infinite sequence x;. All that
follows is trivial in the finite case, so let us confine ourselves to the infinite case 2* = {z; : j € N}.

For j € N,leta; := g(z;)px (z;). By assumption 6.1 the series ) _ a; is absolutely convergent. Hence,
its value does not depend on the ordering of the elements of 2*. Thus, we are justified to write

Z g(x)px(x)  rather than Z g(a;)px ().

zeQ*

We go a step further. Since g(z)px (z) = 0 for z ¢ Q*, we can omit “z € Q*” and write either of the
following:

> g@px(x) = Y gl@px(x) = Y glz)px (@)
x el reN*

(6.4) N
= Y g@)px(x) = Zg(xj)px(xj)-

px (7)>0

Choosing g(z) = 1, we can express probabilities involving X as follows. If B C {, then

(6.5) P{XeB} =Px(B) = > px(@) = > px(z)= >  px(@.0

r€B z€Q*NB z€B,px (z)>0
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Whereas a PMF is defined for any discrete random item Y/, the next definition needs that the values
of Y are numbers.

Definition 6.3 (WMS Ch.03.2, Definition 3.4).

Let Y be a discrete random variable with probability mass function py (y). Then

ElY] ==Y ypv(y) = > yP{Y =y},

is called the expected value, also expectation or mean of Y. [

Remark 6.3.

A strict definition of E[Y] would explicitly require that the sum >y - py (y) is absolutely
y
convergent, i.e.,

> lulpy(y) < oo

The reason: Only absolute convergence of a series guarantees that its value does not depend
on the order in which the terms are added. As in WMS and according to Assumption 6.1,
we will quietly asssume that absolute convergence is satisfied for all random variables for
which the expected value is used. [

Theorem 6.2.

Let Y be a discrete random variable and g : R — R; y — g¢(y) be a real-valued function. Then the
random variable g oY : w — g(Y (w)) has the following expected value:

(6.6) ElgV)] = gw)pv(y) = > gly) P{Y =y}.

all y all y

PROOF: W
The following corresponds to WMS Theorem 4.5.

Theorem 6.3.

Let ¢ € R, Y be a continuous random variable and g1, g2, g, : R — R be a list of n real-valued
functions. Then

(6.7) Elc] =c,
(6.8) Eleg;(Y)] = cElg;(Y)].
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Further, the random variable

has the following expected value:

(6.9) E ZgjoY :ZE[gjoY].
j=1

ZgjoY:Q—>R; wHZgj(Y(w))

j=1 j=1

PROOF: ®

The following cannot be found in the WMS text.

Theorem 6.4.

LetY:,Ys,...,Y, : Q — Rbediscrete random variables which all are defined on the same probability
space (2, P) (n € N). Then the random variable

has the following expected value:
(6.10) E | v;| => E[Y).

In other words, the expectation of the sum is the sum of the expectations.

Zn:Yj:Q—>R; cw—)Zn:Yj(w)
j=1

=1

PROOQOF: Not given here. W

Remark 6.4.

(§))

(2

The last theorem encompasses all variants of Theorem 6.3. For example, (6.9) follows
withY; =g;oY.

The reason that many texts on an undergraduate probability theory do not list this
theorem is that the proof, though elementary, is very tedious and requires working
with the PMF of the random item ¥ = (Y1,...,Y,), given by

pp(@) = PtYi=uy1,....Yn=yn} O

Variance and standard deviation of a random variable indicate how strongly its distribution is con-
centrated around its expected value.
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Definition 6.4 (Variance and standard deviation of a random variable).

Y be a random variable. The variance of Y is defined as the expected value of (Y — E[Y])2.
In other words,

(6.11) VarlY] := o} = E[(Y — E[Y])?].

We call oy := /Var[Y] The standard deviation of Y. [

Theorem 6.5.

If Y is a discrete random variable, then

Varly] = E[Y?] — (E[Y]).

PROOF:
VarlY] = B[(Y - B[Y])?] = B(Y? - 2E[Y])Y + (E[Y])*
= EB(Y?) - 2E[Y]E[Y] + (E[Y])* = E(Y?) - (E[Y])*. ®

Theorem 6.6.

Let Y be a discrete random variable and a,b € R. Then
(6.12) Var[aY +b] =da*Var[Y].

In other words, shifting a random variable by b, leaves its variance unchanged and multiplying it by
a constant multiplies its variance by the square of that constant.

PROOF: Later. R

Remark 6.5. Since v a? = —a for negative numbers a,

(6.13) o(aY) =lalo(Y). O

The following cannot be found in the WMS text.

Theorem 6.7 (Bienaymé formula).

Let Y1,Ya,...,Y, : Q — R be independent discrete random variables which all are defined on the
same probability space (2, P) (n € N). Here we take the naive definition of independence: The
outcomes of any Y}, are not influenced by the outcomes of the other Y;. We will give a formulation of
independence in terms of probabilities in a later chapter. Then

D Y| =D Varly)].
j=1 j=1

(6.14) Var

In other words, for independent random variables, the variance of the sum is the sum of the variances.
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PROOF: Not given here. W

Remark 6.6. The independence is necessary, otherwise there are counterexamples:
IfY; =Y, =Y for some random variable Y, then

VarlY +Y] = Var[2Y]| = 4Var[Y] # Var|Y] + Var[Y]. O

6.2 Bernoulli Variables and the Binomial Distribution

Definition 6.5 (iid sequences).

Let X, Xo,... (22, P) — Q' be a sequence of random items. We speak of an independent
and identically distributed sequence, in short, an We speak of an iid sequence of random
items, if
(1) the X; are independent. Here we take the naive definition of independence: The
outcomes of any X, are not influenced by the outcomes of the other X;. We will
give a formulation of independence in terms of probabilities in a later chapter.
(2) All random items have the same distribution:

Px,(B) = Px,(B) = Px,(B) = --- forall jand all B C €.

e Note that this can also be written
P{X, € B} = P{Xs€ B} = P{Xs€e B} =--- forall jand all B C ¢0'.

e If the X; are discrete random items, identical distribution translates to identical
PMFs px, () = px,(z) = px,(z) = --- foralljand allz € . O

Definition 6.6 (Bernoulli items and variables).

Let X be a binary random item on a probability space (2, P), i.e., a random item which only
assumes two outcomes, such as

e S (success) or F' (failure) e T (true) or F' (false) oY (Yes)or N(No) elor0
We call X a Bernoulli random item. or a Bernoulli trial.

e Wecall p := P{X =success } the success probability and ¢ := 1—p,i.e, ¢ = P{X =
failure }, the failure probability of the Bernoulli trial.

e If a Bernoulli trial X has outcomes 1 and 0, then we call X a Bernoulli variable or a
0-1 encoded Bernoulli trial.

e We call an iid sequence of Benoulli trials a Bernoulli sequence. [

Remark 6.7.
(a) The entire distribution of a Bernoulli trial is determined by the value of its success probability.
(b) Note that the definition of a Bernoulli sequence (X); implies that

(1) the X; are independent
(2) each Xj has the same success and failure probabilities. We write p and ¢ for those numbers.
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(c) Unless stated otherwise, we interpret the value 0 of a 0-1 encoded Bernoulli trial as failure and
the value 1 as success. [

Theorem 6.8 (Expected value and variance of a 0-1 encoded Bernoulli trial).

Let X be a 0-1 encoded Bernoulli trial with p := P{X = 1}. Then

(6.15) EX] =p and Var[X] = pq.

PROOQOF:
EX] =0¢+1-p =p.
For the variance, Var[X]| = E[X?] — (E[X])? = E[X?] — p°. Further,

E[X)] =02 q+12.p = p.
Hence, Var[X] = p—p? = p(1—p) = pg. N

Definition 6.7 (Binomial Distribution).

Letn € Nand 0 < p < 1. Let Y be a random variable with probability mass function
n —
(6.16) pr(y) = (y)py Y.

Then we say that Y has a binomial distribution. with parameters n and p or, in short, a
binom(n, p) distribution. We also say that Y is binom(n, p). O

Remark 6.8. How does one see that py of (6.16) satisfies py (y) > O forally and }_ py(y) =1, ie,
it really is a probability mass function?

e py(y) > 0is true, since p, q, (Z) > 0.
e We apply the binomial theorem (see Theorem 4.5) to (p + ¢)" and obtain

1=1"= (pt+q)" = Z(?)qu”_j- O
=0

Theorem 6.9. Let X1, X2, X,,, ... bea Bernoulli sequence of size n with success probability p. Let Y be the
number of successes in that sequence, i.e., Y (w) = number of indices j such that X;(w) = S.

o Then Y is binom(n, p).
PROQF: See the deliberations in WMS before their Definition 3.7. W

Theorem 6.10 (Expected value and variance of a binom(n, p) variable).

Let Y be a binom(n, p) variable. Then

(6.17) ElY] = np  and VarlY] = npq.
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PROOF: Let X3,..., X, be an iid list of 0-1 encoded Bernoulli trials with p := P{X = 1}. Let

Y’ := > X;. according to Theorem 6.8, Theorem 6.4 on p.74, and, since the X are independent,
j=1
Theorem 6.7 (Bienaymé formula) on p.75,

EY'l = Y} EX;] = np and Var[Y'] = Y Var[X;] = npq.

j=1 j=1
Further, Y’ = y < exactly y of the X; have outcome y. Thus, Y’ denotes the number of successes
of those Bernoulli trials. Acccording to Theorem 6.9 on p.77, Y’ has a binom(n, p) distribution.

Since expected value and variance of a discrete random variable are determined by its PMF,
EY] = EY'] = np and Var[Y] = Var[Y] = npq. B

6.3 Geometric + Negative Binomial + Hypergeometric Distributions

Definition 6.8 (Geometric distribution).

A random variable Y is said to have a geometric distribution with parameter 0 < p <1 or,
in short, a geom(p) distribution, if its probability mass functions is as follows:

(6.18) py(y) = ¢ 1p, fory=1,2,3,.... 0O

Theorem 6.11. Let X1, Xs,---: (2, P) — {S, F'} be an infinite Bernoulli sequence with success probability
0<p<1

Let T(S), P) — N be the random variable

T(w) {smallest integer k > 0 such that Xy (w) = S if such a k exists,
W) =
0, else.

o Then T is geom(p).

PROOF: Since T(w) = n < Xi(w) = Xao(w) = Xp-1(w) = F and X,(w) = S and the
independence of the X; implies that the events {X; = F'}, {X2 = F},{X,,-1 = F},{X,, = S}, are
independent, we obtain
P{Xy=F Xo=FX,, 1=F,X,=5} = P{X1=F}n - {X,.1=F} n{X, =5}
=P{X,=F} P{Xo=F}.--P{X,_,=F} -P{X,=5 =¢"'p. 1
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6.2 (Figure). CDF for geom(0.5).
6.1 (Figure). PMF for geom(0.5).

Remark 6.9. In Theorem ?? we wrote 7T'(w) rather than the usual Y (w) for the following reason. If
we interpret the index j of the Bernoulli trial X; as the point in time when the jth trial takes place,
then w — T'(w) represents a random time, the time at which the first success happens. [

Theorem 6.12 (WMS Ch.03.5, Theorem 3.8).

If Y is a geom(p) random variable, then

PROOQOF: See the WMS text. B

Definition 6.9 (Negative binomial distribution). || %

A random variable Y has a negative binomial distribution with parameters p and r if

619 py(y) = (y

1>prqy_r, where €N, y=rr+1,r+2,..., 0<p<1. 0O
r —

This last definition has been marked as |[%" | , so you are not expected to recall py from memory.
In contrast, the next theorem is NOT optional.

Theorem 6.13. Let X1, Xo,---: (2, P) — {S, F'} be an infinite Bernoulli sequence with success probability
0<p<1.

Let t; <ty < --- be the subsequence of those indices at which a success happens. In other words,

Xo(w) S = success if nisoneofty,ta,...,
w =
" F = failure, else.
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Two points to note:

o There will be different subsequences t1,ta, ... for different arquments w € Q. In other words, we
are dealing with a sequence of random variables(!)

t1 = Tl(Q), to = TQ(Q), t3 = Tg(Q), .

o It is possible that we are dealing with an w for which there are only 18 successes in the entire

(infinite) sequence X1 (w), Xo(w), . ... In this case, we define Tho(w) = Tho(w) = - -+ = 0.
More generally, if r € N and the sequence X;(w), Xo(w), ... has less than r successes, we define
T, (w) == o0.

Now that we have defined T, = T, (w), we are ready to state the theorem.

o The random variable T, has a negative binomial distribution with parameters p and r.

PROOF: See the introductory remarks of WMS Chapter 3.6 before Definition 3.9. W

Remark 6.10. If we think of the indices n of the sequence X, as points in time, we can interpret the
random variables 71, T, . . . as follows.

e T, is the time of the rth success in the underlying Bernoulli sequence X,,. [

Theorem 6.14. || %

If the random variable Y is negative binomial with parameters p and r,

and VarlY] = T(lp; p) .

PROOF: Not given here. W

Definition 6.10 (Hypergeometric distribution).

A random variable Y has a hypergeometric distribution with parameters N, R and n if its
PMF is

R\ (N-R
(o)
N Y
(z)
where the nonnegative integers IV, R, n and y are subject to the following conditions:
ey<n ey<R eN—-—y<N-R O

(6.20) py(y) =
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Remark 6.11. For the following you should review Section 5.2 (Random Sampling and Urn Models
With and Without Replacement).

The hypergeometric distribution provides the mathematical model for drawing SRS samples of size
n from a population of size NV where each item in that population is classified as either S (success)
or I (failure).

In contrast to the scenarios involving the binomial, geometric and negative binomial distributions,
those n picks X1, X»,..., X, do NOT constitute a Bernoulli sequence since SRS sampling is sam-
pling without replacement and the X; will neither be independent nor have the same success prob-
ability across all j.

Rather, we must model this kind of sampling with an urn model without replacement. See Defini-
tion 5.4 (Urn models) on p.70. It simplifies matters greatly that we are only interested in success or
failure of each sample pick, since this means that we can model our population as N well-mixed
balls in an urn, of which R are labeled S and the remaining N — R are labeled F. Picking the
SRS sample of size n from the population then is modeled by picking a sample of size n without
replacement from that urn. O

Theorem 6.15.

o Given is an urn wich contains N well-mixed balls of two colors, Red and Black. We assume
that R are Red and thus, the remaining N — R are Black.
o A sample of size n is drawn without replacement from that urn, according to Definition
5.4(a).
Let the random variable Y denote the number of Red balls in that sample. Then Y is hypergeometric
with parameters N, R and n. In other words, its PMF is

() i)

()

py(y) =

PROOF: We give here a very skeletal proof. For more detail consult WMS Chapter 3.7.

We are not interested in the order in which those Red balls were picked, so our probability space (2
will be that of all combinations of size n that can be selected from NV balls. Thus,

0= ()

py (y) is the probability of selecting exactly y Red balls in the sample of size n Such a selection is
obtained by partitioning the N balls into the heap of all R red balls, the heap of all N — R Black balls
and then proceding as follows.

Conceptually we pick one of the (g) possible selections of y items from the R red balls and then

complementing it with one of the (]xjff) possible selections of the remaining n — y items from the
N — R black balls. By Theorem 4.1 (multiplication rule of combinatorial analysis) on p.55, there are

(g) . (Z :5) such selections. It follows that

(- (O
(%)
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It follows that Y is hypergeometric with parameters N, Rand n. W

Theorem 6.16 (WMS Ch.03.7, Theorem 3.10).

Let Y be a hypergeometric random variable with parameters N, R and n. Then

(621) By =" ad Varly] = n (%) <NA;T) (%:’f) .

PROOEF: We reproduce here the plausibility argument given by WMS in their “proof” of WMS
Theorem 3.10.

Since we consider picking an R-item as a success, the above formulas read with p :=  and ¢ =

1—-p= N]W as follows:

EY] =n-p and VarlY] :npq<x:7;>

Those are expectation and variance of the binom(n, r/n) distribution. Note for the

N_
that lim "

-n
correction factor ———
N-1" N—oo N —1

This reflects the fact that, if N is huge in comparison to n, drawing from an urn with or without
replacement yields, up to a rounding error, the same probabilities. W

6.4 The Poisson Distribution

o0 .
We start out with the simple observation that e = ) :’;—f forany z € R.
J=0

Proposition 6.2. Let A > 0. Then the function p(y) = e * % defines a probability mass function on
[0,00[z={0,1,2,... }.

PROOQOF: Obviously, p(y) > 0 for all y.

To show that > p(y) = 1, we apply the formula e” = ]200 ?—f, which is true for any z € R, with
r=MXandj=y. &

This simple proposition enables us to make the following definition.

Definition 6.11 (Poisson variable).

Let Y be arandom variable and A > 0. We say that Y has a Poisson probability distribution
with parameter ), in short, Y is poisson(}), if its probability mass function is

PV

—e, fory=0,1,2,..., O
y!

py(y) =
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We follow WMS Chapter 3.8 to show what phenomena can be modeled by a Poisson variables

Proposition 6.3. Given is some event of interest, E.

(1) We define a random variable Y which counts often E happen in a “unit”. We leave it open
whether this unit is a time interval (maybe a minute or a year) or a subset of d—dimensional space
(d =1,2,3). Let us write A for that unit.

o Example: Y is the number of car accidents that happen in Binghamton during a day (unit of time),

o Example: Y is the number of typos on a randomly picked page of these lecture notes (twodimen-

sional unit).
(2) Given n € N, we subdivide the unit (A) into n parts of equal size. Let
X .= x xM xm

where X ](-n) = the number of times that E happens in subunit j.

o Assume that for all big enough, FIXED n,

& the X j(”) are independent

[ for each j, P{X](.”) = 0or 1} = 1: E (i.e., the event of interest) happens at most once in such
a small subunit

O pn = P{X;”) =1} isconstantin j (j =1,2,...,n)
O A :=n-p,is constant inn
Given these assumptions, the following is true:

(a) The random variable Y™ = X" + x{ ... 1 x{" is binom(n, p,,) for large n.
(b)  The binom(n, py) probability mass functions py ) converge to that of a poisson(\) variable:

\Y
(6.22) lim (" pA—p)Y = e fory=0,1,2,...,
p y!

n—o0

PROQOEF: We follow WMS:
Recall that A = np. Thus,

R O

Y n ~—1)... _ -y
%) N <1 B )\> nn—1)---(n—y+1) <1 B /\>
y! n nYy n
y n -y —
y! n n n n n
- A\ 2
From calculus we obtain lim (1 — — = e . Further,
n—oo n

i _
lim<1—>\> zlim<1—1>:lim<1—2):---:lim<1—y1>:1.
n—oo n n— 00 n n—oo n n—oo n
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We take limits in (x) and obtain

\Y
lim <n>py(1—p)”y = <‘> e
n—oo \ P y:

Theorem 6.17 (WMS Ch.03.8, Theorem 3.11).

A poisson()) random variable has expectation and variance . In other words,

(6.23) E[Y] = Var[Y] = A.

PROQOF: We only show that E[Y] = \.

> Yp—A )\yl—A

Y ]
= upv(y) = Zyky;! .= ZyA = )\Z
Y y=0 y=1

In the last equation we used y!/y = (y — 1)!. We write k = y — 1 for the index variable and obtain

AZ k' —/\kzop(k)

where p(k) = AF £ > is the PMF of a poisson(\) random variable. Thus, Z p(k) = 1 and it follows
k=0
that E[Y]=)\. 1

We refer to the WMS text for examples of random variables with a Poisson distribution.

6.5 Moments, Central Moments and Moment Generating Functions

Unless something different is stated, Y is a random variable Y : (2, P) — R on some probability
space (2, P).
p=E[Y], ¢*=VarlY], o=+/Var[Y],

denote expectation, variance and standard deviation of Y.

Definition 6.12 (kth Moment).

If Y is a random variable and & € N,
(6.24) ph = E[Y¥]

is called the kth moment of Y. yj also is referred to as the kth moment of Y about the
origin. [

Note in particular that the first moment of Y is the expectation of ¥ and that
= Var[Y] + E[Y]%.

Another useful moment of a random variable is one taken about its mean.
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Definition 6.13 (kth Central Moment).

If Y is a random variable and k£ € N,
(6.25) pe = E[(Y — E[Y])*] = E[(Y — )]

is called the kth central moment of Y. uy also is referred to as the kth moment of Y about
its mean. [

Proposition 6.4. |[x | Under fairly slight assumptions the following is true for two random variables Yy
and Y.

If E[Y}] = E[YS] fork=1,2,3,..., then Py, = Py,.
In other words, the distribution of a random variable is uniquely determined by its moments.

PROQF: Beyond the scope of these lecture notes. W

Next we associate with a random variable Y which is a function w — Y (w) a function ¢t — my (t)
of a real variable ¢. It allows us to generate all moments 4. of Y by computing its kth derivative at
t = 0. Since my (t) determines in this way all moments of ¥ and since those in turn determine Py,
22 my (t) uniquely determines the entire distribution of Y.

Definition 6.14 (Moment—generating function).

Let Y be a random variable for which one can find § > 0 (no matter how small), such that
(6.26) m(t) :=my(t) = E[e"]  isfinitefor [¢| <.

Then we say that Y has moment-generating function, in short, MGF, my (¢). O

Theorem 6.18. The following is WMS Ch.03.9, Theorem 3.12.

Let Y be a random variable with MGF my (t) and k € N. Then its kth moment is obtained as the
kth derivative of my (-), evaluated at t = O:

d*m(t)
dtk =0~

(6.27) iy, =m®)(0) =

[e.e]
PROQF: We write m(t) for my (t). From the series expansion ¢* = %, we obtain
k=0

v et tkyk e tk .
m(t) =E[e"] = B |3 | = > B
k=0 =0

12 t3

=1ty + i + g

2Gee Proposition 6.4
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Taking derivatives repeatedly,

2t 3t?

m(6) =y + S + Sl + e
2! 3!
2t , 32,

Thus, fort = 0,
mW©O) = 1y, m@0) = 4y, ..., mPO) = 4. ®

Technical note: The existence of the MGF ofY” allowed us to compute the derivative of a series as
the sum of the derivatives.

You find the next proposition as Example 3.23 in WMS Ch.3.9.

Proposition 6.5. | %" | IfY is a poisson()\) random variable (A > 0), its MGF is

(6.28) my(t) =MD 0O
PROOF: For this proof, we abbreviate A := Ae'. We obtain

my (t) = B(e) = Z eYp(y) Z ety Z A(e
y=0

_ i (Aef)?e? _ 67/\50:& _ oA he A S &
y=0 vt y=0 v y=0 v
_ o0 )\y (o]
= (6_>\€>\) Z 6_>\ ? = (e_AeA) zpf/(y) )
y=0 ’ y=0

y=0

e The subsection titled “The Tchebysheff Inequality” which was at this location has
been integrated into subsection 7.8 (Inequalities for Probabililities)
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7 Continuous Random Variables

7.1 Cumulative Distribution Function of a Random Variable

The material found in this section does not make any references to continuous random variables.

Definition 7.1 (Cumulative Distribution Function).

function), is defined as follows.

Let Y denote any random variable (it need not be discrete). The distribution function
of Y, also called its cumulative distribution function or CDF (cumulative distribution

(7.1) F(y) :==Fy(y) = P{Y <y} foryeR. O

Example 7.1. Let Y be a binom(2, 1/4) random variable, i.e., n = 2 and p = 1/4. Compute Fy (y).

Solution: The probability mass function for Y is

Thus,
1 1 3 6
py(0) = 6 py(l) = 2 <4> <4) 6
It follows that
o y<0 = Fy(y) = Py(@) = 0.
° O§y<1 = Fy(y) = py(O) = 1/16.
o 1<y<2 = Fy(y) = py(O)—i—py(l) = 7/16.
e y>2 = Fy(y) = py(0)+py(1) +py(2) = L.

Note that Fy is constant on intervals A of Rif py (a) =0 foralla € A. O

Theorem 7.1 (Properties of a Cumulative Distribution Function).

(1 Fy(—o0) = lim PY <y) = 0.
y——00
(2) Fy(oo) = lim P(Y <y) = 1.
Yy—00

See Definition 2.23 on p.30.

If Fy (y) is the cumulative distribution function of a random variable Y, then

(3) Fy(y) s a nondecreasing function of y. In other words, if y1 < y2, then Fy (y1) < Fy (y2)

PROOF: Obvious. W

Remark 7.1. |[% | There is a fourth property that is satisfied by all CDFs:

y — Fy (y) is right continuous at all arguments y.
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This means the following. if y is approached from the right by a sequence y,, such as y, = y + < or
yn =y(1 4+ €7 "), then

lim F(y,) = F(y). O

n—oo

7.2 Continuous Random Variables and Probability Density Functions

Definition 7.2 (Continuous random variable).

We call a random variable Y with distribution function Fy (y) continuous, if Fy (y) is con-
tinuous, for all arguments y. O

Proposition 7.1. Let Y be a continuous random variable with CDF Fy (y). Then its distribution gives zero
probability to all singletons {a}(a € R). Also, it gives the same probability to an interval with endpoints
—00 < a < b < oo, regardless whether a and/or b do or do not belong to that interval. In other words,

(7.2) a€R = P{Y =a} = Py{a} = 0,
7.3) —o<a<b<oo =Pla<Y <b} = P{la<Y <b}
’ =Pla<Y <b} = P{a<Y <b}.
PROOF: Since {a} Cla— 1, aland Ja—1,a] =]—o00,a]\]— c0,a — 1] (set difference),

P{Y=a)} < Pla—> <Y <a} = P{Y <a} — P{Y <a—~} = Fy(a) — Fy(a—1> .
n n n
Fy is continuous at a, in particular, Fy is continuous from the left at a. Thus,
. 1
lim Fy (a — > = Fy(a).
n—00 n
It follows that P{Y = a} = Fy(a) — Fy(a) = 0. This proves (7.2).
This result, plus additivity of probability measures, plus
[a,8] =Ja,0[[H{a} ({0}, [a,0] = [a,0[[H{0}, [a,0] =]a,b][H{a},

show that (7.3) holds. W

A lot more can be done with a CDF that is not only continuous but has a continous derivative. We
make the following blanket assumption.

Assumption 7.1 (All continuous random variables have a differentiable CDF). Unless explicitly
stated otherwise, all continuous random variables are assumed to satisfy the following:

The first derivative % of Fy exists and is continuous except for, at most, a finite number

of points in any finite interval.

All cumulative distribution functions for continuous random variables that we deal with in this
course satisfy this assumtion. [
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This last assumption allows us to make the following definition.

Definition 7.3 (Probability density function).

Let Y be a continuous random variable with CDF Fy-(y). For all arguments y where the

derivative Iy, (y) = %y(y) exists, we define

dFy (y) .

fly) == frly) = a0

We call fy the probability density function or, in short, the PDF of the continuous random
variable Y. O

Theorem 7.2.

Let Y be a continuous random variable with CDF Fy (y) and PDF fy (y).
(1) Ifa,beRanda <b,then

b
(7.4) Pla<Y <b} = Fy(b) - Fy(a) = / f(w)dy.

2) fy(y) > 0 for—oco <y < o0.
3) [ fly)dy = 1.

b
PROOF: (1) is the fundamental theorem of calculus. Of course, we interpret [ f(y)dy as follows.

a
Assume that some of the points y at which f{ (y) does not exist fall with the interval [a,b]. Our
assumption guarantee that there are only finitely many, say,

a <y <y < -y <0b.

Then, by the definition of integrals,

b Y1 Y2 b
/ f(y)dy = / fwdy + [ fwdy £+ / fw)dy.

(2) and (3) are obvious. N

Remark 7.2. We combine (7.3) and (7.4) and obtain the following for a continuous random variable
Y with PDF fy (y): If a,b € Rand a < b, then

Pla<Y <b} =P{a<Y <b} = P{la<Y <b}

(7.5) =Pla<Y <b} = /bf(y)dy- m

The next definition applies to any random variable, be it continuous or discrete or neither. It is
based on the following elementary observation.
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Remark 7.3. | % | Assume that Y is a random variable with CDF Fy (y). For 0 < p < 1, let

Ay, = {a€R: Fy(a) >p}.

Note that the function y — Fy (y) is nondecreasing.

It is obvious that [a < o/ and Fy(a) > p| = Fy (/) > p.
In other words, [a < o’ and @ € 4,| = o € 4,.

e In other words, A, is an interval that stretches all the way to +oo: There must be some real
number S such that A, =], oo or A, = [, o0l

We see that 3 € A, and thus, A, = [3, o0|, as follows. Let 3, :== § + %
e Since 3, € Ay, Fy(8y,) > p. Since Fy is right continuous, B (B) = nh_}rgo Fy (5n).
e Thus, Fy(8) > p. Thus, g € A, Thus, A, = [, 0|
e Since A, = {a € R: Fy(a) > p}and A, = [, 00|, B is the smallest element of A, i.e.,
f = min{a € R: Fy(a) > p}.
The number 3 is uniquely determined by p. This allows us to denote it by the symbol ¢,. O

Definition 7.4 (pth quantile).

Let Y denote any random variable and 0 < p < 1. Let ¢, be the number derived in the
previous remark, i.e.,

(7.6) ¢p = min{a € R: Fy(a) > p}

We call ¢, the pth quantile and also the 100pth percentile of Y.
Moreover, we call ¢ .25 the first quartile, ¢ 5 the median, and ¢ 75 the third quartile, of
the random variable Y. O

Example 7.2. Given the toss of a fair coin, let Y (w) = 1 if Heads and Y (w) = 0 if Tails come up.
Then Y has PMF py (0) = py (1) =1/2
and CDF Fy(y) =0fory <0, Fy(y) =05for0 <y <1, Fy(y) =1fory > 1.
We now easily compute ¢, for any 0 < p < 1 by separately considering the cases

0<p<%: Fy (o) > p < o> 0. Thus, ¢, = 0.

p:%: Fy(a)Z% & a > 0. Thus, ¢;/, = 0.

%<p<1: Fy(a) >p < a>1.Thus, ¢, = 1.
Note that there are only two different ¢, values across all 0 < p < 1: Either ¢, = 0or ¢, = 1
This example also demonstrates that

min{a € R: Fy(a) > p}
cannot be replaced with the simpler expression
min{a € R: Fy(a) =p} :

The set {a € R: Fy(a) = p} is empty for 0 < p < 1 unless p = 0.5, meaning that the minimum does
not even exist! [

BSee Remark 7.1 on p.87.
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The issues encountered in that last example do not occur if Fy (y) is a continuous function of y.

Proposition 7.2. Let Y be a continuous random variable with CDF Fy (y). Then
(7.7) ¢p = min{a € R: Fy(a) =p}.
PROQF: The continuity of Fy ensures that the sets

B, i= {a €R: Fy(a) =p}

are not empty. The result follows from the fact that the function Fy is nondecreasing. Further details
are omitted. W

Remark 7.4. For a continuous random variable Y with PMF py (y), quantiles have the following
geometric meaning;:
e The pth quantile is that value on the horizontal(!) axis which splits the area under the PMF
into 100 - p% to the left and 100(1 — p)% to the right. In particular,
the median splits the area under the PMF into two halves.
the first quartile splits the area under the PMF into 25% to the left and 75% to the right.
the third quartile splits the area under the PMF into 75% to the left and 25% to the right. O

7.3 Expected Value, Variance and MGF of a Continuous Random Variable

Assumption 7.2 (All continuous random variables have Expectations). A. Unless explicitly stated
otherwise, all continuous random variables are assumed to to possess a probability density function
fv (y) that satisfies

This technical condition guarantees the existence of | yf(y)dy which is needed to define the ex-
—o0

pected value of Y.

B. We further assume that, unless specifically stated otherwise, there is a common probability space

(€, P) for all random variables. In other words, all random variables Y, be they discrete, continuous

or neither, are of the form Y : (2, P) - R. O

Definition 7.5 (Expected value of a continuous random variable).

Let Y be a continuous random variable with PDF fy (y). We call

7.8) BY) = [ i)

—00

the expected value, also expectation or mean of Y. [
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Quite a few theorems about discrete random variables have continuous counterparts when one re-
places probability mass function p(y) with probability density function f(y) and summation over
the countably many y for which p(y) > 0 with integration over all y. The following theorem cor-
responds to Theorem 6.2 on p.73. Note that the continuous random variable w — g(Y (w)) of that
theorem is covered by Assumption 7.2 on p.91, i.e., E[g o Y] exists.

Theorem 7.3.

Let Y be a discrete or continuous random variable with PDF fy and g : R — R; y — g(y) be a
real-valued function. Then the random variable g oY : w + g(Y (w)) has expectation

7.9) Blg) = [ ).

(e o]

PROOF: N1
The following corresponds to WMS Theorem 4.5.

Theorem 7.4.

Let ¢ € R, Y be a discrete or continuous random variable and g1, g2, gn : R — R; y — g(y) be a list
of n real-valued functions. Then

(7.10) Eld =c,
(7.11) Elcg;(Y)] = cElg;(Y)].

Further, the random variable
ZgjoY:Q—>R; wHZgj(Y(w))
j=1 j=1

has the following expected value:

n

(7.12) E|) gjoY| =) ElgoY].
j=1 j=1

PROOF: B

We will not deal in this course with the sums of continuous and discrete random variables, so the
next definition is only included for completeness’ sake and to allow the formulation of theorems 7.5
and 7.6 below.

Definition 7.6. || %

IfY1,Ys,...,Y,, isalist of discrete random variables and Y7, Y7, ..., Y, is a list of continuous random
variables, all of which are defined on the same probability space (€2, P), then we define

92 Version: 2023-12-07



Math 447 — MF Lecture Notes Student edition with proofs

(7.13) E Y+ ZY;’] =Y E[Y] + > E[Y{]p. O
i=1 j=1 i=1 j=1

The following is the continuous random variables version of Theorem 6.4 on p.74.

Theorem 7.5.

LetY1,Ys,...,Y, : Q — Rbe random variables. (which all are defined on the same probability space
(€2, P) (n € N by Assumption 7.2.B). Some may be continuous, others may be discrete. Then the

random variable n n
ZYj:Q—>R; uu—)ZYj(w)
j=1 j=1
has the following expected value:

(7.14) E

In other words, the expectation of the sum is the sum of the expectations.

PROOQOF: Not given here. W

We extend Definition 6.4 on p.74 of the variance and standard deviation of a discrete random vari-
able to the continuous case without modification, i.e.,

(7.15) VarlY] :=o0y = E[(Y — E[Y])?],

(7.16) oy =/ Var[Y].

Theorems 6.5, 6.6 6.7 about the variances of discrete random variables have the following counter-
part.

Theorem 7.6. Let Y be a discrete or continuous random variable. Let Y1, Yo, ..., Y, :  — R be independent
random variables (which all are defined on the same probability space (2, P) (n € N by Assumption 7.2.B).
Some may be continuous, others may be discrete. Further, let a,b € R. Then

(7.17) Varly] = E[Y?] - (E[Y])?,
(7.18) Var(aY +b] =a*Var[Y],
(7.19) Var in = iVar[Yj] .

j=1 j=1

PROOF: The proof of (7.17) is the same as for Theorem 6.5 on p.75. The proof of the other formulas
is not given here. W
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Remark 7.5. Note that independence of Y7, ..., Y, is required for the validity of (7.19)! O

The moments about the origin y},, the moments about the mean 14, and the MGF my (t) of a discrete
random variable Y, all were defined as expected values. This allows us to use those same definitions
for continuous random variables.

Unless something different is stated, Y is a random variable Y : (2, P) — R on some probability
space ({2, P). Further, u = E[Y], 0% = Var[Y] and 0 = /Var[Y] denote expectation, variance and
standard deviation of Y.

Definition 7.7. For k € N, we define

(7.20) ph = E[Y¥] (kth moment of Y about the origin)
(7.21) e = E[Y — E[Y])¥] = E[(Y — p)¥] (kth central moment of )
(7.22) m(t) ==my(t) = Ele] (moment-generating function of V)

As in the discrete case we assume that the expectations defining 1) and py, exist and that there is
some 0 > 0 such that my (¢) is defined (i.e., finite) for |[t| < 6. O

Theorem 6.18 on p.85 remains valid for continuous random variables:

Theorem 7.7.

Let Y be a random variable with MGF my (t) and k € N. Then its kth moment is obtained as the
kth derivative of my (-), evaluated at t = 0:

d*m(t)

7.2 = m® = .

PROQF: The proof of Theorem 6.18 can be used without any alterations. W

Proposition 7.3.

Let Y be a random variable with MGF my (t). Let a,b € R,Y':=Y +a,Y"” := bY. Then

(7.24) my(t) = emy (1),
(725) my (t) = my bt) .

PROOF: To prove (7.24), we note that e'® is constant in w. Thus, E[e"*W] = e'* E[W] for any random
variable W. Thus,

my(t) = Ele'] = B[] = E[e"] = emy(t).
Formula (7.25) follows from

myn(t) = E[e!®)] = E[e™®Y] = my(tb). B
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7.4 The Uniform Probability Distribution

Given two real numbers 0; < 6, we consider a random variable Y (w) that “lives” in the interval
[01,02], ie, P{61 <Y < 63} = 1 and has the same likelyhood of occurring in any subinterval of
same length:

Definition 7.8 (Continuous, uniform random variable).

Let Y be a random variable and —co < 6; < 2 < oco. We say that Y has a continuous
uniform probability distribution with parameters ¢; and 6, — also, that Y is uniform on
[61,02] orY ~ uniform(é,,62) — if Y has probability density function

{ L i <y<s

Oy — 61’
0, else. O

(7.26) fr(y) =

Theorem 7.8 (WMS Ch.04.4, Theorem 4.6).

If 01 < 02 and Y is a uniform random variable with parameters 01, 0o, then

2
b1 + 62 and VarlY] = 7(02 01) }

BY) = =3 12

02 02
PROOF: A simple exercise in integrating [ ydy and [ y>dy. W
01 01

7.5 The Normal Probability Distribution

Many numerical random phenomena yield his-
tograms which are approximately unimodal (a
single highest value) and symmetric around the
mean i, like the picture to the right, and they
adhere to the empirical rule: Approximately

e 68% of the data fall between p +1- o

e 95% of the data fall between p+2 - o

e 99.7% of the data fall between 1 +3 - o p =
Such data are adequately modeled by the nor- '
mal distribution.

v

Source: WMS Ch.4.5

Definition 7.9 (Normal random variable).
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Let 0 > 0and —oo < p < oo. We say that a random variable Y has a normal probability
distribution with mean x and variance o if its probability density function is

(7.27) fry) =

Y is A (0, 1).

oV2m ’
We also express that by saying that Y is A (u, 02

L -w-w¥ee®  (yecR). O

). Moreover, we call Y standard normal if

We will see that E[Y] = pand Varly

and variance of the distribution.

] = o2 This justifies calling the parameters ; and o the mean

Lemma 7.1.
(7.28) (y—p)? — 2yte® =[y — (u +t02)}2 — 2uto? — t20*.
PROOF: We multiply out the right-hand expression and obtain
RS =[y — (,u+t02)]2 — 2uto? — t*o?
=? — 2y(p +to?) + (u® + 2uto? + t20*) — 2ute? — t20?

= (y — p)*

Proposition 7.4.

— 2yto?

— 2py — 2yto’2 + ,u2

=LS 1A

(7.29)

Let the random variable Y be A (p1, 02

). Then

my(t) _ ey,t+(0'2t2)/2 )

PROOF:

<y w?

Yy

e e dy
/—oo \/ 27T

(yt (2a2> _(y-w?
(& 202

dy

/ y w)? *Qytoz] dy .

0'\/ 2

a\/ 2T

We apply Lemma 7.1 and obtain for the exponent the following.

1
202

5 [(y = n)?* = 2yto”]

1

p{[y—

(1 +to?)]”
202
202

t 4+ — _
pt+ =

(,Lt+ta2)}2 - 2uto® — 2ot}

i U

1
+ @[2#750’2 + t2a4}
1 [y - (u+t02)r
2

g
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It follows that
2,72
1 ) 25 ,% {y—(w—tfr )]
my (t) = / e ’ dy
oV2T1 J_x
2 2
2,2 1 oo _1(y—(ptts?)
= ehtt s / e’ 7 dy
oV2T J_so
oo
The expression in square brackets is the integral [ ¢(y)dy, where ¢(y) is the PDF of a normal
—00

variable with mean p + to? and variance o2. Thus, this integral evaluates to 1 and it follows that

2.2
my (t) = Mt 5

Theorem 7.9 (WMS Ch.04.5, Theorem 4.7).

If Y is a normally distributed random variable with parameters y and o, then

EY)=pu and V(Y) = o2.

PROOF: We differentiate my (t) = exp{ut + #} twice and obtain

2o
miy (t) = (u+to®) exp {,ut + 2} ,

202 202
mi(t) = (u+to?)? exp {ut - 2} + o2 exp {ut + 2} :

Thus,the first and second moment about the origin are

BlY] =p = my(0) = (u+0)® = p,

E[Y?] =uy = m{(0) = (u+0)%e" + o2’ = p® + o°.
Finally,

VarlY] = E[Y?] — (BlY])? = > + 0> — 2 = o>, B
7.6 The Gamma Distribution

Whereas the normal distribution is a good fit for histograms which are symmetric, many random
phenomena yield left skewed (also referred to as left tailed) or right skewed (also referred to as
right tailed) histograms which are more appropriately modeled by distributions which themselves
also are left or right skewed.
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The gamma distribution which we discuss here can be used to generate all kinds of right skewed

distributions.

Definition 7.10 (Gamma random variable).

ya_le_y/ﬂ 'f O <
(7:30) fr@) ={ BT(@ » Y
0, else,
where I'(«) is the gamma function
(7.31) I'(a) = / y“ e Vdy.
0

We also express that by saying that Y is gamma(a, 5). O

Let 0 > 0and —oo < p1 < oo. We say that a random variable Y has a gamma distribution
with shape parameter o > 0 and scale parameter > 0 if its probability density function is

Proposition 7.5. The gamma function satisfies the following:

(7.32) ra) =1,
(7.33) I'a) =(a—1DI'(a—=1)  foralla>1,
(7.34) I'n) =(m—1)!  foralln € N.

PROOF: (7.32) is immediate from [ e ¥dy = —e*y‘zo =0—-(-1) =1
0

We obtain (7.33) from integration by parts of I'(«):
(o) =y*!(—e¥) ‘ZO + / (a0 — 1)y 2e ¥ dy
0

=0+ (o — 1)/ ylo=1emy gy
0

= (a— ) (a—-1).
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To show (7.34) we observe that repeated application of (7.33) yields

I'n) =(n—1I'(n—1)
=n-1)(n—-2I'(n—-2)
=mn—-1)(n-2)(n—-3)---2I'(2)
=n—-1)n-2)(n-3)---2-1I'(1).

Since I'(1) = 1 by (7.32), it follows that

I'(n)

Proposition 7.6.

m—1)(n—-2)(n—-3)---2-1

(n—1)!.

(7.35)

If the random variable Y is gamma(c, [3) it has MGF

my(t) = (1_1/375)0[ fort <

PROOF: || %

(A)

We define

= 5
b T 1—tp

and observe that 3 > 0 for 1 —t3 > 0, i.e, fort < 1/3. Further,

Y

(B) ty — 3

Thus,

It follows from (A) that 5¢

1

(—y+tyf) _ —y(d —th)
B B

B
- ‘y/u—w)

00 a—1,—-y/p
my(t) = E(e) = /0 ety [ygar((j)] dy

_ 1 o a—1 < _Q
‘M(a)/o v ep[ty 6] W

1 [e.9] ~
®) / y* e v/ qy.
0

 BT(w)
(1 —tB)™ - 3. Hence,

my (t) = <

1 ¥ a1 —y/f
(1—tﬁ)a) Bar(a)/o yrethdy.

o

>/Oooso(y)dy,

where the function ¢(y) is the PDF of a gamma(a, ) random variable. Thus [ o(y)dy =1 and we
0
conclude that my (t) = 1/(1 —¢t5)*. N
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Theorem 7.10 (WMS Ch.04.6, Theorem 4.8).

Let the random variable Y be gamma(c, B) with o, B > 0. Then

ElY] = af and VarlY] = aB%.

PROQF: We obtain those results by differentiating the MGF of Y.

my(t) = (1—p4t)"% = my(t) = (—a)(1 - )" (-p)
= my(t) = (—a)(=B)(-B)(—a—1)(1 - pt) 2.

Thus,

my (0) = (=a)(1-0)"*" (=) = ap,
my(0) = (-a)f*(~a—1)(1-0)77? = (-a)?f* — (-a)f* = a?6* + ap?.

In other words, E[Y] = a8 and E[Y?] = a8 From this,

VarlY] = E[Y? — (E[Y])? = (a®8% + af?) — ?8> = a5>. B

Definition 7.11 (Chi-square distribution).

Let v € N. We say that a random variable Y has a chi-square distribution with v degrees
of freedom, in short, Y is chi-square with v df or Y is chi-square(v), or Y is x?(v), if Y is
gamma(v/2,2). In other words, ¥ must have a gamma distribution with shape parameter
v/2 and scale parameter 2. []

Theorem 7.11 (WMS Ch.04.6, Theorem 4.9).

A chi-square random variable Y with v degrees of freedom has expectation and variance

EY] =v  and VarlY] = 2v.

PROOF: This follows from Theorem 7.10 witha =v/2and f =2. R

Definition 7.12 (Exponential distribution).

We say that a random variable Y has an exponential distribution with parameter 5 > 0, in
short, Y is expon(p), if it has density function

(7.36) frly) = {éey/ﬂ’ £y < o

0, else. O
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Remark 7.6. In many textbooks exponential random variables are expressed in terms of A = 1/0.
Then its PDF is

Ne M, for0<y< oo,
(7.37) fr(y) = {

0, else. O

Theorem 7.12.

An exponential random variable Y with parameter [ has expectation and variance

E[Y] =8 and VarlY] = g2

PROOQOF: This follows from Theorem 7.10 withaa=1. W

Proposition 7.7 (Memorylessness of the exponential distribution). Let Y be an exponential random
variable. Let t > 0 and h > 0. Then

(7.38) P{Y >t+h | Y >t} = P{Y > h}.
PROOF: From the definition of conditional probability and
{Y >t+h}n{Y >t} ={Y > t+h},

it follows that PIY > t4 b}
> t+
PlY Y v - - J
{Y >t+h|Y >t} PV > 1)
We obtain
1 1 1 oo oo
P{Y >t+h} = e YWBgy = ——_ .2 . g7Y/B _ _y/B _ —(t+h)/B
> i4h} /t+h56 Y /8 B e R P
and .
Py >t} = / fe—y/ﬁdy — _e—y/ﬂ‘ — /B
¢ B t
Thus,
ef(tJrh)//B
PY > t+h|Y >t} =——p5 = P = P{y >h}. R
e

Remark 7.7. The property (7.38) of an exponential distribution is referred to as the memoryless
property of the exponential distribution. It also occurs in the geometric distribution. [

7.7 The Beta Distribution

This chapter is merely a summary of the most impportant material of WMS Chapter 4.7 (The Beta
Probability Distribution).

Like the gamma PDF, the beta density function is a two—parameter PDF defined over the closed
interval 0 < y < 1. y often plays the role of a proportion, such as the proportion of impurities in a
chemical product or the proportion of time that a machine is under repair.
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Definition 7.13 (Beta distribution). || %

A random variable Y has a beta probability distribution with parameters o > 0and 5 > 0
if it has density function
a—1 _ .\B—-1
y*(—y) :
, fo<y<i,
(739) W) = Blap !
0, else,
where
' I'(a) T(B)
7.40 B(a, —/ el )P lgy = L0
(7.40) (@8) = | v (l=y)"dy = T 5
We also express that by saying that Y is beta(c, 3). 0O
S
Beta density functions come in a large variety of a=s
shapes for different values of o and 3. Some of e o

these are shown in the figure to the right.

Note that 0 < y < 1 does not restrict the use of
the beta distribution. It can be applied to a ran-
dom variable defined on the interval ¢ < y < d by
means of the transformation § = (y — ¢)/(d — ¢)
which defines a new variable 0 < § < 1 which has

W R
non
[N

the correct domain for the beta density. .

Beta density functions. Source: WMS

Theorem 7.13. || %

If Y is a beta—distributed random variable with parameters o > 0 and 8 > 0, then

ElY] = 2 and  Varly] = (a+/3)2?a5+/3+1)‘

PROOQOF: See the WMS text W

7.8 Inequalities for Probabililities

This chapter lists some very useful estimates for probabilities which involve the moments of a ran-

dom variable. Among them is the Tchebysheff inequality.

Theorem 7.14. || %

102 Version: 2023-12-07



Math 447 — MF Lecture Notes Student edition with proofs

Let'Y, Z be continuous or discrete random variables and a > 0. Assume further that Y > 0. Then

7.41) Piy2a) < 21
7.2) P{|Z|2 a}) < 220

(7.41) is known as the Markov inequality

PROOF of (7.41): 2* We give the proof for continuous random variables. The discrete case is even
simpler since it involves summation instead of integration.

Let fy (y) be the PDF of Y. We observe the following;:
(@ Y > 0implies y fy(y) = 0for —oo <y < 0.
(b) yfy(y) >0 for 0<y< .
© yfr(y) = afy(y) fora<y<oco.

Thus,

By) = | Ty )y @ /0 Ty ()dy = /0 )y + / y Fr()dy

—0o0
(b) (©)

> /ooyfy(y)dy S /Ooafy(y)dy - a/w Iy — aP{Y > a}.

We divide by a > 0 and obtain (7.41).
PROOF of (7.42): Since |Z|" > 0 and a" > 0, we can apply (7.41) with |Z|" in place of Y and " in
place of a:

El|ZI"]

(a) Pzl z "} < 22

Since the function x — 2" is (strictly) increasing, |Z(w)|" > a" < [Z(w)| > a.
Thus, (A) yields P{|Z| > a} < E[|Z|"]/a™ and this proves (7.42). W

The work we have done here allows us to quickly prove the Tchebysheff inequalities in the form
listed in WMS Chapter 4.10 (Tchebysheff’s Theorem).

Theorem 7.15 (Tchebysheff Inequalities).

Let'Y be a random variable with mean . = E[Y] and standard deviation o = \/Var[Y]. Let k > 0.
Then

1
(7.43) PY =4l 2 ko} < .,

1
(7.44) P{Y | < ko} 21— 5.

Both (7.43) and (7.44) are known as the Tchebysheff inequalities

2AGource: https:/ /en.wikipedia.org/wiki/Markov%27s_inequality
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PROOF: We apply (7.42) withn = 2, Y — pin place of Z, and ko in place of a. We obtain

EIY —plY] _ E[(Y —p)? o’ 1
P{’Y—/L| 2 k’O’}) S (k0)2 = (k0)2 — k20—2 = ﬁ
This proves (7.43). Since the event {|Y —pu| < ko} is the complement of the event {|Y —u| > ko},
(7.44) follows. N

Remark 7.8. Some comments about the Tchebysheff inequalities:
(@) Both inequalities state the same, since the events {|Y — | < co} and {|Y — p| > co} are
complements of each other. We had noted this in the proof of Theorem 7.15.
(b) The inequalities are not particularly powerful, but consider that they are universally valid,
regardless of any particulars concerning Y'!
(c) If we write a := ko and thus, k = a/o, we obtain
Varl[Y]

a?

Var[Y]

PllY —p| < > 1 -
{1y -l < a} = g

.0

and P{lY —p| > a} <

7.9 More on the Uniform Probability Distribution

Theorem 7.16.

Assume that Y is a continuous random variable with CDF Fy (y). Let U := Fy(Y'). Then U ~
uniform(0, 1).

PROOF: |[% The proof given here follows that of Theorem 2.1.10 in Casella, Berger [1], but it
gives additional detail.

Let0 < p < 1and let

(A) G(p) := min{y € R: Fy(y) > p}.

In other words, G(p) is the pth quantile ¢, for the random variable Y. Since G is nondecreasing,
(B) Fy(p) = P{U <p} = P{Fy(Y) <p} = P{G(Fy(Y)) <G(p)}.

The most difficult part of the proof is to show that

(©) P{G(Fy(Y)) <G(p)} = P{Y <G(p)}.

G(@:_QP= m:n?y: F‘(y,gpg = G(,:,): %05
G Gl =15 5

We consider two different cases. p=1 -+
e Case 1: There is a unique y such that G(p) = y. In
the picture, that would be y, for pg and ys for ps
(@) Observe that G(p) =y < p= Fy(y).
b) G() <Gp) <G@") & p <p<p
e Case 2: There are y, < y*, determined by
Glp) =y & y« <y < y* In the picture,
that would be y, = y; and y* = y,4 for F(y) = p.

7.1 (Figure). non-injective, continuous CDF.
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We now show that (C) is true for Case 1.
We deduce from (a) and (b) that

we {G(Fy(Y)) <G(p)} & Fy(Y(w)) < Glp) (= Fr(y))
YW <y(=Gp) & we {Y <Gh)}.

Taking probabilities shows that (C) is valid, since we obtain
PAG(Fy(Y)) < G(p) = P{Y < G(p)}.

Next, we show that (C) is true for Case 2.

The picture shows that, if Fy-(y') = p’ and Fy (y
(© GO)<Gp) & ¥ <y, GO)=G{p) <y«
(d Thus, GW)<G(p) & ¥y <y* & [y <wyeory. <y <y~

Clearly,

I
=
A O

we (G(RY) <G} & G(R (V) < Gr)= )}
We apply (d) with y’ = Y (w) and p’ = Fy (Y (w)) and obtain

G(FY(Y(W))) < G(p) A [Y(OJ) < Yy OF Yy < Y(w) < y*] .
Thus, {G(Fy(Y)) < G(p)} = {Y <.} W{y <Y < y.}. Taking probabilities,

P(G(Fy(Y)) < Gp)} = P(Y <y} + Ply. <Y <y.}
=Fy(y.) + (Fv(y*) — Fy(y.)) = Fy(G(p)) = P{Y <G(p)}.

Here, the equation next to the last follows from G(p) = y, and Fy (y.) = G(p) = Fy (y*).
We have shown that (C) also is true for Case 2.
We combine (B) and (C) and obtain

(D) Fy(p) = P{Fy(Y) <p} = P{Y <G(p)} = Fy(G(p))-

Our next goal is to show that Fy (G(p)) = p. We break this down into the following steps.
(1) By (A), Fy (G(p)) > p. We now show that also Fy (G(p)) < p.
(2) Lety,:=G(p) —1/n. Then G(p) = li_)m Yn.
(3) G(p) being the smallest y such that Fy-(y) > p implies that Fy (y,,) < p.
(4) SinceY is continuous, F(y) is continuous. Thus, Fy (G(p)) = lim_Fy (yn)-
(5) Since Fy (y,) < p by (3), n11—>120 Fy(yn) <p,ie., Fy (G(p)) < p. (See (4).)
(6) We have shown (1) and it follows that Fy (G(p)) = p.

It now follows from (D) that P{U < p} = pforany 0 <p < 1.

The boundary cases p = 0 and p = 1 are taken into account by extending the definition of G(p)
given in (A), whichis G(p) = min{y € R: Fy(y) > p}, as follows.

e Since Fy(y) > 0 for all y, it is natural to define G(0) := —oo.

e If there is some y, such that Fy (y.) = 1, then (A) remains in force for G(1).

o Otherwise, (if Fy (y) < 1 for all y), we define G(1) :=occ. W
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Theorem 7.17.

Given are a uniform(0, 1) random variable U and a continuous function F : R — [0, 1] that satisfies
the conditions of Theorem 7.1 (Properties of a Cumulative Distribution Function) on p.87:
o [’ is nondecreasing o F(—oo0) := lim F(y) = 0 e F(c0) := lim F(y) = 1
Yy——0o0 Yy—o0

(7.45) Let G:[0,1] - R; p+— G(p) := min{y € R: F(y) > p}.

Let Z := G(U) be the random variable w — Z(w) := G(U(w)).
Then its CDF matches F. In other words, Fz(y) = F(y) forall y € R.

PROOF: || %
Let I := Fy(R) = {Fy(y) : y € R} be the range of Fy.
¢ Note that G(p) equals the pth quantile ¢, of a random variable with CDF F(y). (See Defini-
tion 7.4 on p.90.)
e Further, the continuity of F' guarantees that for each 0 < p < 1 one can find y € R such that
F(y) = p (and thus, p — G(p) is injective).
e Thus, I is one of the following intervals: = 1If 0 < F(y) < 1 for all y, then I =]0, 1]
DIf0< F(y) <1lforally,thenl =[0,1] @If0 < F(y) < 1forally, then =]0,1]
OIf0 < F(y) <1lforally,thenl=[0,1]
o We will refer in this proof to Figure 7.1 on p.104 (non-injective, continuous CDF) in the proof
of Theorem 7.16.

We fixy € R. Let p := F(y). Then

(a) Since F is continuous and nondecreasing, there are numbers y, < y, such that
F@@=p © y« <J< s
(b) Either F is strictly increasing at y and then y. = y = y,, or F'is “flat around y” and y, < y..
(¢) Foryp €I, choose 3y such that F(y') = p/. Then, since F(y.) = p,
P<pe Fy)<pe y<y. and p<p & FY)<p & y <y & GO) <y
(d) Further, since F is nondecreasing, G also is nondecreasing. Thus, p’ <p < G(p') < G(p).
It follows from (c) thatp’ <p & G(') < G(p) & ¢y <y* & G@) <y*

Letw € Qand p’ := U(w). Recall that p = F(y). Then
GUW) <y e [6e)<6w] B [V <y & [Uw) <F)].
We take probabilities and obtain, since U ~ uniform(0, 1) implies P{U < p} = pfor0<p <1,
Fz(y) = P{G(U) < y} = P{U < F(y)} = F(y).
To summarize, we have shown that Fz(y) = F(y) forally ¢ R. R
Remark 7.9. A special case of Theorem ??an be found in WMS Ch.06.3, Example 6.5, which shows

how to solve the following problem: Let U be a uniform random variable on the interval (0, 1). Find
a transformation G(U) such that G(U) possesses an exponential distribution with mean 8. O
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8 Multivariate Probability Distributions

Like the previous chapter, this one is extremely skeletal in nature. It contains very few examples.
You are reminded again that you must work through the corresponding chapters in the WMS text.
In this case, that would be WMS Chapter 5 (Multivariate Probability Distributions).

8.1 Multivariate CDFs, PMFs and PDFs

Assumption 8.1 (Comma separation denotes intersection). We will follow the following convention
for the notation of events that are generated by random variables or random items X, Y, Z ...

Separating commas are to be interpreted as “and” and not as “or”. Thus, for example,

{(XeB,Y=0,5<7Z<8 ={XeBandY =aand5 < 7 <8}

={XeB}n{Y=a}Nn{5<2<8}. O

Definition 8.1 (Joint cumulative distribution function).

Given are two random variables Y; and Y5. No assumption is made whether they are dis-
crete or continuous. We call

(8.1) F(y1,v2) == Fyv, vo(y1,y2) := P(Y1 <wy1,Y2 <), where y1,y2 € R,

the joint cumulative distribution function or bivariate cumulative distribution function
or joint CDF or joint distribution function of ¥; and Y5. O

The following theorem has been copied verbatim from the WMS text.

Theorem 8.1.

Let Yy and Y5 random variables with joint CDF Fy, y,(y1,y2). then
(1) Fy,y,(—00,—00) = Fy; v,(—00,92) = Fy; y,(1,—00) = 0.
(2) Fy,y,(00,00) =1.
(3) Ifyi > y1and y5 > yo, then

Fyivo 1, 95) — Fyviva (U1, v2) — Fyiva(U1,93) + Fyv, v, (y1,y2) > 0.

PROQOF: Part (3) follows because

iy, (U1, v3) — Fyviva (U1, 42) — Fyiyva(U1,45) + Fyiva(y1, y2)

=Py <Y1 <yi,y2<Ya<y3;) >0. W
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Definition 8.2 (Joint probability mass function).

Let Y7 and Y5 be discrete random variables. We call

(8.2) P, y2) = pviva(y1,y2) = P{Y1=y1,Ys =42}, where y1,y2 € R,

the joint probability mass function or bivariate probability mass function or joint PMF
of Yiand 5. O

Just as in the univariate case, py; y, (y1,y2) assigns nonzero probabilities to only finite or countably
many pairs of values (y1, y2). Again we have by definition,

> mivy) = > pinluw).

(y1,y2)€B (y1,92)€B,
Pyy,¥o (Y1,42) >0

Proposition 8.1 (WMS Ch.05.2, Theorem 5.1).

If Y1 and Y5 are discrete random variables with joint PMF py, v, (y1,y2), then
1)  pviv,(y1,y2) > 0forall yi1,y2 € R,

2) Y pvivey,ye) =1
Y1,Y2

B Frv(up) = Y, mmnusw) = Y Y pyy(uu).

w1 <y1,u2<y2 u1 <y1 u2<y2

PROQOF: Obvious. Nl

Definition 8.3 (Jointly continuous random variables).

Let Y7 and Y, be random variables with joint CDF F'(y;,y2). We call Y7 and Y5 jointly
continuous if F'(y;,Y>) is a continuous function of both arguments. [J

Assumption 8.2 (Jointly continuous random variables have PDFs). We will follow the following
convention for the notation of events that are generated by random variables or random items
XY, Z...

. . . O*F . .
We assume for all jointly continuous random variables Y7 and Y, that Z Y2 axists and is

0Y10y2

continuous except for (y1,y2) € B*, where the set B* C R? satisfies that
B*N B is finite for any bounded subset B € R? (bounded sets are those contained in a circle
with sufficiently large radius).
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. . : 0?F
This assumption guarantees for all y1,y2 € R, when we write fy; y, for 8733%’ that
Y10Y2

Y1 Y2
Fy, v, (y1,92) = / Iy, ya (w1, ug) dug duy
—00 J —o0

v
(8.3) = / Iy va (w1, u2) duy dus .
= // Iy ve (w1, u2) duy dug . O

]—00,y1 X]—00,y2]

Definition 8.4 (WMS Ch.05.2, Definition 5.3).

Let Y7 and Y5 be continuous random variables with joint distribution function F'(y;, y2) and
2
Y1,Yo

. . . . . aylayQ
ity density function or joint PDF of Y; and Y>. O

second derivative fy, v, (y1,y2) = (y1,y2). We call fy, v, (y1,y2) the joint probabil-

Theorem 8.2.

Let Y1 and Y3 be jointly continuous random variables with joint PDF fy, v, (y1,y2), then
M friyva(yi,y2) > 0 forall yi,yo.

@ [ | My, ye)dyidys = 1.

—00 —00

PROOF: An easy consequence of Theorem 8.1 on p.107. W

8.2 Marginal and Conditional Probability Distributions

Given two random variables Y7,Y> : (©2, P) — R, one obtains the marginal distribution of Y; by
considering, for B;, By C R,

Pyl(Bl) = P{Yl S Bl} = P{Yl € B, Y, € Q}
instead of Py11y2(Bl,B2) = P{Yl S Bl, Y, € BQ}

and the marginal distribution of Y5 by considering

Py2 (BQ) = P{YQ S BQ} = P{Yl e, Y, € Bg}
instead of Py17y2 (Bl, Bg) = P{Yl S Bl, Y; € BQ} .
In other words, the marginal distribution of Y; simply is the distribution of Y7 and the marginal

distribution of Y5 simply is the distribution of Y>. The word “marginal” is only used to emphasize
that those distributions are considered in the context of the joint distribution of Y7 and Y5.
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The above translates for discrete random variables whose distribution is determined by their joint
PMF and for continuous random variables whose distribution is determined by their joint PDF, to
the following.

Definition 8.5 (Marginal distributions).

(@) LetY; and Y5 be discrete random variables with joint PMF py, y, (y1, y2). We call

(8.4) pvi()) = Y pviva(u,y2) and py,(y2) = Y pvive(v1,y2)

all yo all y;

the marginal probability mass functions or marginal PMFs of Y; and Y5.

(b) LetY; and Y5 be continuous random variables with joint PDF fy; y, (y1, y2). We call

(8.5) ) = /_ My, y2)dy2 and  fy,(y2) = /_ Tyive (Y1, y2) dyr -

the marginal density functions or marginal PDFs of Y] and Y>. O

Remark 8.1. We recall Definition 3.9 of P(A | B), the probability of the event A conditioned on the
event B, which is defined for P(B) > 0 as

P(ANB)

PA|B) = —5

We also recall that, if P(B) > 0, the set function A — P(A | B) is a probability measure on 2. See
Theorem 3.2 on p.50. We replace the general events A and B with events {Y; = y;} and {Y2 = y»}
and obtain, if P{Y> = y2} >0,

P{Y1 =y1, Yo =y}
P{Y; =y}

As we always do for conditional probabilities, we interpret (8.6) as the probability that the random
variable Y; equals yi, given that Y5 equals ys.

(8.6) PlYi=y | Ya=yp} =

Not much can be done with formula (8.6) for continuous random variables Y; and Y5, because
P{Y3 = y2} = 0 for all yo € R; but it shows us how to define conditional PMFs for discrete random
variables. O

Definition 8.6 (Conditional probability mass function).

Let Y7 and Y5 be discrete random variables with joint PMF py, v, (1, y2) and marginal PMFs
py, (y1) and py, (2). Then we call

P{Y1 =y | Ya=y2}, if P{Yo=1y2}>0,

8.7 =
(8.7) Pvivz (U1 | y2) {undeﬁned, if P{Yo =y} =0,

the conditional probability mass function or the conditional PMF of Y; given Y5.
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Likewise, we call

P{Ya—ys | Yi=y), ifP{Yi=y)>0,
(8.8) PYavi (Y2 | y1) :{ 2= | Y1 =) =)

undefined , if P{Y1 =41} =0,
the conditional PMF of Y, given Y;. [

Remark 8.2. Note that conditional PMFs can be expressed in terms of joint PMF and marginal
PMFs:

IAERD) (yh yQ)

(8.9) PY1|Y2(?/1 | y2) = W if py, (y2) > 0,
(8.10) Py e | ) = Pl ey g o
pY1(yl)

The author does not think that there is much use for the next definition (WMS Ch.05.3, Definition
5.6) because all jointly continuous random variables come with PDF

My, y2) = m(yl’yﬂ-

It is included only for the sake of completeness.

Definition 8.7. | [ % | Let Y] and Y5 be two jointly continuous random variables. Then

(8.11) Fyiv,(y1 | y2) == PV1 <y | Y2 = o)

defines the conditional distribution function or conditional CDF of Y] given Yy = y,. [

Definition 8.8 (Conditional probability density function).

Let Y7 and Y, be continuous random variables with joint PDF fy, |y, (31, y2) and marginal
densities fy; (y1) and fy;, (y2). Then we call

Iya,v2 (Y1, y2)

,if fyp(y2) >0,
812 Faman lw) = ful) L0
undefined , if fy,(y2) =0,

the conditional probability density function or the conditional PDF of Y; given Y>.

Likewise, we call

iye (i, y2)

— r 7/ N f 1 07
613) Pz 1) = { P
undefined , if fy,(y1) =0,

the conditional PDF of Y5 given ;. O
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8.3 Independence of Random Variables and Discrete Random Items

Introduction 8.1. Let X1, Xy : (Q,P) — Q be two random items (recall that they are random
variables if ' = R). Not all events A C Q are meaningful for X; and X,. Rather, only events
generated by X; and by X5, i.e., events of the form {X; € B;} and { X2 € By} for suitable By, By C
Q' will matter.

Since independence of two events A; and A is defined by P(A; N Ay) = P(A;)P(Az), the proper
way to define independence of X; and X, seems to be

(8.14) P{X, € By, Xo € By,} = P{X; € By} -P{Xs € By,} forallrelevant By, By C (.

What are the relevant sets B;? We answer that question for discrete random items (hence, also for
discrete random variables) and for continuous random variables.

(@) Assume that X : (Q, P) — ' is a discrete random item with PMF px (z). In other words, there
is a countable Q* C Q' such that, for any B C §,

P{X € B} = Px(B) = Z px(z) = ZPX(JC) = ZP{sz}

zeQ*NB z€EB reB

(See (6.5) in Remark 6.1 on p.72.) These equations show that the distribution of X is determined by
the events { X = z}. Thus, the relevant sets for X are of the form B = {z}.

(b) Assume that Y is a continuous random variable on (€2, P) with PDF fy (y). Then the probabili-
ties for the events that matter, the events {a <Y < b} where a < b, are

b
Pla<Y <b} = / fr(w)dy.

(See (7.4) in heorem 7.2 on p.89.) This equation shows that the distribution of ¥ is determined by
the probability density function fy (). Thus, the relevant sets for Y are the intervals B =]a, b]. %

In summary, we could define independence of discrete random items X; and X3 as
P{X|=m, Xog=a9,} = P{X1 =21} - P{Xo=19,} forallzy,zs € .
Equivalently, this can be expressed as
(8.15) X1 Xo (%1, 32) = px, (21) - px,(z2)  forallzy,ze € Q.
Moreover, independence of continuous random variables Y7 and Y> could be defined as
Pla< X1 <b,c<Xy<d} = Pla< X; <b} -P{c< Xy<d} foralla<bandc < d.

Equivalently, this can be expressed as

b d b d
(816) / / fy17y2 (yl,yg)dyg dy1 = / fyl (yl)dyl . / fy2 (yg)dyg foralla < band ¢ < d.

PSince P{X = a} = 0forall a € R, it does not matter whether we do or do not include the end points. See Proposition
7.1 on p.88.
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The CDF (cumulative distribution function) Fy (y) gives us for both discrete and continuous ran-
dom variables (but we must exclude discrete random items) a unified way to express what was
stated in (a) and (b) as follows.

In the discrete case (a) we have
P{Y =y} = P{Y <y} — P{Y <y} = Fy(y) - Fv(y—)-
Here Fy (y—) = a<1yi7r;1_)y Fy (a) is the left-hand limit of the (monotone) function Fy (-) at y.
In the continuous case (b) we have
P{la<Y <b} = P{Y <b} — P{Y <a} = Fy(b) — Fy(a).

In both cases, independence of Y7 and Y can now be defined as

(8.17) v, v, (y1,92) = Fyvy(y1) - Fy,(y2) forallyp,y2 € R O

We make (8.17) the basis for the definition of independence of random variables.

Definition 8.9 (Independent random variables).

Let Y7 and Y, be random variables with CDFs Fy, (y1) and Fy,(y2) and with joint CDF
Fy, v, (y1,92). We call Y; and Y, independent if

(8.18) Fy, v,(y1,2) = Fyi(y1) - Fy,(y2) forallyp,yz €R.

If Y7 and Y> are not independent, we call them dependent.

We must treat discrete random items separately since there are no CDFs.

Let X; and X3 be discrete random items with PMFs px, (z1) and px,(z2) and with joint
PMF px, x,(x1,22). We call X; and X, independent if

(8.19) DX, X, (1, 22) = px,(x1) - px,(x2) forall zy,xz2 € R.

If X; and X3 are not independent, we call them dependent. [

Theorem 8.3 (WMS Ch.05.4, Theorem 5.4).

IfY1 and Y5 are discrete random variables with joint PMF py, v, (Y1, y2) and marginal PMFs py, (y1)
and py, (yz2), then

(8.20) Yi,Ysareindependent < py, v, (y1,y2) = py,(W1) - pya(y2) forall yi,y2 € R.

If Y1 and Y5 are continuous random variables with joint PDF fy, y,(y1,y2) and marginal PDFs
fY1 (Z/l) and fY2 (y2), then

(8.21) Yi,Ysareindependent < fy,v,(y1,%2) = fri(y1) - fra(y2) forall yi,y2 € R.
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PROOF: Omitted. W

The next theorem will be generalized in Theorem 8.9 on p.117. There Y; and Y5 will be replaced
with functions ¢(Y1) and (Y2).

Theorem 8.4.

If Y1 and Y5 are independent random variables, then

(8:22) E[Y1-Ys] = EV]- E[Y].

PROQF: We show the proof for continuous Y7 and Y5. Since fy; v, (y1,%2) = fvi (1) - fva(y2),
o0 o) [ee] o0
EVYs] = / / Y1y2fyvi,va (Y1, y2) dyr dy2 = / / y1y2fvi (Y1) fra(y2) dyr dyz

= /OO Yo [/OO ylle(yl)dyl] fyva(y2) dy2 = /OO Y2 EY1]fy, (y2) dy2

— 00 —00 —00

— 5Py [ " o) dye = E[Yi] E[Ya).

—0o0

The proof for discrete random variables is obtained by employing py; v, (y1,%2) = pyv; (Y1) - Py, (¥2)
and replacing integration with summation. W

Theorem 8.5 (WMS Ch.05.4, Theorem 5.5).

Let the continuous random variables Y1 and Y5 have a joint PDF fy, y,(y1,y2) that is strictly
positive if and only if there are constants a < b and c < d such that

MmyWi,y2) >0 & a<yi<band c<y <d.
(8.23) Then Y1,Ysareindependent < fy,v,(y1,y2) = g1(y1) - 92(v2)

for suitable nonnegative functions g, g2 : R — R such that the only argument of g, is y1 and the
only argument of go is yo.

PROOF: Omitted. W

8.4 The Expected Value of a Function of Several Random Variables

In this section we must work with vectors (z1, x2, . .., xy) of fixed,but arbitrary dimension k, where
each component z; is a real number and thus, (z1,22,...,2;) € R*. Since it is extremely space
consuming to repeatedly write such lengthy objects, we remind you of the “arrow notation” that
was introduced in Example 2.10 on p.27.

Notation 8.1 (Arrow notation for vectors).
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e We write ¥ as an abbreviation for a vector (a;l, To, ..., :cn) The dimension n is either
explicitly stated or known from the context.

e If f:R"™ — Risa function of n real numbers and U = [ay,b1] X - X [an,b,] is an
n—dimensional rectangle, we write

b1 bo b1
/f(a_c')df :/ / f(z1, 22, .., 2n) dyrdys - - - dyp,
A ay a2 Jai

Note that all integrands that occur in this course are so well behaved that the order in
which those n integrations take place can be switched around, just as you remember
it in the cases n = 2 and n = 3 from multidimensional calculus.

Let a1 < b1, a2 < ba,...,a, < b, for some n € N. Then § € Jay,b1] X -x]ag, by]
denotes the following: § = (y1,¥2,...,%a) and a; <y; <b; fori =1,...,d.

Here are some examples.
(@) Z€R™means: 7= (21,22,...,%n) and z; € R for all j.
(b) If f: RF — R, then g(i) means: f(yl, e ,yk).
() Ifg:RY—R,then g(?) means: g(Yl, e Yd); g(?(w)) means: g(Yl(w), e ,Yd(w)).

(d Ify:R* =R, then E [w(?)} means: E [¢(Y1,...,Y,)].

Definition 8.10 (Expected value of g(Y).

(@ Letk € Nand let Y = (Yl, Yo, ... ,Yk) be a vector of discrete random variables on a
probability space (2, P) with PMF py (7). Further, let g : R¥ — R be a function of k real
numbers y1, Y2, - - ., Y. Then

(8.24) E[g(Y)] = E[g(V1,Ya,...,Yi)] = D > g(@) py (i)
Y1, Y2, -5 Yk

—

is called the expected value or mean of the random variable ¢g(Y). As usual, the sum on the
right is countable summation over those § = (yl, Yo,y e yk) for which py; () # 0.

(b) Let k € Nand let Y = (Yl, Yo, ..., Yk) be a vector of continuous random variables on
a probability space (€, P) with PDF f5(%). Further, let h : R¥ — R be a function of k real
numbers y1, 42, . . ., Yk Then

(8.25) BT = B Yoo ) = [ [ 0@ sy

is called the expected value or mean of the random variable g(Y).

See Notations 8.1 (Arrow notation for vectors) for an explanation of [ - - - dy.
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As in the onedimensional case, we only are allowed to say that &/ [g(?)] exists
if> > gy, - k)| p(y1, - - -, Yk ) is finite and that E[h(?)] exists

if [~ [lg(yrs--- ue)| F(y1,---,uk) dyi ... dyy is finite. The functions g and h we deal with
in this course will always satisfy that assumption. [

Example 8.1. As an example of the power of that definition, we give here the proof that
EYi +---+Y,] = E[Y1] +---+ E[Y,].

Let A(§) :== y1 + - - - + yn. Then, by definition 8.10,

Eh(Y)] = /n(y1+ A+ yn) [y (7) Z/ y; fy () dij

Letq := (Y1, Yj—1,Yj+15-- -, Yn)- Then [(---)dy = f( .- )dgdy;) because the order of integration
can be switched. Since y; is constant with respect to 7,

Lowseai = [[([wss@ai) = [ ([ i) .

The inner integral “integrates out” all Variables except y; from the PDF of Y. Thus, it is the marginal

PDF fy, of Y;. It follows from E[Y; f y; fy,dy; that

Z/ yi [y (§)dy Z/ y; fy; dyj - Z::E[Y]]

We list here the theorems of WMS Chapter 5.6 (Special Theorems) that detail the rules for evaluating
expectations. For the remainder of this section we assume that Y7, Y5, ... are random variables on a
common probability space (£, P)

Theorem 8.6 (WMS Ch.05.6, Theorem 5.6).

(8.26) ceR = E[d =

PROOF: Trivial. B

Theorem 8.7 (WMS Ch.05.6, Theorem 5.7).

Let c € Rand g : R? — R Then the random variable g(Y1, Yz) satisfies

(8.27) Eleg(Y1,Y2)] = cE[g(Y1,Y2)].
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PROOQOF: Trivial. R

Theorem 8.8 (WMS Ch.05.6, Theorem 5.8).

Let g1, g2, - - -, gk : R* = R Then the random variables g;(Y1,Y2) (j = 1,...,k) satisfy

Elg1(Y1,Y2) + g2(Y1,Y2) + - - - + gr (Y7, Y2)]

(8.28) = E[g1(Y1,Y2)] + Elg2(Y1,Y2)] +--- 4+ E[gn(Y1,Y2)].

PROOF: Omitted. W

The next theorem generalizes Theorem 8.4 on p.114. That one stated that, for independent random
variables, the expectation of the product is the product of the expectations.

Theorem 8.9.

Let g,h : R — R be functions of a single variable and assume that the random variables Y1 and Y5
are independent. Then the random variables g(Y1) and h(Y2) also are independent and they satisfy

(8.29) Elg(V1) h(Y2)] = Elg(Y1)] E[h(Y2)].

PROQF: We give the proof for the continuous case only. It is the WMS proof without any alterations.
The proof for the discrete case is similar.

Let fy;,v,(y1,y2) denote the joint PDF of Y; and Y5. Independence of Y7 and Y5 yields

iy (W,2) = fvi(v) fra(y2) -

The product g(Y1)h(Y2) is a function ¢(Y7,Y2) of Y7 and Y,. Hence, by Definition 8.10 (Expected
value of g(Y)) on p-115,

Elg(Y1)h( / / 9(y1)h(y2) fvi,yv, (Y1, y2) dy2 dy
= /_ /_ 9(y1)h(y2) fra (Y1) fra(y2) dy2 dya
= /OO 9(y1) fra (v1) U_OO h(y2) fv, (y2) dy2 | dy1

= / 9(y1) fyi (1) E[h(Y2)] dys

— B[h(Y))] / 9(u) fri (1) dyy = Elg(y1)] Elh(Y)]. B

8.5 The Covariance of Two Random Variables

Introduction 8.2. If we examine how two random variables Y; and Y5 relate to each other, we can
consider among other issues the following:
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(a) If the values of Y; increase, will the values of Y3, on average, also tend to increase? One says
in this case that Y7 and Y5 have positive correlation.

(b) Or will the values of Y, on average, tend to decrease as the values of Y7 increase? One says
in this case that Y7 and Y5 have negative correlation.

(c) Or will the values of Y5, on average, have neither increasing nor falling tendency as the
values of Y] increase? One says in this case that Y; and Y5 have zero correlation or that they
are uncorrelated.

(d) Whatif Y7 and Y, are independent? We should expect in that case that Y; and Y5 are uncor-

related.
x % X x
X x . X
x b X x x
X x
X *®
x b 4 X X x
x
X/ x W X % " %
Positive Negative No
Correlation Correlation Correlation

One can associate with Y7 and Y3 a number p, their which measures the strength of their correlation.
More precsisely, it measures the strength of the linear association between Y7 and Y and whether
that association is of an increasing or decreasing nature. p is defined in terms of the covariance of
Y1 and Y5 and this will be the topic of the current section. [

In this entire section, we consider two random variables Y; and Y5 on a probability space
(2, P). As usual, we denote mean and standard deviation

oj = /Varly;], forj=1,2.

Definition 8.11 (Covariance).

The covariance of Y7 and Y5 is

(8.30) Couv[Y1,Y2] = E[(Y1 — E[11]) (Y2 — E[Y3])] = E[(Y1 — m) (Y2 — p2)]. O

Remark 8.3. Cov[Y], Y] has the following properties:

(@) The larger the absolute value of the covariance of Y; and Y5, the greater the linear depen-
dence between Y7 and Y5.

(b) Cov[Y1,Y3] > 0indicates that, on average, Y; increases as Y5 increases.

(©) Cou[Y1,Y3] < 0indicates that, on average, Y7 decreases as Y> increases.
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(d) Cov[Y1,Y3] = 0indicates that, on average, Y; remains constant as Y5 increases. It is a pecu-
liarity of the statistician’s lingo that this kind of linear relationship, even if it is very strong,
is defined to be as NO linear relationship between Y; and Y5.

(e) If we consider 10Y] instead of Y7 and 10Y3 instead of Y5 the correlation changes by a factor
of 102 = 100: Cov[10Y7,10Y2] = 100Cov[Y1, Ya]. This is not convenient in many situations
and one defines a standardized correlation by relating Y; and Y5 to their variances. This will
be done in the next definition. [

Definition 8.12 (Correlation coefficient).

The correlation coefficient, of Y7 and Y5 is

Y1,Y:
(8.31) p = Cov(V1,Y2) N
0109
We say that Y; and Y3 have positive correlation if p > 0, (i.e., if Cov(Y1,Y2) > 0), they have
negative correlation if p < 0, (i.e., if Cov(Y7, Y2) < 0), and that they have zero correlation
or that they are uncorrelated if p = 0, (i.e., if Cov(Y7,Y2) = 0).

Proposition 8.2. The correlation coefficient satisfies the inequality
(8.32) -1 <p<10O
PROQOF: Omitted W

The next formula often makes it easier to compute the covariance.

Theorem 8.10.

(8.33) Cov[Y1,Ys] = E[(Y1 — ) (Y2 — p2)] = EN1Y2] — E[V1] E[Y)].

PROOF: Since E[U + V] = E[U] + E[V] and E[cU] = cE[U] and E[c| = c for all random variables
U,V and numbers c,

Cov[Y1,Ys] = E[(Y1 — p1) (Yo — po)]
=EW1Ys — unYs — poY1 + pipe)
=EVYs] — mEYs] — EY1] + pipe
=EMWMYs] — papa — popun + pape = EY1Ya] — pipn. B
Theorem 8.11.

Independent random variables are uncorrelated.
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PROQOF: By Theorem 8.4 on p.114, independent random variables Y; and Y5 satisfy E[Y;Ys] =
E[Y1|E[Y3]. Together with (8.33), we obtain

Cov[Y1,Ys] = E[Y1Ys] — EY1]E[Y2] = 0. W

Example 8.2 (Uncorrelated, but not independent). The following simple examle shows two discrete
random variables Y; and Y, which are uncorrelated, but they are not independent.

We obtain from the joint PMF p(y1,y2) of Y7 and Y3,

shown at the right, that % _1Y2 1
E[Vi] = (- 04414 =0, 1[0 1/
ElYs]=(-1)54+1-5=0, (; 7 (/)
E[Y1Y3] = (Z1)(=1)0 + 0(~1)} + (1)(—1)0 /
+H=1)1W)E+0-1-041-1- 1 =0. 1 |0 |1/4

Thus, E[Y1Y2] = E[Y1]E[Y2] = 0 and Y] and Y3 are uncorrelated. On the other hand, p(—1,—1) =0,

whereas py, (—1) - py,(—1) = % . % # 0. Thus, Y7 and Y3 are not independent. [J

Definition 8.13 (Linear function). || %

Let n € N. We call a function ¢ : R — R; & = (x1,...,2n) — (&), a linear function, if
there are constants ay, ..., a, € R such that

n
(8.34) o(Z) = a1z + agxa + -+ anxy = Zajfrj- O

j=1

Remark 8.4. Note thatif Y = (Y1,...,Y,) is a vector of random variables, then the function ¢ of

LY,
(8.34) defines a random variable V = ¢(Y) = )" a;Y;. O
j=1

Theorem 8.12 (WMS Ch.05.8, Theorem 5.12). Let X =X,...,.Xpmand Y = Y1,....Y, be random
variables on a probability space (2, P). Fori = 1,...,mand j = 1,...,n, let & = E(X;) and p; =
E(Yj). Further, let

U = iaiXi and V = Zn:bjyja
i=1 Jj=1

where @ = (a1, as, ..., any)and b= (b1, ba, ..., by ) are two constant vectors. Then
(8.35) ElU] =) a&,
i=1
(8.36) Var[U] = aiVar[X)] + 2 ) aa;Cov[X;, X;].
i=1 1<i<gj<m
(8.37) Coo[U, V] =Y a;bjCov[X;,Yj].
i=1 j=1
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In (8.36), >. > --- refersto summation over all pairs (i, j) satisfying i < j.
1<i<j<m

PROQF: The theorem consists of three parts, of which (8.35) follows directly from Theorems 8.7 and
8.8.

Proof of (8.36): From the definition of variance we obtain

ZalX - Za@] = FE

VarlU] = E[U — E[U

. 2
S a6 ]
=1

=F ZCL f@ +Zza1a] Z 5])
=1

=1 j=1
i?'fj
—EjfE - &) +§:§:m% (X5 = &)l
=1 j=1
i#j
By the definitions of variance and covariance, we have
E[(Xi - &)’ = Var[X;] and  E[(Xi - &)(X; —&)] = Cov[X;, Xj].
Thus,
Var|lU Zanar | + ZZGZGJCO’U Xi, Xj].
=1 j=1
7]

We apply symmetry Cov[X;, X ;] = Cov[X;, X;] to the double summation and obtain
VCLY’[U] = Z G?VCLT[XZ‘] + 2 Z Z aiajCov[Xi,Xj] .
i=1 1<i<j<n
We have shown (8.36). To prove (8.37), we proceed in a similar fashion: We have

Cov[U, V] = [(U—E[ 44

E[V)]

—F (ZalX - a@) (ib]Xg bea>]

_ = ~
o () (S
—E _zn;f:laibj(xz &)Y u])]

=i
:ééamm &)Y — p)
_ iiaibjcov[xi,yj).

i=1 j=1
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Remark 8.5. Note the following about Theorem 8.12:

(@) Neither CDFs, PMFs or PDFs were needed to prove the theorem. Thus, the proof
applies to both discrete and continuous random variables.
(b) Since Cov]Y;,Y;) = Var[Y;), (8.36) is a particular version of (8.37). O

We are now in a position to prove (7.19) of Theorem 7.6 on p.93 (and thus, also (6.13) of Theo-
rem 6.5 on p.75) Those formulas state that, for independent random variables, the variance of the
sum equals the sum of the variances. Even better, independence can be replaced with the weaker
assumption of correlation zero. (See Theorem 8.11.)

Corollary 8.1 (Bienaymé formula for uncorrelated variables). || %

Let Y1,Y5,...,Y, : Q@ — R be uncorrelated random variables (which all are defined on the same
probability space (2, P) (n € N. Then

n

(8.38) Var |} Y| =) Var[yj].
j=1 j=1

PROQF: Since Y7, ..., Y, are uncorrelated, Cov[Y;,Y;] = 0for 1 < i,j < nand i # j. We employ

(8.36) on p.120 with a; = az = --- = a,, = 1 and obtain
Var | V| =Y Var[yi] +2) ) Cov[y;,Vj] = > Var[yj] + 0. B
i=1 i=1 1<i<j<n i=1
Example 8.3 (Variance of the sample mean 2° ). This example belongs thematically to Section 5.2

(Random Sampling and Urn Models With and Without Replacement). We model SRS sampling
from a population to infer statistical knowledge about it as follows.

e The population is represented by a probability space (€2, P) and the statistical knowledge
we are interested in is part of the distribution of a random variable Y on ({2, P).

e DPicking at random an item from the population is modeled as the outcome Y (w) of an invo-
cation of Y.

e Picking an SRS sample of size n from the population is modeled as the n outcomes Y (w) =
(Y1 (W), ..., Y,(w) of n independent random variables Y7, . ..Y,, which have the same distri-
bution as Y. In other words, the Y; are a (finite) iid sequence in the sense of Definition 6.5
on p.76.

e Of course, that last point is an idealization, since independent sample picks correspond to
sampling with replacement, whereas SRS models to sampling without replacement. See
Definitions 5.3 on p.70 and 5.4 about SRS and urn models. On the other hand, the computa-
tional differences between results based on sampling with and without replacement are of
practical insignificance if the sample size is small when compared to the population size. %/

In this example we specifically consider the mean of the population data.

2This is a modified version of WMS, Example 5.27.
7See parts (c) and (d) of Remark 5.2 on p.69.
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It seems natural to model this mean it by the mean of Y/, i.e., the expectation = E[Y] of Y.
So that’s it then. E[Y] is the answer we are looking for. Well, it would be if we only knew
the distribution of Y or, at least, E[Y].

e But we don’t! We “defined” Y as the action of taking a single random pick from the popu-
lation, and that is the extent of our knowledge of Y.

e This is why we introduced the vector ¥ of n iid sample picks. The randomness and in-
dependence of Y1, ...Y, should make the specific sample i that consists of the outcomes
y; = Yj(w) representative of the population. Thus, its sample mean § = Y (w) which is
obtained by averaging the sample data, i.e.,
Vi(w) + Yo(w) +--- + Ya(w)

Y(w) = - ;

should result in a good estimate of the population mean.

All of the above serves as motivation for the following setup. Let Y7,Y5,...,Y,, be independent
random variables with common expectation E[Y;] = p and variance Var[Y;] = o2 (j = 1,...,n).
Let
_ 1 <&
(8.39) Y = - Y;.
j=1

It follows from (8.35) on p.120 and Corollary 8.1 on p.122 that

_ 1 < 1 & R 1
BY] =E |- Y| = ~E|Y Y| = -3 B = ~(np) = p,
j=1 j=1 j=1
_ 1 & 1 1 — 1 9 o?
VarlY] =Var nz;Y] = ﬁVar X;YJ = an; VarlY;] = ﬁ(na) = —-
j= i= j=

We infer from those two formulas the following.

Recall that the purpose of Y is to serve as an estimator for the following population parameter: The
population mean, which is the mean of anyone of the sample picks u = E[Yj].

The significance of the formula E[Y] = p is as follows

e The expected value of this estimator equals the parameter it is meant to estimate.
An estimator with that property is referred to as an unbiased estimator.

Now to the formula Var[Y] = o2 /n. We use it to compare the standard deviations

oy, = y/Var[Yj] and oy = /Var[Y]

of a single pick Y; and the average Y of n such independent picks. Note that the standard deviation
of a random variable U is a measure for its concentration about its expected value. (And the same
is true for its variance.) A small oy; signifies that most outcomes U (w) are in close vicinity of E[U].

Thus, oy is a measure for the lack of precision with which Y estimates E[Y] = p.
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e In the extreme case of a sample of size 1, i.e., n = 1, that lack of precision is o.

e For n = 100, that lack of precision goes down to 1%. Thus, precision has improved by a
factor of 10.

e Generally speaking, increasing the sample size by the factor K (and spending all that time
and money doing so) does not reward us with a proportionate improvement of the precision
of the estimate Y. It only increases by the factor VK. O

8.6 Conditional Expectations and Conditional Variance

8.6.1 The Conditional Expectation With Respect to an Event || %

We will start with a definition of the conditional expectation E[Y | B] of a random variable Y where
conditioning happens with respect to an event B C . This definition is usually not taught in an
undergraduate level course on probability theory for the following reason: It cannot be extended,
in the case of continuous random variables Y and Y, to E[Y | Y = §], i.e., conditioning on Y having
a fixed outcome g].

All that follows in this subsection is based on Theorem 3.2 on p.50 which states the following: If
(€, P) is a probability space and B C (2 is an event that satisfies P(B) > 0, then the function Q(-),
defined as Q(A) := P(A | B) for A C Q, is a probability measure on . 2

Assumption 8.3.

In all of this subsection we deal with a fixed probability space (€2, P) and a fixed event
B C Q that satisfies P(B) > 0. We further assume that Q(-) is the probability measure

(8.40) A— Q(A):=P(A|B), where AC Q.

The symbols X, X1, X,... denote random items and X, X, X5,... denote random vari-
ables on 2. We need not be specific about whether we mean (2, P) or (2, ), because the
definition of random item and random variable does not involve the probability measure,
only the carrier space 2. [J

Remark 8.6. The following mathematical triviality allows us to translate much that we have done
with random variables in connection with P to their analogues with respect to Q = P(- | B).

e All definitions, propositions and theorems in which an unspecified probability measure P
is involved can be reformulated by replacing P with Q.

Here is a list (certainly not complete) of many such concepts.
e cumulative distribution function, e probability mass function
e probability density function e joint CDF e joint PMF e joint PDF

e expectation e variance ® moments e moment generating function

%To be exact, there also was a o—-algebra & and we had to assume that B € & and that P(A) is defined only for
A € #. This in turn implies that Q(A) = P(A | B) only is defined for arguments A € &#. We do not mention & since
we decided to avoid dealing with oc—algebras whenever possible.
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BEWARE: The above does not apply to cases where a specific probability measure is considered.
An example for this would be, e.g., Proposition 7.7 on p.101 (memorylessness of the exponential
distribution). Here the probability measure is an exponential distribution Py-.

We will elaborate on some of the items in that bulleted list in the next remar. O

Remark 8.7. In the following, the phrase “()-.....” serves as an abbreviation for the lengthier “.....
with respect to Q.

(@) The Q-CDF of a random variable Y is FYQ(y) =Q{Y <y} = P{Y <y|B}.

(b) The Q-PMF of a discrete random item 2° X is p%(z) = Q{X =2} = P{X =z | B}.

() Assume that the derivative f?(y) = dF YW of the Q-CDF of a random variable Y exists
and is continuous except for at most f1n1te1y many y in any finite interval. Then Y is a Q-
continuous random variable with Q-PDF fg (y). 30

(d) We skip joint Q—CDFs and joint Q—-PDFs and only elaborate on the joint Q-PMF. of two
random items X; and X5. It is, as one should expect, defined as
p§17x2($1,$2) = Q{X1 =21, Xo =22} = P{Xy1 =21,Xo =22 | B}.

(e) The Q—expected value of a discrete random variable Y is
EClY] =3, y- Py) = >,y P{Y =y|B}. (1, is over all y where P(y) > 0.

(f) The Q—expectation of a continuous random variable Y is EQ[Y] = [y- f}@ (y)dy

(g0 The Q-variance of a random variable Y is Var?[Y] = EQ[(Y — E?[Y])?].
(h) The Q-MGF of a random variable Y is m%(t) = E9 [e].

For expectations of functions of random variables we skip the case of one or two random variables
and proceed directly to the case of a vector Y = (Yl, Yo,..., Yk) of random variables. (See Definition
8.10 on p.115.)

(i) If the Y; are discrete and g : R* — R, then EQ[g(Y)] = - Z g p ( 7).
Y1, Y2, -

() If the Y; are continuous and h : R¥ — R, then EQ[n(Y)] = [* .- [* h(y )fQ(g’) . O

Here are some of the theorems we get for free because we have shown them for any probability
measure. Again, BEWARE: We made the assumption P(B) > 0!

Theorem 8.13.
If Y = (Yl, Yo, ..., Yk) is a vector of k discrete or Q—continuous random variables, then
n n
(8.41) E? |} Y| =D E°[Y
j=1 j=1

¥Since P{X =z} N B < P{X =z}, P{X = 2} = 0 implies Q{X = x} = 0. Thus, any P-discrete random item also
is Q—discrete.

*¥There may be some reasonably general and simple conditions that guarantee Y being Q—continuous from being P-
continuous, but this author is not aware of them.
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PROOF: This follows from Theorem 8.13 on p.125. W

Theorem 8.14. If Y is a discrete or Q—continuous random variable and Y = (Yl, Yo, ... ,Yk) is a vector of
k Q—independent discrete or (Q—continuous random variables, then

(8.42) Var®ly] = EQ[Y?] — (E9[Y])?,
(8.43) Var®[aY +b] =a?VarQ[Y],

ZYj] = iwr@m].
j=1 =

(8.44) Var®

PROOF: This follows from Theorem 7.6 on p.93. W

There is an issue with that last theorem. Not just with the proof, but with the assumptions that were
made. How is Q—independence defined for random variables, or even for events Ay, Az, A;? The
answer is, of course, that we apply all previously made definitions of independence of two or more
events or random variables, replacing the original probability measure P with Q.

The following theorem about the @—independence of two events is worthwhile mentioning.
Theorem 8.15.
Let Ay, Ao, B C Q be three events such that P(Ay > 0, P(As > 0 and P(B > 0. Then

(8.45) & () P(A1| 4N B) = P(A | B)

In other words, if A; and A; are independent with respect to “just” conditioning on B, then “further”
conditioning of A; on both Aj and B has no effect. Here, either i =1,j =2o0ri=2,j = 1.

PROOF: Since (a) is aymmetrical in A; and A, and (c) is obtained from (b) by switching the roles of
A and Ay, it suffices to prove (a) < (b).

PROOF that (a) = (b):
P(AlﬂAgﬁB) P(AlmAgﬂB) P(B)

P AN B) = =5 = = BB) P& nD)
:P(AmAQ\B)-P(AQl’B)‘%’P(AlB)-P(Ale)'p(Aim
=P(A | B).

PROOF that (b) = (a):

_ P(AinA;nNB)  P(AiNAyNDB) P(AyNB)
PinA: | B) = 1P(B§ B PEAQ m2B) ' P?B)

= P(A, | AN B)-P(A; | B) ® P(A,|B)-P(A, | B). W
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8.6.2 The Conditional Expectation w.r.t a Random Variable or Random Item

Remark 8.8. |[ x| We mentioned at the beginning of the previous subsection 8.6.1 (The Conditional

Expectation With Respect to an Event), that conditioning with respect to an event B constitutes a

dead end street. This is the reason why the material has been marked as |[% || (optional). Now

let us give the reason.

As far as modeling reality by means of probability theoretical concepts is concerned, the primary
interest of conditioning is being able to assume during certain calculations of the probability involv-
ing a random item X, that another random item X5 has as its outcome a fixed value z5. Thus, we
typically are interested in

e P{X; € B; | Xy =z}, where x3 is some fixed outcome that can be attained by Xs.

Having stated the issue in the most general terms, we will restrict ourselves for the remainder of
this remark to random variables Y; and Y5 rather than working with random items. This will allow
us to contrast discrete and continuous random variables.

The method of subsection 8.6.1 (using the probability measure Q(A) = P{A | Y = §) will actually
work if we condition on specific values of a discrete random variable Y>. This is so because we only
are interested in those outcomes y, for which

Py, (y2) = P{Ya=y2} > 0

and the conditional probability P{A | Y2 = y»} exist for such outcomes ys.

On the other hand, we have nothing at all to work with if Y5 is continuous, since P{Y> = y2} = 0
for all numbers y, (see Proposition 7.1 on p.88), since this results in P{Y; € B; | Yo = y3 being
UNDEFINED for all numbers 5!
To overcome this hurdle we will work with the conditional PMFs and PDFs

Py1ya (Y1, 92)

* Dvive (y1 | y2) = W ,if Y7 and Y5 are discrete random variables,
2

* Mmmly) = W ,if Y1 and Y5 are continuous random variables.
2

We close this remark by noticing that, in the case of discrete random variables, working with Q{Y; €
B1} = P{Y1 € B | Y2 = ya} or with py, |y, (y1 | y2) amounts to the same, because ) and py; |y, satisfy

QvieBi} = ) PMi=u|Ya=wp} = > pnuwnly). O

y1€B81 y1€81

Definition 8.14 (Conditional expectation).
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Let Y7 and Y3 be two random variables which are either jointly discrete or jointly continuous
and g : R — R. Let

(8.46) Elg(V1) | Ya=1w2] := Y g(y1)p(y1 | y2) (discrete case),
1
(8.47) ElgY1) | Yo =yo] = /oo 9(y1) f(y1 | y2) dy1 (continuous case).

Then we call E[g(Y7) | Y2 = y2] the conditional expectation of g(Y;), given that Y> = ys.
O

Remark 8.9. Note for the following that the function

w— ElgY1 | Ya=Ys(w)] = Elg(Y1 | Y2 = yo]
y2=Ya(w)

defines a random variable on (2, P). It is customary in many situations to suppress the argument
w and write

(8.48) Elg(Y1 | Y7

for this random variable. Clearly, if we write Z(w) for E[g(Y; | Y2 = Y3(w)], we can take its
(unconditional) expectation

(8.49) E(Z] = B[E[g(V1 | Y2]].
In particular, if g(y) = y, we can take the expectation E[E[Y; | Y2]| of E[Y; | Y2]. We will do so in

the next theorem. 0O

Theorem 8.16 (WMS Ch.05.11, Theorem 5.14).

Let Y1 and Y5 be either jointly continuous or jointly discrete random variables. Then

(8.50) Elvi] = E[E[v; | Yal].

See Remark 8.9 concerning the interpretation of the right-hand side.

PROOF: We give the proof for jointly continuous Y; and Y. With the usual notation for joint PDEF,
marginal densities and conditional PDF we obtain

E[Y1] =/ / Y1 fvi,ve (1, y2) dyr dya

_ /_oo /_00 Y1 yvavs (W | y2) fa (y2) dyr dyo
= /OO </OO Y1 le‘YQ (yl | y2) dy1> fQ(yZ) dy2

—00 —

= /_Oo EY1| Yz =y fra(y2) dy2 = E[E[Y:1 | Yo]] .
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The proof for the discrete case is done by doing summation instead of integration and replacing
joint, marginal and conditional PDFs with the corresponding PMFs. W

We define the conditional variance of Y7 given Y2 = y» by applying Definition 8.14 to the functions
9(y1) = y1 and g(y1) = yi-

Definition 8.15 (Conditional variance).

Let Y7 and Y5 be two random variables which are either jointly discrete or jointly continu-
ous. Let

(8.51) VarlYy | Ya =y == E[Y2 | Ya=us] — (E[V1 | Y2 =ps])°.
(8.52)

Then we call Var[Y; | Y2 = y] the conditional variance of g(Y;), given that Y5 = y,. O

Theorem 8.17.

Let Y1 and Y5 be jointly discrete or jointly continuous random variables. Then

(8.53) Varlvi | o] = E[(Yi — E[Y1 | Ya))? | V2],
(8.54) Var[Y1] = E[Var[Y1 | Y2]] + Var[E]Y: | Y3]].

PROQF: We only give the proof of (8.54). Note that

(A) Var[Yi | Y] = E[Y? | Ya] — (E[Y1 | Y3])?,
(B) E[Varly| Y]] = E[EY? | Ya]] = E[ (B | Ya])°].

By the definition of (unconditional) variance,

(©) Var[E[Y1 | V2] = E[(Evi | Ya))"] — (B[E[:|Y3]])".
Further,
Varlvi] = E[Y?] — (EM))?
= B[E[Y? | v3]] - (E[EM | Ya]])’
= E[E[Y! | Y2]] — E[(EM | ¥2))"] + B[(EM | Y2))] — (B[E | Yal])®
= B[E[Y} | Ya) — (BN | ¥2))’] + {E[(EM | Y2])” — (B[ED | Ya]]))
=E[V"1|Y2)] + V[E(Y1 | Y2)]. W

8.7 The Multinomial Probability Distribution

Introduction 8.3. In Definition 4.3 (p.60) of Chapter 4 (Combinatorial Analysis) we discussed multi-

nomial coefficients
n n!
ning---Ng nllng!--~nk!
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when counting the ways of classifying n items into k classes in such a way that n; items belong to
class 1, ny items belong to class 2, ... n;, items belong to class k (n1 + - - - + 1y = n). The multinomial
probability distribution is based on those coefficients and generalizes the binomial distribution of
Section 6.2 (Bernoulli Variables and the Binomial Distribution).

The binomial distribution is that of a random variable Y which counts the number of successes in n
Bernoulli trials. (See Definition 6.6 on p.76 about Bernoulli trials.) To say this differently, Y counts
the number of those Bernoulli trials which result in an outcome that falls into the “success class”.

The multinomial distribution will not be about a single random variable Y, but about a random
vector Y = (Yl, e Yk) of k random variables Y}, which count the number of the n trials resulting
in an outcome that falls into class j. What kind of trials are we talking about? We should expect
those n random items, let us call them X1, ..., X,,, to show some similarities to Bernoulli trials. Of
course, there must be some significant differences. For example, each X; will not have two outcomes
(success or failure), but k£ outcomes corresponding to the k classes. [

Definition 8.16 (Multinomial Sequence).

Let X1, X, ... be a finite or infinite sequence of random items on a probability space (2, P)
which take values in a set £2’. We call this sequence a multinomial sequence, if the follow-
ing are satisfied:
(1) The sequence is iid.
(2) There is some k£ € N such that the outcome of each X is one of k distinct values
wi,wh, ..., wp, € .

Since the X; have identical distribution, there are probabilities p1, p, . .., px such that
(3) p; = P{X; =w}}isthesame forall jand p; + --- + p; = 1.

If we consider a finite multinomial sequence X1, X», ..., X,,, we adopt the WMS notation and speak
of a multinomial experiment of size n wich consists of the trials X; [J

Definition 8.17 (Multinomial distribution).

Assume that Y = (Yl, Yo, ..., Yk) is a vector of random variables which possesses the joint
probability mass function

(8.55) Py (Y1, Y2, Y) = (yh__n. ,yk) pi'py Pt
subject to the following conditions:

e p;>0forj=1,2,...,kand ipj:l'

. yi:0,1,2,...,nfori:1,2,.]._.1,k:and zk:yizn.

i=1
Then we say that the random variables Y; have a multinomial distribution with parame-
ters n and py (y1, 42, -, yx). O
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Theorem 8.18.

Let n € Nand X, ..., X, be a multinomial sequence of size n. Let pj := P{X; = w;}. (That
probability is the same for all i, since the X; have identical distribution.)
Let Y = (Yi,...,Yy) beavector of k random variables, such that each Y; equals the number of the
n trials resulting in an outcome that falls into class j. In other words,

o Yi(w) =y & X;(w)=w]forexactly y; of the multinomial items X ;.

Then Y has a multinomial distribution with parameters n and py (Y1, Y2, - - - Yk)-

PROOF: For fixed § = (y1,...,ys), the event A := {Y = §} corresponds to all different ways that
{1,2,...,n} can be partitioned into k subsets

(A) {1,2,....n} = nlH R %k

such that each J; contains y; of those n indices. It follows from Theorem 4.6 on p.62 that

(B) there are (yh y;,l. - yk> different ways of creating such a partition.
Thus, if we write

AWy, Jy) =1{X,, = =Xi,,, =wn,foralll <m <k},
it follows that
(©) P(A) = P{Y =g} = P (AU, 7)) |

n
Y1,---Yk

Forafixed 1 < m < k, we write J,;, = {im1 < im2 < -+ < imy, |- Since the X, are independent,

where this union is taken over all ( ) partitions Jy, ..., Ji of [1,n]z.

P{Xi,, =Xipo ==X, =wnt =P{Xs,, =w,}0--0{Xi,, =w,} = (pm)"

m,1 m,2

Since the X; are independent not only for indices j belonging to .J,,, but also across all .J,,,, it follows
from the definition of A(Jy, ..., Ji) that

(D) P(A(J1, -5 Jk) = (p1)" (p2)* - (pi)" -

The right-hand side is independent of the particular partition .Ji,. .., J,. We obtain from (B), (C)
and (D) that

P =g = (), ") 0 e

Yty Yk

Thus, Y has the joint PMF that was specified in (8.55). We conclude that Y has a multinomial
distribution with parameters n and pg (y1,y2, - .., yx). B
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Theorem 8.19 (WMS Ch.05.9, Theorem 5.13).

Assume that Y = (Y1,Ya,...,Yy) have a multinomial distribution with parameters n and
P1,D2, .-, Pk Then, for1 <i,j < kandi# j,

(a) E[Y;] = np;,

(b) Var[Y] = np;q;, where ¢; = 1 — p;,

(c) CovlY;,Y;] = —npip;.

PROQF: See the proof of Theorem 5.13 in the WMS text. W

8.8 The Bivariate Normal Distribution (Optional)

Definition 8.18 (Bivariate normal distribution). | %

We say that two continuous random variables Y; and Y5 have a bivariate normal distribu-
tion, or that they have a joint normal distribution, if their joint PDF is

-Q/2
e
(8.56) viye(yi,y2) = : —00 < Y1 < 00, —00 < Yg < 00,
v 2770102ﬂ
1 — 2 _ _ _ 2
where ) = - (v QM) — 2 (Y1 = p1)(y2 = p2) 4 (y2 2#2)
L=p oy 0102 o5

We then also write (Y1, Y2) ~ A (u1,0%, p2, 032, p). O

Whereas we have marked this definition as optional, you should remember the following theorem.

Theorem 8.20.

If two random variables Yy and Ys are N (u1, 0%, o, 03, p), then
(a) Y1 ~ JV(/“, U% and Y1 ~ JV(MQ, U%.
Thus, E[Y1] = 1, Var[Y1] = 03, E[Ya] = p2, Var[Ys] = o3.
(b) CovlY1,Ys] = 0102 p. Thus, p is the correlation coefficient of Yy and Y.

PROOQOF (outline):
One proves (a) by showing that the marginal densities are

() = e TR () = /o),

B o1V 2w ’ B o9V 21

See (7.27) on p.96.
For the proof of (b), see Casella, Berger [1]. W

Theorem 8.21.

If two jointly normal random variables Y, and Y, are uncorrelated, then they are independent.
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PROOF: If p = 0, the joint PDF of Y; and Y> which was given in (8.56) is

e~ Q/2
my. (i, y2) = ST
_ 2 _ 2
where Q = M -0+ M.Thus,
0'1 0'2

1
, — exX - -
i s (y1,92) ( /7271'01)( /7271_02) p { 20‘% 20%

~ (e {1 (e {2

It follows from Theorem 8.20(a) that fy; v, (y1,%2) = fvi (¥1) fv»(y2). The independence of Y7 and Y>
follows from Theorem 8.3 on p.113. W

(y1 — M1)2 (y2 — M2)2 }

Remark 8.10. The concept of joint normality can be extended from two random variables to an
arbitrary number of random variables Y7, . .., Y. However, the definition of their joint PDF utilizes
n X n matrices and their determinants. This requires some background in linear algebra and that is
not a prerequisite for this course. O
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9 Functions of Random Variables and their Distribution

This chapter essentially only contains enough material to serve as a reference and review

“sheet”. You will not be able to properly understand the techniques noted here if you do
not work through the many examples of the WMS text!

9.1 The Method of Distribution Functions

The Method of Distribution Functions is best explained by some examples.

Example 9.1. Find the CDF and PDF for U := 2Y — 6, where the density of the random variable Y
is

4y, if0<y<1/2,
©.1) frw) = {7 vt/
0, else.

Solution: Applying the distribution function method means the following:
[ Find the CDF Fy;(u) of U @ Find the PDF fy;(u) of U by differentiating Fy;(u)
6

[ Do this with help of the relation U = 2Y -6 & Y = Ui

2
We obtain
6 6
Fy(u) = P{U <u} = P{2Y —6<u} = P{Y < “; } = Fy(u;— > .
Note that 1 +e 1
u
< < — < < — —6 < < —
0_y_2<:>0_ 2 _2<:> 6 < u <-5
Thus, Fy(u) =0foru < —6 and Fy(u) =1 foru > —5.

For -6 <u<-5,ie,0<y< %, we must integrate:

U+6 (u+6)/2 (u+6)/2 4 ’U,+6 2
P{YS 5 }z/ fy(y)dyz/ 4ydy=2<2>-
0 0

We combine the cases u < —6; —6 < u < —5; u > —5 and obtain

0, ifu<—6,
62
Fy(u) = (“; ) , if —6<u< -5,
1, ifu>-5.

We differentiate this CDF and otain the density function for U:

dF; u+6, if —6<u<-5,
folu) = vlw) _ {

du 0, else. O
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Example 9.2 (WMS Ch.06.3, Example 6.3). The following is Example 6.3 of the WMS text. Its proof
has been substantially rewritten.

Let (Y1, Y2) denote a random sample of size n = 2 from the uniform distribution on the interval
(0,1). In other words, we assume that Y; and Y5 are jointly continuous and have a joint PDF which
is constant and not zero on the unit square.

The issue is to find the probability density function for U := Y] + Y5.

Solution: It follows from the assumptions that Y; and Y, possess the same mariginal PDF The
density function for each Y; is

1, 0<y<1,
0, elsewhere.

f) =M = Mmy) = {

Since Y; and Y5 are independent,

17 0§y1§170§y2§1a
0, elsewhere.

Miyva(W,92) = i) fva(y2) = fy)f(y2) = {

Thus, Fyy(u) = P{Y1+ Y, <u} = // f(y1) f(y2) dy1 dya , where, for a fixed u, the region of inte-
B

gration is
(A) B = ([0,1] x [0,1]) N {(y1,y2) € R*: g1 +y2 < u}.

We will separately treat the cases e u <O0oru>2 e0<u<1 ol <u<2.

Casel: u<Qoru > 2.

If u <0, then [0,1] x [0,1] and {(y1,2) € R* : y1 + y2 < u} are disjoint. Thus, B=0and [[5--- =0
and thus, Fy(u) = 0.

If u > 2, then [0,1] x [0,1] € {(y1,92) € R? : y1 +y2 < u}. Thus, [[5-- =
FU(u) =1.

1
[ -+ and thus,
0

O— =

Case2: o0 <u <1.

The graph of y; +y2 = win the (y1, y2) plane is a straight line which intersects the vertical coordinate
axis, y1 = 0, at yo» = v and the horizontal coordinate axis, y2 = 0, at y1 = w. Thus, B is the triangle
bounded by the coordinate axes and the line y; + y2 = u. since it is half of a square with side length
u, its area is u?/2.

Of course, this also follows from the fact that f f g 18 achieved by first integrating, for 0 < y; < v,
over the vertical slice of B at y; and then integrating those integrals. Since the vertical slice of B at
y1 extends from yo = 0toy; +y2 = u, ie., toys = u — 1

U pu—y
Fulu) = //Bldyl dys :/0 /0 Ldys dy,
U U2 u
Z/(U—yl)dylz uyL — o
0

:u2—

0

| S,
IS

Case3: o1 <u < 2.
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Let B := ([0,1] x [0,1]) \ {(y1,92) € R : y1 + y2 > u} . Then
(B) B = ([0,1] x [0,1]) N {(y1,92) € R® : y1 + 1y < u},

(& FU(U)—1—P{Y1+Y22U}—1—//§1dy1dy2

Now, the graph of y; +y2 = u in the (y1, y2) plane is a straight line which intersects the vertical line,
y1 = 1,at yo = u — 1 and the horizontal line, y, = 0, at y; = u — 1.

Biis the right angle triangle bounded by the lines y; = 1,y2 = 1 and y1 + y2 = u.

Its legs have length 1 — (v — 1) = 2 — u. Thus, its area is half that of a square with side length 2 — u.
Thus, the area of B is (2 — u)?/2. It follows from (C) that

" 4 — 4 2 2
FU(u)zl—area(B):1—++u:—1+2u—%.

This also could have been computed by iterated integration. In this case,

1 1
1 — Fy(u) = //deldyz = / / Ldya dyr
B u—1Ju—y;
1

:/u_yl(l—u—i-yl)dyl = <(1_u)+y2%>

u—1

1 (u—1)? u?
—(1—u)(2— S -2 ou+ L.
(1 —u)( u)+2 5 u + >

We thus obtain, as before, Fy(u) = 1 — (2 —2u+u?/2) = -1 —2u+u?/2. O

The problem of the next example is that of WMS Ch.6.4, Example 6.8. This instructor does not
understand the reasoning given there and has provided a completely different proof. You find this
example here rather than in the next section (section 9.2: The Method of Transformations in One
Dimension), because it is solved with the techniques of this section.

Example 9.3. Let Y; and Y3 be jointly cntinuous random variables with density function

e_(y1+y2) ’ 0 S Y1 70 S Y2,
0, else.

My, y2) = {

What are the CDF andPDF of U := Y] + Y5?

Solution:
P{U<Lu} =PV1+Y: <u} = // e Y2 gy
R

where R = triangle with vertices (0, u), (0,0), (u, 0). Thus, for v > 0,

u—=y1
dy1

u u—y1 u
P{U < u} = / {/ e Y1Y2 dyg] dy; = / e Y1 [_eyz
0o LJo 0 0
= / e [1 - e_(“_yl)} dy; = / e ¥ [1 — ee™] dys
0 0
— ue

u u
— / €—y1 dyl _ / €_u d@/l — —€_y1
0 0 0

=—(e*=1) —ue" =1—-(1Q+u)e ™.

u
—Uu
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The derivative is (for u > 0)
d

Jolw) =2 (1= (14we™) = ~(1+u) e™ - (14w (e
= et (1+u)(—e_“) = — ¢ 4+ e"tue ™ = ue .
1—-(1 —u g
Thus, the CDFis  Fy(u) = (1+u)e ™, ifu>0,
0, else
and the PDFis  fy(u) = ue ™, ifu>0,
07 else.

The latter agrees with the WMS result. O

Remark 9.1. In the following we use the arrow notation § = (y1,...,yn), Y = (Y1,...,Y5), .

Summary of the Distribution Function Method

—

Goal: Find the PDF fy(u) for U = g(Y'), where g : D — R has a domain D C R" large
enough to hold all arguments i/ that are relevant for the problem.
(1) Find theregionR = {g < u} = g~ (] — 00, u]). (Thus, R C R™.)

(2) Find the “boundary” R* = {g = u} of the region R.
(3) Find the CDF Fy;(u) = P{U < u} by integrating f(i) over the region R.
(4) Find the the PDF fy(u) = ngu(“) by differentiating Fy(u).

Note for the above that, since ¢ may not be invertible, g~! denotes the preimage ¢~ *(B) = {7 :
9(j) € B}, where BC R.If, e.g., B=] — 00,u], then R =g !(] — 00, u] ), and (3) expresses

Fy(u) = P{U <u} = P{g(Y) <u} = P{w:Y(w) = 7such that ¢(7) < u}
9.2
2 =P{Y6R}=//---/Rf9<y*>dz7.m

The next remark really should be considered another example for the distribution method. It has
been marked as optional, so it will not be part of any exam or quiz. Nevertheless, you are strongly
encouraged to work through its proof and increase your skills with respect to applying the distri-
bution method.

Remark 9.2. | %7 | LetY be a continuous random variable with PDF fy (y) and leth : R — Rbea
symmetrical function (also, symmetric function), i.e., h(—y) = h(y) for all y. Also, assume that

(1) y~— h(y) is differentiable (hence, continuous) everywhere.
(2) yw~— h(y)isinjective fory > 0,ie., 0 <y <y = h(y) # h(y'). (Thus, by symmetry, h(y)
also is injective for y < 0).

Then one can determine the CDF and PDF as follows:

Continuous functions of a real variable are either strictly increasing or strictly decreasing on any
subset of the domain where they are injective. (Draw a picture!) Thus, there are two possibilities.

(1) A is strictly increasing on [0, oo[ (and then, by symmetry, & is strictly decreasing on [—o0, 0]).
(2) his strictly decreasing on [0, oo[ (and then, by symmetry, & is strictly increasing on [—oo, 0[).
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In either case, since there are no jumps for the continuous A(-), the following is true for any u € R:
(3) wissosmall that h(y) > u for all y. Note that then P{U < u} = 0.
(4) wissobigthat h(y) < u for all y. Note that then P{U < u} = 1.
(5) There is some y such that 4(y) = u. Then, by symmetry, h(—y) = u. Moreover, the injectivity
assumptions guarantee that [j#yand g # —y| = h(y) # u.
Thus, for such v, there is a unique y > 0 such that h(y) = u. We write y = h=1(u). 3!

For such a u of (5) with corresponding y = h~!(u), we obtain (see Figures 9.1 and 9.2) 32

I
| i L
4 | s _I_'" N b
- -G" = = LA
4 Y=g d o
9.1 (Figure). symmetric g(y), increasing fory > 0 9.2 (Figure). symmetric g(y), decreasing fory > 0

(6) If his strictly increasing on [0, oo[ (case (1)), then U (w) < u < |Y(w)| <y = h~'(u). Thus,

Fulw) = PLU <u} = PUY]<h ()} = P{-h"'(u) <Y < b (w)
= Fy (h_l(u)) — Fy( — h_l(u)) .

Thus, if h is strictly increasing on [0, o[, we obtain for general —oco < u < oo the following:

1, if h(y) <wuforally,
(9.3) Fy(u) = ¢ Fy(ht(w) — Fy(—h'(w)), ifthereisy=h"1(u),
0, if h(y) >uforally.
_dh7(w)

d
We differentiate T to obtain the density. We write = (u) 7

o fulw) = h7V(w) fy (b (w)) — (=Dh (W) fy (h7H(w) = 2h7(u) frr (R} (w)) .
fulu) = {2 BV (u) fy (Rt (w)), ifthereisy =h"1(u),

Thus, =
0, else.

(7) If his strictly decreasing on [0, oo (case (2)), then U (w) < u < |Y(w)| >y = h™*(u). Thus,

Fy(u) = P{U <u} = P{IY|>h""(u)} = P{Y <—h"'(u)} + P{Y > 1" (u)}
=Fy(—-h'(w) +1 - F(h(u).

31 Matter of fact, u — y = h~! (u) is the inverse function of the function f, which becomes bijective, if we restrict

its domain to [0, co[ and its codomain to f([0, oco[) = {f(y) : 0 <y < oo}.
%2In those figures, the name of the function is g(y) rather than h(y).
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Thus, if h is strictly decreasing on [0, co[, we obtain for general —oo < u < oo the following:

1, if h(y) <uforally,
(9.4) Fy(u) = { Fy(—=h™'(w) + 1 — Fy(h (), ifthereisy=h""(u),
0, if h(y) >uforally.

Again, we differentiate % to obtain the density.

o Jfulw) = (D (W) fr (k7 (w) = b7 () fy (B (W) = —2h7Y(u) fy (B (w)) .

—2) Y h! if there is y = A~

Thus, fir(u) — (—2) (u) fy( (u)) , ifthereisy (u),

0, else.

(8) Since h is strictly increasing on [0,00] = A~ V(u) >0 = A~ V(u) = [ (u)|
and h is strictly decreasing on [0,00[ = h™"(u) <0 = —h V(u) = [ (u)|,
we can combine the results for the density fi7(u) into a single formula:

(9.5) fo(u) = {Q\h_ll(u)\fy(h‘l(u)), if there is y = h=1(u),

0, else. [

Remark 9.3. Examples of symmetric functions u = h(y) are

L e V2
V2T

The last two examples illustrate that ANY function ¥ (k(y)) of a symmetric function h(-) is symmet-
ric. That is a triviality: Given any y,

g symmetric = h(—y) = h(y) = ¢(h(-y)) = ¥(h(y)).

uw =y u = cos(y); u = W y =

Note that the last example (the standard normal PDF) is symmetric, because it is a function of 3.

You are strongly encouraged to verify by direct computation that the results of Remark 9.2 are cor-
rect, if h(y) = y*. You can do so without trying to understand the math that leads to the derivation
of the formulas for Fyy(u) and fy(u). O

Example 9.4. Assume that the random variable Y is A4(0,1), i.e., Y is standard normal. What is the
distribution of U := Y?2?

For this example, let

9.6) o) = fr(y) = \/12?63,2/27

9.7) D(y) = / ot dt.

In other words, ¢ is the PDF of Y and & is the CDF of Y'.
Since U > 0, we have fy(u) = Fy(u) = 0 for u < 0. Thus, we may assume that u > 0.
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Then, Fy(u) = P{—vVu <Y < u} = ®\/u) — ®(—+/u) and thus,

folw) = Fi(u) = 2 [8(v/a) — B(—v)]

du
1 1 1 1 2 1
= —— - B - w2
OV g + 0V g = 0V 2 = e VI
Above, we used symmetry ¢(—+/u) = ¢(y/u) to obtain the equation before the last. Thus,

1/2—1
folu) = —— w2 = W

V2 21/2, /; ‘
One can show that I'(1/2) = /7. >* We use that and obtain, setting o := 1/2 and 3 := 2,

u1/2—1 e—u/? w1 e—u/,B

Jolw) = Simramp)y = Fre)

We finally remember that all this was done for « > 0 and that f;;(u) = 0 for u < 0.

uel efu/ﬁ

fo(w) = ¢ BT(e) ~

0, else.

ifu>0,

It follows that the square of a A4°(0,1) variable has a gamma(1/2, 2) distribution. Equivalently, it
has a chi-square distribution with one degree of freedom. [J

Example 9.5. It is important that you recognize when there are significant shortcuts. It might be
possible to obtain Fy(u) = Fiy (g~ ' (y)) without having to integrate the PDF. Here is an example.

Let the random variable Y be expon(1). Find the CDF and PDF of U := 2Y — 4.

Solution:
(1) Here, u = g(y) = 2y — 4 hasinversey = g~ (u) = (u +4)/2.
1—eY, ify>0,
0, else.

(3) Thus, Fy(u) = P{U <u} = P{2Y —4<u} = P{Y<u+4} _ B <u+4> |

- 2
1— e, if uHt >0,
0, else.

(2) TheCDFofYis Fy(y) =

4) From (2): Fy(u) =

1— e "%, ifu>-2
(5) Thus, Fy(u) = ’ -
0, else.

(6) We have obtained Fy;(u) without integrating a PDE.

1 —utd .

ze 2, ifu>-2,
(7) Thedensityis fy(u) = Fj;(u) = <0, else.

]

3See, e.g., https:/ /en.wikipedia.org /wiki/Gamma_function or Shilov, G. [4].
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9.2 The Method of Transformations in One Dimension

Introduction 9.1. We already encountered the method of transformations in Remark 9.2 on p.137.
There we computed the CDF and PDF of the random variable U = h(Y’) for a continuous random
variable Y and a symmetric and differentiable function h(y) which was injective on the interval
By = [0, 0o[. (By symmetry, h also had those characteristics on By =] — 00, 0].)

At the heart of the calculations was the fact that injectivity allowed us to compute, for a given u, a
unique y = h—1(u) such that h(y) = u.

Since differentiable functions are continuous, injectivity on an interval B implies that h is either
strictly increasing or strictly decreasing on B. See figures 9.1 and 9.2 in that remark and also figures
9.3 and 9.4 below.

™
2 iy
"= h(_\‘])
0 ¥, = h_]{”]) y ] yw=*h l(u‘) ¥
9.3 (Figure). Strictly increasing function. 9.4 (Figure). Strictly decreasing function.
Source: WMS Ch.6.4 Source: WMS Ch.6.4

Those figures illustrate the following.
(1) If his strictly increasing, then h(y) <u; < y < h~Y(uy). Thus,

o DU = PO <u) = PO <07 W) = = PY <H @),
' ie,  Fy(u) =Fy(h (u)).
. . . . —1/ dh_l(u)
We differentiate with respect to v and write A~ (u) for o Then
-1 u ,
ot = A0 IVIC) g o) et

du du

Since h is strictly increasing, h~'(u) > 0. Thus, h="(u) = |~ (u)|. Thus,

(9.9) fow) = fy(h™ (W) - [p~ Y (w)].

(2) If his strictly decreasing, then h(y) <wu; < y > h~1(u1). Thus,

P{U<u} = P{h(Y)<u} =P{Y >h ' (uw)} =1 — P{Y <h '(u)},
ie, Fy(u) =1-Fy(h ' (u)).
We differentiate with respect to u. Then

(9.10)

_dFy (h™(w))

= W) (= W)

fu(u) =
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Since £ is strictly decreasing, h ! (u) < 0. Thus, —h = (u) = |~ (u)|. Thus,
9.11) fu(w) = fy (h™'w)) - 107" (w)].

(3) We compare (??) and (9.11) and see that they are equal. Thus, as long as h is eiher strictly
increasing everywhere or strictly decreasing everywhere, (i.e., as long as f is invertible ev-

erywhere,)
-1
©.12) futu) = fy (071 w) (0@ = fr (b w) - ’ W' |
b
Since / fy(t)dt = / fv (t) dt for any interval [a, b], we only need to worry about the

[a,b]N{7:f (§)#0}
behavior of h for arguments belonging to the set suppt(fy) := {7 : f(g) # 0}. It is customary to

call suppt(fy) the support of the density fy (y). > O

The following theorem summarizes the observations of those introductory results:

Theorem 9.1.

Given are a continuous random variable Y with density fy (y) and a differentiable function h(y)
which is either strictly increasing or strictly decreasing for all y € suppt(fy), i.e., for all y that
satisfyy fy (y) > 0. Then the PDF of U := h(Y') is

).

9.13) folw) = () 1) = g (a) - |

PROQOF: See the introduction 9.1. W

Example 9.6 (Increasing function). Given is a random variable Y with the following PDEF:

2, f0<y<l,
fr(y) = 37 Y
0, else.

Let U := 4Y — 3. Find the PDF for U by means of the transformation method.

Solution: We apply the transformation method with the strictly increasing function
u = h(y) = 4y — 3. Then the inverse of hisy = h™1(u) = (u + 3)/4, forall u € R.

(1) We apply the transformation method with u = h(y) = 4y — 3 (strictly increasing).
(2) Then the inverse of hisy = h™(u) = (u+ 3)/4, forall u € R.
(3) Further, hil/(u) =1/4.Since0 < (u+3)/4<1 & -3<u<l],

2(u+3)
fu(u) = { 4

0, else.

)

I

if —3<u<1, ugg,ﬁ—sgugL
0, else. O

34 In general, one defines the support suppt(g) := {Z : f(Z) # 0} for any real valued function z — g(x).
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Example 9.7 (Decreasing function). Given is a random variable Y with the same PDF as in Example

9.6:
2y, f0<y<I1,
fr(y) =
0, else.

Let U := —3Y + 2. Find the PDF for U by means of the transformation method.

Solution: We apply the transformation method with the strictly decreasing function
u = h(y) = 2 — 3y. Then the inverse of hisy = h™1(u) = (2 —u)/3, forall u € R.

(1) We apply the transformation method with v = h(y) = 2 — 3y (strictly decreasing).

(2) Then the inverse of hisy = h™'(u) = (2 —u)/3, forall u € R.

(3) Further, hV(u) = —1/3.Since 0 < (2—u)/3<1 & 0> (u—2)> -3 & —1<u<2
22—-u) |—-1 . 4—2u
Sl 1< y< T

3 ‘3 ,if —1<u<?2, 5 if —3<u<1,

Jo(u) =
O’ else. 0, else. O

Example 9.8 (Distribution function method with two variables). Given are two jointly continuous
random variables with uniform distribution on the triangle

B = {(y1,12) : 0 <y <1—y1 <1}.

Find the CDF of U = Y7 + Y5.
2, f0<yp<l—y <1,

(1) Thejoint PDF of (Y1,Y2)is  fvi,vo(¥1,%2) =
0, else.

(2) FU(U) = P{U < u} = P{Yi +Y2 < u} = ff 2dg7,where C = {(yl,yQ) Y1+ Y2 < u}
BNC
B (W,yp)eEB=0<l—y<1=0>y—-1>-1=0<y <1
0 < y2 < lisobvious. Thus, u <0 = P{U <u} =0.
(4) B is the triangle with vertices (0,0), (0,1) and (1,0).
For u > 0, C is the triangle with vertices (0, 0), (0,u) and (u, 0)

(5) Thus,0<u<1l= BNC=C = [[2dy =2[[,dy
BnC
(6) Thus, from(3) & (2),0<u<1 = BNC=C = Fy(u) =2 [[, dj.

[Jo - - - dijis done by integrating, for each fixed 0 < y1 < u, over that part of the vertical line
{y2 : y2 = y1 } that is within C. That is the segment 0 < y» < u — y;.

U pu—y1
(7) Thus, O<u<l = FU(’U,) = 2/ / dyQ dy1
0 0

2
= 2/ (u—y1—0)dy; = 2u? —2y—1’u = u?.

0 2o
8 From@),u>1 = BNC =B = suppt(fy) = Fy(u) =1
0, ifu<oO,
(9) Thus, from (3) & (7) & (8), fy(u) = {u?, fO0<u<1,

1, ifu>1.0
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Remark 9.4. In the following we use the arrow notation § = (y1,...,¥n), Y = (Y1,...,Y5), ..

Summary of the Transformation Method
Goal: Find the PDF fi;(u) for U = h(Y'), where
e h: R — Rhasadomain R C R large enough to hold all arguments y that are

relevant for the problem. That requires that R contains the support of the PDF fy
(the set where fy is not zero).
h is invertible on R. In other words, h is injective on R: If y € D and u = h(y), then
there is no § € R such that y # y and h(y) = u.
Thus h has an inverse u — h~!(u) which maps any u that is a function value u = h(y)
back to y. Do not confuse this genuine inverse function of h(-) with the preimage
function B+ h™}(B) = {y € Y : h(y) € B}! That one maps sets to sets!
We require that h is either strictly increasing or strictly decreasing for those y € R
where fy(y) > 0. This assumption guarantees that % is injective and its inverse
u + h~1(u) exists on the support of fy.

To find the PDF fy;(u) for U = h(Y'), proceed as follows:
(1) Find the inverse function, y = h™1(u), for those u that correspond to y with fy (y) #
0.

dh
(2) Find the derivative . = hV(u).

(3) Finally, compute fy(u) as follows:  fy(u) = fy(h™*(u)) ‘

dh~t(u)
du

Remark 9.5. The transformation method still works if & is not either strictly increasing or decreasing
on suppt(g),as long as h is injective and R can be subdivided by intervals on which £ is either strictly

increasing or strictly decreasing.
, ify <o,
As an example, consider u := h(y) := Y ) v=
e ¥, ify>0.

e On]—o0,0], his strictly increasing with inverse y = h~!(u) = u. This inverse has derivative
ht(u)=1>0.

e On ]0,00], h is strictly decreasing with inverse y = h™!(u) = —In(u). This inverse has
derivative h~ (u) = —1/u < 0.

e Obviouslyify <0, then y <0 < u <0. Moreover,y >0 & 0<u=e ¥ <1

fr(u) -1 = fy(u), ifu<o0,

e Thus, fy(u) = {fy(eu)‘l/u - M, if0<u<1. O

9.3 The Method of Transformations in Multiple Dimension
Introduction 9.2. In Chapter 9.2 (The Method of Transformations in Multiple Dimension), we

looked for ways to compute the density fi/(u) of the transform U = h(Y') of a continuous ran-
dom variable Y by means of a function » which maps real numbers y to real numbers u = h(y).
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Theorem 9.1 on p.142 provided us with an explicit formula for the PDF fi;(u) of the transformed
random variable U = h(Y):

).

.19 ol = (07 w) - B = grt) - [

(1) Since |~ (u)| appears in that formula, 1! (u) must exist and be differentiable.
(2) That in turn requires that h is differentiable, in particular continuous.
(3) Moreover, neither //(y) nor A=Y (u) can be zero, since '(y) - h~'(u) = 1.

Existence of h~!(u) requires h to be injective on the support of the PDF fy-:

(4) If uis the function value u = h(y) of some argument y that satisfies fy(y) > 0,
e then there is no other argument ¢ that satisfies the conditions given in (4).

Since h is continuous, (4) is satisfied if h is either strictly increasing or strictly decreasing for all y in
the support of h, so we replaced (4) with that simpler assumption.

We now lok for an n—dimensional analogue. If you have attended a linear algebra course, you

are knowledgeable about n x n matrices and their determinants. If your background about those

subjects is limited to a course in multivariable calculus, then assume that n = 2 or n = 3. We study
e random vectors Y = (Yl, ce Yn), where each coordinate Yj is a random variable.

e functions @ = h(y) that map n—-dimensional arguments § to n—dimensional function values
h;
¢, have continuous partial derivatives — for 7,5 € [1,n]z and that satisfy a multidimen-
Yj
sional analogue of (4):

(5) If the vector @ is a function value @ = h(§) of some argument 7 that satisfies fv(7) >0,
(here, fy (gj) ) is the PDF of the jointly continuous random variables Y7, ...,Y3),
o then there is no other argument  that satisfies all those conditions.

These two conditions guarantee the invertibility of the function i — @ = h (ﬁ) This inverse function
h~1(.) is defined by the relation

i =h(g) & 7=hr(ad).

Since the function values 7 = h~' (&) belong to R, h~'(-) consists of n coordinate functions
hit(5), b t(-),. .., hy(-). They are defined by the equations

(9.15) (@) =y, hy'(@) = yo, ooy byt (@) = yn.

dh dh
In the onedimensional case, the existence of continuous T which satisfies d‘ # 0 implies that of
U u
-1

. .. dh
a continuous and non-zero derivative I Further,
Yy

dh~1 dh
N =1/—.
©-16) dy /du

In the n-dimensional case, we must replace the condition

dh
du‘ = 0 with the condition
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[Oh1 Ohi .. Oh1]]

Jy1  Oy2 yn
G)  Jl = det| O O v | £,
L Oy1  Oy2 Oyn, |

The choice of the symbol J~! for this determinant will become clear in a moment. The assump-
—1

tions(5) and (6) are sufficient for the existence of all partial derivatives —'— and their continuity.
W

j
They form an n x n matrix and one can show that it's determinant, which we denote by J, also does
not vanish. In other words,

(o ohT! onT ]
ou1 Ous Y Bun
ohyt ony'  omg!
(9.17) J = det| w1 Ou Oun £ 0.
Ohyt Ohy' . Ohyt
L 6U1 8u2 Bun J

Moreover, the determinants J~! and J satisfy the analogue of (9.16):

1
9.18 Jl=—-.0
018) -
Before we examine how this material about the matrices of the partial derivatives and their deter-
minants can be used to compute the joint PDF of the random vector U (w) = ﬁ(?(w)) and before

state our findings as a formal theorem, we illustrate the above with the following example.

Example 9.9 (The joint PDF of two independent, exponential random variables — Part 1). In this
twodimensional example, the function h = (hq, hs) is defined as follows:

(9.19) ur :=hi(y1,42) = 21 + y2,
(9.20) ug :=ha(y1,42) = y1 — 242
(1) We show that this function can be inverted by solving these equations for § = (y1, y2).
9.19
o wul — 2up — 2up V=) yotdys = Syp = yo = u1/b — 2u2/5.

9.20
o Thus,y1 2 up+2ys = us + (1/5)[2u1 — 4us] = (2u1)/5 + ua/5.

We have found the inverse function h=* = (h7*, hy!) to be

1

(9.21) hl_l(ul,uQ) =1y = g(?Ul + UQ),
_ 1

(9.22) hi'(ui,up) =1 = s (U1 — 2up).

We will continue in Example9.10 on p.148. [

In the introduction, we informally discussed the following result from multivariable calculus which
we are rephrasing here in the language of joint PDFs of continuous random variables and which
is at the heart of this section. It is so lengthy that we spread it over several boxes. As mentioned
before, assume that n < 3 if you do not have sufficient knowledge of linear algebra.
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Theorem 9.2.

o LetY = (Yi,...,Y,) beavector of randomvariables with joint PDF fy( j) and let R be a
“nice” subset of R which is so big that it hosts all outcomes Y (w) of Y .
o Let the function h:R— R™ ¢+ @ = h(5) satisfy the following.
@ h has continuous partial derivatives e forall1 <i,j <n.
Yj
If the vector @ is a function value @ = h(ij) of some argument § that satisfies fy (i) > 0,
then there is no other arqument { that satisfies all those conditions.

Then h has an inverse h~' = hi', hy', ..., h;* which is defined by the relation
i@ =h(g) & g=nh'a).
We can write this for the coordinate functions h;(-) and hj’1 (+) as follows:

(9.23) ur = hi(9), ooy U = ho(§) and yy = hi*(4), ..., yo = by, (@).
-1
Also, all partial derivatives —— exist and are continuous for 1 <i,j < n.
Uj
[0 Oh1 .. Ol [oh ! oh' | ohy]
oy1  Oy2 Oyn Ou;  Oug Oun
P Ohy Ohy | 0Ohy ~1 ohy " ohy' dhy "
©24) Lot P | 0w ow 7 I el e
dy | ... ..o du
Ohn Oh Oh 1 —1 -1
S Sin g Ohy'  Bhy Ohy
L Oy1 Oy Oyn | Jul Ous Aun, |
dh dh!
9.25 Let J ' := JYg) = det| — ], J = J(@) := det .
0.25) (@ ( dg> (@) ( i )

o Weadd another assumption: J~(ij) # 0 for all y that satisfy f3(3) > 0.

(9.26) Then J(h(gj)) £0 and J(h(p) = 1 / J!
Further, the density of the transform U = h(Y') is computed as
(9.27) f (i )) fo ( - (ﬁ)) - J(1) .

PROOQOF: Beyond the scope of this course. It needs knowledge not only of linear algebra, but also of
the so called implicit function theorem. W

Before we give some examples to illustrate this theorem, we make a remark about some of the

. . . . dh
notation introduced there and then give a name to the determinant J~! of the matrix — of the
Y
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partial derivatives of h.
Remark 9.6. In the onedimensional case (n = 1), the situation is as follows.
e R"is the set R of real numbers, o i = FL(Q’) becomes u = h(y) for real numbers y and v,

e thel x 1 “matrix” of “partial” derivatives is h'(y) = o
Y

o o ., dh . . N
Considering that last point, it seems natural to write ¥ for the n x n matrix of partial derivatives

Y
Oh;
3 * and this author chose to do so. However, you will find either different notation 3 or, like in the
Y

j
WMS text, no dedicated symbols at all. That works well enough with 2 x 2 matrices. [

Definition 9.1 (Jacobian and Jacobian matrix).

dh -
The matrix pr of the partial derivatives of the function ¥ — h(¥) is called the Jacobian

= dh
matrix of h(-). We refer to its determinant, J~!(¢/) = det <d_“) , as the Jacobian, sometimes
Y

also the Jacobian determinant, of i(-). O

Notation 9.1 (Jacobian: WMS definition).

: a(ulv"',un) o dﬁ_l a(yh?yn) . d}_i_l
Stewart writes m = det W and m = det di

This author follows the great majority of books on multivariable calculus in defining

dh
the the Jacobian as the determinant of d_gj’
7—1
Be aware that WMS chooses instead to call J = detd

the Jacobian.

—

U
The reason seems to be that most books on probability and statistics agree on using
dh~!

—

not want to use the somewhat lengthy “the reciprocal of the Jacobian” in its frequent
references to J

the letter J for det (without giving a name to that determinant) and WMS does

Example 9.10 (The joint PDF of two independent, exponential random variables — Part 2). In Exam-
ple 9.9 on p.146, we defined @ = h(j) as follows:

ur = hi(y,y2) = 2y1 + y2, up = ha(y1,y2) = y1 — 2y2.

For example, Williamson, Richard E. and Trotter, Hale [6] uses the notation l_i'(g]‘), the multidimensional analogue of
W (y).
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We computed its inverse @ = h~Y(@) = and obtained

_ 1 _ 1
y1 = hit(ui,ug) = g(2u1 + ug), yo = hi'(u1,u) = 5(u1 — 2ug).

Observe that both / and " are defined for all points in R2.

The partial derivatives of & are
Ohy ohy Ohy Ohy
— =2 R — =1 s — =1 5 = —2.
o Iy oy Y2

Those of h—! are

ohy' 2 oh' 1 ohy' 1 ohy' -2
8u1 _57 8u2 _5’ 8U1 _57 8UQ - 5 '
Further,
dh 2 1 dh=' % 1
g — |1 —2]° di |5 F)°

Since the determinant of a 2 X 2 matrix {CCL Z} , i1s ad — bc, we obtain

N CIC ROIOEE

1
Observe that J = =y validates what was stated in (9.26) on p.147.

We will continue in Example9.11. [

Example 9.11 (The joint PDF of two independent, exponential random variables — Part 3). In Exam-

-

ple 9.9 on p.146, we defined @ = h(¥) as follows:
(9.28) ur = hi(y1,92) = 2y1 + Y2, uz = ha(y1,92) = 1 — 2y2.

-1
In its continuation, Example 9.10 above, we obtained J = const = = for the reciprocal of the

Jacobian of h.
We are ready to specify the random variables that we wish to transform by means of h(-).

e Assume that Y] and Y5 are independent expon(2) random variables.
o Let Uy := (YY) =2Y1 + Yy, U := ho(Y) = Y] + 2Va.
e Apply Theorem 9.2 on p.147 to compute the joint density f;(u1,uz2) of U = h(Y).

Solution:

1

Ze—(nty2)/2  if >0
@ fp@ = v = {2° P R

0, else.

1 1
(b) Werecall thaty; = g(2u1 + ug9) and yo = g(ul — 2ug). Thus,
o _ _ 1 (L LY 1

Fo(@ = fnn(m) = 5 e {= (Feu +w) + fn - 2m) 2}-|-

1 -1 1 3'LL1 — U2 1 U — 3U1
S 2 C up) b = — SLI L G vz = m
10 eXp{ g (2w +uztw “”} 10 eXp{ ~10 } 10 eXp{ 10 }
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e BUTONLYIFy; = hl_l(ﬁ) >0AND y; = h;l(ﬁ) > 0! What are those vectors ?

() yi>0andy; >0 & 2u; +ux >0
and u; — 2us >0 Au

(d) Y1 > Oandyg > 0(9':2>8)U1 =2y1 +y2 > 0.

(e) From (c): 2uy +us >0 = ug > —2uy

(f) From (¢): u1 —2us >0 = u; > 2uy
= uz < %

(g) From (d), (), (H): h{ ' (@) > 0and hy (1) > 0 <
up > 0 and —2u1 < u9 < %

e The figure to the right shows that those are the
points enclosed by the quadrant which is ob-
tained when rotating the first quadrant clock-
wise, by an angle of 60°

(h) Thus, if we denote this quadrant by R,
L 3w ifie R,

(1) = ¢ 10 '
fU( ) 0, else . where hy*(u1,u2) > 0and h;*(uy,uz2) > 0

At this point we know how to integrate with respect to the PDF of U = h(Y). We can replace the
integral du over the region R by an iterated integral dus du; as follows.

For a fixed u; > 0, the integration bounds for us are —2u; < up < % (See (g)). Thus,

ug /2
[t @i = [[ gt oo = [ [y e
R2 R 2u1

For example, if w = g(U) = g(u1, us) is a real-valued function of (u1,us) € R%, then
u2/2
/ /2 7& (u2=3u1)/10 dUQ du1 ]
U1

9.4 Order Statistics

A The presentation of the material in this section is largely based on the 2015 Math
447 lecture notes of Prof. Xingye Qiao, Binghamton University

@@Author
Given n random variables Y = (Y7,Y3,...,Y},), one can sort them, for any fixed w €  in nonde-
creasing order. One obtains in this fashion a sequence, of size n, of numbers

Yiy(w) < Yg(w) < Vgw) < < V()

Since these numbers depend on randomness w, each Y{;)(w) represents an outcome of a random
variable Y ;).

Example 9.12. Here are some examples.

(a) 70 students are randomly selected when exiting lecture hall and their age is measured in years.
Those 70 ages, A1(w), ..., A7o(w), are sorted in increasing order:
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1)(w) = height of the smallest person in the sample

(2)(w) = height of the second smallest person in the sample
. ________________________________

e A(;)(w) = height of the jth smallest person in the sample

@ = e e e e e e e e e e e e - - - - - - - -

e A(,(w) = height of the tallest person in the sample

Clearly, A(l)(w) < A(Q)(w) < A(g)(w) <...< A(n)(w)

Almost all of those ages will be one of 18,19, ..,25. Accordingly, it is not only possible that we
encounter an index j that results in equality, A(;) = A(;41), but this will be the rule rather than the
exception.

(b) Rather than considering the age of those 70 students, we now look at their height, measured in
millimeters. Those 70 heights, H;(w), ..., H7o(w), are sorted in increasing order.

Height can be considered a continuous random variable. Since the probability of two students
having precisely the same height is zero, we may consider the outcomes H ;) distinct. Accordingly,
we can replace “less or equal” with strict inequality and obtain

H(l)(w) < H(z)(w) < H(3)(w) << H(n)(w) O

o We will deal in this section exclusively with continuous random variables.
e When considering a finite or infinite sequence Y1, Y5,Y3,... of such random variables, we
assume that they are iid (independent and identically distributed).

Definition 9.2 (Order statistics).

Given n iid continuous random variables ¥ = (Y1,Ys,...,Y,), we sort them in inreasing
order. The resulting sequence of random variables, which we denote as Y(;),j = 1,...,n,
then satisfies

(9:29) Yoy < Yo < Y3y << Y-

We call Y ;) the jth order statistic of Y.

See Example 9.12(b) why we may consider strictly increasing rather than nondecreasing. [

Assumption 9.1.

Unless explicitly stated otherwise,

—

e Y =(Y1,Ys,...,Y,) denotes a list of n iid continuous random variables (n € N).

o Y NYQN---NYnimpliesFyl :Fy2 :'--:Fyn aI‘ldfy1 :fy2 :~'-:fyn
We write F'(y) := Fy,(y) and f(y) := fy,(y) for the common CDF and PDF. [J

Remark 9.7. Note that
o The first order statistic or smallest order statistic is Y{;) = min{Y1,...,Y,}.
e The nth order statistic or largest order statistic is Y(,,) = max{Y1,...,Y,}.
e A simple consequence of the definition of min and max are the following formulas:
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(9.30) Y)(w) > y < min (Yl(w),...,Yn(w)) >y & Yj(w) > yforallj € [l,n|z,
(9.31) Vi (w) <y & max (Yi(w),...,Ya(w)) <y & Yjw) < yforallje(l,n]z. O

Theorem 9.3 (CDF and PDF of the jth order statistic).

For y € R, the CDF of the kth order statistic (k = 1, ..., n) satisfies the following:

(932) FY(l)(y) =1 - [1 — F(y)]n,

(9.33) Fy @ =F®I",
k—1

(9.34) Fy, @ =1 — (n) [F)) [L = Fy)"™
j=0 N

Fory € R, the PDF of the kth order statistic (k = 1, ..., n) satisfies the following:

(9.35) Ko =r1-F@I" " fy),
(9.36) @ =nE@I" fy),
k—1 )
937) Pt = ( ) 1) GIEGP = alF @),
9.39) P = (Z >f WP - P,

Note that the proofs are not given in the order of the seven formulas of the theorem.
PROOQF of (9.33):

03D p P{vi<yin{Ya<y}n---n{Y, <y}

P{Y1 <y} - P{Ya <y} - P{Y, <y} = [F(y)]".

o)
1ndep

PROOF of (9.32):
P{Y(y) >y} (9iO)P({}/1 >ytn{Ye>ytn---n{Y, >y})
AP by S g} P{Ye > y}--- P{Ys >} = [1— F(y)]".

Thus, Fy, ) = 1= P{Yq) >y} = 1-[1-F(y)]"
PROOF of (9.35) and (9.36):

This follows from jy (1-[1=F@]") = —n[l=Fuy" (- fly)
and (P = alFG)P £).
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PROOF of (9.34):
This proof requires a lot more work than the proofs we have done so far. It will be done by con-
structing a binomial random variable.

e Since y is fixed, sois p := F(y) = P{Y; < y}. (Identical for all j, since the Y; are iid.)
1 ifYj(w) <vw,

e Forj=1,...,nlet X;(w) := 0 else

Let U(w) = 3 X;(w).
7j=1

e Thus, if we interpret Yj(w) < y as a success and Y;(w) > y as a failure, Xi,...,X,, are a 0-1
encoded Bernoulli sequence *® and U ~ binom(n, p), since U counts the number of successes.

e Observe that Y;)(w) <y & Yj(w) <yatleast k times <« there are at least k successes <«
U(w) > k. It does not matter whether or not there are more than k successes.

n k—1
o Thus, Fy,, (y) = P{Yy) <y} = P{U=k} = ZkP{UZJ} =1- %X PU=Jj}
J= J=

k=1 /p , .
e Since U ~ binom(n,p) and p = F(y), Fy,, (y) =1— Z: <]> [F(y)) [1 — F(y)]" .
=

PROCQOF of (9.37):
This is done by differentiation. For each j = 0,...,k — 1,

d (n i n—j _ n i Jj _ n
N = (MYrwrn-rer - (1) @Ewp - For)

k—1
d (n im n—j
_ jzody@ (FGY [ - F)™)
k—1
2 (%) 1) GGl = ar)

This finishes the proof of (9.37).

The proof of (9.38) is based on an entirely different approach. Before we do that proof, we first
illustrate that approach by redoing those of (9.35) and (9.36). Those proofs are much simpler and
are a good preparation for that of (9.38).

ALTERNATE PROOF of (9.36):

First we note the following for a continuous random variable U with density fi/(u) Assume that
Au > 0 is very close to zero. Since we assumed for all our continuous random variables that they
have continuous density, fy(-) ~ const = fy(u) on Ju,u + Au.

@ Thus, Plu<U <u+Au} = [T fu(t)dt ~ fu(u)-A.

%See Definition 6.6 (Bernoulli items and variables) on p.76.
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(b)

(o)

(d)
(e)

(f)

(8)

For the fixed y and some “really small” Ay, we create three events:

[ L (for “left-hand side”) @ I (for “inside”) @ R (for “right-hand side”),

and a sequence of random items X7, ..., X, as follows.

@ X;(w) = L  Yj(w) <y. Then P{X; = L} = P{Y; <y} = F(y).

BXjw) =1 & y<Yjw) <y+Ay, Then P{X; = I} = Py <Y; <y+Ay} L fu(u)-A.
B0 Xjw)=R < Yj(w) >y+ Ay. Then P{X; = R} = P{Y; >y} = 1— F(y).
By construction, the X; form a multinomial sequence. Let U:= (Ul, Us, U3), where

[ Uy := # of indices j such that X; = L,

[ Uy := # of indices j such that X; = I,

[ Us := # of indices j such that X; = R.

Then U is multinomial with parameters n, p1 = F(y), p2 = f(y)Ay, p3 =1 — F(y).

Since we assume that Y(j) (w) is strictly increasing with j for all w, it seems reasonable that,
for “really small” Ay, the following is true:

If Y1)(w) > y, then Y(;)(w) >y + Ay forall j > 1.

(@
Thus, fy,1)(y) - Ay R P{y <Yy <y+Ay)
= P{exactlyoneofYy,...,Y, €]y,y+ Ay] and Y; > y + Ay for all other j }.
= P{ none of the X; are L and exactly oneis / and n — 1 are R }.
) n e
= P{U1=0,U=1,Us=n—1,192 <0 Lo 1) FWP [fy)Ay]' 1= F(y)".

Since " = n—' =
0,ln—1)  O-1-(n_1 "
we obtain fy1)(y) - Ay~ n [1 - F(y)]" " f(y)Ay.

We divide both expressions by Ay and obtain the density of Y(; as

Froy) =nl = Fy)" f(y).

ALTERNATE PROOF of (9.36):
We can adapt the alternate proof for the density of Y(;) to obtain that of Y{,,) as follows.

We keep all items through (e) and modify (f) and (g) as follows.

, @)
) fym() Ay R P{y <Y <y+Ay}

(g)

= P{exactlyoneof Y1,...,Y, €ly,y + Ay] and Y; <y for all other j }.
= P{ none of the X; are R and exactly oneis ] and n — 1 are L }.

= P{Ui=n—1,Uy=1,Us=0,} 2 (n _711 ) 0) [P [f(y)Ay]' [1 - F(y).

Sin " = n—‘ =
“\-110) " -0 "
we obtain fyn) (y) - Ay ~n [F(y)]™ ! f(y)Ay.

We divide both expressions by Ay and obtain the density of Y(,,) as

Fyomy (W) = n[Fy)]" ! f(y).

PROOF of (9.37):
We can adapt the alternate proof for the density of Y(;) to obtain that of ¥{,,) as follows.

We keep all items through (e) and modify (f) and (g) as follows.
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) fym(y) - Ay R Ply< Yy <y+Ay}
= P{exactly oneof Y1,...,Y, €ly,y+ Ay] and Y; <y for all other j }.
= P{ none of the X are R and exactly oneis I and n — 1 are L }.

= P{Uy=n—1,Uz=1,Us=0,} < (n O 0) [FW)" L [f(w)Ay]' [ - F)P.

, . n _ n! B
(8 Since <n—1,1,0> T oo "

we obtain fy,)(y) - Ay ~n [F(y)]"~" f(y)Ay
We divide both expressions by Ay and obtain the density of Y,y as
From () = n[F(y)]" " f(y).

PROOF of (9.38):
This time adapt the alternate proof for the density of Y;) to obtain that of Y{;, as follows.
We keep all items through (e) and modify (f) and (g) as follows.

) fyw) Ay 2 P{y <Yy <y+Ay)
= P{exactlyoneof Yi,...,Y, €ly,y + Ay] and Y; < y for k — 1 indices j and Y; > y for
n — k indices j }.
= P{k —1of the X are L,n — k of the X are R and exactly one is /

= P =kl = 1O = -k} 2 (T IR s -
Pl

(g”) Since <k_1,1,n—k> T (k=D (n—k)! n (k;—1)’

. n—1 _ n—
we obtain fy,(y) - Ay ~n- (k - 1> [F()IF f(y)Ay [1 = F(y)]"*.
We divide both expressions by Ay and obtain the density of Y, as

From @) =n[F@)]" ™ f(y) .-

Remark 9.8. (9.34) yields (9.32) for k = 1 and (9.33) for k& = n. This can be seen as follows:
Recall that

(A)

Z < ) i1 = F(y)" + @ FW)° [ - F))"

If we evaluate (9.34) for kK = 1 and k = n, we obtain
- (g) PP =11 F = - F)”,
n—1
— n _ n—j (é) n Orq _ n o_ _ n
From =1~ 3 (J) - Fe) @ (OFWP - Ol = - Fo)". O

.
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Remark 9.9. You may have noticed that there are two formulas for fy,, ().

(9.38) was shown by means of the “density approach” that utilized a limiting process Ay — 0 in
conjunction with the multinomial distribution. The proof was harder than that of (9.37). In return,
(9.38) has computational advantages, since no more summation Z?;& is required. [

The next remark belongs into Section 4.2 (Permutations) of Chapter 4. It has been
placed here, since every order statistic

Vi) = (Yoo Yim)-

A is a (specific) permutation of ¥ = (Y1,...,Y,), and every other permutation
@@Author

(Yi1ayi27"'7yin)

of Y = (Yl, cee Yn), possesses the same order statistic.
Remark 9.10. If we deal with a list @ = (a1, ag, . . ., a,) of distinct numbers, e.g.,
(A) a = (13.2, -3, 6.6, 2, —1.5),
then there is a uniquely determined permutation, @) = (a(1),a(2),- - -, a(y)) of @ which has those

a; in increasing order. In other words,
ay < a@) << A
In the specific example (A), we obtain
G = (=3, —1.5,2, 6.6, 13.2).
Ifb = (b1, ba,...,by) is another list of distinct numbers, then

-

be)y = e & bisa permutation of @.

~—

Going back to our example, if

b =(13.2, 6.6, —1.5, —3, 2),
¢ =(13.2, =3, 6.6, 2, —1.51),

then I;(.) = d(s), but C4) # d(a), since d(,) does not include the number —1.51. U

Theorem 9.4 (Joint PDF of the order statistic).
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Let ij € R™ satisfy

(9.39) Y1 < Yo < o0 < Y-

For the vector Y = (Yl, e Yn), let }7(.) be the vector of its associated order statistics, i.e.,
(9.40) Yoy = (Y- Yim)-

Then its density function at i is given by
(9.41) Fy o, @) =nl-[] ;) = nt @) flum).

If f does not satisfy (9.39), then f?( )(g’) = (W,

FIRST PROOF:

Let A be a “small” cube that is centered at . Study the proof of (9.34) of Theorem 9.3 on p.152. It
explains (in the onedimensional case), why one can approximate

P{Y e A} = fp(i)- A,
P{Y €A} ~ fp (1) A.

A cube of sidelength 2¢ has volume Vol(A) = (2¢)". If we solve that equation for ¢, we obtain

Vol(A)'/n
E = ———.
2
Since y1 < Y2 < --- < yp, one can choose A and hence, ¢ = Vol(A)I/ ™ /2, so small, that all

intervals [y; — €,y; + €] have empty intersection. For the following, see Remark 9.10 on p.156.
Note that

ﬁ,)(w) €EA &y — ¢ < Yyy(w) < yp + eforallk,
(A) Sy — ¢ < Yj(w) < yp + cforallk,
where j can be chosen depending on k.

We illustrate this point for n = 3, Vol(A) = 1/8, y1 = 2.6,ys = 4.2,y3 = 7.8. ¢ = (1/8%)/2 = 0.25.
This is small enough for the intervals y; & 0.25 to be disjoint.
There are 3! = 6 different ways to have Y (w) € A. They are:
M 2.35<Yi(w) < 2.85, 3.95 < Ya(w) < 4.45, 7.55 < Y3(w) < 8.05,
@ 2.35<Yi(w) < 2.85,3.95 < Ys(w) < 4.45, 7.55 < Ya(w) < 8.05,
() 2.35 < Ya(w) < 2.85, 3.95 < Y (w) < 4.45, 7.55 < Y3(w) < 8.05,
@) 2.35< Ya(w) < 2.85, 3.95 < Y3(w) < 4.45, 7.55 < Yi (w) < 8.05,
(w) ( )
) (

~— — — —

(5) 2.35 < Y3(w) < 2.85, 3.95 < Y1 (w) < 4.45, 7.55 < Ya(w) < 8.05,
6) 2.35< YVs(w) < 2.85, 3.95 < Ya(w) < 4.45, 7.55 < Yi(w) < 8.05,

AN N N N S

We use this illustrates the phrase “for all £, where j can be chosen depending on £”.
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Let us assume that k = 2, i.e., we consider the interval [3.95,4.45].

In (2) and (4), we choose j = 3 to obtain Y; € [3.95,4.45].

On the other hand, in (1) and (6), we choose j = 2 to obtain Y} € [3.95,4.45].
We refer you again to Remark 9.10 on p.156 to understand that (A) shows that

(B)

}7(.) (w) € A & some permutation of Y(w) €A

& each permutation of Y (w) € A

Since a list of n items has n! permutations, there are n! such (disjoint) events.
Since the Yj are iid, each one has the same approximate probability []7_; f(v;)-

Thus, f?(.) (1) - A~ nl- T2 fy) - A
As A — 0, “=” becomes “="and then f?(_) ) = nl- I f(y;). W

ALTERNATE PROOF:

(a)
[ ]

(b)

(c)

(d)

(e)

)

We may assume that i satisfies y; < y2 < - -+ < yy, since f?( . () = 0 otherwise.

For small enough dt1, dts, dt,, the intervals [y;, y; + dt;] are disjoint.

Thus, [y; < Yij)(w) < y; + dt; for all j | « [ there is a permutation iy, s, ..., i, of the
indices 1,2,...,n such that y; <Yj, (w) <y; +dt; forall j |

Thus, [yj < Y(j)(w) <yj+dt;forall j } < [among the X;(w), exactly oneisin [y, y1 +dt1],
exactly one is in [y2, y2 + d 2], ..., exactly one is in [y, yn, + dt,]. (Thus, NONE are outside
the union of those intervals.)

This can be interpreted as the counts of the outcomes of a multinomial sequence X1, ..., X,
where X}, (w) results in outcome #j, if y; <Y, < y; + dt;.

The probabilities p; = P{X}, results in #j} are, for small enough dt;, equal to

pj=PlYi€lyjy+dlt = [ ft)dt = f(t;)dt;.
Yj
From (b), (c), (d):
f?(.)(gj) dtl cee dtn = P{yj S }/(])(w) S yj + dtj fOI‘ all]}
= P{ there is a permutation iy, io, . . ., i, of the indices 1,2, ..., n

such that y; <Y;. <y, +dt; forall j}
= P{ each X}, has exactly one outcome #j foreach j = 1,...,n}

—(, " elnnh = T TG
_(1,1,...,1)p1p2”'p” T l;(f(t])dtj).

Thus, f?( )(g) dtl cee dtn = n! Hj f(tj) (dtl s dtn)
We cancel dt; - - - dt,, on both sides and obtain f?( )(37) dty = n! [, f(t;). W

Example 9.13. Find the formula for the joint density of Y(;) and Y{,,).

Solution:

(a)

(b)

Note that, since the Y} are continuous, “<” and “<” can be interchanged and the same is
true for “>" and “>” when computing probabilities.

Also, applying A= (ANB)YAN Bt with A = Yin) < wn}and B = {Y{3) < y1} yields
P{Yn) < yn} = P{Yn) < vn, Yoy < i} + P{Y0) < ¥n, Yoy >y}
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We find the CDF as follows:
(b)
By Yo W1, 9n) = PAY0) <ynt — P{Y1) > v1, Yy < ¥n}
=P{Y; <ypforall j} — P{y1 <Y, <y, forall j}

=[P <wa} — [ Plon < Vi <wn} = [Flyn)]" = [Flyn) — F(y1)]" -
j=1 j=1

We used first independence, then identical distribution in the last line.

Differentiation of the above then gives us fyquW (Y1, Yn)

Alternatively, the PDF can be found by interpreting certain events related to finding the density as
the outcomes of the following multinomial sequence, X = (X1,...,Xn),
(c) Foragiven j, the outcomes w; and associated probabilities p; for X are
Hwi:Yjisclosetoy: = p1 = f(y1)dyr B wh: Yjis close to yn; = p2 = f(yn) dyn
[ wj: Neither w] nor wy happens and y1 < Y; > yn.; = p3 = F(yn) — F(y1).

(d) We denote by W; the count of indices j such that X; = w/.

Then W = (W1, Wa, W3) ~ multinomial ¥ with joint PMF pyyy (W) given by

N n w1, wy w3
Py (W) = <w17 0, w3> Py Py pyt
e Similar to what was done in the proofs of theorems 9.3 (CDF and PDF of the jth order

statistic) and 9.4 (Joint PDF of the order statistic), we conclude from (c) and (d) that

©)  fviy), Yo W1, Yn)d yndyn = P{Y(1)is “dyi close” to y1 and Y(,) is “dy, close” to y, }
= P{ exactly one Yj is “dy; close” to y; and exactly one Y] is “dy,, close” to y,
and the other Y; (there are n — 2 left) are between y; and y,

n _
= P{Wi=1,Wy=1,Ws=n—-2} = pp(l,1,n—2) = (1 ) n_2>p%p%p’/§ 2
= n(n—2)- f(y1)dyr - f(yn) dyn - F(yn) — F(y1)-

(®)  Thus, fv,), v, (Y1, Yn) dy1 dyn € n(n—2)- flr) - flyn) - [F(yn) — F(yl)]"_2 dyy dyy,.
e  We cancel dy; dy, in that last equation and obtain

(8 oy Y (y1:yn) = n(n—2)- f(y1) - f(yn) - [F(yn) - F(yl)]n_z' U

Remark 9.11 (Sample median). Recall from Definition 7.4 (pth quantile) on p.90 that the median of
a random variable U with CDF Fy;(-) was its 0.5th quantile

$05 = min{u € R: Fyy(u) > 0.5}.

If U is continuous with a strictly increasing CDF, then ¢ 5 is that unique value v, for which Fyy(u) =
0.5. Thus, half of the area under the density fi/(-) is to the left of ¢ 5 and the other half is to the
right of ¢o 5.
Assume that Y = (Y1,...,Y;) describes the action of picking a sample of n real numbers. In other
words, each Y; is a random variable and each invocation Y (w) results in the specific sample § =
(y1,.-.,yn), where

1 = Y1(w), y2 = Y2(w), ... yn = Yp(w).

%See Definition 8.17 (Multinomial distribution) on p-130.
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Further assume that the Y} are continuous. Then we can assume that all sample picks Y7, ...,Y, are
distinct, so that the order statistic satisfies strict inequalities

(A) Yoy <Y < Y-

The sample median of Y is defined as follows.

(@) Ifnisodd, then the sample median of Y is is the (n + 1)th order statistic Yint1)-
Yoo+ Yo241

(b) If n is even, then the sample median of Y is is the (random) average 5

Two examples:

(1) If n =7, then the sample median is Y, ;1) = Y(4). Three of the Y} are to the left of Y{,) and
the same number are to the right.
Yi+Ys

(2) If n = 8, then the sample median of Y is is the average . Since we have strict in-

equalities in (A), four of the Y; are to the left of the sample median and the same number are
to the right.

The point to remember is that the sample median of an odd-sized sampling action is an order
statistic, whereas that of an even sized one is not.

Let us assume that the the sample picks of an odd sized sample ¥ = (Y1,...,Yan41) are not only
continuous random variables, but also iid. We can compute the PDF of the sample median as that of
Y(n+1) This time we do so by associating a multinomial random vector with three outcomes: Either
Y is near y,, 41 or it is near one of the n values to the left or it is near one of the n values to the right.
In that manner we obtain

2n+1
n,1,n

fon+ 1) = ( )[F(yﬂ”-f(y)-[l—F(y)}”- O

Remark 9.12. Here are two observations about n iid random variables Y7, ...,Y,,.

(@) Assume that Yj,,...,Y, is a permutation (ANY permutation!!) of Yi,...,Y,. Then the
symmetry that results from iid implies that

P{Y1<YQ<"'<Yn} = P{Yk1<Y/€2<'-'<Ykn}.

1
Since there are n! permutations, each one of those probabilities equals —.
n!
(b) Fix an arbitrary k € [1,k]z. Then

P{Y =Yy} = P{Y =Yg} = ... P{Y =Y}

1
Since there are n such arrangements, each one of those probabilities equals —. [
n

9.5 The Method of moment-generating Functions

Assumption 9.2. Unless stated otherwise, we will assume in this entire section that
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—

Y = (Y1,Ys,...,Y,) denotes a list of n random variables (n € N).

o Either all Y; are discrete, or they all are continuous random variables.
h:D—=R; 7~ u=h{) = hy,. ..y

is a function with domain D C R™ (this covers R = R! for n = 1), such that
o there is no issue with the existence of the PMF or PDF of U := h(Y).

e AlMGFs, my;,(t) = E[e™7] and my(t) = E[e'V] exist if |¢] is small enough, i.e.,
there is some § > 0 such that those MGFs exist for —§ < t < §.
Those assumptions also hold for differently named (vectors of) random variables

and functions, e.g. V = g(f/) = g(f/l,...,f/k). O

Introduction 9.3. The moment-generating function method for finding the probability distribution
of a function of random variables Y7,Y53,...,Y;, is based on Proposition 6.4 on p.85 (Section 6.5:
Moments, Central Moments and Moment Generating Functions). It was stated without proof and
asserts that the following is true under the conditions stated in Assumption 9.2:

Assume that two random variables Y and Y possess identical kth moments about the origin for all
k=1,2,.... In other words, assume that

E[Y'] = E[YY, E[Y? = E[Y?], E[Y®] = E[Y?],...
Then Py = PSN/, ie.,Y and Y have the same distribution. [

We have the following uniqueness theorem.

Theorem 9.5 (The MGF determines the distribution).

Given are two random variables Y and Y . If their moment—generating functions my (t) and mg(t)
exist and coincide in a small interval that is centered at t = 0,
o Then Py = Py, ie,Y andY have the same probability distribution.

PROOF:
Theorems 6.18 on p.85 and 7.7 on p.94 allow us to conclude that
k d* d* vk
E[YY] = ﬁmy(w‘t:o - @mf,(t)‘tzo — E[Y*) forallk e N.

It follows from Proposition 6.4 on p.85 that Py = P; W

Remark 9.13.

To find the distribution of U = h(Y) = h(Y1,Ys,...,Y,) by means of the MGF method,
proceed as follows:

e Compute the MGF my (t) = E[e'V] of U

e Does this MGF match that of a random variable V with a known distribution?

You may want to consult a list of MGFs like the one in Appendix 2 of [5] Wackerly,
Mendenhall, Scheaffer, R.L.

Then you are done, since Theorem 9.5 (The MGF determines the distribution) guar-
antees that Py = Py.
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Of course, the devil is in the details. In most cases, you will not succeed in finding that matching
MGE, unless one or both of the following are satisfied:

e Uisalinear function U = a1Y7 +--- + a,Y,,, with constant a; € R.
e The random variables Yi,...,Y; are independent and h(y) = hi(y1) -
ha(y2) - - - hn(yn), for suitable functions h;(y).

We will examine some very important and general cases that illustrate all this. [J

Example 9.14 (WMS Ch.06.5, Example 6.10). Suppose that Y is a normally distributed random
variable with mean p and variance 2. Show that

has a standard normal distribution, i.e., Z ~ A47(0, 1).

Solution:

(@ According to Proposition 7.4 on p.96, my (t) = et +(**)/2

(b) Any random variable W is independent from any constant (real number) a.

(c) Thus, according to Theorem 8.9 on p.117, the random variables hy (W) = ¢ and hy(a) =
e~ % are independent, and E[e!V . e7%] = E[e!W]. e~

(d) Thusif U =Y —p, then my(t) = E[e™ ] = E[e! e7] = E[e"] - e,
e Thus, my(t) = my(t)e " @ out+(@*)/2 = o(07))2,
e Since Z = U/a, mz(t) = my(t/o) = el t/0)*/2 = /2,

(e) We use Proposition 7.4 once more and see that ¢ — e!’/? is the MGF of a standard normal
random variable. Thus, Z ~ A47(0,1). O

Example 9.15 (WMS Ch.06.5, Example 6.11). Let Z be a normally distributed random variable with
mean 0 and variance 1. Use the method of moment-generating functions to find the probability
distribution of Z2.

Solution:
The moment-generating function for Z 2is

S [e'S) —22/2
my2(t) = E(etzz) :/ e f(z)dz = / et?® & dz
(&) o
[ o
where

W(z) = exp [_ <z22> (1 — 2t)} /\/%
el (3) fo- ] (0 ).

We define o := (1 — 2t)~'/2 and obtain

=l () /4] (0 3) - e v
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where ¢(z) is the density of a A/ (0, o) random variable. Thus, [*_¢(z)dz = 1. It follows from (A)
and ¢(z) = 0 p(z) and o := (1 — 2t)~'/2 that

mye(t) = /_qu(z)dz = /_0;(1 — )" V2 p(2)dz = (1_12t>1/2 /oo o(2)dz = (1—12t)1/2

—00

1
According to Proposition 7.6 on p.99, t — m is the MGF of a random variable which

follows a gamma(1/2, 2) distribution which is, by definition 7.11 on p.100, also known as a x? dis-
tribution with one degree of freedom. We obtained this result previously in Example 9.4 on p.139
by the method of distribution functions. [

Theorem 9.6 (MGF of a sum of functions of independent variables).

Given are n independent random variables Y1,Ys, . .., Y, with MGFs my, (t), my,(t), ..., my, (t).
and n real-valued functions hyi(y1), ..., hn(yn) of real numbers yi, . .., yn.
Let U := h1(Y1) + h2(Y2) +- - -+ hy(Y},). Then (under the conditions of Assumption 9.2 on 160)

n
(9.42) mu(t) = Mpyi) 4t ha(v) = || 70505 @) -
j=1
PROOF:
Foreachj=1,...,n,letg;(y) := ethi(¥), Consider a fixed ¢. Since functions of independent random
variables are independent random variables, the random variables V; := g¢;(¥;) = (%) are
independent. We apply Theorem 8.9 on p.117 and obtain
my (t) :E[et(V1+V2+~-~+Vn)]
= E[eM] ... B[] . = E[eMO]... glethn()]
= mhl(Yl)(t) : mh1(Y1)(t) e mhl(Yn)(t) . B
Corollary 9.1 (WMS Ch.06.5, Theorem 6.2).
Let Y1,Ys,...,Y, be independent random wvariables with moment—generating functions
my, (t), my,(t), ..., my, (t), respectively. Then
(9.43) my; 4ot v, (8) = [y, (®) = myi () - myy (£) -+ my, (1),
j=1
PROOF:

This follows from applying Theorem 9.6 to the functions h;(y;) = y;. B

Next, we generalize But its great importance gives it the status of a theorem.

163 Version: 2023-12-07



Math 447 — MF Lecture Notes Student edition with proofs

Theorem 9.7 (Linear combinations of uncorrelated normal variables are normal).

Given are n uncorrelated, N (1, O'JZ-) random variables Y, (j = 1,...,n. In other words, each Y
is normal with expectation p; and standard deviation 0. Let ay, ..., a, € R. Then
n n n
(9.44) Z a;Yj ~ N Z B Z a?ajz
j=1 j=1 j=1

Thus, the linear combination of uncorrelated normal random variables is normal with expectation and vari-
ance being the linear combinations of the indivicual expectations and variances.

PROOF:

First off, we recall that one of the special properties of normal random variables is that they are
uncorrelated if and only if they are independent. Thus we can use everything that applies to inde-
pendent random variables.

Consider a fixed t and define .
U .= Z a;Yj.
j=1

We apply Theorem 9.6 (MGF of a sum of functions of independent variables) on p.163 with the
functions h;(y;) = ajy; and obtain

my(t) = [[mav; &) = T[] mv, (a5t)
j=1 Jj=1

= [Lexp {(63/2)(at)* + pj(ast)}
j=1

Here we used that a 4 (ji, 52) variable has MGF 7%+, See Proposition 7.4 on p.96. Thus,

n

my(t) = exp Z(J]z/2)(ajt)2 + pj(ajt)

j=1
n n
= exp Z(ajza?/Q) ] + Z(,ujaj)t
j=1 j=1
n n
= exp Z(a?o?) /2-752 + Z(ajuj) -t
j=1 j=1

By Proposition 7.4, the last expression is the MGF of a A (ji, 52) variable with

n n

ao= (), =) (do)).

=1 j=1

Since distributions of random variables are determined by their MGFs,
n n
2 2
U~HN Zaj,uj,Zajaj .l
j=1 j=1
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Theorem 9.8.

Given are n independent, gamma(c;, B) random variables Y;, (j = 1,...,n. In other words, each
Y; is gamma with the same scale parameter 3. Then

(9.45) ZYJ- ~ gamma (Z aj,ﬁ) .
j=1 j=1

Thus, the sum of independent gamma random variables with the same scale parameter ( is gamma with the
shape parameter being the sum of the shape parameters, and scale parameter 3.

PROOF:

Consider a fixed t and define

We apply Theorem 9.6 (MGF of a sum of functions of independent variables) on p.163 and recall

that the MGF of a gamma(a, j3) variable Y is, according to Proposition 7.6 on p.99, my = (1— Bt)e.
We obtain

Corollary 9.2.

Let Y1,Ya, ..., Y, be independent x* variables such that each Y; has v; degrees of freedom. Then

(9.46) my, 44 v, () ~ X (Z vj df) :
j=1

PROOF:

This follows immediately from Theorem 9.8, Since x? variables with v; df are gamma(v;/2,2). R
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10 Limit Theorems

Introduction 10.1. In this section we will discuss the ways in which a sequence Y;, of random vari-
ables can have a random variable Y as its limit. Before we go there, let us quickly review conver-
gence of a sequence (y,), of real numbers and of a sequence of functions f,, : A — R, with all

members f, defined on a subset A of R*, where k = 1,2,.... Note that k = 1 covers the situation
where the arguments are real numbers. Some examples of number sequences:
3—2n

3 3
o Ify,= ,then lim y, = = and the sequence converges to 5

5+ n2—6n n—00
o Ify, = (—1)" then lim y, does not exist.
n—oo

e Ify, = > n, then lim y, = oco. Recall that convergence only happens if the limit is a real

number. Thus, (y,), does not “converge to co”. Rather, this sequence diverges. 3

For the following examples of function sequences, let us agree that, if f,,, f : A — R, where A C R,
then “pointwise convergence” 3° of the functions f,, to the function f simply means that

(10.1) le fnla) = f(a) foralla € A.
e Letf,, f,g,h:[0,1] — R be the functions

0, ifo<z<l,

1, ifz=1,

The situation with respect to pointwise convergence is as follows:

(10.2) O folz) :=2" & f(x) = { Hg(x):=0, Bh(z):==.

f is the pointwise limit of the sequence f,.
Even though g is the pointwise limit of the sequence f,, on [0, 1], it is not the pointwise limit
on [0,1], since lim f,(z) = g(x) =0, for0 <z < 1,but lim f,(1) = 1, whereas g(1) = 0.
n—oo n—oo
e hisnot the pointwise limit of the sequence f,, (except on {0}.

Did you notice that no use was made of the fact that the domain [0, 1] of those functions is a set of
numbers?
e Assume instead that ) is some arbitrary, nonempty set (not necessarily a probability space).
Further assume that there are functions f,, f : 2 — R. We still have the notion of pointwise
convergence of the functions f,, to the function f: (10.1) becomes

(10.3) nh_}n;o falw) = f(w) forallw €
and one certainly can examine whether or not the above is true for any kind of €.
We will not discuss vector-valued sequences. However, for completeness sake, we give the follow-
ing example.
o If 7, = ((—=1)", cos(2/n)), then lim g, does not exist, since the limit of a vector-valued

sequence is, by definition, the vector of the limits of the coordinates. The second coordinate
sequence, y, = cos(2/n)), converges to the number 1. Since the first coordinate sequence,
yn = (—1)™, does not have a limit, neither does (y}) " Thus this sequence does not converge.

*There is no such thing as divergence to -0o. Thus, you must say that (y,,) diverges, not that (y,) diverges to cc.
¥The formal definition of pointwise limits will be given in Section 10.1 (Four Kinds of Limits for Sequences of Random
Variables).
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After these preliminary remarks, let us consider sequences of random variables. We recall that all
random variables Y are functions

Y: (2,5 P)—R w Y(w).

They take their arguments w in a probability space (€2, §, P) and map them to numeric outcomes
y=Y(w).
e The o-algebra is of no significance in this chapter, so we keep ignoring it and simply con-
sider the probability space (2, P).
e On the other hand, the arguments w play an essential role and we will often replace “Y"”
with “w — Y (w)” to remind the reader that we are dealing with functions of w.
o If (Y,,), is a sequence of random variables (2, P) — R. Then each w € €2 comes with its own
sequence (Y, (w)), of real numbers.
¢ One obvious question to ask about those sequences Y,,(w) of real numbers is this one:
& Does nh_)n;O Y, (w) exist and will it be a real number (rather than +o0) for all w € Q?

[ If so, then the assignment w — Y (w) := lim Y}, (w) defines a real-valued function
n—oo

Y : (2, P) — R, i.e., another random variable. What are its properties?

e Not quite so obvious: [ Does the presence of the probability measure P on €2 give additional
insight about the convergence behavior of the functions w — Y, (w)?

e In contrast to the deterministic case where the only mode of convergence available to us is
pointwise convergence, ¥ we will see in Section 10.1 (Four Kinds of Limits for Sequences
of Random Variables) that the presence of a probability P allows us to consider additional
modes of convergence:

[ convergence almost surely,
[ convergence in probability measure,
[ convergence in distribution. [

10.1 Four Kinds of Limits for Sequences of Random Variables

The following definition is a central place for all the different convergence modes of sequences of
random variables that are of interest to us. We will examine each one in detail.

Definition 10.1 (Convergence of Random Variables).

Let Y, (n € N) and Y be random variables on a probability space (£2, P). We define

(m@1@§qum—mnn:Y,ﬁ;yyﬂmzywyﬁnmwem

n—oo
(105) YV, B8Y or as.- lim ¥, =Y, if P{weQ: lim Y,(w) #Y(w)} =0,
n—oo n—oo
(10.6) Y, BY or P=1lim Y, =Y, ifVe>0 lim P{weQ: |V () - Y(w)| >} =0,
n—00 n—00

(10.7) Y, gY, if lim Fy,(y) = Fy(y), Yy € R where the CDF Fy of Y is continuous.

n—0o0

This is not entirely true: If Q is a subset of R or of R*. then there is the notion of uniform convergence, f.(-) — f(-).
We will not be concerned with uniform convergence in this course.
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We also say:
Ify, LN , Y is the pointwise limit of the Y;,, or: Y}, converges pointwise to Y.
IfY, 23Y, Y isthe almost sure limit of the Y;,, or: Y,, converges almost surely to Y.

Ify, L Y, Y isthe limit in probability; of the Y;,, or: Y;, converges in probability to Y.

Ify, b Y, Y isthe limit in distribution of the Y,,, or: Y;, converges in distribution to Y|

Example 10.1. Consider Q2 := [0, 1] as a probability space (£2, P) by defining
P(la,b]) == b—a, for0<a<b<1.

In other words, P is the uniform distribution on [0, 1].

We rename the functions f,, f, g, h of (10.2) in the introduction to Y;,,Y, U, V, since doing so will
make it less confusing to examine the convergence behavior of the sequence. This particularly
applies to converges in probability and in distribution. Accordingly, we define

0, f0o<w<1,

Yolw) =", Uw) =0, V(w) =w, (for0<w<1) Y(w) = {1 fw=1.

Part I: Pointwise and a.s convergence

Pointwise convergence behavior of the Y, corrresponds to that of (10.2):

e Y is the pointwise limit of the sequence Y,,,
e U is the pointwise limit of the Y, on [0, 1] only, but not on [€2,
e Visnot the pointwise limit of the Y, (except for w = 0).

With respect to almost sure convergence, we see that
e Y, 2V, since {n11—>120 Y,=Y} =10,1 = Q,and P(Q2) = 1.
e YV, 2} U, since {lim ¥, £ U} = {1}, and P({1}) = 0.
e (Y,)n does not converge to V" a.s., since P{nlgl;O Y, =V} = P{0} #1.

Part II: Convergence in probability

By definition of P- li_>m Y, = Y, we must prove that, for any fixed, but arbitrary ¢ > 0,
lim P{|Y;, ~ Y|>e} = 0. See (10.6).

Since this probability decreases as ¢ increases and we must show that it approaches 0 as n — oo, we
only need to worry about the very small . Thus, we may assume that 0 < e < 1.

We observe that, since Y, (w) =w" and 0 < e < 1,

[[Ya(w) >¢] & w">e & szl/"}

(A)
= [P{]Yn >el} = P{gl/n71]} -1 _ El/n]_
(B) et/m 0, asn — oco. Thus, ILm (1 —51/") = 1.
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(©) we = P{w)} = 0. Inparticular, P{1} = 0.
Part II (1): We now prove that P- 1i_>m Y, =Y:

[[YVa(w) = Y(w)|>e & [Yy(w)] >cand w # 1]

(a) W

= [P{Y, —V|>e} < P{Vy|>e} D1 -/ B asn—o0.].

Thus, li_)m P{lY, —Y|>¢} = 0.

Part IT (2): We now prove that P-1lim Y;, = U:

n—o0
e We could repeat the proof for the P-convergence of Y,, to Y with very minor modifications

and the reader is encouraged to do so. Instead, we will use that result to show that P-
lim Y, =U

n—oo

e Since the outcome {1} has probability zero and Y (w) = U(w) for w # 1,

P{lY, = Y|>e} =P{|Y, — Y| >candw # 1}
=P{|lY, —U|>candw # 1} = P{|Y,, — U| >¢}.

e Since lim P{|Y, —Y|>¢e} =0,
n—oo
lim P{|Y, — U|>¢e} = lim P{|Y, — Y| >¢e} = 0.
n—oo n—oo

Thus, P-lim Y,, = U.

n—o0

Part IT (3): Next, we show that it is not true that (Y7,),, converges in probability to V.

We argue by picture rather than giving an exact proof, since that would require some very tedious
of terms containing In(k).

e The picture makes it very clear that
e =1/10 = w—w”>sfor% <w< %and
n > 100.

Thus, P{|Y, — V| >¢} > e (35 — 165) = 105"

Thus, lim P{|Y,, — V| > ¢} = 0isnot true.
e Since T:ILEISPHYH —V| > e} = 0musthold for ALL
¢ and we showed that this is not so for e = 10’
it follows that (Y},),, does not converge in proba-
bility to V.

Part ITI: Convergence in distribution
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We will show that Y;, does not converge to V' in distribution as follows.

Recall that Pla,b] =b—aforall0 <a <b<1. Lety €R.
Since V(w) = w, Fv(y) = P{V <y} = P{w €N V( )g y} = P|0,y] =y.
]

]
Thus, for0 <y < 1, FV( ) =y, whereas lim Fy, (y) = 0 # Fy(y).

Since all those y are points of continuity for FV, it follows that (Y},),, does not converge in
distribution to V.

On the other hand, the theorem that follows now shows that (Y;,),, converges in distribution to Y’
and U, since we have shown converges in probability to those random variables. [

Theorem 10.1 (Relationship between the modes of convergence).

Let Y and Y1,Y>, ... be random variables on a probability space (2, P). Then,

(10.8) ., 2Y =27, %Y =YY =12y,

PROOF:
I. Itis obvious that Y}, My = Y, 2 Y for the following reason:
e ForeachneN,let A4, := {we: h_)m Y, (w) #Y(w)}.
e Then forkeN, V,23Y = A, =0 = P(A;) =0 = lim P(4,) =0 = Y, %3 Y.

n—o0

II. Proofthat V,*¥Y = v, 5 v:
e ForneNande > 0,let

A, ={weQ: nlLIEOYn(w) #Y(w)}, Ap(e) == {lwe: nl;rx;o Y, (w) =Y (w)| >¢€}.

e Then, A, = {we: hm Yo (w) = Y (w)| #0} 2 Ap(e). = P(An(e)) < P(4,).
= nh_)HolOP(An(E)) < hm P(A,) = 0 (since Y, 23Y).

e We are done, since, le P( n(€) =0 =Y, Ly.

III: Proof that Y,, Ly o Y, Dy,
Will not be given here. A very accessible proof can be found at this Wikipedia link. W

Example 10.2 (Convergence in probability but not a.s.). | [

Consider the “sliding hump” example. *! As our probability space we choose 2 := [0, 1], the unit
interval in R, with the probability measure defined by P(]a,b]) := b — a.

#See this StackExchange link.
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(a)

(b)

(4]

(d)

(e)

(f)

(8)

We partition 2 into the two intervals I; = [0,1/2] and I, =|1/2,1].

1, ifwel,,

0, else.

We partition 2 into the three intervals I3 = [0,1/3], 14 =|1/3,2/3], and I5 =|2/3,1],
then into Is = [0,1/4], I7 =]1/4,2/4], Is =]2/4,3/4], and Iy =|3/4, 1], and so on .....
1, ifw e,

Forn =1,2,letY,(w) := {

We define random variables Y,, as in (a): For n € N, let Y,,(w) := 0 |
, else.

Then the sequence Y,, converges in probability to the (deterministic) random variable

w = Y (w) := 0. A proof is given directly after this example.

But this sequence of random variables does not converge almost surely. In fact, there is no
0 <w <1 for which nh_)rgo Y, (w) exist:

Fix w € [0, 1]. By construction, there are indices

ny =ni(w) < ng =ng(w) < nz =n3(w) < ---,such thatw € I,,, and I,,, has length 1/k.
(Thus, P(I,,) = 1/k.)

Letw’ € [0,1];w" # w. The subsequences ny(w) and n(w’) will differ for all k so large that

1 lw — |
k 2
(Draw a picture!)

It follows for such big k, that Y}, (,)(w) = 1and Y, (y(w') = 0.

On the other hand, Y, (., (w) = 0and Yy, () (w') = 1.

Thus, the full sequences Y,,(w) does not have a limit, since it would have to be 1 along the
subsequence n(w) and 0 along the subsequence ny(w’).

w is arbitrary in © = [0, 1]. This shows that there is no w € € for which nthOlO Y, (w) exists. O

.2 .
, de, o < jw—w'|, sincew € I, (yand ' € Iy, () = Loy (w) N ny(wry = 0

PROOF that (Y;,) converges in probability:
If we write |I,,| for the length of the interval I,,, then

(h)

@)
§)

(k)

@

Ol =1<n=1 0|L|=1/2 & n=23 dl|l,|=1/3 & n=4,5,6.

k k-(k+2
Thus,if s1 =1, s9 =51 +2,83=52+3,...,8k =81+ k= > j= (QH,...,
j=1
thenl, =1/k & n=s,_1+1, sp_1+2,...,80-1+k & sp_1 <n<sg.

It should be clear that [n — oo | [k — oo] For a proof: [ “<” follows from n > k.

@)
[For the other direction, we observe that n é 25, = 2k(k +1) < 2(k +1)?,
ie., /n/2—1 < k. Thus, [n — oo] = [k — oo] and “=" follows.

1, ifwel, . .
Since Y, (w) := { BOSdn forn e N, we obtain P{|Y;,| > ¢} = 0 for ¢ < 1 and, with ny

0, else

1 1
as defined in (k), P{|Y,,,| > ¢} = Z for 0 < e > 1. Thus, P{|Y,,| > ¢} < Z fore > 0.

Fix e > 0and k£ € N. |I,| and hence, P{|Y},| > ¢} is nonincreasing with n. Thus,
1 .
nzm = PV >e} € P{Yn|>e} = L. Since [n — oo] 9 [k = 0], it follows

that li_>m P{|Y,| > e} = 0 and this shows that Y, 50 m
n oo
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10.2 Two Laws of Large Numbers

Our knowledge of convergence in probability and almost surely enables us to understand the weak
law and the strong law of large numbers. Recall that the “id” part of any iid sequence (Y;,) implies
that E[Y1] = E[Ys] = -+ and Var[Y1] = Var[Ya] = ---.

Theorem 10.2 (Weak Law of Large Numbers).

Let Y1,Ys, ... be an iid sequence of random variables on a probability space (2, P).
with finite variance: o® := var([Y,] < oo. Let ju := E[Y,]. Then,

Yi+Yo+---+Y,
n

converges in probability to ji, i.e.,
(10.9)

n—oo

n
[e>0] = |lmP ’;zyj—u‘>e = 0.
j=1

PROOF: Let

o) = DOERE L Bl) L5y,
7=1

We have seen in Example 8.3 (Variance of the sample mean) on p.122, that

0.2

(A) py, = E[Y,] = p, and af—,n = Var[V,] = —.

n

We apply Tchebysheft’s inequality 7.43 on p.103 with k = y/n/o and obtain from (A), that

_ 1 02
P{|Y, —p| > e} < W) =~ ne — 0, asn — 00

This proves that P- lim Y,=p N
Remark 10.1. We have previously encountered the random variable Y,, under the name Y, as the
sample mean of a sample of size n. See Example 8.3 (Variance of the sample mean) on p.122.

It is considered bad form to use a subscript for the sample mean. We chose to do so in this section
about the laws of large numbers anyway, since we are not dealing with this sample mean in the
context of samples of a fixed size, but we are examining what happens as this size approaches
infinity. [

Remark 10.2. We have learned in Theorem 10.1 (Relationship between the modes of convergence)
on p.170, that almost sure convergence implies convergence in probability. One can interpret this in
the following manner:

e Itisharder to establish almost sure convergence, since it is a more powerful tool for proving
that some mathematical property is true.

e Accordingly, it would be wonderful if one could strengthen a theorem that proves conver-
gence in probability for some sequence of random variables, to show that this convergence
actually happens almost surely.
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e It turns out that this is possible for the weak law of large numbers (Theorem 10.2 on p.172. It
is called the weak law of large numbers because there also is a strong law of large numbers

which replaces the conclusion P-lim - Z Y; = pwithas—lim - Z Y; = p. We will

n—oo ™ j=1 n—oo "

study that next.
O

Our knowledge of convergence in probability and almost surely enables us to understand the weak
law and the strong law of large numbers. Recall that the “id” part of any iid sequence (Y;,) implies
that E[Y1] = E[Ys] = -+ and Var[Y1] = Var[Ys] =

Theorem 10.3 (Strong Law of Large Numbers).

Let Y1,Ys, ... be an iid sequence of random variables on a probability space (£, P).
Let i := E[Y,]. Then,

Yi+Yo+---+Y, ,
converges almost surely to u, i.e.,

n
(10.10)

hm—ZY *uwp = 0.

n—oo n

PROOF:
Outside the scope of these lecture notes. W

Example 10.3 (Infinite Monkey Theorem). A monkey has been granted eternal life. It is continually
hitting at random the keys of a wordprocessor that will never break down.

The keyboard has a customized layout that makes it equally likely for each key, at any given key
stroke, to be selected by the monkey. (For example, there is no CAPS key. Rather, there are separate
keys for “a” and “A”, “b” and “B”, .....)

What is the probability that, in this infinite sequence of letters, there is a contiguous block that
constitutes the collected work of William Shakespeare? We expect a flawless result: No typos,
correct punctuation, CAPS exactly when required, ....?

Solution:
o There are K different keys that are being hit, at each stroke, with equal probability.
e Only one of them is correct at any given time and the others are failures.

e Thus, the sequence X1, X»,... of key strokes is an iid sequence (a Bernoulli sequence) with
success probability p = 1/K.

o We consider the indices 1,2, 3, ... as points in time, so X753 is the key that was hit at time
J = T753.

e The author does not know how many letters Shakespeares collected work consists of, but
this certainly is a finite number. Let us denote it by V.
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Let Y7 :=1, if X1, Xo,..., Xy form S-C-W. Let Y; := 0, else.
Let Yo :=1, if Xny1,Xn1o,..., Xoy form S-C-W. Let Y5 := 0, else.

Let V; :=1, if X(j_1)n+1, Xj—1)n42s- - Xjnv form S-C-W. Let Y; := 0, else.

o Ifi # j, thenY; and Y; depend on “disjoint” chunks (X(;_1)n41, X(i—1)n+2,-- -, Xin) and
(X(—1)N+1> X(j—1)N42: - - - » Xjn) of the independent X},. Thus, ¥; and Y} are independent.
e Also, both are binom(1, (1/K)") (Bernoulli trials).
Thus, (Y;,), is an iid sequence with expectations p = (1/K)V.
By the strong law of large numbers, there is an event A C  such that P(A) = 1 and

R 1\
wGA#Jg&OZIYj(w)/n—M—(K> > 0.
J:

e Since we divide the sum by n, the limit is zero if only finitely many Y;(w) are 1. Thus,
weA = Yj(w) =1, infinitely often!

Since P(A) = 1 and Y; denotes the completion of the nth collection of Shakespeare’s works:
With probability 1, the monkey will produce an infinite number of Shakespeare’s entire
collection! [

10.3 Sampling Distributions

Introduction 10.2. Back in Chapter 5.2 (Random Sampling and Urn Models With and Without Re-
placement), we gave Definition 5.2 (Sampling as a Random item) on p.68 of a sampling action.

e A sampling action of size n was nothing but a vector X = (X1,X5,...,X,) of random
items. What makes it a sampling action is the interpretation of w — Xj(w) as the jth pick
of an item from a population of interest and the intent to use the outcomes z; = X;(w) for
inferences about that population.

These sample picks may happen with or without replacement. Sampling with replacement is desir-
able from a mathematical point of view, since we may consider the sample picks as having identical
distribution. Thus,

Fx,(z) = Fx,(z) =---= Fx,(z) (z €R);

This in turn implies that, if the sample picks are real-valued functions of w i.e., they are random
variables, they all have the same expectation and variance and .....

Moreover, nothing is assumed about the independence of the sample picks. To have it would be
extremely desirable from a mathematical perspective. For example, if the X are jointly continuous
random variables, knowledge of the marginal densities yields the joint density, because,

f(@) = fxi(x1) - fx,(2) - fx,(zn) (F€R").
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Unfortunately, dentical distribution and independence are simplifications of the real world. This
is even true when one considers n rolls of a die. > The surface on which the die is rolled is not
perfectly even, so that negates identical distribution. If several people take turns, then the different
ways in which they throw the die creates a dependency. Of course, it is very likely that those
differences, if we are able to detect them, are so minuscule that they can be ignored.

But there are many examples where those deviations are so large that we cannot work under the iid
assumption. This need not necessarily occur in a real world application. It can also be part of the
probabilistic models we create: Whenever we assume that we sample without replacement from a
finite population, the probabilistic makeup of the items remaining in that population changes with
every item we happen to pick for our sample.

Consider sampling at random from an urn that initially contains R red and N — R black balls. If X
is red, then there will be less of a probability of X being red, than if X; was black. Hence, the X
are neither independent, nor identically distributed.

However, those sample picks constitute a simple random sample action according to Definition 5.3
(Simple Random Sample) on p.70:

e Asampling action X = (X1,Xy,...,Xy) of size n from a population of size N > n is called
a simple random sampling action (SRS action), if it is done without replacement and if each
one of the potential outcomes ¥ = X (w) has equal chance of being selected.
If the sample size of an SRS action is large, but small when compared to the size of the population,
then treating it as iid will result in insignificant domputational differences. 4> This observation is
one of the reasons that even the more restrictive definition of an SRS action is of a generality we are
not looking for in this chapter. We follow [2] Hogg, McKean, Craig: Introduction to Mathematical
Statistics.

A typical statistical problem can be described as follows: We have a random variable Y that we
know about, but we do not know its distribution, given by its CDF Fy (y).

Our insufficient knowledge of Y can manifest itself in two different ways:

(I)  We do not even know the type of distribution: Does Y follow a Poisson distribution or is it
normal or exponential or .....7

(I) We know the type of distribution, but not all of its parameters. For example, we may know
that Y is normal with 0% = 3.65, but its mean p is unknown.

We deal in this section with problem (I). [

Example 10.4. Some more problem (I) examples are the following:

(@ Y ~ binom(64,p), with unknown success probability p. We write py (y; p) for the PMF to
make explicit the role of the unknown parameter, p.

(b) Y ~ A (u,0?), where both 1 and o2 are unknown. We write fy (y; i, o) for the PDF to make
explicit the role of the unknown parameters, ;1 and o.

(0 Y ~ expon(s), with unknown /3. We write fy (y; i, ) for the PDE

(d) Y ~ gamma(c,3), with unknown a. We write fy (y; «) for the PDE. O

“Interpret X as the jth pick from the population of all rolls of that die.
“We mentioned this in Remark 5.2 on p.69.
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Remark 10.3. The examples just given suggest now to handle the general case. Since the random
variable Y is given and we know its distribution except for one or several parameters, we know its
PMF py (y) in the discrete case or PDF fy (y) in the continuous case. It is customary to write 6 or
theta the unknown parameter or parameters of the distribution and to write © for the parameter
space, i.e., the set of all parameters we consider for the problem.
Thus, in Example 10.3(a), © = [0, 1]. In Example 10.3(b), © =] — 00, 00[x [0, o0].
Problem (I) can now be formulated as follows:
e Given is a random variable Y of which we know its distribution except for one or several
parameters.
1 We know the PMF py (y; 6) if Y is discrete. 1 We know the PDF fy (y; 6) if Y is continuous.
e How can we find a good, possibly optimal, procedure to estimate ¢ from the sample? that
we have drawn or intend to draw from the population?

It seems obvious enough, that this estimate must be a function

0 =T(H = TWs-- yn) = T(?(w)) = T(}/l(w)v""yn(w))'

In the context of a sampling action, we refer to the specific list of numbers, § = (y1,...,yn), as the
values or realizations, of the sampling action. [

We had stated in the introduction that we will restrict the scope of the sampling actions in this
section to the iid case.

Definition 10.2 (Random sampling action from a distribution).

Let Y be a random variable on a probability space (€2, P). We call a vector Y = (Y1,....Yy)
a random sampling action from the distribution of Y, or also, a random sampling action
onY, if

e each Y] has the same distribution as Y’

e the random variables Y3, ...,Y, areiid. O]

That definition allows us to restate the essence of Remark 10.4 as follows: We expect a procedure to
estimate the parameter 6 of a PMF py (y; 6) or PDF fy (y; ) to be a random variable w — T'(Y (w)).

There is a special name for transforms ¢ — T'(%) of a random sampling action on Y.

Definition 10.3 (Statistic ).
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Let Y be a random variable on a probability space (€2, P) and Y = (Yl, e ,Yn) a random
sampling action on Y. Let
T:R"—R; g T(Y)

be some function that can be applied to the sampling action Y. We call the random variable
w i T(Y (w))

a statistic of that sampling action. We call the distribution of that random variable,

(10.11) B P, o(B) = P{T(Y)€(B)} = PlweQ:T(Y(w)) € B}

its sampling distribution. Once the sampling action has been performed and the corre-

—

sponding realization i = Y (w) has been obtained, we call ¢t = T(}?(w)) the realization of
the statistic. O

Theorem 10.4.

Let Y be a random variable on a probability space (Q, P) and Y = (Y1,...,Yy) a random sampling
actionon Y. Let T1,T5, ..., T : R™ — R be statistics for that sample action. Let

T:RF > R; (tiy o te) = T((t1y - tr)).

Then, setting t = (t1,...,t) and T = (T1,...,T}), the composition
T*oT(Y) :wr TH(T1(Y),..., Ti(Y))

also is a statistic of Y.

PROOF:

Left as an exercise which is very easy for the student who has had exposure to functions R” — R*
with dimensions n and/or k that can exceed the value 3. W

Here is an example of a statistic which is so important that it deserves its own definition. It also is
used to illustrate Theorem 10.4.

Definition 10.4 (Sample variance).

LetY = (Y1,...,Y,) be arandom sample action on a random variable Y.
The sample variance is defined as the random variable

(10.12) st%m::nilixn@g—Y@»?
j=1

We further call w — S(w) := 1/S?(w) the The sample standard deviation.
We write s? and s for the realizations S?(w) and S(w) that result from creating the sample.
U
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Example 10.5. For the following examples assume that Y = (Yl, e Yn) is a random sample action
on a random variable Y.

(@) In Example 8.3 (Variance of the sample mean) on p.122, we considered the sample mean

— _ . n
wr Y(w) = 13 Yj(w).Y is astatistic: The transformis T(Y) = 1 > V;.
j=1 j=1

~n
We also mentioned that this statistic is an obvious choice for estimating the parameter y =
E1Y] of the underlying random variable Y.

(b) Sample variance S? and sample standard deviation S which were defined above are statis-
tics. This can be shown with the help of Theorem 10.4 on p.177 as follows. Let

t1 = T(Y) = y1, t2 = Ta(Y) =y2,---,tn = Tol¥) = Yn, tanr1 = Tn1(y) = 7.
1
n—1 4%

7=1
Then S? = T*(T1(Y), ..., Tw(Y)), Tnt1(Y)). By Theorem 10.4, S? is a statistic for the rand-
pom sampling action Y. We apply this theorem again to the function T** : t* — \/t* and
obtain that the standard deviation S is a statistic, since S = T**(S5?).
() The jth order statistic, Y is indeed a statistic, since knowledge of all values of a list

Y1, -.,Yn of real numbers uniquely determines which one is the jth largest value in that
list.

(d) Thesamplerange, R = Y{,) — Y(y), isa statistic, since itis a function (the difference) of
the two statistics Y,,) and Y(;). [

T*(t1, - tn, bugl) =

Example 10.6 (WMS Ch.07.1, Example 7.1). Example 7.1 of the WMS text discusses in quite big de-

tail the sampling distribution of the statistic Y for a sample of three independent rolls of a balanced
die. You are strongly encouraged to study it. U

Theorem 10.5 (WMS Ch.07.2, Theorem 7.1). ()

Let Y1,Ys,...,Y, be a random sampling action of size n from a normal distribution with mean p
and variance o2, i.e., we sample on a random variable Y ~ A (u, 02). Then the sample mean Y
follows a normal distribution with mean p and variance o /n.

PROOF: That is an immediate consequence of Theorem 9.7 (Linear combinations of uncorrelated
normal variables are normal) on p.163. W

Theorem 10.6 (WMS Ch.07.2, Theorem 7.2).

Let Y = (Y1,...,Y,) be a random sampling action on' Y ~ A (u,02). Let Z; = (Y; — p)/o

forj =1,2,...,n. Then Z = (Zl, cen, Zn) is a random sampling action on a standard normal
variable. (In particular, the Z j are iid.) Further,

n n 2
(10.13) Sz2 =Y <Y3_“>
j=1

o
J=1

follows a x? distribution with n degrees of freedom.
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PROOF: It follows from Theorem 9.7 (Linear combinations of uncorrelated normal variables are
normal) on p.163 that the linear combination Z; = (Y; — /o) is standard normal. It follows from
Theorem 9.6 (MGF of a sum of functions of independent variables) on p.163 that the Z; are iid. It

follows from Theorem 9.8 on p.165 that > Z2 ~ x*(df =n). A
j=1

The following is Example Example 6.13 of the WMS text.

Proposition 10.1. || %

Let Yy and Y5 be independent standard normal random variables. Then Y1 + Y5 and Y1 — Y5 are independent
and normally distributed, both with mean 0 and variance 2.

PROOF: See WMS Ch.06.6, Example 6.13. W

Theorem 10.7 (WMS Ch.07.2, Theorem 7.3). || %

Let Y = (Y1,...,Y,) be a random sample action on a N (pu, 02 random variable Y and let T =
(Y; — p)/o. Then Z = (Zy, ..., Zy) is a random sample action on a standard normal variable Z.
Further,

(n—1

(a)

o2

2 n
5 3T ~ 2 = (n- 1)
j=1

(b) Y and S? are independent random variables.

PROOF: See the proof of WMS Ch.07.2, Theorem 7.3 for the casen =2. W

e The sample mean Y was a natural choice to estimate the mean p = E[Y] of a random
variable X.

o It seems just as natural to use the sample variance S? to estimate o2 = Var[Y]. We will see
that, if Y follows a normal distribution, this choice turns out to be mathematically sound.

The ¢ distribution which we define next is a means towards that end.

Definition 10.5 (Student’s t—distribution ** ). | %

Let Z and W be independent random variables such that Z is standard normal andW is X2
with v df. Let

VA

VW /v

Then we refer to the distribution Pr of T as a t—distribution or Student’s t—distribution
with v df. We also write thatas 7" ~ t(v) or T' ~ t(df =v). O

(10.14) T =

“Named after the English statistician William S. Gosset (1876 — 1937). Georg Ferdinand Ludwig Philipp Cantor
(1845 — 1918), Gosset was Head Brewer of the Guinness Brewery in Dublin, Ireland and published his papers under
the pseudonym "Student".
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Remark 10.4. The density of the t—distribution looks very similar to that of a normal density. Both
have a symmetrical, bell shaped graph. But note the following differences:

e The mean E[T] is not a parameter: it is 0.
e The tails are fatter than those of a A(0, 1) variable. See Figure 10.1. [

0.40———— C— 0.40——— — 0.40
0.35 0.35 0.35 )
0.30 0.30 //\ 0.30 '//\\
0.25 0.25 ' \ 0.25 / \
Z020 Z020 \ Z020 \
0.15 0.15 \ 0.15
0.10 0.10 0.10
0.05 0.05 0.05
= - - ]
0O =3 =7t E T 3 & 4| " et ;u(} 1 2 = 4| "% o5 arox ;((} T 2 3 A
1 degree of freedom 2 degrees of freedom 3 degrees of freedom
0.40
0.35
0.30
0.25
= 0.20

4 -3 Z-10 1 2 3 4
x

5 degrees of freedom 10 degrees of freedom 30 degrees of freedom

10.1 (Figure). densities of the standard normal and ¢ distribution. Source: Wikipedia.

Theorem 10.8. || *

Let Y ~ A (u,02) and Y = (Y1,...,Yy) be a random sample action on'Y. Let
(10.15) .= L _F

Then T follows a t—distribution with (n — 1) df.

PROOQF: Let _ ( ) )
Y —u n—1)8
7 = W .= ~— ‘2= |
a//n and 02

We have seen that Z ~ A4(0,1) and W ~ x?(df = v). Since Y and S? are independent by Theorem
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10.7 on p.179, Z as a function of Y only and W as a function of S? only also are independent. Thus,

Z__ ¥-ple (V-
VW~ W=D =) 7 (55")

has at distribution with (n — 1) df. W

Example 10.7 (WMS Ch.07.2, Example 7.6). Example 7.6 of the WMS text discusses a practical ex-
ample of the Student’s t—distribution that discusses how to estimate the unknown variance of a
normal random variable from a sample. You are strongly encouraged to study it. [

The next and last distribution tied to random sampling on a normal variable that we give in this
section allows us to compare the variances of two random sampling actions on normal random
variables that represent two independent populations. This is used in the so—called analysis of
variance (ANOVA) to decide whether the means of several independent normal populations all
coincide or whether at least two of them are different.

Definition 10.6 (F'—distribution). || %

Given are two independent random variables W; ~ chi?(df = 1) and Wy ~ chi?(df = vy).
with 11 and v, df, respectively. Then we say that

Wl/Vl

F =
WQ/VQ

follows an F distribution with 1, numerator degrees of freedom and v denominator
degrees of freedom. [J

Remark 10.5. |[ %

One can show that
e 1n>2 = E[F] =

e >4 = Var[F]| =

Theorem 10.9. || *

Consider two random sampling actions of sizes ny and ny on random variables
Yy ~ A (p1,0%) and Yo ~ AN (u2,03) from two independent populations, with sample variances
S2 and S32. Let

St/ot
S3/05

(10.16) F o=

Then F follows an F distribution with (ny — 1) numerator df and (ng — 1) denominator df.
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PROOF: Let

—1)52 —1)52
W, = (n1 2)51’ Wy = (n2 )52.

2
01 05

Since the random sampling actions are independent, so are their sample variances S? and S3, and
so are the transforms W7 of Sf and W5 of S%. By Definition 10.6 of an F distribution,

Wi/vi _ [(m —1)SY/of]/[(m —1) _ Si/of
Wafvy  [(n2 = 1)S3/03/(n2 = 1)]  S3/0}

follows an F' distribution with (n; — 1) numerator df and (ny — 1) denominator df. W

Example 10.8 (WMS Ch.07.2, Example 7.7). Example 7.6 of the WMS text discusses another practical
example of the Student’s F' distribution. You are strongly encouraged to study it. [

10.4 The Central Limit Theorem

Introduction 10.3. In section10.3 (Sampling Distributions) we were able to determine the sampling
distributions of some very important statistics that can be computed from the realization of a ran-
dom sample action ¥ on some random variable Y. But there was very restrictive assumption on
that underlying random variable

e Y had to follow a normal distribution.

We will find a solution for determining the sampling distribution of the sample mean, Y = 1

J

n

Y;,
=1
even if Y is not normal.

e [tis an asymptotic solution, i.e., its comes in form of a U = h_)m U,, theorem.
n o

e Here, U, is a statistic T, o ?, which we can compute from (the realization of) Yand Y, =

n —
1 '21 Y;, a very natural approximation of Y, can also be computed from U,
J:

e n denotes the sample size. Thus, the sample must be sufficiently large to allow us to ignore
the discrepancy between U,, and U.
We have learned that there are four different kinds of limits which occur in connection with a se-
quence of random variables. The limit we can show to exist is the least desirable of the four, the
limit in distribution. But that is not as bad as it sounds
e For large enough n, the CDF of U, is close to that of U. Since the CDF determines the
probabilities of all important events B, we can approximate P{U € B} ~ P{U,, € B}, O

The limit theorem alluded to in the introduction stated and proven after the following important

theorem that relates convergence in distribution, Y, L Y, to (pointwise) convergence, my;, (t) —
my (t) of the associated MGFs.

Theorem 10.10 (Lévy’s continuity theorem). || %

182 Version: 2023-12-07



Math 447 — MF Lecture Notes

Student edition with proofs

Let Yl, YQ, oo
Fyl,FYQ, 500 ) and MGFs my,; (t), mYQ(t), o0o0 )
Let Y be a random variable with associated CDF Fy and MGF my (t). Then

(10.17) [my, (t) = my(t) asn — oo, forallt]

.) be a sequence of random variables (iid is not assumed) with associated CDFs

= [Fy,(y) = Fy(y)asn — oo, forall y where Fy (-) is continuous. |

PROOF: Outside the scope of this course. W

Theorem 10.11 (Central Limit Theorem).

Central Limit Theorem:
Let Y = (V1,Ys, ...
and finite variance Var[Y;] = o>. Let Z be a standard normal variable and

Yi — nup -
izzl — Yn*/‘
ov/n a/\/n

Then U, converges to Z in distribution as n — oo. In other words,

Up =

1

lim P{Up <u} = P{Z <u} = / L ey
oo V2T

n—oo

, Yn) be a vector of iid random variables with common expectation E[Y;] = p

_ 1
wheren e N, Y, = nZ;YZ
1=

forall w.

PROOF:
Let U, :=

Y,
o/
(1) SincetheY, =Y, — p are iid, they have a common MGEF, m(t) =m
By Corollary 9.1 on p.163, mg. 5 (t) = [m(t)]". Thus.

Yn

(t).

(3) According to Theorem 10.10 (Lévy’s continuity theorem), it suffices to show that
Jim my, (t) = mz(t) = /2
Equivalently, since  — In(x) is continuous and injective and it’s inverse,  — €* also is
continuous, it suffices to show that
2
@) i I mo, (8) =5
(5) Let h:= —'_ Then n = —— Thus by @),
a/v/n o2 h?
2 2
In my, (t) = nlnm(h) = # Inm(h) = % (1117;;(@) .
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Thus,

) t2 . Inm(h)
(6) nh_}rgo In my, (t) = 2 }lg% T

Since m(0) = €° = 1, the right-hand limit is of the form 0/0. We use L'Hopital’s rule * twice in a
row and obtain, since m(t) = ms (t) and hence, m”(0) = E[Y;?],

Yn
. Inm(h) . m(h)m/(h) . m/(h)
1 = 1 _— =
ho0  h? nso 2k ns0 2hm(h)
. m”(h) m//(o) , -,
7 =1 = = mZ (0) = E[Y,
? w0 2m(h) + 2hm/(h) — 2m(0) + 0 my, (0) Y]
(8) Since E[Y,] = i — p = 0 and Var[Y,] = Var[V,] = 62, we obtain from (7) that
lim Inm(h) (Lz
h—0 h?2 N 2
. 2 o? 12
Thus, by (6), nh_)rrolo In my, (t) = poR

We have shown (4) and this finishes the proof. W

Example 10.9 (WMS Ch.07.3, Example 7.8). Example 7.8 of the WMS text discusses a practical ex-
ample of the use of the CLT (SAT scores). You are strongly encouraged to study it. [

Example 10.10 (WMS Ch.07.3, Example 7.9). Example 7.9 of the WMS text discusses another prac-
tical example of the use of the CLT (checkout counter service times). You are strongly encouraged
tostudy it. O

Example 10.11 (WMS Ch.07.4, Example 7.10). Example 7.10 of the WMS text also discusses an ap-
plication of the CLT The approximation of a binomial distribution with a normal distribution. You
are strongly encouraged to study it. [J

Example 10.12 (WMS Ch.07.4, Example 7.11). Example 7.11 of the WMS text also discusses the so—
called continuity correction that should be done whe one approximates a binomial distribution
with a normal distribution. You are strongly encouraged to study that example. [

fl) _ . f(@)

45. .
in the form qlpll)% m = }1_% 7 ()
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11 Sample Problems for Exams

11.1 Practice Midterm 1 for Math 447 - Chris Haines

Here are some commented excerpts of a practice exam for the first midterm. It was written by Prof.
Christopher Haines and forwarded to me by Prof. Adam Weisblat, both at Binghamton University
(October 2023).

Exercise 11.1. | Practice Midterm 1 (C. Haines) — # 01 |
SKIPPED [

Answer: N/JA R

Exercise 11.2. | Practice Midterm 1 (C. Haines) — # 02 |

The Lakers and Heat are playing in the NBA Finals. The series is a best-of-seven (first team to win
four games clinches the series). The Lakers will win each game with probability 3/4.
(@) Given that the Heat won game one, what is the probability the Lakers go on to win the
series?
(b) Given that the Heat win at least two games in the series, what is the probability the Lakers
go on to win the series?

O

Solution:

We denote a sequence of games as ¥ = (x1,22,...,2,), Where n < 7 and z; = H if the Heat
win game j and z; = L if the Lakers win game j. Note that n < 7 is possible, for example, if
Z=(H,H,H, H). (The series is finished.)

Solution to (a):
o Let A := { The Lakers win the series }
e Let B := { The Heat win game #1}
) O
Assume that 7 € AN B. Then 21 = H and
e either 29 = 23 = 4 = x5 = L = one choice

e oroneof z9,...,x4 is H and the other three and 5 are L = (‘11) = 4 choices
e ortwoof zs,..., x5 are H and the other three and z¢ are L = (3) = 10 choices
¢ Thus PAND) = 1 () a7 () 5 10- (1) 6

We obtain P(A| B)=P(ANB)/P(B) =1701/2048. A

Solution to (b): Note that my solution differs from that given in the original (see course materials
page!)

Let A := { The Lakers win the series },

B := { The Heat win at least 2 games },

By := { The Heat win precisely 2 games }.

Bs := { The Heat win precisely 3 games },

Then ANB = AN (Byl4 B3) (Heat cannot win more than 3 if Lakers win the series).
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To compute P(AN B) = P(AN By) + P(Bs N Bs), we note that

o ceither7€ AN DBy & exactlytwoofzy,...,z5are Hand 2z = L = (g) =10 choices
e orie AN Bs,ie, exactly3ofzi,...,z5are Handar = L = (§) = %54 = 20 choices

o Thus, P(ANB) = 10- (1) ()" + 20 () ()

Next, we compute P(BY).
e Let By := { The Heat win precisely 0 games }. Then# € By < x1 =x3 =23 =24 = L
= 1 choice
e Let By := { The Heat win precisely 1 game }. Then # € B; < exactly one of z1,...,x4is

Hand 25 = L. = 4 choices
e Further, P(BY) = P(By)+ P(B)) = (3)'+4-1(3)" = 2(3)".

Thus,

(3. (3)! S(1)3 . (3)*
P(A|B) = fEAP?;)) _ 10-(3) (f) +20- (1) (1) g
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12 Other Appendices

12.1 Greek Letters

The following section lists all greek letters that are commonly used in mathematical texts. You do
not see the entire alphabet here because there are some letters (especially upper case) which look
just like our latin alphabet letters. For example: A = Alpha B = Beta. On the other hand there
are some lower case letters, namely epsilon, theta, sigma and phi which come in two separate forms.
This is not a mistake in the following tables!

a alpha ¢ theta § xi ¢ phi
B beta ¥ theta T pi ¢ phi
v gamma L iota p rtho x chi
0 delta x kappa o tho Y psi
e epsilon »x  kappa o sigma w omega
e epsilon A lambda ¢ sigma
¢ zeta 4 mu T tau
n eta v nu v upsilon
I' Gamma A Lambda ¥ Sigma v Psi
A Delta = Xi T Upsilon 1 Omega
© Theta II Pi ¢ Phi

12.2 Notation

This appendix on notation has been provided because future additions to this document may use
notation which has not been covered in class. It only covers a small portion but provides brief
explanations for what is covered.

For a complete list check the list of symbols and the index at the end of this document.

Notation 12.1. a) If two subsets A and B of a space (2 are disjoint, i.e., AN B = (), then we often
write A | B rather than AU B or A+ B. Both A® and, occasionally, CA denote the complement 2\ A
of A.

b) R~ or R* denotes the interval |0, +oo[, R>o or Ry denotes the interval [0, +o0],

c) The set N = {1,2,3,--- } of all natural numbers excludes the number zero. We write Ny or Z. or
Z>( for N|#{0}. Z>¢ is the B/G notation. It is very unusual but also very intuitive. O
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List of Symbols

Fy (y) — CDF of random var. Y, 87
[a,b], ]a,b] —half-open intervals, 17
[a,b] — closed interval , 17

C}} —nbr of combinations , 59

P} — permutation , 56

(") —nbr of combinations , 58

o? - population variance , 177

= —implication, 11

0 —empty set, 9

3! — exists unique , 16

J —exists, 16

V —forall, 16

P(Q),29 —power set, 14

+oo — =+ infinity , 17

|x| — absolute value , 18

la,blg —interval of rational #s , 18
la,b[z —interval of integers , 18
la,b[ —openinterval, 17

x € X —element of a set, 8

x ¢ X —not an element of a set, 8
Zn |  —nonincreasing seq. , 30

xn, T —nondecreasing seq. , 30

AL - complement of A, 12

No —nonnegative integers, 17

R* - positive real numbers, 17
R~ — positive real numbers, 17
R>o —nonnegative real numbers, 17
R.o —non-zero real numbers, 17
R4+ —nonnegative real numbers, 17
Z>p —nonnegative integers, 17
Z,. —nonnegative integers, 17

(xi)ier —family, 24
14 —indicator function of A , 45
22 P(Q) - power set, 14

ny nae,) — Multinom. coeff. , 60

() —binomial coeff. , 60
. — kth moment , 84

wr — kth central moment , 85, 94
. — kth moment , 94

¢p —pth quantile , 90

p — correlation coeff. , 119

0% —variance, cont. r.v. , 93

032/ — variance, discr. r.v. , 75

binom(n,p) ,77

6 — distribution parameter , 176
© — parameter space , 176
Cov[Y7,Ys] —covariance, 118
E(Y) - expected value, 91

Elg(Y1) | Yo = y2] — conditional expectation ,

128
E[Y] —expected value , 73
m(t) —MGF, 85
R —sample range , 178
S —sample standard deviation , 177
5% — sample variance , 177

Var|Yy | Yo = yo] — conditional variance , 129

Var[Y] - variance, cont. r.v. , 93
Var|Y] —variance, discr. r.v. , 75
Y, 22V - almost sure limit, 167
Y, 2 Y - limitin distrib. , 167
Y, &Y - pointwise limit , 167
Y, Ly _limitin probab. , 167
CA - complement, 187

I'(a)) — gamma function, 98

& —if and only if, 9

N, N, , 187

R*,Rsq, 187

R.,Rsq, 187

R-o,RT, 187

R=0, Ry , 187

Z,,Z50,187

B — Borel o—algebra of R, 40

B" — Borel o—algebra of R" , 40
A (11,0%) —normal with y, 02,96

N (11,02, o, 03, p) —bivariate normal , 132
suppt(g) — support of the function g, 142

|X| —size of aset, 15

{} — empty set, 9

AlH B —disjoint union , 187

AN B — Aintersection B, 10
A\ B — Aminus B, 11

A C B -Donot use, 9

AC B —Aissubsetof B, 9

A C B — Ais strict subset of B, 9

AAB - symmetric difference of Aand B, 11

AW B — Adisjoint union B, 10
A — complement , 187
B D> A -Donotuse, 9
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B D> A - Bis strict superset of A4, 9

B(a, 5) , 102

f:X —Y —function, 20

f~Y(B) -indirect image, preimage , 43
fyijva(y1 | y2) — conditional PDF, 111
P(A | B) - conditional probab , 50, 110, 111
(Q,F, P) — probability space , 35

(S, P) — sample space (WMS) , 36

x?(v) - chi-square with v df , 100

— —maps to, 20

AUB — Aunion B, 10

A D B - Aissupersetof B, 9

f ] , —restriction of f, 22

Fy, v, (y1,y2) —joint CDF , 107

P —measure, 35

Pvi,v, (Y1, y2) —joint PMF , 108

X1 x Xy x X, —cartesian product, 27
Y{(;) — jth order statistic, 151

beta(a, 8) — beta with «, 5, 102
chi-square(v) — chi-square with v df , 100
expon(f) — exponential with 5, 100
gamma(a, ) — gamma with a, 8, 98
geom(p) , 78

poisson(}) , 82

uniform(fy, f2) — uniform distrib , 95

190 Version: 2023-12-07



Index

x?(v) (chi-square distribution), 100
o—algebra, 34
Borel o-algebra, 40
o—field, 34
0-1 encoded Bernoulli trial, 76

absolute value, 18

absolutely convergent series, 36, 71
almost sure convergence, 168
almost sure limit, 168

argument, 20

assignment operator, 20
asymptotic solution, 182

Bernoulli random item, 76
Bernoulli sequence, 76
Bernoulli trial, 76
0-1 encoded, 76
failure probability, 76
success probability, 76
Bernoulli variable, 76
beta probability distribution, 102
beta(c, ), 102
binom(n, p) distribution, 77
binomial coefficients, 60
binomial distribution, 77
binomial theorem, 61
bivariate cumulative distribution function, 107
bivariate normal distribution, 132
bivariate probability mass function, 108
Borel o—algebra, 40
Borel set, 40

cartesian product, 27
CDF, 87
conditional, 111
joint, 107
central moment of a random variable, 85
characteristic function, 46
chi-square distribution, 100

chi-square with v df (chi-square distribution),

100
chi-square(v) (chi-square distribution), 100
closed interval, 17
codomain, 20

coefficient
binomial, 60
multinomial, 60
collection, 10
indexed, 10
combination, 58
combinatorics, 55
complement, 12
conditional CDF, 111
conditional distribution function, 111
conditional expectation, 128
conditional PDF, 111
conditional PMFE 110
conditional probability, 50
conditional probability density function, 111
conditional probability mass function, 110
conditional variance, 129
continuous random variable, 88
continuous unifurm probability distribution, 95
convergence
almost surely, 168
in distribution, 168
in probability, 168
pointwise, 168
uniform, 167
convergence in distribution, 168
convergence in probability, 168
correction factor, 82
correlation
negative, 118, 119
positive, 118,119
zero, 118, 119
correlation coefficient, 119
countable set, 23
covariance, 118
cumulative distribution function, 87
bivariate, 107
joint, 107

De Morgan’s Law, 14

decreasing, 30

degrees of freedom, 100
chi-square distribution, 100
denominator, 181
numerator, 181
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denominator degrees of freedom, 181 family, 24

density function finite sequence, 22
marginal, 110 tirst quartile, 90

dependent random items, 113 function, 20

dependent random variables, 113 argument, 20

determinant assignment operator, 20
Jacobian, 148 codomain, 20

df = degrees of freedom, 100 domain, 20

discrete probability space, 35 extension, 22

discrete random variable, 48 function value, 20

discrete random vector, 48 inverse, 21

disjoint, 10 linear, 120

distribution, 47 maps to operator, 20
binomial, 77 range, 20
multinomial, 130 restriction, 22
parameter, 176 support, 142
uniform, 95 symmetric, 137

distribution function, 87 symmetrical, 137
conditional, 111 function value, 20
joint, 107

gamma distribution, 98
gamma function, 98
gamma(a, 3), 98

domain, 20
dummy variable (setbuilder), 9

element of a set, 8 geom(p) distribution, 78
empirical probability, 5 geometric distribution, 78
empirical rule, 95 graph, 20

empty set, 9 greek letters, 187

estimator, 123

unbiased, 123 half-open interval, 17

histogram

t, 35

eve][;nde endence, 51-53 left skewed, 97
p ’ right skewed, 97

events generated by random items, 112 ARG
& y hypergeometric distribution, 80

expectation
conditional, 128 identity, 49
expectation - continuous r.v., 91 identity function, 49
expectation - discrete r.v., 73 iid sequence, 76
expected value, 115 increasing, 30
expected value - continuous r.v., 91 independent and identically distributed, 76
expected value - discrete r.v., 73 independent events, 51-53
experiment independent random items, 113
multinomial, 130 independent random variables, 113
expon(f3) (exponential distribution), 100 index set, 24
exponential distribution, 100 indexed collection, 10
extension of a function, 22 indexed family, 24

indicator function, 46
infinite sequence, 22
injective, 21

F distribution, 181
failure probability, 76
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integer, 16

interval
closed, 17
half-open, 17
open, 17

inverse function, 21

irrational number, 16

Jacobian, 148

Jacobian determinant, 148

Jacobian matrix, 148

joint CDF, 107

joint cumulative distribution function, 107
joint distribution function, 107, 108

joint normal distribution, 132

joint PDEF, 109

joint PME, 108

joint probability density function, 109
joint probability mass function, 108
jointly continuous random variables, 108

largest order statistic, 151
left skewed, 97
left tailed, 97
limit
almost sure, 168
in probability, 168
pointwise, 168
limit in probability, 168
linear function, 120

maps to operator, 20
marginal density function, 110
marginal PDEF, 110
marginal PMF, 110
marginal probability mass function, 110
Markov inequality, 103
maximum, 18
mean, 115
mean - continuous r.v., 91
mean - discrete r.v., 73
measurable, 46
median, 90
sample median, 160
member of a set, 8
member of the family, 24
memoryless property, 101
MGF (moment-generating function), 85

moment about about its mean, 85
moment about the origin, 84
moment of a random variable, 84
moment-generating function, 85
multinomial coefficients, 60
multinomial distribution, 130
multinomial experiment, 130
multinomial sequence, 130
mutually disjoint, 10

natural number, 16
negative binomial distribution, 79
negative correlation, 118, 119
nondecreasing, 30
nonincreasing, 30
normal distribution

bivariate, 132

joint, 132
normal probability distribution, 96
numerator degrees of freedom, 181

open interval, 17
or
exclusive, 16
inclusive, 16
order statistic, 151
largest, 151
smallest, 151
outcome, 35

parameter of a distribution, 176
parameter space, 176
partition, 14, 25
partitioning, 14, 25
PDFE

conditional, 111

joint, 109

marginal, 110
PDF (probability density function), 89
percentile, 90
permutation, 56
PMF

conditional, 110

joint, 108

marginal, 110
PMF (probability mass function), 71
pointwise convergence, 168
pointwise limit, 168
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Poisson probability distribution, 82
poisson(\), 82
positive correlation, 118, 119
power set, 14
preimage, 43
probability, 35
conditional, 50
empirical, 5
probability density function, 39, 89
conditional, 111
joint, 109
probability distribution, 47
probability function, 71
probability mass function, 71
conditional, 110
joint, 108
marginal, 110
probability measure, 35
probability space, 35
discrete, 35
proof by cases, 13

quantile, 90

quartile
first, 90
third, 90

random item, 49
dependence, 113
events generated by, 112
independence, 113
random sampling action
from a distribution, 176
on a random variable, 176
random variable, 48
central moment, 85
continuous, 88
expectation, 91
expected value, 91
mean, 91
dependence, 113
discrete, 48
expectation, 73
expected value, 73
mean, 73
variance, 75
distribution function, 87
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independence, 113
moment, 84
moment about its mean, 85
moment about the origin, 84
moment-generating function, 85
standard deviation, 75
standard normal, 96
uncorrelated, 118, 119
uniform, 95
random variables
jointly continuous, 108
random vector, 48
discrete, 48
range, 20
sample, 178
rational number, 16
real number, 16
realizations, 176
restriction of a function, 22
right continuous function, 87
right skewed, 97
right tailed, 97

sample, 67, 68
realizations, 176
sample mean, 123
sample range, 178
sample space, 36
sample standard deviation, 177
sample variance, 177
sampling action, 67, 68
sampling distribution, 177
sampling procedure, 67, 68
sampling process, 67, 68
scale parameter, 98
sequence, 22
finite, 22
finite subsequence, 23
infinite, 22
multinomial, 130
start index, 22
subsequence, 23
series
absolutely convergent, 36, 71
set, 8
countable, 23
difference, 11

Version: 2023-12-07



Math 447 — MF Lecture Notes

Student edition with proofs

difference set, 11
disjoint, 10
intersection, 10, 25
mutually disjoint, 10
proper subset, 9
proper superset, 9
setbuilder notation, 8
size, 15

strict subset, 9

strict superset, 9
subset, 9

uniform probability distribution, 95
uniform random variable, 95
uniform(fy, 62), 95

universal set, 11

urn model with replacement, 70
urn model without replacement, 70

variance
conditional, 129
sample, 177
variance - discrete r.v., 75
vector, 28

superset, 9
symmetric difference, 11
uncountable, 23
union, 10, 25
shape parameter, 98
simple random sample, 70
simple random sampling action, 70
size, 15
smallest order statistic, 151
SRS, 70
SRS action, 70
standard deviation, 75
sample, 177
standard normal, 96
start index, 22
statistic, 177
strictly decreasing, 30
strictly increasing, 30
Student’s t—distribution, 179
subsequence, 23
finite, 23
success probability, 76
support, 142
surjective, 21
symmetric function, 137
symmetrical function, 137

t—distribution, 179
Tchebysheff inequalities, 103
third quartile, 90

triangle inequality, 18

unbiased estimator, 123

uncorrelated random variables, 118, 119
uncountable set, 23

uniform convergence, 167
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zero correlation, 118, 119
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