Formula Collection for the Math 447 Final Exam – Not all items are relevant!

- (b) \bullet Probability space = sample space (Ω, P) \bullet σ -algebra $\mathfrak{F} \subseteq 2^{\Omega}$: \square $A \in \mathfrak{F} \Rightarrow A^{\complement} \in \mathfrak{F} \square$ $A_n \in \mathfrak{F} \Rightarrow \bigcup_{j=1}^{\infty} A_j \in \mathfrak{F} \square$ $\emptyset \in \mathfrak{F} \bullet$ distribution of random element (rand elem) $X : (\Omega, P) \to \Omega'$: $P_X(B) = P\{X \in B\} = P(X^{-1}(B))$ on codomain.
- Conveniences: $P_X(\{x\}) = P\{X = x\}$; $P_X([a,b]) = P\{a < X \le b\}$ (if X is random var. (rv), i.e., $\Omega' \subseteq \mathbb{R}$); ...
- discrete probab spaces and random elements and rvs defined how?
- ullet independence for 2, n, arbitr. many events ullet $P(A \mid B)$ ullet general addition & multiplication rules, total probability, complement rule, Bayes formula
- (c) Combinatorial Analysis Think: Does order matter in your probability space or doesn't it?
- multiplication rule for several factors # of permutations P_r^n vs # of combinations $\binom{n}{r}$ vs $\binom{n}{r_1}$ vs $\binom{n}{r_2}$ vs $\binom{n}{r_3}$ vs $\binom{n}{r_4}$ vs $\binom{n}{$
- \bullet $0! = 1, n! = 1 \cdot 2 \cdots n; (n \in \mathbb{N})$ \bullet several interpretations of $\binom{n}{r_1, \dots, r_k}$
- deck of 52 cards: \blacksquare 4 suits (clubs, spades, hearts, diamonds) of 13 each: Ace, $2, 3, \ldots, 10$, Jack, Queen, King \blacksquare so: 4 2's, 4 3's, 4 Aces, 4 Jacks, \ldots Roulette: \blacksquare slots $0, 00, 1, 2, \ldots, 36$ \blacksquare 18 black, 18 red; numbers 1 36 in 12 rows \times 3 cols
- (d) Random variables (rvs) and random elements

and $P(B_i)$ (must know for all j)

- ullet Discrete rand elem $X:(\Omega,P)\to\Omega'$, $p(x)=p_X(x)=P_X\{x\}$: PMF = probab. mass func (WMS: probab. func.) for X.
- Continuous rand vars $Y:(\Omega,P)\to\mathbb{R}$, $p(y)=p_Y(y)$: PDF for Y. discrete & cont. rvs: CDF $F_Y(y)$; pth quantile ϕ_p $\Phi_{0.25},\phi_{0.50},\phi_{0.75}$ are named
- $E[Y], Var[Y], \sigma_Y$ of rv Y: \blacksquare Remember all formulas! $\blacksquare E[g(Y)] = \dots$ m'_k and m_k ; MGF $m_Y(t)$ compute how?
- Each distribution: \blacksquare application context? \blacksquare $m_Y(t) = ?$ \blacksquare Given $m_Y(t)$: $Y \sim \text{WHAT}$?
- iid sequences of random elements 🖸 Bernoulli trials and sequences 🖸 0-1 encoded Bernoulli trials
- Discrete rvs: \square Bernoulli(p) \square binom(n,p) \square geom(p) \square neg. binom(p,r): $p(y) = \binom{y-1}{r-1}p^rq^{y-r}, \mu = \frac{r}{p}, \sigma^2 = \frac{r(1-p)}{p^2}$ \square hypergeom(N,R,n) \square Poisson (λ) hypergeom \neq multinomial distrib! Contin rvs: \square uniform (θ_1,θ_2) : $\sigma^2 = \frac{(\theta_1-\theta_2)^2}{12}$ \square $\mathcal{N}(\mu,\sigma^2)$: empirical rule =? \square gamma (α,β) vs $\chi^2(\mathrm{df}=\nu)$ vs expon (β) $2\times$ Tchebysheff know them both! (e) Multivariate $\vec{Y}=(Y_1,\ldots,Y_k)$:
- joint CDF $F_{\vec{Y}}(\vec{y})$, joint PMF $p_{\vec{Y}}(\vec{y})$, joint PDF $f_{\vec{Y}}(\vec{y})$ \square allow you to see whether the rvs are independent. HOW? \square What condition on $\{(y_1,y_2):$ the PDF or PMF is $>0\}$? Must determine! $E[g(Y_1,\ldots,Y_n)]=\cdots$ Cov[X,Y]=0 vs. X,Y independent. Relationship? $\vec{Y}=(Y_1,Y_2)$: \square marginal CDFs F_{Y_j} , PMFs p_{Y_j} and PDFs f_{Y_j} \square conditional PMF $p_{Y_1|Y_2}(y_1|y_2)$ and PDF $f_{Y_1|Y_2}(y_1|y_2)$ define $E[Y_1\mid Y_2]$, $Var[Y_1\mid Y_2]$ how? $E[E[Y_1\mid Y_2]]=(8.50)$ $Var[Y_1]=(8.53)$
- \bullet Given a small 2-dim table (say, 3×4 entries) for a joint PMF, be able to compute marginal and conditional distributions and conditional expectations and variances.

Continued on p.2!

- **(f)** Functions (transforms) of rvs $U = h \circ Y$:
- Method of transformations needs injectivity Formulas (9.24) and (9.26) Method of distrib functions always works
- MGF method best for sums of indep rvs
- Order stats: \blacksquare We only do them for continuous, iid rvs. \blacksquare Find CDFs for Y(1) and Y(n) directly; differentiate to get PDFs \blacksquare For 1 < j < n: maybe find a corresponding multinomial sequence \blacksquare $f_{(\bullet)}(\vec{y}) = (9.40)$; proof done how? (g) Convergence of random variables and limit theorems:
- 4 modes of convergence $Y_n \to Y$; Imply what for $P\{a < Y_n \le b\}vs$. $P\{a < Y \le b\}$? What mode for CLT? Two laws of large numbers and two CLTs What do they state? a CLT that uses σ^2 + normal distribution a CLT that uses $S^2 + t$ -distribution approximate binom(n,p) w. poisson rv (CLT not used) w. normal rv (need CLT)
- (h) Sampling: "sample" sometimes denotes the random vector (sampling action) \vec{Y} and sometimes "the" realization $\vec{y} = \vec{Y}(\omega)$ Random sampling actions (RSAs) are iid, SRS actions are not. Neither need be on a normal rv.
- CLT lets us work with non-normal RSAs HOW? sample mean & variance $\bar{Y} = \dots; S^2 = \dots;$ When independent?