Math 454 - Spring 2021 - Homework 09

Published: Friday, April 9, 2021

Update April 15, 2021 There still was a mistake. Everything in the big yellow box was CORRECT. There I stated that »It does not matter how the stock price became 85 at t = 5.« I forgot to update the instructions I gave in assignment 1 where I stated INCORRECTLY that stock price »at time of expiration« is 85. It should be instead »at **time of evaluation**, i.e., t = 5.« I have corrected assignment 1 accordingly. **Update April 14, 2021** Written assignments were added. They could be important for quiz and midterm! This version was corrected at 6:50 PM on Wed 4/14.

Status - Reading Assignments:

Here is the status of the reading assignments you were asked to complete by this date plus the material taught in class without assigned reading.

SCF2 (Shreve Textbook): ch.1-4.5

MF454 lecture notes:

ch.2 – 8

Other: • Wiersema (optional - no internet PDF) p.130-135: one period binomial model

New reading assignments:

Reading assignment 1 - due Monday, April 12:

- **a.** As soon as I publish the next edition: Carefully read whatever it may contain in a new ch.9 (Black–Scholes Model Part I: The PDE). I also plan to make some changes to ch.6, mostly to ch.6.1 (Basic Definitions about Financial Markets).
- **b.** Carefully read SCF2 ch.4.6.1. It is very brief.

Reading assignment 2 - due: Tuesday, April 8:

a. Carefully read the remainder of SCF2 ch.4.6. Note that we will skip the remainder of SCF2 ch.4.

Reading assignment 3 - due: Wednesday, April 7:

- a. Carefully read SCF2 ch.5.1 and ch.5.2.1.
- **b.** Review MF ch.4.6 while you study SCF2 ch.5.2.1.

Reading assignment 4 - due Friday, April 9:

a. Carefully read SCF2 ch.5.2.2 – ch.5.2.4.

Written assignments: See next page.

Written assignments:

General note on written assignments: I will not collect those assignments for grading but doing them might be helpful for your quizzes and exams.

Written assignment 1:

Given is a Black–Scholes market with r = 0.2, $\alpha = 0.1$, $\sigma = 0.4$, $S_0 = 80$. You today (t = 0) sold a European call option based on the stock with an expiration date of T = 10 at a strike price of K = 90. You build a hedging portfolio for that option. How much of its value will be invested in the stock at time t = 5 if its price **AT THIS TIME**, t = 5, is 85?

What about various other times and stock prices?

Hint: Your answer to your prayers can be found in the first 20 lines or so of SCF2 Chapter 4.5.5 (The Greeks). Also note that not all the info I gave is needed to compute the answer.

How to choose the correct parameters for the software: It will follow in a later chapter from the general theory that stock price S_t is a Markov process and thus conditioning on the present stock price S_t is the same as conditioning on the the entire past \mathfrak{F}_t . It does not matter how the stock price became 85 at t = 5. It is as if the clock is reset to zero at t = 0, as if S_0 were 85, and as if time of expiration were T - 5 = 5. So you plug the following into your program: $r = 0.2, \sigma = 0.4, S_0 = 85$ (NOT 80!), T = 5, K = 90. Note that α does not appear in the computation of c(t, x) and can be ignored.

Written assignment 12

Practice pricing options in the Black Scholes market model. You will need appropriate software to do that. Here are two resources that I have come across and rather like.

- a. Magnimetrics Excel implementation: https://magnimetrics.com/black-scholes-model-first-steps/.
- b. Drexel U Finance calculator: https://www.math.drexel.edu/~pg/fin/VanillaCalculator.html.

I am **seriously considering** putting a problem on quiz 7 or the second midterm or both asking you to use the Drexel U software (**specifically that one!**) to do some finance calculation, so be sure to practice!

- Note that there is no provision for the instantaneous mean rate of return *α* since it disappears in the arbitrage free pricing function of the call.
- You will find an additional parameter, usually named *q*, for the dividend rate. We have not yet discussed dividends yet, so *q* = 0, but you are encouraged to play around with nonzero dividend rates.
- Those of you who have a background in the R programming language, maybe because you took Math 329, are encouraged to look for R–based solutions. I am sure they exist.
- A final suggestion: Use two different resources and cross-check the results. If they match then chances are that you understand how to use this kind of software.