Formula Collection for the Math 447 Final Exam – Not all items are relevant!

(1) (a) • power set $2^{\Omega} = \{$ all subsets of $\Omega\}$ • $\forall x$... : For all x ... $\Box \exists x$ s.t. ... There is an x such that ... $\Box \Box x$ s.t. . . . There is a unique x s.t. . . . $\Box p \Rightarrow q$ If p is true then q is true $\Box p \Leftrightarrow q$ p iff q, i.e., p true if and only if q true • Intervals: $[a, b] = \{x \in \mathbb{R} : a < x < b, [a, b] | x = \{x \in \mathbb{Z} : a < x \le b, [a, b] | \emptyset = \{x \in \mathbb{Q} : a \le x \le b, \text{etc.}\}\}$ • countable set A: can be sequenced: $\Box A = \{a_1, a_2, \ldots, a_n\}$ (finite set) $\Box A = \{1, a_2, \ldots\}$ ("countably infinite" set) \Box \Box and \Diamond are countable, but $\mathbb R$ is uncountable • family $(x_i)_{i \in I}$: index set I may be uncountable • $\bigcup_{i \in J} A_i = \{x : \exists i \in I \text{ s.t. } x \in A_i\}$, \Diamond $\exists i_0 \in J$ s.t. $x \in A_{i_0}$ \bullet $\bigcap_{i \in J} A_i = \{x : \forall i \in J \: x \in A_i\}$. \bullet Can use $A \cup B$ if disjoint sets \bullet **De Morgan:** \Box $\left(\bigcup_{k} A_{k}\right)^{\complement} = \bigcap_{k} A_{k}^{\complement}$ **□** $\left(\bigcap_{k} A_{k}\right)^{\complement} = \bigcup_{k} A_{k}^{\complement}$ ● Distributivity: **□** $\bigcup_{j} \left(B \cap A_{j}\right) = B \cap \bigcup_{j} A_{j}$ **□** $\bigcap_{j \in I} \left(B \cup A_{j}\right) = B \cup \bigcap_{j} A_{j}$ • Cartesian products: $|X_1 \times \cdots \times X_n| = |X_1| \cdots |X_n|$ (the mn -rule) • Formulas f. preimages of $f: X \to Y$: Arbitrary index set J and $B, B_j \subseteq Y$: $\Box f^{-1}(\bigcap_{j \in J} B_j) = \bigcap_{j \in J} f^{-1}(B_j) \Box f^{-1}(\bigcup_{j \in J} B_j) = \bigcup_{j \in J} f^{-1}(B_j)$ $f^{-1}(B^{\complement}) = (f^{-1}(B))^{\complement} \boxdot B_1 \cap B_2 = \emptyset \Rightarrow f^{-1}(B_1) \cap f^{-1}(B_2) = \emptyset \bullet A \subseteq \Omega \Rightarrow 1_A(\omega) = 1$ if $\omega \in A$ and 0 else • partition B_j $(j \in \mathbb{N})$ of Ω , $A \in \Omega \Rightarrow A = \biguplus_j (A \cap B_j) \Rightarrow P(A) = \dots$; Used to compute $P(B_{j_0} \mid A)$ from $P(A \mid B_j)$ and $P(B_i)$ (must know for all j)

(b) • Probability space = sample space (Ω, P) • σ -algebra $\mathfrak{F} \subseteq 2^{\Omega}$: $\Box A \in \mathfrak{F} \Rightarrow A^{\complement} \in \mathfrak{F} \Box A_n \in \mathfrak{F} \Rightarrow \bigcup_{j=1}^{\infty} A_j \in \mathfrak{F} \Box$ $\emptyset \in \mathfrak{F}$ • distribution of random element (rand elem) $X : (\Omega, P) \to \Omega' : P_X(B) = P\{X \in B\} = P\big(X^{-1}(B)\big)$ on codomain.

- Conveniences: $P_X({x}) = P{X = x}$; $P_X([a, b]) = P{a < X \le b}$ (if X is random var. (rv), i.e., $\Omega' \subseteq \mathbb{R}$); ...
- discrete probab spaces and random elements and rvs defined how?

• independence for 2, n, arbitr. many events • $P(A \mid B)$ • general addition & multiplication rules, total probability, complement rule, Bayes formula

(c) Combinatorial Analysis • Think: Does order matter in your probability space or doesn't it?

• multiplication rule for several factors • # of permutations P_r^n vs # of combinations $\binom{n}{r}$ vs $\binom{n}{r_1,\dots,r_k}$

□ $0! = 1, n! = 1 \cdot 2 \cdots n; (n \in \mathbb{N})$ **□** several interpretations of $\binom{n}{r_1, \dots, r_k}$

• deck of 52 cards: \Box 4 suits (clubs, spades, hearts, diamonds) of 13 each: Ace, 2, 3, . . . , 10, Jack, Queen, King \Box so: 4 $2's$, 4 3's, 4 Aces, 4 Jacks, ... • Roulette: \Box slots $0, 00, 1, 2, \ldots, 36 \Box$ 18 black, 18 red; numbers $1 - 36$ in 12 rows \times 3 cols

(d) Random variables (rvs) and random elements

• Discrete rand elem $X: (\Omega, P) \to \Omega', p(x) = p_X(x) = P_X(x)$: PMF = probab. mass func (WMS: probab. func.) for X.

• Continuous rand vars $Y: (\Omega, P) \to \mathbb{R}$, $p(y) = p_Y(y)$: PDF for Y. • discrete & cont. rvs: CDF $F_Y(y)$; pth quantile ϕ_p ^φ0.25, φ0.50, φ0.⁷⁵ are named

- $E[Y]$, $Var[Y]$, σ_Y of rv Y : \Box Remember all formulas! $\Box E[g(Y)] = \dots$ m'_k and m_k ; MGF $m_Y(t)$ compute how?
- Each distribution: \Box application context? \Box $m_Y(t) = ? \Box$ Given $m_Y(t)$: Y ∼ WHAT?
- iid sequences of random elements \Box Bernoulli trials and sequences \Box 0–1 encoded Bernoulli trials
- Discrete rvs: \Box Bernoulli (p) \Box binom (n, p) \Box geom (p) \Box neg. binom (p, r) : $p(y) = {y-1 \choose r-1} p^r q^{y-r}$, $\mu = \frac{r}{p}$, $\sigma^2 = \frac{r(1-p)}{p^2}$

 \Box hypergeom(N, R, n) \Box Poisson(λ) hypergeom \neq multinomial distrib! • Contin rvs: \Box uniform(θ_1, θ_2): $\sigma^2 = \frac{(\theta_1 - \theta_2)^2}{12}$ 12 $\Box \mathcal{N}(\mu, \sigma^2)$: empirical rule =? \Box gamma (α, β) vs $\chi^2(\mathrm{df} = \nu)$ vs expon $(\beta) \bullet 2 \times$ Tchebysheff – know them both! **(e)** Multivariate $\vec{Y} = (Y_1, \ldots, Y_k)$:

• joint CDF $F_{\vec{Y}}(\vec{y})$, joint PMF $p_{\vec{Y}}(\vec{y})$, joint PDF $f_{\vec{Y}}(\vec{y})$ \square allow you to see whether the rvs are independent. HOW? \square What condition on $\{(y_1, y_2)$: the PDF or PMF is > 0 ? Must determine! $\bullet E[g(Y_1, \ldots, Y_n)] = \cdots \bullet Cov[X, Y] = 0$ vs. X, Y independent. Relationship? $\bullet \vec{Y} = (Y_1, Y_2)$: \Box marginal CDFs F_{Y_j} , PMFs p_{Y_j} and PDFs f_{Y_j} \Box conditional PMF $p_{Y_1|Y_2}(y_1|y_2)$ and PDF $f_{Y_1|Y_2}(y_1|y_2)$ define $E[Y_1 | Y_2]$, $Var[Y_1 | Y_2]$ how? $\bullet E[E[Y_1 | Y_2]] = (8.50) \bullet Var[Y_1] = (8.53)$

• Given a small 2-dim table (say, 3×4 entries) for a joint PMF, be able to compute marginal and conditional distributions and conditional expectations and variances.

Continued on p.2!

(f) Functions (transforms) of rvs $U = h \circ Y$:

• Method of transformations needs injectivity Formulas (9.24) and (9.26) \Box • Method of distrib functions always works • MGF method best for sums of indep rvs

• Order stats: \Box We only do them for continuous, iid rvs. \Box Find CDFs for $Y(1)$ and $Y(n)$ directly; differentiate to get PDFs Ξ For $1 < j < n$: maybe find a corresponding multinomial sequence $\Xi f_{(\bullet)}(\vec{y}) = (9.40)$; proof done how? **(g)** Convergence of random variables and limit theorems:

• 4 modes of convergence $Y_n \to Y$; \Box Imply what for $P\{a < Y_n \leq b\}$ vs. $P\{a < Y \leq b\}$? \Box What mode for CLT? \Box Two laws of large numbers and two CLTs - What do they state? \Box a CLT that uses σ^2 + normal distribution \Box a CLT that uses $S^2 + t$ -distribution • approximate binom $(n, p) \square w$. poisson rv (CLT not used) $\square w$. normal rv (need CLT)

(h) Sampling: • "sample" sometimes denotes the random vector (sampling action) \vec{Y} and sometimes "the" realization $\vec{y} = \vec{Y}(\omega)$ \Box Random sampling actions (RSAs) are iid, SRS actions are not. \Box Neither need be on a normal rv.

• CLT lets us work with non–normal RSAs HOW? • sample mean & variance $\bar{Y} = \ldots; S^2 = \ldots$; When independent?

 \Box \overline{Y} and S^2 are statistics for samples \overline{Y} . Means what? \bullet t–rvs and F–rvs defined with help of χ^2 –rvs. HOW? All 3 use df = degs of freedom. \Box df → $\infty \Rightarrow$ t–distrib converges to WHAT?