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1 Before You Start

History of Updates:
Date Topic

2020-12-23 Created.

1.1 About This Document

Remark 1.1 (The purpose of this document). The intent is to put some core definitions and the-
orems into these lecture notes, in particular, if there is a substantial difference in notation and/or
presentation to that used in the text for this class, [4] Shreve, Steven: Stochastic Calculus for Finance
II: Continuous-Time Models. �

Remark 1.2 (Acknowledgements). I am indepted to Prof. Dikran Karagueuzian from the Depart-
ment of Mathematical Sciences at Binghamton University for sharing his notes from teaching this
class at an earlier time. �
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2 Preliminaries about Sets, Numbers and Functions

Introduction 2.1. You find here a range of mathematical definitions and facts that you should be
familiar with. �

The student should read this chapter carefully, with the expectation that it contains material
that they are not familiar with, as much of it will be used in lecture without comment. Very
likely candidates are power sets, a function f : X → Y where domain X and codomain Y
are part of the definition.

2.1 Sets and Basic Set Operations

Introduction 2.2. This first subchapter of ch.2 is different from the following ones in that the treat-
ment of sets given here is sufficiently exact for a PhD in math unless s/he works in the areas of
logic or axiomatic set theory. The only exception is the end of the chapter where the preliminary
definition of the size of a set (def.2.10 on p.13) needs to refer to finiteness.
Ask a mathematician how her or his Math is different from the kind of Math you learn in high
school, in fact, from any kind of Math you find outside textbooks for mathematicians and theoretical
physicists. One of the answers you are likely to get is that Math is not so much about numbers but
also about other objects, among them sets and functions. Once you know about those, you can
tackle sets of functions, set functions, sets of set functions, . . . �

An entire book can be filled with a mathematically precise theory of sets. 1 For our purposes the
following “naive” definition suffices:

Definition 2.1 (Sets). A set is a collection of stuff called members or elements which satisfies the
following rules: The order in which you write the elements does not matter and if you list an
element two or more times then it only counts once.
We write a set by enclosing within curly braces the elements of the set. This can be done by listing
all those elements or giving instructions that describe those elements. For example, to denote by X
the set of all integer numbers between 18 and 24 we can write either of the following:

X := {18, 19, 20, 21, 22, 23, 24} or X := {n : n is an integer and 18 5 n 5 24}

Both formulas clearly define the same collection of all integers between 18 and 24. On the left the
elements of X are given by a complete list, on the right setbuilder notation, i.e., instructions that
specify what belongs to the set, is used instead.
It is customary to denote sets by capital letters and their elements by small letters but this is not a
hard and fast rule. You will see many exceptions to this rule in this document.
We write x1 ∈ X to denote that an item x1 is an element of the set X and x2 /∈ X to denote that an
item x2 is not an element of the set X
For the above example we have 20 ∈ X , 27− 6 ∈ X , 38 /∈ X , ’Jimmy’ /∈ X . �

1See remark 2.2 (“Russell’s Antinomy”) below.
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Example 2.1 (No duplicates in sets). The following collection of alphabetic letters is a set:

S1 = {a, e, i, o, u}

and so is this one:
S2 = {a, e, e, i, i, i, o, o, o, o, u, u, u, u, u}

Did you notice that those two sets are equal? �

Remark 2.1. The symbol n in the definition of X = {n : n is an integer and 18 5 n 5 24} is a
dummy variable in the sense that it does not matter what symbol you use. The following sets all
are equal to X :

{x : x is an integer and 18 5 x 5 24},
{α : α is an integer and 18 5 α 5 24},
{Z : Z is an integer and 18 5 Z 5 24} �

Remark 2.2 (Russell’s Antinomy). Care must be taken so that, if you define a set with the use of
setbuilder notation, no inconsistencies occur. Here is an example of a definition of a set that leads
to contradictions.

A := {B : B is a set and B /∈ B}(2.1)

What is wrong with this definition? To answer this question let us find out whether or not
this set A is a member of A. Assume that A belongs to A. The condition to the right of the colon
states that A /∈ A is required for membership in A, so our assumption A ∈ A must be wrong. In
other words, we have established “by contradiction” that A /∈ A is true. But this is not the end of it:
Now that we know that A /∈ A it follows that A ∈ A because A contains all sets that do not contain
themselves.
In other words, we have proved the impossible: both A ∈ A and A /∈ A are true! There is no
way out of this logical impossibility other than excluding definitions for sets such as the one given
above. It is very important for mathematicians that their theories do not lead to such inconsistencies.
Therefore, examples as the one above have spawned very complicated theories about “good sets”.
It is possible for a mathematician to specialize in the field of axiomatic set theory (actually, there
are several set theories) which endeavors to show that the sets are of any relevance in mathematical
theories do not lead to any logical contradictions.

The great majority of mathematicians take the “naive” approach to sets which is not to worry
about accidentally defining sets that lead to contradictions and we will take that point of view in
this document. �

Definition 2.2 (empty set). ∅ or {} denotes the empty set. It is the one set that does not contain any
elements. �

Remark 2.3 (Elements of the empty set and their properties). You can state anything you like about
the elements of the empty sets as there are none. The following statements all are true:
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a: If x ∈ ∅ then x is a positive number.
b: If x ∈ ∅ then x is a negative number.
c: Define a ∼ b if and only if both are integers and a − b is an even number.

For any x, y, z ∈ ∅ it is true that
c1: x ∼ x,
c2: if x ∼ y then y ∼ x,
c3: if x ∼ y and y ∼ z then x ∼ z.

d: Let A be any set. If x ∈ ∅ then x ∈ A.

As you will learn later, c1+c2+c3 means that “∼” is an equivalence relation (see def.?? on p.??) and
d: means that the empty set is a subset (see the next definition) of any other set. �

Definition 2.3 (subsets and supersets). We say that a set A is a subset of the set B and we write
A ⊆ B if any element of A also belongs to B. Equivalently we say that B is a superset of the set A
and we write B ⊇ A . We also say that B includes A or A is included by B. Note that A ⊆ A and
∅ ⊆ A is true for any set A.

BBB

AAA

Figure 2.1: Set inclusion: A ⊆ B, B ⊇ A

If A ⊆ B but A 6= B, i.e., there is at least one x ∈ B such that x /∈ A, then we say that A is a strict
subset or a proper subset of B. We write “A ( B” or “A ⊂ B”. Alternatively we say that B is a
strict superset or a proper superset of A and we write “B ) A”) or “B ⊃ A”. �

Two setsA andB are equal means that they both contain the same elements. In other words, A = B
iff A ⊆ B and B ⊆ A.
“iff” is a short for “if and only if”: P iff Q for two statements P and Q means that if P is valid then
Q is valid and vice versa. 2

To show that two sets A and B are equal you show that
a. if x ∈ A then x ∈ B,
b. if x ∈ B then x ∈ A.

Definition 2.4 (unions, intersections and disjoint unions). Given are two arbitrary sets A and B.
No assumption is made that either one is contained in the other or that either one contains any
elements!

2A formal definition of “if and only if” will be given in def.?? on p.?? where we will also introduce the symbolic
notation P ⇔ Q. Informally speaking, a statement is something that is either true or false.
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The union A ∪ B (pronounced "A union B") is defined as the set of all elements which belong to A
or B or both. 3

The intersection A ∩ B (pronounced "A intersection B") is defined as the set of all elements which
belong to both A and B.
We call A and B disjoint , also mutually disjoint , if A ∩B = ∅. We then usually write A ] B
(pronounced “A disjoint union B”) rather than A ∪B. �

A ∪B: A ∪B ∪ C: A ∩B: A ∩B ∩ C:

A B A B

C

A B A B

C

Figure 2.2: Union and intersection of sets

Remark 2.4. It is obvious from the definition of unions and intersections and the meaning of the
phrases “ all elements which belong to A or B or both”, “all elements which belong to both A and
B” and “A ⊆ B if any element of A also belongs to B” that the following is true for any sets A,B
and C.

A ∩B ⊆ A ⊆ A ∪B,(2.2)
A ⊆ B ⇒ A ∩B = A and A ∪B = B,(2.3)
A ⊆ B ⇒ A ∩ C ⊆ B ∩ C and A ∪ C ⊆ B ∪ C.(2.4)

The symbol ⇒ stands for “allows us to conclude that”. So A ⊆ B ⇒ A ∩ B = A means
“From the truth of A ⊆ B we can conclude that A ∩ B = A is true”. Shorter: “From A ⊆ B
we can conclude that A ∩ B = A”. Shorter: “If A ⊆ B then it follows that A ∩ B = A”.
Shorter: “If A ⊆ B then A ∩B = A”. More technical: A ⊆ B implies A ∩B = A.

You will learn more about implication in ch.?? of this document and in ch.3 (Some Points of Logic)
of [2] Beck/Geoghegan: The Art of Proof. �

Definition 2.5 (set differences and symmetric differences). Given are two arbitrary sets A and B.
No assumption is made that either one is contained in the other or that either one contains any
elements!

3We could have shortened the phrase “all elements which belong to A or B or both” to “all elements which belong
to A or B”, and we will almost always do so because it is understood among mathematicians that “or” always means
at least one of the choices. If they mean instead exactly one of the choices #1,#2, . . .#n then they will use the phrase
“either #1 or #2 or . . . or #n. See rem?? on p.??. We will also see in a moment that there is a special symbol A4B which
denotes the items which belong to either A or B (but not both).

9 Version: 2021-05-17



Math 454 – Additional Material Student edition with proofs

The difference set or set difference A \ B (pronounced "A minus B") is defined as the set of all
elements which belong to A but not to B:

(2.5) A \B := {x ∈ A : x /∈ B}

The symmetric differenceA4B (pronounced "A delta B") is defined as the set of all elements which
belong to either A or B but not to both A and B:

(2.6) A4B := (A ∪B) \ (A ∩B) �

Definition 2.6 (Universal set). Usually there always is a big set Ω that contains everything we are
interested in and we then deal with all kinds of subsets A ⊆ Ω. Such a set is called a “universal”
set. �

For example, in this document, we often deal with real numbers and our universal set will then be
R. 4 If there is a universal set, it makes perfect sense to talk about the complement of a set:

Definition 2.7 (Complement of a set). The complement of a setA consists of all elements of Ω which
do not belong to A. We write A{. or {A In other words:

(2.7) A{ := {A := Ω \A = {ω ∈ Ω : x /∈ A} �

A \B: A4B: Universal set: A{:

A B A B
ΩΩΩ AAA

A{A{A{

Figure 2.3: Difference, symmetric difference, universal set, complement

Remark 2.5. Note that for any kind of universal set Ω it is true that

Ω{ = ∅, ∅{ = Ω. �(2.8)

Example 2.2 (Complement of a set relative to the unit interval). Assume we are exclusively dealing
with the unit interval, i.e., Ω = [0, 1] = {x ∈ R : 0 5 x 5 1}. Let a ∈ [0, 1] and δ > 0 and

(2.9) A = {x ∈ [0, 1] : a− δ < x < a+ δ}
4R is the set of all real numbers, i.e., the kind of numbers that make up the x-axis and y-axis in a beginner’s calculus

course (see ch.2.2 (“Classification of numbers”) on p.14).
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the δ–neighborhood 5 of a (with respect to [0, 1] because numbers outside the unit interval are not
considered part of our universe). Then the complement of A is

A{ = {x ∈ [0, 1] : x 5 a− δ or x = a+ δ}. �

Draw some Venn diagrams to visualize the following formulas.

Proposition 2.1. Let A, B, X be subsets of a universal set Ω and assume A ⊆ X . Then

A ∪ ∅ = A; A ∩ ∅ = ∅(2.10a)
A ∪ Ω = Ω; A ∩ Ω = A(2.10b)

A ∪A{ = Ω; A ∩A{ = ∅(2.10c)
A4B = (A \B) ] (B \A)(2.10d)
A \A = ∅(2.10e)
A4∅ = A; A4A = ∅(2.10f)
X4A = X \A(2.10g)
A ∪B = (A4B) ] (A ∩B)(2.10h)
A ∩B = (A ∪B) \ (A4B)(2.10i)
A4B = ∅ if and only if B = A(2.10j)

PROOF: The proof is left as exercise 2.2. See p.29. �

Next we give a very detailed and rigorous proof of a simple formula for sets. The reader should
make an effort to understand it line by line.

Proposition 2.2 (Distributivity of unions and intersections for two sets). Let A,B,C be sets. Then

(A ∪ B) ∩ C = (A ∩ C) ∪ (B ∩ C),(2.11)
(A ∩ B) ∪ C = (A ∪ C) ∩ (B ∪ C).(2.12)

PROOF: ? We only prove (2.11). The proof of (2.12) is left as exercise 2.1.

PROOF of “⊆”: Let x ∈ (A ∪ B) ∩ C. It follows from (2.2) on p.9 that x ∈ (A ∪ B), i.e., x ∈ A or
x ∈ B (or both). It also follows from (2.2) that x ∈ C. We must show that x ∈ (A ∩ C) ∪ (B ∩ C)
regardless of whether x ∈ A or x ∈ B.
Case 1: x ∈ A. Since also x ∈ C, we obtain x ∈ A∩C, hence, again by (2.2), x ∈ (A ∩ C) ∪ (B ∩ C),
which is what we wanted to prove.
Case 2: x ∈ B. We switch the roles of A and B. This allows us to apply the result of case 1, and we
again obtain x ∈ (A ∩ C) ∪ (B ∩ C).
PROOF of “⊇”: Let x ∈ (A ∩ C) ∪ (B ∩ C), i.e., x ∈ A ∩ C or x ∈ B ∩ C (or both). We must
show that x ∈ (A ∪ B) ∩ C regardless of whether x ∈ A ∩ C or x ∈ B ∩ C.
Case 1: x ∈ A ∩ C. It follows from A ⊆ A ∪ B and (2.4) on p.9 that x ∈ (A ∪ B) ∩ C, and we are
done in this case.

5Neighborhoods of a point will be discussed in the chapter on the topology of Rn (see (??) on p.??). In short, the
δ–neighborhood of a is the set of all points with distance less than δ from a.
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Case 2: x ∈ B ∩ C. This time it follows from A ⊆ A ∪ B that x ∈ (A ∪ B) ∩ C. This finishes the
proof of (2.11).
Epilogue: The proofs both of “⊆” and of “⊇” were proofs by cases, i.e., we divided the proof into
several cases (to be exact, two for each of “⊆” and “⊇”), and we proved each case separately. For
example we proved that x ∈ (A ∪ B) ∩ C implies x ∈ (A ∩ C) ∪ (B ∩ C) separately for the cases
x ∈ A and x ∈ B. Since those two cases cover all possibilities for x the assertion “if x ∈ (A∪B)∩C
then x ∈ (A ∩ C) ∪ (B ∩ C)” is proven. �

Proposition 2.3 (De Morgan’s Law for two sets). Let A,B ⊆ Ω. Then the complement of the union is
the intersection of the complements, and the complement of the intersection is the union of the complements:

a. (A ∪B){ = A{ ∩B{ b. (A ∩B){ = A{ ∪B{(2.13)

PROOF of a:
1) First we prove that (A ∪B){ ⊆ A{ ∩B{:
Assume that x ∈ (A ∪ B){. Then x /∈ A ∪B, which is the same as saying that x does not belong
to either of A and B. That in turn means that x belongs to both A{ and B{ and hence also to the
intersection A{ ∩B{.
2) Now we prove that (A ∪B){ ⊇ A{ ∩B{:
Let x ∈ A{ ∩B{. Then x belongs to both A{, B{, hence neither to A nor to B, hence x /∈ A ∪ B.
Therefore x belong to the complement of A ∪B. This completes the proof of formula a.
PROOF of b:
The proof is very similar to that of formula a and left as an exercise. �

Formulas a through g of the next proposition are very useful. You are advised to learn them by
heart and draw pictures to visualize them. You also should examine closely the proof of the next
proposition. It shows how a proof which involves 3 or 4 sets can be split into easily dealt with cases.

Proposition 2.4. Let A,B,C,Ω be sets such that A,B,C ⊆ Ω. Then
a. (A4B)4C = A4(B4C)
b. A4∅ = ∅4A = A
c. A4A = ∅
d. A4B = B4A

Further we have the following for the intersection operation:
e. (A ∩B) ∩ C = A ∩ (B ∩ C)
f. A ∩ Ω = Ω ∩A = A
g. A ∩B = B ∩A

And we have the following interrelationship between4 and ∩:
h. A ∩ (B4C) = (A ∩B)4(A ∩ C)

PROOF: ?

Only the proof of a is given here. It is very tedious and there is a much more elegant proof, but that
one requires knowledge of indicator functions 6 and of base 2 modular arithmetic (see, e.g., [2] B/G
(Beck/Geoghegan) ch.6.2).

6Indicator functions will be discussed in ch.3.3 on p.37 and in ch.?? on p.??.
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By definition x ∈ U4V if and only if either x ∈ U or x ∈ V , i.e.,
(either)

[
x ∈ U and x /∈ V

]
or
[
x ∈ V and x /∈ U

]
Hence x ∈ (A4B)4C means either x ∈ (A4B) or x ∈ C, i.e.,
either

[
x ∈ A, x /∈ B or x ∈ B, x /∈ A

]
or x ∈ C, i.e., we have one of the following four combinations:

a. x ∈ A x /∈ B x /∈ C
b. x /∈ A x ∈ B x /∈ C
c. x ∈ A x ∈ B x ∈ C
d. x /∈ A x /∈ B x ∈ C

and x ∈ A4(B4C) means either x ∈ A or x ∈ (B4C), i.e.,
either x ∈ A or

[
x ∈ B, x /∈ C or x ∈ C, x /∈ B

]
, i.e., we have one of the following four combinations:

1. x ∈ A x ∈ B x ∈ C
2. x ∈ A x /∈ B x /∈ C
3. x /∈ A x ∈ B x /∈ C
4. x /∈ A x /∈ B x ∈ C

We have a perfect match a↔ 2, b↔ 3, c↔ 1, d↔ 4. and this completes the proof of a.
�

Definition 2.8 (Partition). Let Ω be a set and A ⊆ 2Ω. We call A a partition or a partitioning of Ω if
a. A ∩ B = ∅ for any two A,B ∈ A such that A 6= B, i.e. A consists of mutually disjoint

subsets of Ω (see def.2.4),
b. Ω =

⊎[
A : A ∈ A

]
. �

Example 2.3.
a. For n ∈ Z let An := {n}. Then A := {An : n ∈ Z} is a partition of Z. A is not a partition

of N because not all its members are subsets of N and it is not a partition of Q or R. The
reason: 1

2 ∈ Q and hence 1
2 ∈ R, but 1

2 /∈ An for any n ∈ Z, hence condition b of def.2.8 is
not satisfied.

b. For n ∈ N let Bn := [ n2, (n+1)2[ = {x ∈ R : n2 5 x < (n+1)2}. Then B := {Bn : n ∈ N}
is a partition of [1,∞[. �

Definition 2.9 (Power set). The power set

2Ω := {A : A ⊆ Ω}

of a set Ω is the set of all its subsets. Note that many older texts also use the notation P(Ω) for the
power set. �

Remark 2.6. Note that ∅ ∈ 2Ω for any set Ω, even if Ω = ∅: 2∅ = {∅}. It follows that the power set of
the empty set is not empty. �

Definition 2.10 (Size of a set).
a. Let X be a finite set, i.e., a set which only contains finitely many elements. We write

∣∣X∣∣
for the number of its elements, and we call

∣∣X∣∣ the size of the set X .
b. For infinite, i.e., not finite sets Y , we define |Y | :=∞. �

A lot more will be said about sets once families are defined.
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2.2 Numbers

We start with an informal classification of numbers. It is not meant to be mathematically exact. We
will give exact definitions of the integers, rational numbers and real numbers in chapter ?? (The
Real Numbers).

Definition 2.11 (Integers and decimal numerals). A digit or decimal digit Is one of the numbers
0, 1, 2, 3, 4, 5, 6, 7, 8, 9.
We call numbers that can be expressed as a finite string of digits, possibly preceded by a minus
sign, integers. In particular we demand that an integer can be written without a decimal point.
Examples of integers are

3, − 29, 0, 3 · 106, −1, 2.9̄, 12345678901234567890, −2018.(2.14)

Note that 3 · 106 = 3000000 is a finite string of digits and that 2.9̄ equals 3 (see below about the
period of a decimal numeral). We write Z for the set of all integers.
Numbers in the set N = {1, 2, 3, . . . } of all strictly positive integers are called natural numbers.
An integer n is an even integer if it is a multiple of 2, i.e., there exists j ∈ Z such that n = 2j, and it
is an odd integer otherwise. One can give a strict proof that n is odd if and only if there exists j ∈ Z
such that n = 2j + 1.

A decimal or decimal numeral is a finite or infinite list of digits, possibly preceded by a minus sign,
which is separated into two parts by a point, the decimal point. The list to the left of the decimal
point must be finite or empty, but there may be an infinite number of digits to its right. Examples
are

3.0, − 29.0, 0.0, −0.75, .3̄, 2.749̄, π = 3.141592....., −34.56.(2.15)

The bar on top of the rightmost part of a decimal such as “.3̄” means that this part should be
repeated over and over again, i.e., .3̄ = 0.33333333333 . . . and 1.234567 = 1.234567567567 . . . .
Any integer can be transformed into a decimal numeral of same value by appending the pattern
“.0” to its right. For example, the integer 27 can be written as the decimal 27.0. �

Definition 2.12 (Real numbers). We call any kind of number which can be represented as a decimal
numeral, a real number. We write R for the set of all real numbers. It follows from what was
remarked at the end of def.2.11 that integers, in particular natural numbers, are real numbers. Thus
we have the following set relations:

N ⊆ Z ⊆ R. �(2.16)

We next define rational numbers.

Definition 2.13 (Rational numbers). A number that is an integer or can be written as a fraction of
integers, i.e., as m

n where m,n ∈ Z and n 6= 0, is called a rational number. We write Q for the set of
all rational numbers. �
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We next define rational numbers.
Examples of rational numbers are

3
4 , −0.75, −1

3 , .3̄,
7
1 , 16, 13

4 , −5, 2.999̄, −372
7 .

Note that a mathematician does not care whether a rational number is written as a fraction

numerator

denominator

or as a decimal numeral. The following all are representations of one third:

(2.17) 0.3̄ = .3̄ = 0.33333333333 . . . = 1
3 = −1

−3 = 2
6 ,

and here are several equivalent ways of expressing the number minus four:

(2.18) − 4 = −4.000 = −3.9̄ = −12
3 = 4

−1 = −4
1 = 12

−3 = −400
100 .

There are real numbers which cannot be expressed as integers or fractions of integers.

Definition 2.14 (Irrational numbers). We call real numbers that are not rational irrational numbers.
They hence fill the gaps that exist between the rational numbers. In fact, there is a simple way
(but not easy to prove) of characterizing irrational numbers: Rational numbers are those that can
be expressed with at most finitely many digits to the right of the decimal point, including repeating
decimals. You can find the underlying theory and exact proofs in ch.?? (Decimal Expansions of Real
and Rational Numbers). Irrational numbers must then be those with infinitely many decimal digits
without a continually repeating pattern. �

Example 2.4. To illustrate that repeating decimals are in fact rational numbers we convert x = 0.145
into a fraction:

99x = 100x− x = 14.545− 0.145 = 14.4

It follows that x = 144/990, and that is certainly a fraction. �

Remark 2.7. Examples of irrational numbers are
√

2 and π. A proof that
√

2 is irrational (actually
that n

√
2 is irrational for any integer n = 2) is given in prop.?? on p.??. �

Definition 2.15 (Types of numbers). We summarize what was said sofar about the classification of
numbers:

N := {1, 2, 3, . . . } denotes the set of natural numbers.
Z := {0,±1,±2,±3, . . . } denotes the set of all integers.
Q := {n/d : n ∈ Z, d ∈ N} denotes the set of all rational numbers.
R := {all integers or decimal numbers with finitely or infinitely many decimal digits} de-
notes the set of all real numbers.
R \Q = {all real numbers which cannot be written as fractions of integers} denotes the set
of all irrational numbers. There is no special symbol for irrational numbers. Example:

√
2

and π are irrational. �
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Here are some customary abbreviations of some often referenced sets of numbers:

N0 := Z+ := Z≥0 := {0, 1, 2, 3, . . . } denotes the set of nonnegative integers,
R+ := R≥0 := {x ∈ R : x = 0} denotes the set of all nonnegative real numbers,
R+ := R>0 := {x ∈ R : x > 0} denotes the set of all positive real numbers,
R 6=0 := {x ∈ R : x 6= 0}. �

Definition 2.16 (Intervals of Numbers 7 ). We use the following notation for intervals of real num-
bers a and b:
[a, b] := {x ∈ R : a 5 x 5 b} is called the closed interval with endpoints a and b.
]a, b[ := {x ∈ R : a < x < b} is called the open interval with endpoints a and b.
[a, b[ := {x ∈ R : a 5 x < b} and ]a, b] := {x ∈ R : a < x 5 b} are called half-open intervals with
endpoints a and b.
The symbol “∞” stands for an object which itself is not a number but is larger than any (real)
number, and the symbol “−∞” stands for an object which itself is not a number but is smaller than
any number. We thus have −∞ < x < ∞ for any number x. This allows us to define the following
intervals of “infinite length”:

]−∞, a] :={x ∈ R : x 5 a}, ]−∞, a[ := {x ∈ R : x < a},
]a,∞[ :={x ∈ R : x > a}, [a,∞[ := {x ∈ R : x = a}, ]−∞,∞[ := R

(2.19)

Finally we define [a, b[ := ]a, b[ := ]a, b] := ∅ for a = b and [a, b] := ∅ for a > b. �

Notations 2.1 (Notation Alert for intervals of integers or rational numbers).

It is at times convenient to also use the notation [. . . ], ] . . . [, [. . . [, ] . . . ], for intervals of
integers or rational numbers. We will subscript them with Z or Q. For example,

[ 3, n ]Z = [ 3, n] ∩ Z = {k ∈ Z : 3 5 k 5 n},
]−∞, 7 ]Z = ]−∞, 7 ] ∩ Z = {k ∈ Z : k 5 7} = Z≤7,

]a, b[Q = ]a, b[∩Q = {q ∈ Q : a < q < b}.

An interval which is not subscripted always means an interval of real numbers, but we
will occasionally write, e.g., [a, b]R rather than [a, b], if the focus is on integers or rational
numbers and an explicit subscript helps to avoid confusion. �

Definition 2.17 (Absolute value, positive and negative part). For a real number x we define its

absolute value: |x| =

{
x ifx = 0,

−x ifx < 0.

positive part: x+ = max(x, 0) =

{
x ifx = 0,

0 ifx < 0.

negative part: x− = max(−x, 0) =

{
−x ifx 5 0,

0 ifx > 0.

7The following will be generalized in def.?? on p.?? to so called ordered integral domains.
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If f is a real–valued function then we define the functions |f |, f+, f− argument by argument:

|f |(x) := |f(x)|, f+(x) :=
(
f(x)

)+
, f−(x) :=

(
f(x)

)−
. �

For completeness we also give the definitions of min and max.

Definition 2.18 (Minimum and maximum). For two real number x, y we define

maximum: x ∨ y = max(x, y) =

{
x ifx = y,
y ifx 5 y.

minimum: x ∧ y = min(x, y) =

{
y ifx = y,
x ifx 5 y.

If f and g is are real–valued function then we define the functions f ∨ g = max(f, g) and f ∧ g =
min(f, g) argument by argument:

f ∨ g(x) := f(x) ∨ g(x) = max
(
f(x), g(x)

)
, f ∧ g(x) := f(x) ∧ g(x) = min

(
f(x), g(x)

)
. �

Remark 2.8. You are advised to compute |x|, x+, x− for x = −5, x = 5, x = 0 and convince yourself
that the following is true:

x = x+ − x−,

|x| = x+ + x−,

Thus any real–valued function f satisfies

f = f+ − f−,

|f | = f+ + f−,

Get a feeling for the above by drawing the graphs of |f |, f+, f− for the functon f(x) = 2x. �

Remark 2.9. For any real number x we have
√
x2 = |x|. �(2.20)

Assumption 2.1 (Square roots are always assumed nonnegative). Remember that for any number
a it is true that

a · a = (−a)(−a) = a2, e.g., 22 = (−2)2 = 4,

or that, expressed in form of square roots, for any number b = 0

(+
√
b)(+
√
b) = (−

√
b)(−
√
b) = b.

We will always assume that “
√
b” is the positive value unless the opposite is explicitly

stated.

Example:
√

9 = +3, not −3. �
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Proposition 2.5 (The Triangle Inequality for real numbers). The following inequality is used all
the time in mathematical analysis to show that the size of a certain expression is limited from above:

Triangle Inequality : |a+ b| 555 |a|+ |b|(2.21)

This inequality is true for any two real numbers a and b.

PROOF:
It is easy to prove this: just look separately at the three cases where both numbers are nonnegative,
both are negative or where one of each is positive and negative. �

2.3 A First Look at Functions and Sequences

The material on functions presented in this section will be discussed again and in greater detail in
chapter ?? (Functions and Relations) on p.??.

Introduction 2.3. You are familiar with functions from calculus. Examples are f1(x) =
√
x and

f2(x, y) = ln(x − y). Sometimes f1(x) means the entire graph, i.e., the entire collection of pairs(
x,
√
x
)

and sometimes it just refers to the function value
√
x for a “fixed but arbitrary” number x.

In case of the function f2(x): Sometimes f2(x, y) means the entire graph, i.e., the entire collection of
pairs

(
(x, y), ln(x − y)

)
in the plane. At other times this expression just refers to the function value

ln(x− y) for a pair of “fixed but arbitrary” numbers (x, y).
To obtain a usable definition of a function there are several things to consider. In the following

f1(x) and f2(x, y) again denote the functions f1(x) =
√
x and f2(x, y) = ln(x− y).

a. The source of all allowable arguments (x–values in case of f1(x) and (x, y)–values in case
of f2(x, y)) will be called the domain of the function. The domain is explicitly specified
as part of a function definition and it may be chosen for whatever reason to be only
a subset of all arguments for which the function value is a valid expression. In case
of the function f1(x) this means that the domain must be restricted to a subset of the
interval [0,∞[ because the square root of a negative number cannot be taken. In case of
the function f2(x, y) this means that the domain must be restricted to a subset of { (x, y) :
x, y ∈ R and x−y > 0} because logarithms are only defined for strictly positive numbers.

b. The set to which all possible function values belong will be called the codomain of the
function. As is the case for the domain, the codomain also is explicitly specified as part
of a function definition. It may be chosen as any superset of the set of all function values
for which the argument belongs to the domain of the function.
For the function f1(x) this means that we are OK if the codomain is a superset of the
interval [0,∞[. Such a set is big enough because square roots are never negative. It is OK
to specify the interval ]−3.5,∞[ or even the set R of all real numbers as the codomain. In
case of the function f2(x, y) this means that we are OK if the codomain contains R. Not
that it would make a lot of sense, but the set R ∪ { all inhabitants of Chicago } also is an
acceptable choice for the codomain.

18 Version: 2021-05-17



Math 454 – Additional Material Student edition with proofs

c. A function y = f(x) is not necessarily something that maps (assigns) numbers or pairs
of numbers to numbers. Rather domain and codomain can be a very different kind of
animal. In chapter ?? on logic you will learn about statement functionsA(x) which assign
arguments x from some set U , called the universe of discourse, to statements A(x), i.e.,
sentences that are either true or false.

d. Considering all that was said so far one can think of the graph of a function f(x) with
domain D and codomain C (see earlier in this note) as the set

Γf := {
(
x, f(x)

)
: x ∈ D}.

Alternatively one can characterize this function by the assignment rule which specifies
how f(x) depends on any given argument x ∈ D. We write “x 7→ f(x)” to indicate this.
You can also write instead f(x) = whatever the actual function value will be.
This is possible if one does not write about functions in general but about specific func-
tions such as f1(x) =

√
x and f2(x, y) = ln(x− y). We further write

f : C −→ D

as a short way of saying that the function f(x) has domain C and codomain D.
In case of the function f1(x) =

√
x for which we might choose the interval X := [ 2.5, 7 ]

as the domain (small enough because X ⊆ [0,∞[) and Y := ]1, 3[ as the codomain (big
enough because 1 <

√
x < 3 for any x ∈ X) we specify this function as

either f1 : [ 2.5, 7 ]→ ]1, 3[; x 7→
√
x or f1 : [ 2.5, 7 ]→ ]1, 3[; f(x) =

√
x.

Let us choose U := {(x, y) : x, y ∈ R and 1 5 x 5 10 and y < −2} as the domain
and V := [0,∞[ as the codomain for f2(x, y) = ln(x − y). These choices are OK because
x − y = 1 for any (x, y) ∈ U and hence ln(x − y) = 0, i.e., f2(x, y) ∈ V for all (x, y ∈ U .
We specify this function as

either f2 : U → V, (x, y) 7→ ln(x− y) or f2 : U → V, f(x, y) = ln(x− y). �

We incorporate what we noted above into this definition of a function.

Definition 2.19 (Function).
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A function f consists of two nonempty sets X and Y and an assignment rule x 7→ f(x)
which assigns any x ∈ X uniquely to some y ∈ Y . We write f(x) for this assigned value
and call it the function value of the argument x. X is called the domain and Y is called
the codomain of f . We write

f :X → Y, x 7→ f(x).(2.22)

We read “a 7→ b” as “a is assigned to b” or “a maps to b” and refer to 7→ as the maps to
operator or assignment operator. The graph of such a function is the collection of pairs

Γf := {
(
x, f(x)

)
: x ∈ X}. �(2.23)

Remark 2.10. The name given to the argument variable is irrelevant. Let f1, f2, X, Y, U, V be as
defined in d of the introduction to ch.2.3 (A First Look at Functions and Sequences). The function

g1 : X → Y, p 7→ √p

is identical to the function f1. The function

g2 : U → V, (t, s) 7→ ln(t− s)

is identical to the function f2 and so is the function

g3 : U → V, (s, t) 7→ ln(s− t).

The last example illustrates the fact that you can swap function names as long as you do it consis-
tently in all places. �

We all know what it means that f(x) =
√
x has the function g(x) = x2 as its inverse function: f and

f−1 cancel each other, i.e.,

g
(
f(x)

)
= f

(
g(x)

)
= x.

Definition 2.20 (Inverse function).

Given are two nonempty sets X and Y and a function f : X → Y with domain X and
codomain Y . We say that f has an inverse function if it satisfies all of the following condi-
tions which uniquely determine this inverse function, so that we are justified to give it the
symbol f−1:

a. f−1 : Y → X , i.e., f−1 has domain Y and codomain X .
b. f−1

(
f(x)

)
= x for all x ∈ X , and f

(
f−1(y)

)
= y for all y ∈ Y . �

You may recall that a function f has an inverse f−1 if and only if f is “onto” or surjective: for each
y ∈ Y there is at least one x ∈ X such that f(x) = y, and if f is “one–one” or injective: for each
y ∈ Y there is at most one x ∈ X such that f(x) = y.
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Example 2.5. Be sure you understand the following:
a. f : R→ R; x→ ex does not have an inverse f−1(y) = ln(y) since its domain would have

to be the codomain R of f and ln(y) is not defined for y 5 0.
b. g : R→ ]0,∞[; x→ ex has the inverse g−1 : ]0,∞[→ R; g−1(y) = ln(y) since

Domg−1 = Codg = ]0,∞[, Codg−1 = Domg = R,

eln(y) = y for 0 < y <∞, ln(ex) = x for all x ∈ R. �

2.4 Cartesian Products

We next define cartesian products of sets. 8 Those mathematical objects generalize rectangles

[a1, b1]× [a2, b2] = {(x, y) : x, y ∈ R, a1 5 x 5 b1 and a2 5 y 5 b2}

and quads

[a1, b1]× [a2, b2]× [a3, b3] = {(x, y, z) : x, y, z ∈ R, a1 5 x 5 b1, a2 5 y 5 b2 and a3 5 z 5 b3}.

Definition 2.21 (Cartesian Product). Let X and Y be two sets The set

X × Y := {(x, y) : x ∈ X, y ∈ Y }(2.24)

is called the cartesian product of X and Y .
Note that the order is important: (x, y) and (y, x) are different unless x = y.
We write X2 as an abbreviation forX ×X .
This definition generalizes to more than two sets as follows: Let X1, X2, . . . , Xn be sets. The set

X1 ×X2 · · · ×Xn := {(x1, x2, . . . , xn) : xj ∈ Xj for each j = 1, 2, . . . n}(2.25)

is called the cartesian product of X1, X2, . . . , Xn.
We write Xn as an abbreviation forX ×X × · · · ×X . �

Example 2.6. The graph Γf of a function with domain X and codomain Y (see def.2.23) is a subset
of the cartesian product X × Y . �

Example 2.7. The domains given in a and d of the introduction to ch.2.3 (A First Look at Functions
and Sequences) are subsets of the cartesian product

R2 = R× R = {(x, y) : x, y ∈ R} �

.
8See ch.?? (Cartesian Products and Relations) on p.?? for the real thing and examples.
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2.5 Sequences and Families

We now briefly discuss (infinite) sequences, subsequences, finite sequences and families.

Definition 2.22. Let n? be an integer and let let there be an item xj for each integer j = n? Such an
item can be a number or a set (the only items we are looking at for now). In other words, we have
an item xj assigned to each j ∈ [n?,∞[Z. We write (xn)n=n? or (xj)

∞
j=n?

or xn? , xn?+1 , xn?+2 , . . . for
such a collection of items and we call it a sequence with start index n?.
For example if uk = k2 for k ∈ Z then then (uk)k=−2 is the sequence of integers 4, 1, 0, 1, 4, 9, 16, . . . .

The second example is a sequence of sets. If Aj = [−1 − 1
j , 1 + 1

j ] = {x ∈ R : −1 − 1
j 5 x 5 1 + 1

j }
then (Aj)j=3 is the sequence of intervals (of real numbers) [−4

3 ,
4
3 ], [−5

4 ,
5
4 ], [−6

5 ,
6
5 ], . . . .

One can think of a sequence (xi)i=n? in terms of the assignment i 7→ xi and this sequence can then
be interpreted as the function

x : [n?,∞[Z −→ suitable codomain; i 7→ x(i) := xi,

where that “suitable codomain” depends on the nature of the items xi. In example 1 (uk = k2 for
k ∈ Z) we could chose Z as that codomain, in example 2 (Aj = [−1− 1

j , 1 + 1
j ]) we could choose 2R,

the power set of R.
We will occasionally also admit an “ending index” n? instead of ∞, i.e., there will be an indexed
item xj for each j ∈ [n?, n

?]Z. We then talk of a finite sequence, and we write (xn)n?5n5n? or
(xj)

n?
j=n?

or xn? , xn?+1 , . . . , xn? for such a finite collection of items. If we refer to a sequence (xn)n
without qualifying it as finite then we imply that we deal with an infinite sequence, (xn)∞n=n? .
If one pares down the full set of indices {n?, n? + 1, n? + 2, . . . } to a subset {n1, n2, n3, . . . } such
that n? 5 n1 < n2 < n3 < . . . then we call the corresponding thinned out sequence (xnj )j∈N a
subsequence of the sequence (xn)n=m.
If this subset of indices is finite, i.e., we have n? 5 n1 < n2 < · · · < nK for some suitable K ∈ N
then we call (xnj )

K
j=1 a finite subsequence of the original sequence. �

We will later define a stochastic process as a “family” (Zt)t∈I where I is an interval of real numbers
and each indexed item Zt is a random variable. Typical choices for I would be

I = [0, T ] (where T > 0), I = [0,∞[, I = [t0, T ] (where 0 5 t 5 T ), . . .

Here is the formal definition of a family.

Definition 2.23 (Indexed families). Let J and X be nonempty set and assume that

for each j ∈ J there exists exactly one indexed item xj ∈ X .

a. (xj)j∈J is called an indexed family or simply a family in X .
b. J is called the index set of the family.
c. For each  ∈ J , x is called a member of the family (xj)j∈J . �

Some remarks:
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• A family is completely defined by the assignment j 7→ xj . In that sense a family behaves
like a function

F : J → X, j 7→ F (j) := xj .

• j is a dummy variable: (xj)j∈J and (xk)k∈J describe the same family as long as j 7→ xj and
k 7→ xk describe the same assignment.

• Sequences (xn) : n ∈ N are families with index set N.

2.6 Proofs by Induction and Definitions by Recursion

Introduction 2.4. The integers have a property which makes them fundamentally different from
the rational numbers (fractions) and the real numbers: Given any two integers m < n, there are
only finitely many integers between m and n. To be precise, there are exactly n−m−1 of them. For
example, there are only 4 integers between 12 and 17: the numbers 13, 14, 15, 16. 9

Therefore, given an integer n, we have the concept of its predecessor, n − 1, and its successor,
n+ 1. This has some profound consequences. If we know what to do for a certain starting number
k0 ∈ Z (we call this number the base case), and if we can figure out for each integer k = k0 what to
do for k + 1 if only we know what to do for k, then we know what to do for any k = k0! �

We make use of the above when defining a sequence by recursion. Here is a simple example.

Example 2.8. Let k0 = −2, xk0 = 5 (base case), and xk+1 = xk + 3 (i.e., we know how to obtain xk+1

just from the knowledge of xk), then we know how to build the entire sequence

x−2 = 5, x−1 = x−2 + 3 = 8, x0 = x−1 + 3 = 11, x1 = x0 + 3 = 14, . . . ,

The equation xk+1 = xk + 3 which tells us how to obtain the next item from the given one is the
recurrence relation for that recursive definition. �

Example 2.9. Given is a sequence of sets A1, A2, . . . . For n ∈ N we define
n⋃
j=1

Aj and
n⋂
j=1

Aj recur-

sively as follows. 10

1⋃
j=1

Aj := A1,

n+1⋃
j=1

Aj :=
( n⋃
j=1

Aj

)
∪An+1,(2.26)

1⋂
j=1

Aj := A1,

n+1⋂
j=1

Aj :=
( n⋂
j=1

Aj

)
∩An+1.(2.27)

this tells us the meaning of
n⋃
j=1

Aj and
n⋂
j=1

Aj for any natural number n. For example,
4⋂
j=1

Aj is

9All of this will be made mathematically precise in ch.?? on p.??.
10An “official” definition for unions and intersections of arbitrarily many sets (not just for finitely many) will be given

in def.3.2 on p.32.
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computed as follows.

1⋂
j=1

Aj = A1,

2⋂
j=1

Aj =
( 1⋂
j=1

Aj

)
∩A2 = A1 ∩A2,

3⋂
j=1

Aj =
( 2⋂
j=1

Aj

)
∩A3 = (A1 ∩A2) ∩A3,

4⋂
j=1

Aj =
( 3⋂
j=1

Aj

)
∩A4 =

(
(A1 ∩A2) ∩A3

)
∩A4. �

Remark 2.11. The discrete structure of the integers can also be used as a means to prove a collection
of mathematical statements P (k0), P (k0+1), P (k0+2), . . . which is defined for all integers k, starting
at k0 ∈ Z. Each P (k) might be an equation or an inequality for two numeric expressions that depend
on k. It could also be a relation between sets or it could be something entirely different. For example,

P (k) could be the statement
( k⋃
j=1

Aj

)
∩ B =

k⋃
j=1

(Aj ∩B). An extremely important tool for proofs

of this kind is the following principle. Its mathematical justification will be given later in thm.?? on
p.??.

Principle of Mathematical Induction
Assume that for each integer k = k0 there is an associated statement P (k) such that the
following is valid:

A. Base case. The statement P (k0) is true.
B. Induction Step. For each k = k0 we have the following: Assuming that P (k) is

true (“Induction Assumption”), it can be shown that P (k+ 1)
also is true.

It then follows that P (k) is true for each k = k0.

Here is an example which generalizes prop.2.2 on p.11.

Proposition 2.6 (Distributivity of unions and intersections for finitely many sets). LetA1, A2, . . . and
B be sets. If n ∈ N then

( n⋃
j=1

Aj

)
∩ B =

n⋃
j=1

(Aj ∩B),(2.28)

( n⋂
j=1

Aj

)
∪ B =

n⋂
j=1

(Aj ∪B).(2.29)

PROOF: We only prove (2.28), and this will be done by induction on n, i.e., the number of sets Aj .
The proof of (2.29) is left as exercise 2.11
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A. Base case: k0 = 1. The statement P (1) is (2.28) for n = 1:
( 1⋃
j=1

Aj

)
∩B =

1⋃
j=1

(Aj ∩B). We must

prove that P (1) is true. According to our recursive definition of finite unions which was given in
example 2.8 this is the same as (A1) ∩ B = (A1 ∩ B), and this is a true statement. We have proven
the base case.
B. Induction step:

Induction assumption: P (k) :
( k⋃
j=1

Aj

)
∩B =

k⋃
j=1

(Aj ∩B) is true for some k = 1.(2.30)

Under this assumption

we must prove the truth of P (k + 1) :
( k+1⋃
j=1

Aj

)
∩B =

k+1⋃
j=1

(Aj ∩B).(2.31)

The trick is to manipulate P (k + 1) in a way that allows us to “plug in” the induction assumption.
For (2.31) one way to do this is to take the left–hand side and transform it repeatedly until we end
up with the right–hand side, and doing so in such a manner that (2.30) will be used at some point.( k+1⋃

j=1
Aj

)
∩B =

(( k⋃
j=1

Aj

)
∪An+1

)
∩B we used (2.26)

=
(( k⋃

j=1
Aj

)
∩B

)
∪ (An+1 ∩B) we used (2.11) on p. 11

=
k⋃
j=1

(Aj ∩B) ∪ (An+1 ∩B) we used the induction assumption!

=
k+1⋃
j=1

(Aj ∩B) we used (2.26)

We have managed to establish the truth of P (k + 1), and this concludes the proof.
Epilogue: It is crucial that you understand in what way the induction assumption was used to get
from the left–hand side of (2.31) to the right–hand side, and that you first had to find a base from
which to proceed by proving the base case. �

Proposition 2.7 (The Triangle Inequality for n real numbers). Let n ∈ N such that n = 2. Let
a1, a2, . . . , an ∈ N. Then

(2.32) |a1 + a2 + . . .+ an| 5 |a1|+ |a2|+ . . .+ |an|

PROOF: Note that this proposition generalizes prop.2.5 on p.18 from 2 terms to n terms. The proof
will be done by induction on n, the number of terms in the sum.
A. Base case: For k0 = 2, inequality 2.32 was already shown (see (2.21) on p.18).
B. Induction step: Let us assume that 2.32 is true for some k = 2. This is our induction assumption.
We now must prove the inequality for k + 1 terms a1, a2, . . . , ak, ak+1 ∈ N. We abbreviate

A := a1 + a2 + . . .+ ak; B := |a1|+ |a2|+ . . .+ |ak|

then our induction assumption for k numbers is that |A| 5 B. We know from (2.21) that the triangle
inequality is valid for the two termsA and ak+1. It follows that |A+ak+1| 5 |A|+|ak+1|. We combine
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those two inequalities and obtain

(2.33) |A+ ak+1| 5 |A|+ |ak+1| 5 B + |ak+1|

In other words,

(2.34) |
(
a1 + a2 + . . .+ ak

)
+ ak+1| 5 B + |ak+1| =

(
|a1|+ |a2|+ . . .+ |ak|

)
+ |ak+1|,

and this is (2.32) for k + 1 rather than k numbers: We have shown the validity of the triangle
inequality for k + 1 items under the assumption that it is valid for k items. It follows from the
induction principle that the inequality is valid for any k = k0 = 2. �
To summarize what we did in all of part B: We were able to show the validity of the triangle in-
equality for k + 1 numbers under the assumption that it was valid for k numbers.

Remark 2.12 (Why induction works). But how can we from all of the above conclude that the
distributivity formulas of prop.2.6 and the triangle inequality of prop.2.7 work for all n ∈ N such
that n = k0? We illustrate this for the triangle inequality.

Step 1: We know that the statement is true for k0 = 2 because that was proven in the base
case.

Step 2: But according to the induction step, if it is true for k0 = 2, it is also true
for the successor k0 + 1 = 3 of 2.

Step 3: But according to the induction step, if it is true for k0 + 1, it is also true
for the successor (k0 + 1) + 1 = 4 of k0 + 1.

Step 4: But according to the induction step, if it is true for k0 + 2, it is also true
for the successor (k0 + 2) + 1 = 5 of k0 + 2.

. . . . . . . . . . . . . . . . . . . . . . . .
Step 53, 920: But according to the induction step, if it is true for k0 + 53, 918, it is also true

for the successor (k0 + 53, 918) + 1 = 53, 921 of k0 + 53, 918.
. . . . . . . . . . . . . . . . . . . . . . . .

And now we see why the statement is true for any natural number n = k0. �

2.7 Some Preliminaries From Calculus

Remark 2.13. To understand this remark you need to be familiar with the concepts of continuity,
differentiability and antiderivatives (integrals) of functions of a single variable. Just skip the parts
where you lack the background.
The following is known from calculus (see [5] Stewart, J: Single Variable Calculus): Let a ∈ R∪{−∞}
and b ∈ R ∪ {∞} and let X :=]a, b[ be the open (end points a, b are excluded) interval of all real
numbers between a and b. Let x0 ∈]a, b[ be “fixed but arbitrary”.
Let f : ]a, b[→ R be a function which is continuous on ]a, b[. Then

a. f is integrable for any α, β ∈ R such that a < α < β < b, i.e., the definite integral
β∫
α
f(u)du

exists. For a definition of integrability see, e.g., [5] Stewart, J: Single Variable Calculus.

b. Integration is “linear”, i.e., it is additive:
∫ β

α

(
f(u) + g(u)

)
du =

∫ β

α
f(u)du +

∫ β

α
g(u)du,

and you also can “pull out” constant λ ∈ R:
∫ β

α
λf(u)du = λ

∫ β

α
f(u)du.
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c. Integration is “monotonic”:

If f(x) 5 g(x) for all α 5 x 5 β then
∫ β

α

(
f(u)

)
du 5

∫ β

α
g(u)du.

d. f has an antiderivative: There exists a function F : ]a, b[→ R whose derivative F ′(·) exists
on all of ]a, b[ and coincides with f , i.e., F ′(x) = f(x) for all x ∈]a, b[.

e. This antiderivative satisfies F (β)− F (α) =

∫ β

α
f(u)du for all a < α < β < b and it is

not uniquely defined: If C ∈ R then F (·) + C is also an antiderivative of f .
On the other hand, if both F1 and F2 are antiderivatives for f then their differenceG(·) :=
F2(·)−F1(·) has the derivativeG′(·) = f(·)−f(·) which is constant zero on ]a, b[. It follows
that any two antiderivatives only differ by a constant.
To summarize the above: If we have one antiderivative F of f then any other antideriva-
tive F̃ is of the form F̃ (·) = F (·) + C for some real number C.

This fact is commonly expressed by writing
∫
f(x)dx = F (x) + C for the indefinite

integral (an integral without integration bounds).
f. It follows from e that if some c0 ∈ R is given then there is only one antiderivative F such

that F (x0) = c0.
Here is a quick proof: Let G be another antiderivative of f such that G(x0) = c0. Because
G− F is constant we have for all x ∈]a, b[ that

G(x)− F (x) = const = G(x0)− F (x0) = 0,

i.e., G = F . �

2.8 Convexity ?

Note that this chapter is starred, hence optional.

Definition 2.24 (Concave-up and convex functions). Let −∞ 5 α < β 5 ∞ and let I := ]α, β[ be
the open interval of real numbers with endpoints α and β. Let f : I → R.

a. The epigraph of f is the set epi(f) := {(x1, x2) ∈ I × R : x2 = f(x1)} of all points in the
plane that lie above the graph of f .

b. f is convex if for any two vectors ~a,~b ∈ epi(f) the entire line segment
S := {λ~a+ (1− λ)~b} : 0 5 λ 5 1 is contained in epi(f).

c. Let f be differentiable at all points x ∈ I . Then f is concave-up, if the function
f ′ : x 7→ f ′(x) = df

dx(x) is nondecreasing. �

Proposition 2.8 (Convexity criterion). f is convex if and only if the following is true: For any

α < a 5 x0 5 b < β

let S(x0) be the unique number such that the point (x0, S(x0)) is on the line segment that connects the points
(a, f(a)) and (b, f(b)). Then

f(x0) 5 S(x0).(2.35)
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Note that any x0 between a and b can be written as x0 = λa + (1 − λ)b for some 0 5 λ 5 1 and that
the corresponding y-coordinate S(x0) = S(λa + (1 − λ)b) on the line segment that connects (a, f(a)) and
(b, f(b)) then is S(λa+ (1− λ)b) = λf(a) + (1− λ)f(b). Hence we can rephrase the above as follows:
f is convex if and only if for any a < b such that a, b ∈ I and 0 5 λ 5 1 it is true that

f(λa+ (1− λ)b) 5 λf(a) + (1− λ)f(b).(2.36)

PROOF of “⇒”: Any line segment S that connects the points (a, f(a)) and (b, f(b)) in such a way
that S is entirely contained in the epigraph of f will satisfy (x0, S(x0)) ∈ epi(f) and hence f(x0) 5
S(x0) for all a 5 x0 5 b. It follows that convexity of f implies (2.35).

PROOF of “⇐”: Let (2.35) be valid for all a, b ∈ I . Let ~a = (a1, a2),~b = (b1, b2) ∈ epi(f). Then

a2 = f(a1) and b2 = f(b1).(2.37)

We must show that the entire line segment S := {λ~a+ (1− λ)~b} : 0 5 λ 5 1 is contained in epi(f).

Let ~a′ := (a1, f(a1)). Let S′ := {λ~a′ + (1− λ)~b : 0 5 λ 5 1} be the line segment obtained by leaving
the right endpoint~b unchanged and pushing the left one downward until a2 matches f(a1). Clearly,
S′ nowhere exceeds S.
Let~b′′ := (b1, f(b1)). Let S′′ := {λ~a′ + (1− λ)~b′ : 0 5 λ 5 1} be the line segment obtained by leaving
the left endpoint ~a′ unchanged and pushing the right one downward until the b2 matches f(b1).
Clearly, S′′ nowhere exceeds S′.
We view any line segment T between two points with abscissas a1 and b1 as a function T (·) :
[a1, b1] → R which assigns to x ∈ [a1, b1] that unique value T (x) for which the point

(
x, T (x)

)
lies

on T .
The segment S′′ connects the points (a, f(a)) and (b, f(b)) and it follows from assumption b that for
any a 5 x0 5 b we have f(x0) 5 S′′(x0). We conclude from S(·) = S′(·) = S′′(·) that S(x0) = f(x0),
i.e. (x0, S(x0)) ∈ epi(f). As this is true for any a 5 x0 5 b it follows that the line segment S is
entirely contained in the epigraph of f . �

Proposition 2.9 (Convex vs concave-up). Let f : R→ R be concave-up. Then f is convex.

PROOF: Assume to the contrary that f is (differentiable and) concave-up and that there are
a, b, x0 ∈ I such that a < x0 < b and f(x0) > S(x0). Here S(x0) denotes the unique number such
that the point (x0, S(x0)) is on the line segment that connects the points (a, f(a)) and (b, f(b)).
Let m be the slope of the linear function S(·) : x 7→ S(x), i.e.,

m =
S(b)− S(a)

b− a
.

It follows that

m =
S(b)− S(x0)

b− x0
>

S(b)− f(x0)

b− x0
=

f(b)− f(x0)

b− x0
= f ′(ξ)(2.38)

for some x0 < ξ < b (according to the mean value theorem for derivatives). Further

m =
S(x0)− S(a)

x0 − a
<

f(x0)− S(a)

x0 − a
=

f(x0)− f(a)

x0 − a
= f ′(η)(2.39)
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for some a < η < x0 (according to the mean value theorem for derivatives).
Because f is concave up we have

f ′(a) 5 f ′(η) 5 f ′(x0) 5 f ′(ξ) 5 f ′(b).

From (2.38) and (2.39) we obtain

m < f ′(η) 5 f ′(x0) 5 f ′(ξ) < m,

and we have reached a contradiction. �

Proposition 2.10 (Sublinear functions are convex). Let f : R→ R be sublinear. Then f is convex.

PROOF: Let 0 5 λ 5 1 and x, y ∈ R. Then

p(λx+ (1− λ)y) 5 p(λx) + p((1− λ)y) = λp(x) + (1− λ)p(y).(2.40)

It follows from prop.2.8 that f is concave-up. �

2.9 Exercises for Ch.2

2.9.1 Exercises for Sets

Exercise 2.1. Prove (2.12) of prop.2.2 on p.11.

Exercise 2.2. Prove the set identities of prop.2.1.

Exercise 2.3. Prove that for any three sets A,B,C it is true that (A \B) \ C = A \ (B ∪ C).
Hint: use De Morgan’s formula (2.13.a). �

Exercise 2.4. Let X = {x, y, {x}, {x, y} }. True or false?
a. {x} ∈ X c. { {x} } ∈ X e. y ∈ X g. {y} ∈ X
b. {x} ⊆ X d. { {x} } ⊆ X f. y ⊆ X h. {y} ⊆ X �

For the subsequent exercises refer to example ?? for the definition of the size
∣∣A∣∣ of a set A and to

def.?? (Cartesian Product of Two Sets) for the definition of Cartesian product. You find both in ch.??
(Cartesian Products and Relations) on p.??

Exercise 2.5. Find the size of each of the following sets:
a. A = {x, y, {x}, {x, y} } c. C = {u, v, v, v, u} e. E = {sin(kπ/2) : k ∈ Z}
b. B = {1, {0}, {1} } d. D = {3z − 10 : z ∈ Z} f. F = {πx : x ∈ R} �

Exercise 2.6. Let X = {x, y, {x}, {x, y} } and Y = {x, {y} }. True or false?
a. x ∈ X ∩ Y c. x ∈ X ∪ Y e. x ∈ X \ Y g. x ∈ X∆Y
b. {y} ∈ X ∩ Y d. {y} ∈ X ∪ Y f. {y} ∈ X \ Y h. {y} ∈ X∆Y �

Exercise 2.7. Let X = {1, 2, 3, 4} and let Y = {x, y}.
a. What is X × Y ? c. What is

∣∣X × Y ∣∣? e. Is (x, 3) ∈ X × Y ? g. Is 3 · x ∈ X × Y ?
b. What is Y ×X? d. What is

∣∣X × Y ∣∣? f. Is (x, 3) ∈ Y ×X? h. Is 2 · y ∈ Y ×X? �
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Exercise 2.8. Let X = {8}. What is 2(2X)?

Exercise 2.9. Let A = {1, {1, 2}, 2, 3, 4} and B = {{2, 3}, 3, {4}, 5}. Compute the following.
a. A ∩B b. A ∪B c. A \B d. B \A e. A4B �

Exercise 2.10. Let A,X be sets such that A ⊆ X and let x ∈ X . Prove the following:
a. If x ∈ A then A = (A \ {a}) ] {a}.
b. If x /∈ A then A = (A ] {a}) \ {a}.
�

2.9.2 Exercises for Proofs by Induction

Exercise 2.11. Use induction on n to prove (2.29) of prop.2.6 on p.24 of this document: LetA1, A2, . . .

and B be sets. If n ∈ N then
( n⋂
j=1

Aj

)
∪B =

n⋂
j=1

(Aj ∪B). �

Exercise 2.12. 11

Let K ∈ N such that K = 2 and n ∈ Z≥0. Prove that Kn > n. �

Exercise 2.13. Let n ∈ N. Then n2 + n is even, i.e., this expression is an integer multiple of 2. �

PROOF: The proof is given in this instructor’s edition.

The proof is done by induction on n.
The base case (n0 = 1) holds because 12 + 1 = 2, and this is an even number.
Induction step: Let k ∈ N.

Induction assumption: k2 + k is even, i.e., k2 + k = 2j for some suitable j ∈ Z.(2.41)

We must show that there exists j′ ∈ Z such that (k + 1)2 + k + 1 = 2j′. We have

(k + 1)2 + k + 1 = k2 + 2k + 1 + k + 1 = (k2 + k) + 2(k + 1)
(2.41)
= 2j + 2(k + 1).

Let j′ := j + k + 1. Then (k + 1)2 + k + 1 = 2j′ and this finishes the proof. �

Exercise 2.14. Use the result from exercise 2.13 above to prove by induction that n3+5n is an integer
multiple of 6 for all n ∈ N. �

PROOF: The proof is given in this instructor’s edition.

The proof is done by induction on n.
The base case (n0 = 1) holds because 13 + 5 = 6 = 1 · 6.
Induction step: Let k ∈ N.

Induction assumption: k3 + 5k is an integer multiple of 6, i.e., k3 + 5k = 6j for some j ∈ Z.
(2.42)

11Note that this exercise generalizes B/G prop.7.1: If n ∈ N then n < 10n. Also note that if you allow K to be a real
number rather than an integer then it will not be true for allK > 1 and n ∈ Z≥0. For exampleKn > n is false forK = 1.4
and n = 2 (but it is true for K = 1.5 and n = 2).
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We must show that there exists j′ ∈ Z such that (k + 1)3 + 5(k + 1) = 6j′. We know frome exercise
2.13 that 3(k2 + k) = 3 · 2 · i for a suitable i ∈ Z, hence

(k + 1)3 + 5(k + 1) = k3 + 3k2 + 3k + 1 + 5k + 5 = (k3 + 5k) + 3(k2 + k) + 6

= (k3 + 5k) + 6i+ 6
(2.42)
= 6(j + i+ 1).

Let j′ := j + i+ 1. Then (k + 1)3 + 5(k + 1) = 6j′ and this finishes the proof. �

Exercise 2.15. Let x1 = 1 and xn+1 = xn + 2n+ 1. Prove by induction that xn = n2 for all n ∈ N. �
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3 More on Sets and Functions

3.1 More on Set Operations

We will not deal with limits of sequences of sets except for the following since it is so suggestive.

Definition 3.1 (Notation for limits of monotone sequences of sets).

Let (An) be a nondecreasing sequence of sets, i.e., A1 ⊆ A2 ⊆ . . . and let A :=
⋃
nAn.

Further let Bn be a nonincreasing sequence of sets, i.e., B1 ⊇ B2 ⊇ . . . and let B :=
⋂
nBn.

We write suggestively

An ↑A (n→∞), A = lim
n→∞

An, Bn ↓ B (n→∞), B = lim
n→∞

Bn. �

We adopt the following convention.

Let E be a set of sets, e.g., E is a subset of the powerset 2Ω of a set Ω. Then a phrase such as
• “Let Un ↑ in E” is shorthand notation for

“Let Un ⊆ E (n ∈ N)” be a nondecreasing sequence.”
• “Let Un ↓ in E” is shorthand notation for

“Let Un ⊆ E (n ∈ N)” be a nonincreasing sequence.”

Definition 3.2 (Arbitrary unions and intersections). Let J be a nonempty set and let (Ai)i∈J be a
family of sets. We define⋃

i∈I
Ai :=

⋃[
Ai : i ∈ I

]
:= {x : x ∈ Ai0 for some i0 ∈ I},(3.1) ⋂

i∈I
Ai :=

⋂[
Ai : i ∈ I

]
:= {x : x ∈ Ai0 for each i0 ∈ I}.(3.2)

We call
⋃
i∈I

Ai the union and
⋂
i∈I

Ai the intersection of the family (Ai)i∈J

It is convenient to allow unions and intersections for the empty index set J = ∅. For intersections
this requires the existence of a universal set Ω. We define⋃

i∈∅

Ai := ∅,
⋂
i∈∅

Ai := Ω. �(3.3)

Note that any statement concerning arbitrary families of sets such as the definition above
covers finite lists A1, A2, . . . , An of sets ( J = {1, 2, . . . , n} ) and also sequences A1, A2, . . . ,
of sets ( J = N ).

We give some examples of non-finite unions and intersections.

Example 3.1. For any set A we have A =
⋃
a∈A
{a}. According to (3.3) this also is true if A = ∅. �
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The following trivial lemma is useful if you need to prove statements of the form A ⊆ B or A = B
for sets A and B. Be sure to understand what it means if you choose J = {1, 2} (draw one or two
Venn diagrams).

Lemma 3.1 (Inclusion lemma). Let J be an arbitrary, nonempty index set. Let U,Xj , Y, Zj ,W (j ∈ J) be
sets such that U ⊆ Xj ⊆ Y ⊆ Zj ⊆W for all j ∈ J . Then

(3.4) U ⊆
⋂
j∈J

Xj ⊆ Y ⊆
⋃
j∈J

Zj ⊆W.

PROOF: Draw pictures! �

Definition 3.3 (Disjoint families). Let J be a nonempty set. We call a family of sets (Ai)i∈J a mutu-
ally disjoint family if for any two different indices i, j ∈ J it is true that Ai ∩Aj = ∅, i.e., if any two
sets in that family with different indices are mutually disjoint. �

Definition 3.4 (Partition). Let A ⊆ 2Ω. We call A a partition or a partitioning of Ω if

a. A ∩B = ∅ for any two A,B ∈ A such that A 6= B, b. Ω =
⊎[

A : A ∈ A
]
.

We reformulate the above for arbitrary families and hence finite collections and sequences of subsets
of Ω: Let J be an arbitrary nonempty set, let (Aj)j∈J be a family of subsets of Ω.
We call (Aj)j∈J a partition of Ω if it is a mutually disjoint family which satisfies

Ω =
⊎[

Aj : j ∈ J
]
,

in other words, if A := {Aj : j ∈ J} is a partition of Ω.
Note that duplicate nonempty sets cannot occur in a disjoint family of sets because otherwise the
condition of mutual disjointness does not hold. �

Example 3.2. Here are some examples of partitions.
a. For any set Ω the collection { {ω} : ω ∈ Ω} is a partition of Ω.
b. The empty set is a partition of the empty set and it is its only partition. Do you see that this is a
special case of a?
c. This is important for stochastic processes. Let

t0 < t1 < · · · < tn−1 < tn

be a list of real numbers. It lets us create a variety of partitions. Here are four possibilities.
• [t0, t1[, [t1, t2[, . . . , [tn−1, tn[ partitions [t0, tn[,
• ]t0, t1], ]t1, t2], . . . , ]tn−1, tn] partitions ]t0, tn],
• [t0, t1[, [t1, t2[, . . . , [tn−2, tn−1[, [tn−1, tn] partitions [t0, tn],
• [t0, t1[, [t1, t2[, . . . , [tn−1, tn[ [tn,∞[ partitions [t0,∞[.
�
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Theorem 3.1 (De Morgan’s Law). Let there be a universal set Ω (see (2.6) on p.10). Then the following
“duality principle” holds for any indexed family (Aα)α∈I of sets:

(3.5) a.
(⋃
α

Aα
){

=
⋂
α

A{α b.
(⋂
α

Aα
){

=
⋃
α

A{α

To put this in words, the complement of an arbitrary union is the intersection of the complements, and the
complement of an arbitrary intersection is the union of the complements.

PROOF: ? Left as an exercise. �

The following generalizes prop.2.6 (Distributivity of unions and intersections for finitely many sets)

Proposition 3.1 (Distributivity of unions and intersections). Let (Ai)i∈I be an arbitrary family of sets
and let B be a set. Then

⋃
i∈I

(B ∩Ai) = B ∩
⋃
i∈I

Ai,(3.6) ⋂
i∈I

(B ∪Ai) = B ∪
⋂
i∈I

Ai.(3.7)

PROOF: �

Proposition 3.2 (Rewrite unions as disjoint unions). Let (Aj)j∈N be a sequence of sets which all are
contained within the universal set Ω. Let

Bn :=
n⋃
j=1

Aj = A1 ∪A2 ∪ · · · ∪An (n ∈ N),

C1 := A1 = B1, Cn+1 := An+1 \Bn (n ∈ N).

Then
a. The sequence (Bj)j is increasing: m < n⇒ Bm ⊆ Bn.

b. For each n ∈ N,
n⋃
j=1

Aj =
n⋃
j=1

Bj .

c. The sets Cj are mutually disjoint and
n⋃
j=1

Aj =
n⊎
j=1

Cj .

d. The sets Cj (j ∈ N) form a partitioning of the set
∞⋃
j=1

Aj .

PROOF: �

3.2 Direct Images and Preimages of a Function

Introduction 3.1. We continue with yet another example. It leads to the very important definition
of the direct images of subsets of the domain, and of the preimages of subsets of the codomain of a
function. �
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Example 3.3. Let X and Y be nonempty sets and f : X → Y . We define two functions f? and
f? which are associated with f and for which both arguments and function values are sets(!) as
follows.

a. f? : 2X → 2Y ; A 7→ f?(A) := {f(a) : a ∈ A} ,
b. f? : 2Y → 2X ; B 7→ f?(B) := {x ∈ X : f(x) ∈ B} .

You should convince yourself that indeed f? maps any subset of X to a subset of Y , and that f?

maps any subset of Y to a subset of X . �

The sets f?(A) and f?(B) are used pervasively in abstract mathematics, but it is much more com-
mon nowadays to write f(A) rather than f?(A) and f−1(B) rather than f?(B). We will follow this
convention.

Definition 3.5.

Let X,Y be two nonempty sets and f : X → Y . We associate with f the functions

f : 2X → 2Y ; A 7→ f(A) := {f(a) : a ∈ A},(3.8)

f−1 : 2Y → 2X ; B 7→ f−1(B) := {x ∈ X : f(x) ∈ B}.(3.9)

We call f : 2X → 2Y the direct image function and f−1 : 2Y → 2X the indirect image
function or preimage function associated with f : X → Y .
For each A ⊆ X we call f(A) the direct image of A under f , and for each B ⊆ Y we call
f−1(B) the indirect image or preimage of B under f . �

Note that the range f(X) of f (see (??) on p.?? is a special case of a direct image.

Notational conveniences I:

If we have a set that is written as {. . . } then we may write f{. . . } instead of f({. . . }) and
f−1{. . . } instead of f−1({. . . }). Specifically for singletons {x} ⊆ X and {y} ⊆ Y we obtain
f{x} and f−1{y}.
Many mathematicians will write f−1(y) instead of f−1{y} but this author sees no advan-
tages doing so whatsover. There seemingly are no savings with respect to time or space for
writing that alternate form but we are confounding two entirely separate items: a subset
f−1{y} of X v.s. the function value f−1(y) of y ∈ Y which is an element of X . We are
allowed to talk about the latter only in case that the inverse function f−1 of f exists.

4!4!4!
The same symbol f is used for the original function f : X → Y and the direct
image function f : 2X → 2Y , and the symbol f−1 which is used here for the
indirect image function f−1 : 2Y → 2X will be used at the start of ch.?? to define
the inverse function f−1 : Y → X of f in case this can be done. 12 Be careful not
to let this confuse you! �

Example 3.4 (Direct images). Let f : R→ R; f(x) = x2.
a. f(]− 4, 2[) = { x2 : x ∈]− 4, 2[ } = { x2 : −4 < x < 2 } = ]4, 16[.
b. f([1, 3]) = { x2 : x ∈ [1, 3] } = { x2 : 1 5 x 5 3 } = [1, 9].
c. f(]− 4, 2[ ∩ [1, 3]) = { x2 : x ∈ ]− 4, 2[ and x ∈ [1, 3] } = { x2 : 1 5 x < 2 } = [1, 4[. �
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And here are the results for the preimages of the same sets with respect to the same function x 7→ x2.

Example 3.5 (Preimages). Let f : R→ R; f(x) = x2.
a. f−1(]− 4,−2[) = { x ∈ R : x2 ∈]− 4,−2[ } = { −4 < f < −2 } = ∅.
b. f−1([1, 2]) = { x ∈ R : x2 ∈ [1, 2] } = { 1 5 f 5 2 } = [−

√
2,−1] ∪ [1,

√
2].

c. f−1([5, 6]) = { x ∈ R : x2 ∈ [5, 6] } = { 5 5 f 5 6 } = [−
√

6,−
√

5] ∪ [
√

5,
√

6].
d. f−1(]− 4,−2[ ∪ [1, 2] ∪ [5, 6]) = { x ∈ R : x2 ∈ ]− 4,−2[ or x2 ∈ [1, 2] or x2 ∈ [5, 6] }

= [−
√

2,−1] ∪ [1,
√

2] ∪ [−
√

6,−
√

5] ∪ [
√

5,
√

6]. �

Example 3.6 (Preimages). Let f : R→ R; f(x) = x2.
a. f−1(]− 4, 2[) = { x ∈ R : x2 ∈ ]− 4, 2[ } = { x ∈ R : −4 < x2 < 2 } = ]− 2, 2[.
b. f−1([1, 3]) = { x ∈ R : x2 ∈ [1, 3] } = { x ∈ R : 1 5 x2 5 3 } = [−

√
3, 1] ∪ [1,

√
3].

c. f−1(]− 4, 2[ ∩ [1, 3]) = { x ∈ R : x2 ∈ ]− 4, 2[ and x2 ∈ [1, 3] }
= { x ∈ R : 1 5 x2 < 2 } = ]−

√
2,−1] ∪ [1,

√
2[ . �

Example 3.7 (Direct images). Let f : R→ R; f(x) = x2.
a. f(]− 4,−2[) = { x2 : x ∈ ]− 4,−2[ } = { x2 : −4 < x < −2 } = ]4, 16[.
b. f([1, 2]) = { x2 : x ∈ [1, 2] } = { x2 : 1 5 x 5 2 } = [1, 4].
c. f([5, 6]) = { x2 : x ∈ [5, 6] } = { x2 : 5 5 x 5 6 } = [25, 36].
d. f(]− 4,−2[ ∪ [1, 2] ∪ [5, 6]) = { x2 : x ∈ ]− 4,−2[ or x ∈ [1, 2] or x ∈ [5, 6] }

= ]4, 16[ ∪ [1, 4] ∪ [25, 36] = [1, 16[ ∪ [25, 36]. �

Proposition 3.3. Some simple properties:

f(∅) = f−1(∅) = ∅(3.10)
A1 ⊆ A2 ⊆ X ⇒ f(A1) ⊆ f(A2) (monotonicity of f{. . . } )(3.11)

B1 ⊆ B2 ⊆ Y ⇒ f−1(B1) ⊆ f−1(B2) (monotonicity of f−1{. . . } )(3.12)
x ∈ X ⇒ f({x}) = {f(x)}(3.13)

f(X) = Y ⇔ f is “surjective” (see df.?? on p.??)(3.14)

f−1(Y ) = X always!(3.15)

PROOF: Left as exercise ?? on p.??. �

Notational conveniences II:

In measure theory and probability theory the following notation is also very common:
{f ∈ B} := f−1(B), {f = y} := f−1{y}.
Let R be an ordered integral domain with associated order relation “<”. Let a, b ∈ R such
that a < b. We write {a 5 f 5 b} := f−1([a, b]R), {a < f < b} := f−1(]a, b[R),
{a 5 f < b} := f−1([a, b[R), {a < f 5 b} := f−1(]a, b]R), {f 5 b} := f−1(]−∞, b]R), etc.

Proposition 3.4 (f−1 is compatible with all basic set ops). Assume that X,Y be nonempty, f : X → Y ,
J is an arbitrary index set, B ⊆ Y , Bj ⊆ Y for all j. Then
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f−1(
⋂
j∈J

Bj) =
⋂
j∈J

f−1(Bj)(3.16)

f−1(
⋃
j∈J

Bj) =
⋃
j∈J

f−1(Bj)(3.17)

f−1(B{) =
(
f−1(B)

){(3.18)

f−1(B1 \B2) = f−1(B1) \ f−1(B2)(3.19)

f−1(B1∆B2) = f−1(B1)∆f−1(B2)(3.20)

PROOF: ? MF330 notes, ch.8 �

Proposition 3.5 (Properties of the direct image). Assume that X,Y be nonempty, f : X → Y , J is an
arbitrary index set, B ⊆ Y , Bj ⊆ Y for all j. Then

f(
⋂
j∈J

Aj) ⊆
⋂
j∈J

f(Aj)(3.21)

f(
⋃
j∈J

Aj) =
⋃
j∈J

f(Aj)(3.22)

PROOF: ? MF330 notes, ch.8 �

Remark 3.1. In general you will not have equality in (3.21). Counterexample: f(x) = x2 with
domain R: Let A1 := ] − ∞, 0] and A2; = [0,∞[. Then A1 ∩ A2 = {0}, hence f(A1 ∩ A2) =
f({0}) = {0}. On the other hand, f(A1) = f(A2) = [0,∞], hence f(A1) ∩ f(A2) = [0,∞]. Clearly,
{0} ( [0,∞]. �

Proposition 3.6 (Direct images and preimages of function composition). Let X,Y, Z be arbitrary,
nonempty sets. Let f : X → Y and g : Y → Z , and let U ⊆ X and W ⊆ Z. Then

(g ◦ f)(U) = g
(
f(U)

)
for all U ⊆ X.(3.23)

(g ◦ f)−1 = f−1 ◦ g−1, i.e., (g ◦ f)−1(W ) = f−1
(
g−1(W )

)
for all W ⊆ Z.(3.24)

PROOF: ? MF330 notes, ch.8 �

3.3 Indicator Functions ?

Indicator functions often are convenient when working with integrals and expected values. They
will allow us, e.g., to write “E[1AX] = . . . ” rather than having to state all of this: “Let Y (ω) := X(ω
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on A and 0 else. Then E[Y ] = . . . ”

Definition 3.6 (indicator function for a set). Ω be a nonempty set and A ⊆ Ω. Let 1A : Ω→ {0, 1} be
the function defined as

(3.25) 1A(ω) :=

{
1 if ω ∈ A,
0 if ω /∈ A.

1A is called the indicator function of the set A. 13 �

Let m,n ∈ Z. We recall that m+ n mod 2 (the sum mod 2 of m and n) is given by

(3.26) m+ n mod 2 =

{
0 ⇔ (m+ n)/2 has remainder 0, i.e.,m+ n is even,
1 ⇔ (m+ n)/2 has remainder 1, i.e.,m+ n is odd.

Proposition 3.7. Let A,B,C be subsets of Ω. Then

1A∪B = max(1A, 1B),(3.27)
1A∩B = min(1A, 1B),(3.28)

1A{ = 1− 1A,(3.29)
1A4B = 1A + 1B mod 2.(3.30)

PROOF: The proof of the first three equations is left as an exercise.
PROOF of (3.30): This follows easily from the the fact that

(A4B){ = {ω ∈ Ω : [ either ω ∈ A ∩B] or [ neitherω ∈ A nor ω ∈ B ]} �

Prop.?? above helps us to prove associativity of symmetric set differences.

Proposition 3.8 (Symmetric set differences A4B are associative). Let A,B,C ⊆ Ω. Then

(A4B)4C = A4(B4C).(3.31)

PROOF: We will write for convenience m⊕ n as shorthand notation for m+ n mod 2.
Formula (3.31) follows easily from (3.30) and and the associativity of a⊕b := a+b mod 2 as follows.
Let ω ∈ Ω. Then

ω ∈ (A4B)4C ⇔ 1(A4B)4C(ω) = 1

⇔
(
1A(ω)⊕ 1B(ω)

)
⊕ 1C(ω) = 1

⇔ 1A(ω)⊕
(
1B(ω)⊕ 1C(ω)

)
= 1

⇔ 1A4(B4C)(ω) = 1 ⇔ ω ∈ A4(B4C).

We obtained the equivalence in the middle from the fact that modular arithmetic is associative. �
13Some authors call this characteristic function of A and some choose to write χA or 1A instead of 1A.
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4 Basic Measure and Probability Theory

Introduction:
The following are the best known examples of measures (aj , bj ∈ R):

Length : λ1([a1, b1]) := b1 − a1,

Area : λ2([a1, b1]× [a2, b2]) := (b1 − a1)(b2 − a2),

Volume : λ3([a1, b1]× [a2, b2]× [a3, b3]) := (b1 − a1)(b2 − a2)(b3 − a3).

Then there also are probability measures: P{ a die shows a 1 or a 6} = 1/3.
We will explore in this chapter some of the basic properties of measures.

4.1 Measure Spaces and Probability Spaces

Definition 4.1 (Extended real–valued functions).

R+ := R+ ∪ {+∞} = {x ∈ R : x = 0} ∪ {+∞}

is the set of all nonnegative real numbers augmented by the elements∞ and −∞.
A function F : X → Y whose codomain Y is a subset of

R := R ∪ {∞} ∪ {−∞}

is called an extended real–valued function. �

Remark 4.1 (Extended real numbers arithmetic). To work with extended real–valued functions we
must be clear about the rules of arithmetic where ±∞ is involved. In the following assume that
c ∈ R and 0 < p <∞.
Rules for Addition:

c ± ∞ =∞ ± c = ∞,(4.1)
c ± (−∞) = −∞ ± c = −∞,(4.2)
∞ + ∞ =∞,(4.3)
−∞ − ∞ = −∞,(4.4)

(±∞)∓∞ = UNDEFINED.(4.5)

Rules for Multiplication:

p · (±∞) = (±∞) · p = ±∞,(4.6)
(−p) · (±∞) = (±∞) · (−p) = ∓∞,(4.7)

0 · (±∞) = (±∞) · 0 = 0 and
1

∞
= 0,(4.8)

(±∞) · (±∞) =∞,(4.9)
(±∞) · (∓∞) = −∞,(4.10)
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Be clear about the ramifications of those rules. Rule (4.5) implies that if we have two extended
real–valued functions f, g defined on a domain A
then f + g is only defined on

A \ {x ∈ A : either [f(x) =∞ and g(x) = −∞] or [f(x) = −∞ and g(x) =∞]},

and f − g is only defined on

A \ {x ∈ A : either [f(x) = g(x) =∞] or [f(x) = g(x) = −∞]}.

That is easy to understand and remember, but the real danger comes from rule (4.8) which you
might not have expected:

0 · ±∞ = ±∞ · 0 = 0.

This convention is very convenient, but it comes at a price: it is no longer true that all sequences
(an)n and (bn)n of real numbers that have limits a = lim

n→∞
an, b = lim

n→∞
bn, satisfy lim

n→∞
anbn = ab.

Counterexample: an = n, bn = 1
n . �

For the following see SCF2 Definition 1.1.1.

Definition 4.2 (σ–algebras). Let Ω be a nonempty set and let F be a set that contains some, but not
necessarily all, subsets of Ω.

F is called a σ–algebra or σ–field for Ω if it satisfies the following:

∅ ∈ F,(4.11a)

A ∈ F ⇒ A{ ∈ F(4.11b)

(An)n∈N ∈ F ⇒
⋃
n∈N

An ∈ F(4.11c)

• The pair (Ω,F) is called a measurable space.
• The elements of F (these elements are sets!) are called F–measurable sets. or also just

measurable sets if it is clear what σ–algebra is referred to. �

We do not consider Ω = ∅with σ–algebra {∅} a measurable space since it cannot carry a probability
P which would have to satisfy P (∅) = 0 and P (Ω) = 1. See Chapter 4.2 (Measurable Functions and
Random Variables).

Remark 4.2. If F is a σ–algebra then

Ω ∈ F(4.12a)

A ∈ F ⇒ A{ ∈ F(4.12b)

(An)n∈N ∈ F ⇒ and
⋂
n∈N

An ∈ F(4.12c)
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The last assertion is a consequence of De Morgan’s laws (Theorem 3.1 on p.34).

If countably many (i.e., a finite or infinite sequence of) operations are performed involving
• unions, • intersections, • complements, • set differences, • symmetric differences

of elements of a σ–algebra F then the resulting set also belongs to F. �

Example 4.1. Two trivial σ–algebras:
(1) Given a nonempty set Ω, {∅,Ω} is the smallest possible σ–algebra.
(2) Given a nonempty set Ω, {∅,Ω} its power set 2Ω is the largest possible σ–algebra. �

Proposition 4.1 (Minimal sigma–algebras). Let Ω be a nonempty set.
AAA: The intersection of arbitrarily many σ–algebras is a σ–algebra.
BBB: Let E ⊆ 2Ω, i.e., E is a set which contains subsets of Ω. It is not assumed that E is a σ–algebra. Then there
exists a σ–algebra which contains E and is minimal in the sense that it is contained in any other σ–algebra
that also contains E. We name this σ–algebra σ(E) because it clearly is uniquely determined by E. It is
constructed as follows:

σ(E) =
⋂
{F : F ⊇ E and F is a σ–algebra for Ω}.

PROOF: ? �

That last proposition allows us to make the next definition.

Definition 4.3. Let (Ω,F) be a measurable spaces and let E ⊆ 2Ω. We call the σ–algebra

σ(E) =
⋂
{G : G ⊇ E and G is a σ–algebra for Ω}.(4.13)

of Proposition 4.1 the σ–Algebra generated by E �

Remark 4.3.
(1) You are familiar with this construct from linear algebra:

Given a subset A of a vector space V , its linear span

span(A) = {
k∑
j=1

αjxj : k ∈ N, αj ∈ R, xj ∈ A (1 5 j 5 k) }.

of all linear combinations of vectors in A is obtained as follow:

Let V := {W ⊆ V : W ⊇ A and W is a subspace of V }.

Then span(A) =
⋂[

W : W ∈ V
]
.

In other words, span(A) is the subspace generated by A.
(2) Note that if E ⊆ F then σ(E) ⊆ F, since F is one of the σ–algebras G which occur on the

right–hand side of (4.13). �
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Proposition 4.2. Let Ω be a nonempty set. Assume E1,E2 are subsets of 2Ω such that

σ(E1) ⊇ E2 and σ(E2) ⊇ E1.

Then σ(E1) = σ(E2).

PROOF: ? Left as an exercise. �

Example 4.2. Consider the following sets of intervals of real numbers.
I1 := {]a, b] : a < b}, I2 := {[a, b] : a < b},
I3 := {]a, b[ : a < b}, I4 := {[a, b[ : a < b}.

Then σ(I1) = σ(I2) = σ(I3) = σ(I4).
For example, to prove that I2 = I3, it suffices according to Proposition 4.2 to show that

any closed interval [a, b] belongs to I3, any open interval ]a, b[ belongs to I2.

This follows from

[a, b] =
⋂
n

]
a− 1

n
, b+

1

n

[
and ]a, b[ =

⋃
n

[
a+

1

n
, b− 1

n

]
.

The above generalizes to n–dimensional space: Let
I5 := {]a1, b1]×]a2, b2]× · · ·×]an, bn] : a1 < b1, a2 < b2, . . . , an < bn} ,
I6 := {[a1, b1]× [a2, b2]× · · · × [an, bn] : a1 < b1, a2 < b2, . . . , an < bn} ,
I7 := {]a1, b1[×]a2, b2[× · · ·×]an, bn[: a1 < b1, a2 < b2, . . . , an < bn} ,
I8 := {[a1, b1[×[a2, b2[× · · · × [an, bn[: a1 < b1, a2 < b2, . . . , an < bn} ,

Then σ(I5) = σ(I6) = σ(I7) = σ(I8). �

For the following see SCF2 Definition 1.1.2.

Definition 4.4 (Borel sets).
• The σ–algebra generated by either all open or all closed or all half–open intervals in Rn is

called the Borel σ–algebra of subsets of Rn and is denoted B(Rn).
• The sets in this σ–algebra are called Borel sets.
• We will not worry about what corresponds to the Borel sets when we deal with the ex-

tended real numbers R̄, i.e., we add ±∞. There is such a thing and those extended Borel
sets are properly denoted B(R̄). Again, I will try not to even mention extended Borel
sets.

• Abbreviations: We will also write Bn for B(Rn). In the case of the real numbers (n = 1)
we also write B1 or B(R) for B(R1). �

Remark 4.4. We can express Example 4.2 as follows. Each one of the interval sets I5, I6, I7, I8

generates the Borel σ–algebra. �

For the following see SCF2 Definition 1.1.2.
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Definition 4.5 (Abstract measures). Let (Ω,F) be a measurable space.

A measure on F is an extended real–valued function

µ : F→ R+; A 7→ µ(A) such that

µ(∅) = 0 (positivity)(4.14)
A,B ∈ F and A ⊆ B ⇒ µ(A) 5 µ(B) (monotony)(4.15)

(An)n∈N ∈ Fdisjoint ⇒ µ
(⊎
n∈N

An

)
=
∑
n∈N

µ(An) (σ–additivity)(4.16)

• The triplet (Ω,F, µ) is called a measure space
• We call µ a finite measure on F if µ(Ω) <∞.
• We call any subset N of a set with measure zero a µ–null set. Note that N need not

be measurable.
• If µ(Ω) = 1 then µ is called a probability measure or simply a probability

and (Ω,F, µ) is then called a probability space �

Disjointness in (4.16) means that Ai ∩Aj = 0 for any i, j ∈ N such that i 6= j (see def.2.4 on p.8).

Do not confuse measurable spaces (Ω,F) and measure spaces (Ω,F, µ)!

Remark 4.5 (σ–algebras are appropriate domains for measures). The σ–additivity of measures is
what makes working with them such a pleasure in many ways. You can now express it as follows:
Given a disjoint sequence of measurable sets, the measure of the disjoint union is the sum of the
measures. Property (4.11c) in the definition of σ–algebras is required for exactly that reason.

you cannot take advantage of the σ–additivity of a measure µ if its domain does not contain
countable unions and intersections of all its constituents.

Here are two not very useful measures which are easy to understand.

Example 4.3. You can easily verify that the following set functions µ1 and µ2 define measures on an
arbitrary nonempty set Ω with an arbitrary σ-field F.

µ1(A) := 0 for all A ∈ F, zero measure or null measure
µ2(∅) := 0; µ(A) := ∞ if A 6= ∅.

Keep the second example in mind when you work with non–finite of measures. �

Remark 4.6.
(1) We emphasize that the only difference between (general) measures and probability mea-

sures is that the latter must assign a measure of one to the entire space Ω.
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(2) Many things that apply to probabilities can be extended to general measures, and this
will matter to us even if we are only interested in probability spaces, since will see in the
context of expectations E[X] of a random variable X that assignments of the form

A 7→ E[X · 1A] where A ∈ F and 1A(ω) :=

{
1 if ω ∈ A,
0 if ω /∈ A.

define a measure (Ω,F).
(3) Traditionally, mathematicians write P (A) and (Ω,F, P ) rather than µ(A) and (Ω,F, µ) for

probability measures and probability spaces. The elements of F (the measurable subsets)
are then thought of as events for which P (A) is interpreted as the probability with which
the event A might happen. �

(4) A measure space can support many different measures: If µ is a measure on F and α = 0
then αµ : A 7→ αµ(A) also is a measure on F. �

Fact 4.1. Assume that the real–valued function

µ0 : I5 −→ R, B 7→ µ0(B),

is defined on the set of half–open n–dimensional intervals

I5 = {]a1, b1]×]a2, b2]× · · ·×]an, bn] : a1 < b1, a2 < b2, . . . , an < bn}

of Example 4.2 on p.42 and satisfies the measure defining properties of positivity, monotony, and σ–additivity.
Then µ0 can be uniquely extended to a measure µ on the measurable space

(
Rn,B(Rn)

)
In other words, there exists a uniquely defined measure µ on the Borel sets B(Rn) (see Definition 4.4 (Borel
sets) on p.42) such that

µ(]a1, b1]×]a2, b2]× · · ·×]an, bn]) = µ0(]a1, b1]×]a2, b2]× · · ·×]an, bn])

for any half–open interval ]a1, b1]×]a2, b2]× · · ·×]an, bn], a1 < b1, a2 < b2, . . . , an < bn. �

For the following see SCF2 Example 1.1.3 - Uniform (Lebesgue) measure on [0, 1]
The most important measures we encounter in real life are those that measure the length of sets in
one dimension, the area of sets in two dimensions and the volume of sets in three dimensions.

Definition 4.6 (Lebesgue measure). Given
• intervals [a, b] ∈ R
• rectangles [a1, b1]× [a2, b2] ∈ R2,
• boxes or quads [a1, b1]× [a2, b2]× [a3, b3] ∈ R3,
• in general, n-dimensional parallelepipeds [a1, b1]×[a2, b2]×· · ·×[an, bn] ∈ Rn,

we define

λ1
0(]a, b]) := b− a,
λ2

0(]a1, b1]×]a2, b2]) := (b1 − a1)(b2 − a2),

λ3
0(]a1, b1]×]a2, b2]×]a3, b3]) := (b1 − a1)(b2 − a2)(b3 − a3),

λn0 (]a1, b1]× · · ·×]an, bn]) := (b1 − a1)(b2 − a2) . . . (bn − an).

(4.17)
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It can be shown that each of those real–valued functions satisfies the conditions stated in Fact 4.1.
14 Thus λn0 uniquely extends from the parallelepipeds to a measure λn on the Borel sets of Rn. This
measure is called (n-dimensional) Lebesgue measure.
Note that Lebesgue measure is not finite: λn(Rn) =∞! �

Fact 4.2. It is not possible to extend the set functions µn0 which define Lebesgue measure to a measure on the
entire power set 2Rn of Rn.
This (very hard to prove) fact makes it a mathematical necessity to introduce σ–algebras as small enough
subsets of the powerset 2Ω which are suitable as domains for a measure.
We will see later that σ–algebras also have a practical importance: they reflect the information that is associ-
ated with certain random phenomena, for example, the evolution of the price of a financial asset. �

Remark 4.7 (Finite disjoint unions). If we have only finitely many sets then “σ–additivity” which
stands for “additivity of countably many” becomes simple additivity. We obtain the following by
setting AN+1 = AN+2 = . . . = 0:

A1, A2, . . . , AN ∈ F mutually disjoint
⇒ µ(A1 ]A2 ] . . . ]AN ) = µ(A1) + µ(A2) + . . .+ µ(AN ) (additivity).

(4.18)

In the case of only two disjoint measurable sets A and B the above simply becomes

µ(A ]B) = µ(A) + µ(B). �

Proposition 4.3 (Simple properties of measures). Let A,B,∈ F and let µ be a measure on F. Then

µ(A) = 0 for all A ∈ F,(4.19a)
A ⊆ B ⇒ µ(B) = µ(A) + µ(B \A),(4.19b)
µ(A ∪B) + µ(A ∩B) = µ(A) + µ(B).(4.19c)

If µ is finite then also

A ⊆ B ⇒ µ(B \A) = µ(B)− µ(A),(4.20a)
µ(A ∪B) = µ(A) + µ(B)− µ(A ∩B).(4.20b)

PROOF: The first property follows from the fact that µ(∅) = 0, ∅ ⊆ A for all A ∈ F and (4.15.
To prove the second property, observe that B = A ] (B \A).
Proving the third property is more complicated because neither A nor B may be a subset of the
other. We first note that because A \ B ⊆ A, B \ A ⊆ A and A ∩ B ⊆ A, µ(A ∪ B) =∞ can only be
true if µ(A) = ∞ or µ(B) = ∞. In this case (4.19c) is obviously true. Hence we may assume that
µ(A ∪B) <∞. We have

A ∪B = (A ∩B) ] (B \A) ] (A \B)(4.21a)
A ∪B = A ] (B \A) = B ] (A \B)(4.21b)

14Positivity and monotony are easy, but σ–additivity is hard.
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It follows from (4.21a) that

(4.22) µ(A ∪B) = µ(A ∩B) + µ(B \A) + µ(A \B)

It follows from (4.21b) that

(4.23) 2 · µ(A ∪B) = µ(A) + µ(B \A) + µ(B) + µ(A \B)

We subtract the left and right sides of (4.22) from those of (4.23) and obtain

µ(A ∪B) = µ(A) + µ(B \A) + µ(B) + µ(A \B)− µ(A ∩B)− µ(B \A)− µ(A \B)

= µ(A) + µ(B)− µ(A ∩B)

and the third property is proved. �

We stated as a fact without proof (Fact 4.1 on 44), that one can extend any setfunction which acts
like a measure on the half–open parallelepipeds of Rn to a measure on B(Rn), the Borel σ–algebra
of Rn.
The situation is much simpler for countable measurable spaces.

Proposition 4.4. Let Ω be a countable, nonempty set, i.e., the elements of can be written as a finite or infinite
sequence Ω = ω1, ω2, ω3, . . . Let

E := { {ω} : ω ∈ Ω } = { all singleton sets of Ω }.

Then any nonnegative and extended real–valued function µ0 which is defined on E extends uniquely to a
measure µ on the entire power set of Ω by means of the formula

µ(A) =
∑
ω∈A

µ0{ω}, (A ⊆ Ω).(4.24)

PROOF: ? This is a rather easy consequence of the fact that A =
⊎
ω∈A{a}. �

Example 4.4 (Binomial distribution). You are very familiar with the last proposition in the context
of discrete probability measures. µ0 is then customarily written pn = P{ωn} and called a prob-
ability mass function (or just a probability function in [6] Wackerly, Mendenhall and Scheaffer:
Mathematical Statistics with Applications).
For example, if we define Ω := {1, 2, . . . , n} and F := 2Ω then the Bin(n, p) distribution is the (prob-
ability) measure P on the measurable space (Ω,F) defined on the singleton events {1}, {2}, . . . , {n}
by its probability mass function

pj := P{j} := Bin(n, p){j} :=

(
n

j

)
pj (1− p)n−j . �

We next examine the analogue of Lebesgue measure (see Definition 4.6, p.44) on the space Z of the
integers.

Definition 4.7. Let

E :=
{
{k} : k ∈ Z

}
= { all singleton sets of the integers }.
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Then the function
Σ0 : E −→ [0,∞[; Σ0{k} := 1

has according to Proposition 4.4 a unique extension

Σ : 2Z −→ [0,∞], given by Σ(A) =
∑
k∈A

1 = |A| for all A ⊆ Z.(4.25)

In other words, Σ(A) is the size of A, i.e., the number of elements ofA. We will call this measure the
summation measure.

In this document a symbol with an arrow on top denotes a vector. So we write, e.g.,

~x = (x1, x2, . . . , xn)

for elements of Rn. Recall that Zn = Z× · · · × Z (n factors), i.e.,

Zn = {~k = (k1, . . . , kn) : k1, . . . , kn ∈ Z.

We now can generalize the definition of summation measure to multiple dimensions. Let n ∈ N
and

E :=
{
{~k} : ~k ∈ Zn

}
= { all singleton sets of n–dim. vectors with integer coordinates }.

Then the function
Σn

0 : E −→ [0,∞[; Σ0{~k} := 1

has according to Proposition 4.4 a unique extension

Σn : 2(Zn) −→ [0,∞], given by Σn(A) =
∑
k∈A

1 = |A| for all A ⊆ Zn.(4.26)

As in the one–dimensional case, Σ(A) is the size of A, i.e., the number of elements ofA. We will call
this measure the n–dimensional summation measure. �

NOTATION ALERT: The name “summation measure” is not at all common in the
mathematical literature!

We mentioned earlier that (see Definition 4.6, p.44) on the space Z of the integers.

Proposition 4.5 (Continuity properties of measures). Let (Ω,F, µ) be a measure space.

If An ↓ A inF and µ(A1) <∞ then lim
n∞

µ(An) = µ(A) = µ
(

lim
n∞

An

)
,(4.27a)

If Bn ↑ B then lim
n∞

µ(Bn) = µ(B) = µ
(

lim
n∞

Bn

)
.(4.27b)
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PROOF: Prove formula (4.27b) first. To do so replace the sequence Bn with a disjoint sequence Cn
such that A =

⊎
n
Cn. See Proposition 3.2 (Rewrite unions as disjoint unions) on p.34 and use the

σ–additivity of µ.
To prove (4.27a), apply the already proven formula (4.27b) to

Bn := A{n, B := A{

(thus Bn ↑ B), and note that

µ(Bn) = µ(Ω)− µ(An), µ(B) = µ(Ω)− µ(A)

This last step requires the assumption that µ(A1) <∞ (and thus 0 5 µ(An) 5 µ(A1) <∞). �

Remark 4.8. The finiteness condition of formula (4.27a) is never an issue with probability measures
P since P (A) 5 1 for all A ∈ F. But the unexpected can happen for nonfinite measures such as the
one–dimensional summation measure Σ’ of Definition 4.7 which is characterized by

Σ(A) = |A|, (A ⊆ Z).

Here is an example of a sequence of sets Ak ∈ Z which does not satisfy the condition Σ(A1) < ∞
(matter of fact, Σ(Ak) =∞ for all k), and for which formula (4.27a) is not valid.
Let Ak := {j ∈ N : j = k}. Then Ak ↓ ∅ as you can see as follows.
Let A :=

⋂
j∈NAj and assume to the contrary that A is not empty, i.e., it contains some n ∈ N. This

is impossible since
n /∈ An+1, thus n /∈

⋂
n∈N

An = A,

contrary to our assumption n ∈ N

So A = ∅, thus Σ(∩n)An = Σ(∅) = 0.

On the other hand, Σ(An) = ∞ for each n, thus lim
n→∞

Σ(An) = ∞ since An contains infinitely
many elements. We have found a case in which formula(4.27a) does not hold. �

Proposition 4.6. ?

Let (Ω,F, µ) be a measure space and A ∈ F. Then the set function

µA : F −→ [0,∞], A′ 7→ µA(A′) := µ(A ∩A′)
defines a measure on (Ω,F).

PROOF:
Only σ–additivity needs a little effort, and it follows easily from Proposition 3.1 (Distributivity of
unions and intersections) on p.34. �

Proposition 4.7. ?

Let (Ω,F, µ) be a measure space with a sequence of measures µn that satisfy

µn ↑ µ, or µ1(Ω) < ∞ and µn ↓ µ.
Then limn µn is a measure.

PROOF: Not given here. We only mention that Proposition 4.5 (Continuity properties of measures)
on p.47 is essential to show that µ is σ–additive once it has been shown to be (finitely) additive. �
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4.2 Measurable Functions and Random Variables

Introduction 4.1. We all know what a random variable X is: X has a real number as an outcome
but that outcome is random. We also know that such a random variable comes with a probability
distribution.
• For example, if X is a standard normal random variable, then the probability that X

attains a value a 5 Z 5 b can be computed as

P{a 5 X 5 b} =

b∫
a

fX(x) dx, where fX(x) =
1√
2π

e
x2

X is the probability density.

This is an example of a continuous random variable.
• Or X might be a discrete random variable which only attains countably many distinct

outcomes x1, x2, . . . , i.e., P{X = x1} + P{X = x2} + . . . = 1. Such random variables
are defined by their probability mass function

pj = P{X = x1}, (j = 1, 2, . . . ).

An example would be a Bin(n, p)–distributed random variable (see Example 4.4 (Bino-
mial distribution) on p.46) for which pj =

(
n
j

)
pj (1− p)n−j .

That won’t do anymore, and we will try to make some amendments to the above.
• “... and that outcome is random”: Let us rephrase that as follows. The outcome of X

depends on randomness. Might as well say that X is a function of randomness:

X = f(randomness).

That is a great improvement but “randomness” is to wordy.
• We agree that ω means randomness: X = f(ω).
• Mathematical symbols are in short supply and it is common practice to use the same

symbol for function value (X) and assignment symbol (f ). We write

X = X(ω).

• A function needs domain and codomain. Since arguments are called ω it is natural to
call the domain Ω. Since we say that random variables are real-valued functions the
codomain must be R or a subset thereof.

• So a random variable X is a function

X : Ω −→ R; ω 7→ X(ω).

• It is important to have a probability measure P defined on the domain Ω of X rather
than the real numbers (the codomain of X). We have seen in Fact 4.2 on p.45 that not all
measures can assign values to all subsets of Ω.
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• So the domain of P might just be a σ–algebra of subsets of Ω! So Ω must be a probability
space (Ω,F, P ) and a random variable is a function

X : (Ω,F, P ) −→ R; ω 7→ X(ω).

• What good is it if there are some important events like, e.g.,

{−1 5 X 5 1} = {ω ∈ Ω : −1 5 X(ω) 5 1} = X−1(ω)

and P{−1 5 X 5 1} is not available because {−1 5 X 5 1} /∈ F?
• What events are important, i.e., what are the sets B ∈ R such that the preimage X−1(B)

(also written {X ∈ B}) 15 must belong to F?
• The answer to that question will generally be that the preimages {X ∈ B} of Borel sets B

need probabilities:
If B ∈ B(R) then we need X−1(B) ∈ F.

We have collected enough material to define random variables but we must proceed in reverse and
start with the concept of measurability which requires that the preimages of certains sets belong to
F. �

Definition 4.8 (Measurable function). Let

f : (Ω,F) −→ (Ω′,F′)

be a function which has the measurable space (Ω,F) as its domain and the measurable space (Ω′,F′)
as its codomain.

We say that f is (F,F′)–measurable or, simpler, that f is in m(F,F′), if

f−1(A′) ∈ F, for all A′ ∈ F′.(4.28)

In the special case that Ω′ = Rn or Ω′ = R and F′ is the Borel σ–algebra we also say that f is
F–measurable or that f is in m(F).
If both Ω′ = Rn or Ω′ = R and also Ω = Rn or Ω = R with the Borel σ–algebras then we also
say that f is Borel measurable. �

See SCF2 Definition 1.2.1 for the next definition.

Definition 4.9 (Random Variable).
15see the Notational conveniences II box that follows Proposition 3.3 on p.36)
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Let
X : (Ω,F, P ) −→ (R,B)

be a function which has a probability space (Ω,F, P ) as its domain and the real numbers
with the Borel σ–algebra as its codomain.
If X is F–measurable, i.e.,

{X ∈ B} belongs to F for all Borel sets B,(4.29)

then we call X a random variable. on (Ω,F, P ).

Occasionally we allow X to assume the values∞, and −∞, i.e., X can be an extended real–valued,
F–measurable, function.
If there is a countable subset A of R such that the random variable X “lives” on A, i.e.,

X(Ω) = {X(ω) : ω ∈ Ω} ⊆ A

then we can shrink the codomain to (A, 2A) and talk about the random variable

X : (Ω,F, P ) −→ (A, 2A).

Here is the reason that we can take the entire powerset 2A as the σ–algebra of the codomain:
• All singletons {a} ⊆ A are Borel sets, thus each B ⊆ A is Borel since it is the countable

union B =
⋃
a∈B{a} of Borel sets. �

For the following see also SCF2 Definition 1.3.9 and SCF2 Definition 1.1.5.

Definition 4.10 (Almost everywhere and almost surely). Let (Ω,F) be a measurable space and let A
be the set of all ω ∈ Ω such that a certain property is true. For example,
• A = {ω ∈ Ω : f(ω) 5 g(ω)},
• A = {ω ∈ Ω : the function t 7→ Yt(ω) is continuous },
• A = {ω ∈ Ω : |X(ω)| 5 1}.

(1) In the context of a measure space (Ω,F, µ) we say that the property is sat-
isfied, or holds, or is true µ–almost everywhere if µ(A{) = 0. We also
abbreviate µ–a.e.

(2) In the context of a probability space (Ω,F, P ) we say that the property is
satisfied, or holds, or is true P–almost surely if P (A{) = 0 or, equiva-
lently, if P (A) = 1. We also abbreviate P–a.s.

(3) In either case we will drop the µ– and P– prefixes if there is no confusion
about which measure or probability this refers to. �

Remark 4.9. ?

The set A might not be measurable. To be precise we would have had to formulate the above as follows. The property
holds µ–a.e. if there is a measurable set B such that µ(B) = 0 and B contains the set A{ on which this property is not
satisfied. We will not worry about such fine points concerning measurability. �
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Remark 4.10. We follow the lead of SCF2 and often will not explicitly mention that is assumed to
be or can be proven to be true only almost everywhere/almost surely. �

Remark 4.11.

Since random variables are special cases of measurable functions it follows that
All statements that are true for measurable functions are true for random variables! �

Theorem 4.1. Let (Ω,F) and (Ω′,F′) be measurable spaces and f : Ω → Ω′. Let E′ ⊆ F′ be a generator of
F′, i.e.,

σ(E′) = F′.

to prove that f is (F,F′)–measurable it suffices to show that

f−1(A′) ⊆ F for allA′ ∈ F′.(4.30)

PROOF: ? Omitted, but not hard when you use Theorem 3.4 (f−1 is compatible with all basic
set ops) on p.36 �

Corollary 4.1. Let (Ω,F) be a measurable space and f : (Ω,F)→ (R,B1). to prove that f is F–measurable
it suffices to show that one of the following four conditions is met:

(1) {f < c} ∈ F for all c ∈ R ,
(2) {f 5 c} ∈ F for all c ∈ R ,
(3) {f > c} ∈ F for all c ∈ R ,
(4) {f = c} ∈ F for all c ∈ R . �

Note that this implies the following. If the domain of f actually is a probability space (Ω,F, P ) then f is a
random variable if one of the above four conditions is satisfied.

PROOF: ? Essentially follows from Theorem 4.1 above and Remark 4.4 on p.42. �

@@MFx-Auth

AAA This is the proper spot for Proposition 4.15 in the addenda to this chapter. See p.75.

For the following see Definitions 2.17 and 2.18 on p.16.

Theorem 4.2. Let (Ω,F) be a measurable space and f, g : Ω→ R. Let c ∈ R.
If f and g in m(F) then each of the following also is (F,B1)–measurable:

c, cf, f ± g, fg; f/g (on {g 6= 0}), |f |, f+, f−, f ∨ g, f ∧ g.

Here c denotes the constant function ω 7→ c and cf denotes the function ω 7→ cf(ω).
• Moreover, all statements above which involve two functions f and g generalize to finitely many

measurable functions f1, f2, . . . , fn.
• Moreover, the statements about f ∨ g and f ∧ g generalize to sequences (fn)n of functions as

follows: If each fn is measurable then so are the functions

sup
n
fn : ω 7→ sup{fn(ω) : n ∈ N}, inf

n
fn : ω 7→ inf{fn(ω) : n ∈ N}.
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PROOF: Omitted except for this one:
We prove that f(ω) := supn fn(ω) is measurable as follows. Observe that for any c ∈ R it is true that

f(ω) 5 c ⇔ fn(ω) 5 c for alln,

thus
{ f 5 c } =

⋂
n∈N

{ fn 5 c },

and this set is F–measurable as the intersection of the F–measurable sets {fn 5 c} . The assertion
now follows from Corollary 4.1. �

Example 4.5 (Binomial random variable v.s. binomial distribution). This example continues Exam-
ple 4.4 (Binomial distribution) on p.46 which was about the binomial distribution Bin(n, p) defined
by its probability mass function

pj = P{j} =

(
n

j

)
pj (1− p)n−j .(4.31)

Let (Ω,F, P ) be a probability space and let X be in m(F), i.e., X is a random variable on (Ω,F, P ).
We all are familiar with what it means that X is a Bin(n, p)–distributed random variable. It satisfies
formula (4.31), right?
Not exactly! There is a problem with the probability P . In formula (4.31) it occurs as a measure on
the measurable space (

{0, 1, . . . , n}, 2{0,1,...,n}
)

and NOT on our abstract measurable space (Ω,F) which may not have numbers 0, 1, 2, . . . as ele-
ments ω.
Here is the explanation. These numbers j are not the argument ω of the random variable ω 7→ X(ω);
they are the function values j = X(ω). If, by chance, randomness occurs as ω1 then the associated
outcome for X might be, e.g., X(ω1) = 7. On the other hand, if ω2 happens instead then we observe
X(ω2) and that outcome might be X(ω2) = 4. And if ω3 happens instead then we observe the
outcome X(ω3) which might again be 7, and so on.
So the answer is that Bin(n, p){j} =

(
n
j

)
pj (1− p)n−j refers to events on the codomain (R,B1) of X ,

and this leads to the following question.
• There must be a relationship between the measure P on (Ω,F), the random variable X ,

and the measure Bin(n, p) on (R,B1). What is it?
The answer to the first question was given in Introduction 4.1 to this chapter 4.2 (Measurable Func-
tions and Random Variables). See p.49. We will use X and P to build a measure PX on (R,B1) as
follows:

PX(B) := P{X ∈ B} = P{ω ∈ Ω : X(ω) ∈ B}, (B ∈ B1).

That will work for any random variable. Matter of fact it will work for any measurable function
f : (Ω,F, µ)→ (Ω′,F′): Define a measure µf on F′ via

µf (A′) := µ{f ∈ A′} = µ{ω ∈ Ω : f(ω) ∈ A′}, (A′ ∈ F′). �
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Proposition 4.8. Let (Ω,F, µ) be a measure space and (Ω′,F′) a measurable space,

Let f : Ω→ Ω′ be (F,F′) measurable. Then the set function

µf : F′ → [0,∞];A′ 7→ µ{f ∈ A′} = µ{ω ∈ Ω : f(ω) ∈ A′}(4.32)

defines a measure on (Ω′,F′). Moreover, if µ is a probability measure on F, i.e., µ(Ω = 1) then µf is
a probability measure on F′.

PROOF: ? A triviality if you make use of Proposition3.4 (f−1 is compatible with all basic set
ops) on p.36. �

For the following see SCF2 Definition 1.2.3.

Definition 4.11 (Image measure).
(1) We call the measure µf of Proposition 4.8 the image measure of µ under f or the measure

induced by µ and f .
(2) We now switch notation from f and µ to the more customary X and P for the sake of

clarity. In the case of a random variable X on a probability space (Ω,F, P ) we call the
image measure PX of P under X which is, according to (4.32), given by

PX(B) := P{X ∈ B} = P{ω ∈ Ω : X(ω) ∈ B}, (B ∈ B1)(4.33)

the probability distribution or simply the distribution of X . SCF2 also calls PX the
distribution measure of X . �

Proposition 4.9. Let Ω be a nonempty set, (Ω′,F′) a measurable space, and f : Ω → Ω′ an arbitrary
function. Then

(1) the collection σ(f) := {f−1(A′) : A′ ∈ F′} of all preimages of F′–measurable sets is a σ–algebra.
(2) The function f is (σ(f),F′)–measurable.
(3) σ(f) is the smallest σ–algebra F on Ω which makes f (F,F′)–measurable in the following sense:

If F is a σ–algebra on Ω and there are sets A ∈ F which do not belong to σ(f) then f is not
(F,F′)–measurable.

PROOF: ?

(1) follows from Proposition3.4 (f−1 is compatible with all basic set ops) on p.36.
(2) is easy to see from the definition of masurability of a function. �

Definition 4.12. Let Ω,Ω′ be nonempty, F′ a σ–algebra on Ω′, and f : Ω→ Ω′.

We call the σ–algebra from Proposition 4.9

σ(f) := {f−1(A′) : A′ ∈ F′}(4.34)

the σ–algebra generated by f . �
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Remark 4.12. Assume that f : (Ω,F) → (Ω′,F′) with measurable spaces for both domain and
codomain.

(1) The minimality of σ(f) stated in Proposition 4.9.(3) implies that
f is (F,F′)–measurable ⇔ σ(f) ⊆ F.

(2) In particular, if X is a random variable defined on a probability space (Ω,F, P ) then σ(X) ⊆ F
since X is F measurable by the very definition of a random variable.

In a sense we can think of σ(X) as the information one can associate with the random phenomenon X . This is
discussed at length in SCF2, ch.2. �

Proposition 4.10.

• Any continuous function f : Rm → Rn is Borel–measurable, i.e., (Bm,Bn)–
measurable.

• In particular, any continuous, real–valued function f(x) of real values x is Borel–
measurable. �

PROOF: ? A triviality if you recall that the open n–dimensional parallelepipeds generate Bn

and if you know the following: f is continuous (at each ~x ∈ Rm) ⇔ the preimages of all open sets
in Rn are open in Rm. �

4.3 Integration and Expectations

The following should be read in conjunction with SCF2 ch.1.3: Expectations.

Remark 4.13. We recall that if f : R→ {0, 1} and g : Rn → {0, 1} are Riemann–integrable and if also
the sets A ⊆ R and B ⊆ Rn are Riemann–integrable, i.e., the Riemann integrals

∞∫
−∞

1A(x) dx and

∞∫
−∞

· · ·
∞∫
−∞

1B(x1, x2, . . . , xn) dx1dx2 · · · dxn

of the indicator functions 1A : R→ {0, 1} and 1B : Rn → {0, 1} exist, then we write∫
A
f(x) dx =

∫ ∞
−∞

f(x)1A(x) dx,(4.35) ∫
B
g(x1, . . . , xn) dx1 · · · dxn =

∫ ∞
−∞
· · ·
∫ ∞
−∞

g(x1, . . . , xn)1B(x1, . . . , xn) dx1 · · · dxn. �(4.36)

Introduction 4.2. We start out with a few things we know about integration from calculus.
A. If f : R→ R is a function of the form

f(x) =
k∑
j=1

cj 1]aj ,bj ](x),
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then

∞∫
−∞

f(x) dx =
k∑
j=1

cj

∞∫
−∞

1]aj ,bj ](x) =
k∑
j=1

cj

bj∫
aj

dx

=
k∑
j=1

cj(bj − aj) =
k∑
j=1

cj λ
1(]aj , bj ])

(4.37)

where λ1 denotes Lebesgue measure which was introduced in Definition 4.6 on p.44.
B. Things are similar in the multidimensional case. If g : Rn → R has the form

g(x) =

k∑
j=1

cj 1]u1j ,v1j ]×···×]unj ,vnj ](x), (uij < vij for i = 1, . . . , n),

then

∞∫
−∞

· · ·
∞∫
−∞

g(x1, . . . , xn) dx1 · · · dxn =

k∑
j=1

cj

v1j∫
u1j

· · ·
vnj∫
unj

dx1 · · · dxn

=

k∑
j=1

cj(v1j − u1j) · · · (vnj − unj)

=

k∑
j=1

cj λ
n(]u1j , v1j ]× · · ·×]unj , vnj ]) .

(4.38)

C. If X is a random variable on the probability space (Ω,F, P ) and if f : R→ R is of the form

f(x) =
k∑
j=1

cj 1]aj ,bj ](x), (k ∈ N),

then the expected value E[f ◦X] of the composite function f ◦X : ω 7→ f
(
X(ω)

)
is

E[f ◦X] =
k∑
j=1

cj

∫
E
[
1]aj ,bj ](X)

]
=

k∑
j=1

cjP{X ∈]aj , bj ]} =
k∑
j=1

cjPX(]aj , bj ]).(4.39)

Here PX is the distribution of X , i.e., the image of P under X .

In each of those three cases we have a function of the form f =
k∑
j=1

cj1Aj which takes finitely

many values cj and we have computed in each case an integral or an expected value of the form
k∑
j=1

cjµ(Aj) for a suitable measure µ. We will now establish a connection between those instances.

�
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Definition 4.13 (Integral of a simple function). Let (Ω,F, µ) be a measure space, n ∈ N, and
A1, A2, An ∈ F a finite collection of measurable sets. Let f : Ω→ R be defined as

f :=
n∑
j=1

cj1Aj , 0 5 cj <∞ for j = 1, . . . , n.(4.40)

We call such a function which only assumes finitely many function values a simple function. Note
that f = 0 and f is measurable as the sum of the measurable functions ω 7→ cj · 1Aj (ω). We call

∫
f dµ :=

∫
f(ω) dµ(ω) :=

∫
f(ω)µ(dω) :=

n∑
j=1

cjµ(Aj). �(4.41)

the integral, or also the abstract integral, of f with respect to µ.

Remark 4.14. ?

A. We made no assumption about finiteness of µ, so some or all of theAj may have infinite measure.
We confined ourselves to non-negative cj in order to avoid expressions of the form∞−∞.
B. Note that the choice of k,Aj , and cj is not unique for a given function f . For example the constant
function

f : (R,B1, λ1) −→ R; x 7→ 3,

can be written as

f = 3 · 1R = 3 · 1]−∞,0[ + 3 · 1[0,∞[

= 1 · 1]−∞,−1[ + 2 · 1]−∞,1[ + 1 · 1]−1,∞[ + 2 · 1[1,∞[.

Thus the following is important since it ensures that the definition of
∫
fdµ consistent:

C. Let the simple, nonnegative, function f have representations

f :=

k∑
j=1

cj1Aj =

k′∑
j=1

c′j1A′j .

Then
k∑
j=1

cjµ(Aj) =
k′∑
j=1

c′jµ(A′j), thus
∫
fdµ does not depend on the choice of the sets Aj and the

coefficients cj . �

We extend the definition of
∫
fdµ to more general measurable functions, in particular all f ∈ m(F)

which are nonnegative or nonpositive.

For the following review the decomposition f = f+ − f− given in Definition 2.17 (Absolute value,
positive and negative part) on p.16.
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Definition 4.14 (Integral of a measurable function). Let (Ω,F, µ) be a measure space and f an ex-
tended real–valued, F–measurable, function.

(1) If f = 0, we define∫
f dµ := sup

{∫
h dµ : h is simple and 0 5 h 5 f

}
.(4.42)

If not both
∫
f+dµ =∞ and

∫
f−dµ =∞, we define∫
f dµ :=

∫
f+ dµ −

∫
f− dµ.(4.43)

Again we call
∫
fdµ the integral or abstract integral of f with respect to µ.

(2) If
∫
|f | dµ < ∞ we call f integrable with respect to µ or just µ–integrable.

We allow the alternate notation∫
f dµ =

∫
f(ω) dµ(ω) =

∫
f(ω)µ(dω). �

The definition of integrability has been changed in MF454 version 2021-02-21 as follows.
• Old version 2021-02-19: We called any function f µ–integrable as long as∫

fdµ =
∫
f+dµ−

∫
f−dµ exists, i.e., this expression is not of the form∞−∞.

• From now on: To call f µ–integrable it must satisfy the condition
∫
|f |dµ < ∞. You will

see in part b of Theorem 4.3 (Fundamental properties of the abstract integral) on p.59 that
this condition is equibalent to both

∫
f+dµ <∞ and

∫
f−dµ <∞

Remark 4.15. ?

Note that there are measurable functions f which are not µ–integrable even though
∫
fdµ exists.

For example, let
f : (R,B1, λ1) −→ (R,B1); f(x) := x+ = x 1[0,∞[.

Here is a formal proof that
∫
x+dλ1(x) = ∞. For each n ∈ N, let hn := n · 1[n,2n]. Then hn 5 f and

this simple function has integral
∫
hndλ = n · λ1([n, 2n]) = n2. Thus∫

x+ dλ1 = sup

{∫
h dλ1 : h is simple and 0 5 h 5 x+

}
= sup

n∈N

{∫
hn dλ

1

}
= ∞.

In particular the integral
∫
x+dλ1 exists but is infinite. Since |f(x)| = f(x) for all x we see that∫

|f |dλ1 =∞, thus f is not λ1-integrable. �

We next define expected values of random variables as abstract integrals
∫
· · · dP .

Definition 4.15 (Expected value of a variable). Let (Ω,F, P ) be a probability space and X a random
variable on that space, possibly extended real–valued.
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If
∫
XdP exists, we define the expectation or expected value E[X] of X , with respect to P

also simply written as EX , as

E[X] :=

∫
X dP =

∫
X(ω) dP (ω) =

∫
X(ω)P (dω). �(4.44)

Proposition 4.11. ?

Let (Ω,F, µ) be a measure space and A ∈ F. Let µA be the measure defined in Proposition 4.6 on p.48:

µA(A′) = µ(A ∩A′)

If f ∈ m(F) is µ–integrable then f1A is integrable with respect to both µ and µA, and then∫
f1A dµ =

∫
f1A dµA =

∫
f dµA.

PROOF: Not entirely trivial. You first prove this for simple functions h and then use

0 5 h 5 f ⇔ 0 5 h1A 5 f1A

to prove the general case. �

The last proposition shows that if f is µ–integrable and A ∈ F then
∫
f1Adµ exists. We are in a

position to define the following.

Definition 4.16. Let (Ω,F, µ) be a measure space, A ∈ F.

If f is a measurable function and
∫
f1Adµ exists (is not of the form∞−∞) then we call∫
A
f dµ :=

∫
f · 1A dµ(4.45)

the integral or abstract integral, of f over A with respect to µ. We allow the alternate notation∫
A
f dµ =

∫
A
f(ω) dµ(ω) =

∫
A
f(ω)µ(dω).

Observe that
∫

Ω fdu =
∫
fdu. �

For the following see SCF2 Theorem 1.3.4. We formulate it twice, once for general measures and
then again for probability spaces.

Theorem 4.3 (Fundamental properties of the abstract integral). Let f be a measurable function on a
emasure space (Ω,F, µ).
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a. If f takes only finitely many function values x0, x1, . . . , xn, then∫
f dµ =

n∑
k=0

xk µ
(
f−1{xk}

)
.

In particular, if Ω is finite, then ∫
f dµ =

∑
ω∈Ω

f(ω)µ{ω}.

b. (Integrability) The measurable function f is integrable if and only if∫
f+ dµ < ∞ and

∫
f− dµ < ∞.

Let g be another measurable function on (Ω,F, µ).
c. (Comparison) If f = g a.e. and f and g are integrable or nonnegative a.e., then∫

f dµ =

∫
g dµ.

d. (Linearity) If α and β are real constants and f and g are integrable or if α and β are nonnegative
constants and f and g are nonnegative, then∫

(αX + βY ) dµ = α

∫
f dµ + β

∫
g dµ.

PROOF: See SCF2, proof of Theorem 1.3.4. �

And this is the version for probability spaces which you will find as SCF2 Theorem 1.3.4.

Theorem 4.4. Let X be a random variable on a probability space (Ω,F, P ).
a. If X takes only finitely many values x0, x1, . . . , xn, then

E(X) =
n∑
k=0

xk P{X = xk}.

In particular, if Ω is finite, then

E(X) =
∑
ω∈Ω

X(ω)P{ω}.
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b. (Integrability) The random variable X is integrable if and only if

E[X+] < ∞ and E[X−] < ∞

Now let Y be another random variable on (Ω,F, P ).
c. (Comparison) If X = Y a.s. and X and Y are integrable or a.s. nonnegative, then

EX = E Y.

d. (Linearity) If α and β are real constants and X and Y are integrable or if α and β are nonnegative
constants and X and Y are nonnegative, then

E(αX + βY ) = αE(X) + βE(Y ).

e. (Jensen’s inequality:) The following may NOT be true for measures which are not probability mea-
sures. If ϕ is a convex, real–valued function defined on R and if E(X) <∞, then

ϕ
(
E(X)

)
5 E

(
ϕ(X)

)
.

PROOF: See SCF2. �
@@MFx-Auth

AAA This the placeholder for Theorem 4.13 on p.76 in the addenda to this
chapter.

The following theorem, [SCF2 Theorem 1.3.8, is specific to Lebesque measure. It is true in multiple
dimensions, but we only state it for the one–dimensional case.

Theorem 4.5. Connection between Riemann and Lebesgue integrals] Let f be a bounded function, defined
on R, and let a < b.

(1) The Riemann integral
b∫
a
f(x) dx is defined (i.e., the lower and upper Riemann sums con-

verge to the same limit) ⇔ the set of points x in [a, b] where f(x) is not continuous has
Lebesgue measure zero.

(2) If the Riemann integral
b∫
a
f(x) dx is defined, then f is Borel–measurable (so the Lebesgue

integral
∫

[a,b]

f(x) dλ1(x) is also defined), and both integrals agree.

PROOF: ? Beyond the scope of this course. �

Remark 4.16.
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(1) Theorem 4.5(1) can be expressed as follows: The Riemann integral
∫ b
a f(x) dx exists ⇔ f(x)

is almost everywhere continuous on [a, b].
(2) A singleton sets {x} in R have Lebesgue measure zero, thus any finite set of points has

Lebesgue measure zero. Thus (1) above guarantees that if we have a real–valued function
f on R that is continuous except at finitely many points, then there will be no difference
between Riemann and Lebesgue integrals of this function.

(3) Lebesgue integrals are the appropriate vehicle to develop and prove mathematical theory.
But to actually evaluate integrals we use the formulas for computing Riemann integrals.

(4) Because the Riemann and Lebesgue integrals agree whenever the Riemann integral
is defined, we use the familiar notation

∫ b
a f(x) dx for Riemann integrals instead of∫

[a,b] f(x) dλ1(x) even if we do Lebesgue integration.
(5) If the set B over which we integrate is Borel but not necessarily an interval, we write∫

B f(x) dx. �

4.4 Convergence of Measurable Functions and Integrals

The following corresponds to SCF2 Chapter 1.4 but note that what is formulated here for arbitrary
measure spaces (Ω,F, µ) is done there only for the measurable space (R,B(R), λ1).
We start by applying the definition of a.e. and a.s (almost everywhere and almost surely, see Defini-
tion 4.10 on p.51), to the convergence of functions. In this case the property of interest for an ω ∈ Ω
is whether the sequence of numbers or extended real numbers f1(ω), f2(ω), . . . has a limit.
For the next two definitions see SCF2 Definitions 1.4.1 and 1.4.3.

Definition 4.17 (Convergence almost everywhere).

Let (Ω,F, µ) be a measure space, and fn, f : Ω→ R Borel–measurable functions (n ∈ N). Let

A := {ω ∈ Ω : lim
n→∞

fn(ω) = f(ω)}.

If µ(A{) = 0 then we say that the sequence fn has limit f µ–almost everywhere and we
write

lim
n→∞

fn = f µ–a.e. or fn → f µ–a.e. asn→∞; �

Definition 4.18 (Convergence almost surely).

Let (Ω,F, P ) be a probability space and Xn, X a sequence o random variables with domain
Ω such that lim

n→∞
fn = f µ–a.e. as defined above. We prefer to say that the sequenceXn has

limit X P–almost surely and we write

lim
n→∞

Xn = X P–a.s. or Xn → X P–a.s. asn→∞ �
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The following is SCF2 Example 1.4.4.

Example 4.6. Let (Ω,F, µ) := (R,B1, λ1) the real numbers with Lebesgue measure. Let fn : R → R
be the continuous and hence (B1,B1)–measurable functions

fn(x) :=

√
n√
2π

e−
nx2

2 density function of the N(0, n)–distribution ,(4.46)

f(x) :=

{
0 ifx 6= 0,

∞ ifx = 0.
(4.47)

Then fn(ω) → f(ω) as n → ∞ for all ω, thus fn → 0 λ1–a.e., since λ1{0} = 0. But observe∫
R fn(x)dλ1(x) = 1 for all x whereas

∫
R f(x)dλ1(x) = 0. So when can we switch

∫
and limn? �

Here is another such example.

Example 4.7. Let (Ω,F, µ) := (R,B1, λ1) the real numbers with Lebesgue measure. Let fn : R → R
be defined as

fn := 1[n,∞[, n = 1, 2, 3, . . . , i.e., fn(x) = 1 for x 5 n and zero else.(4.48)

Then each fn is Borel measurable (why?) and fn(ω) → 0 as n → ∞. But the integrals
∫

R fn dλ
1 do

not converge to
∫

R 0 dλ1 = 0 since each
∫

R fn dλ
1 equals infinity. �

We have had two examples where a sequence of functions converges a.e., but the integrals do not
converge to the integral of that limit function. We are now formulating conditions under which this
cannot happen.

The following corresponds to SCF2 Theorem 1.4.5.

Theorem 4.6 (Monotone Convergence Theorem).

(1). Let (Ω,F, µ) be a measure space and let f, f1, f2, · · · : Ω→ R be m(F,B1).

If 0 5 f1 5 f2 5 . . . a.e. and lim
n→∞

fn = f a.e., then lim
n→∞

∫
fn dµ =

∫
f dµ.

(2). Let X and X1, X2, X3, . . . be random variables on a probability space (Ω,F, P ).

If 0 5 X1 5 X2 5 . . . a.s. and lim
n→∞

Xn = X a.s., then lim
n→∞

E[Xn] = E[X].

PROOF ? : Will not be given. Observe though that (2) matches (1) in the special case that
µ(Ω) = 1. �

Remark 4.17. ?

Observe that neither Example 4.6 nor Example 4.7 satisfy the condition of the theorem. The func-
tions in both are nonnegative and in example 4.7 they even are monotone but there they are non–
increasing rather than non–decreasing. �
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Just as useful as the Monotone Convergence Theorem is the following one (SCF2 Theorem 1.4.9.)

Theorem 4.7 (Dominated convergence Theorem).

(1). Let (Ω,F, µ) be a measure space and let f, g, f1, f2, · · · : Ω→ R be m(F,B1). Further assume
that g = 0 and g is integrable, i.e.,

∫
gdµ < ∞.

If |fj | 5 g a.s. for each j and lim
n→∞

fn = g a.s., then lim
n→∞

∫
fn dµ =

∫
f dµ.

A. Let X,Y and X1, X2, X3, . . . be random variables.

If |Xj | 5 Y a.s. for each j and lim
n→∞

Xn = X a.s., then lim
n→∞

E[Xn] = E[X].

PROOF ? : Will not be given. Observe again that (2) matches (1) in the special case that
µ(Ω) = 1. �

Understand how useful the above two theorems are for your other Math classes where integration
or summation or probability plays a role. Here is an example which you can find, e.g., in [1] Bauer,
Heinz: Measure and Integration Theory.

Proposition 4.12. ? Let (Ω,F, µ) be a probability space and a < b two real numbers. Assume the
function f :]a, b[×Ω→ R satifies the following.

(1) For any fixed a < t < b the function ω 7→ f(t, ω) is µ–integrable (and thus by necessity F–
measurable).

(2) For any fixed ω ∈ Ω the function t 7→ f(t, ω) has a partial derivative

ft : s 7→ ft(s, ω) =
∂f

∂t
(s, ω).

(3) There exists a non-negative and µ–integrable function g : Ω→ R which dominates |ft|:

|ft(s, ω)| 5 g(ω) for all a < s < b, ω ∈ Ω.

Then we can differentiate under the integral. More specifically,

s 7→
∫

Ω
f(s, ω) dµ(ω) is differentiable for each ω,

ω 7→ ft(s, ω) is µ–integrable for each a < s < b, and∫
Ω
ft(s0, ω) dµ(ω) =

d

dt

∫
Ω
f(s0, ω) dµ(ω).

PROOF: Fix a < s0 < b and an arbitrary sequence a < sn < b of real numbers such that sn 6= s0 for
all n and limn sn = s0. Define hn : Ω→ R as

hn(ω) :=
f(sn, ω) − f(s0, ω)

sn − s0
.

64 Version: 2021-05-17



Math 454 – Additional Material Student edition with proofs

Then hn is µ–integrable for each n by assumption (1) and, by assumption (2),

lim
n→∞

hn(ω) = ft(s0, ω) for all ω ∈ Ω.(4.49)

In particular, the function ω 7→ ft(s0, ω is measurable as limit of the measurable hn.
We next show that |hn| 5 g so we will be able to apply dominated convergence. According to the
mean–value theorem of differential calculus we can find for each sn a value αn in the open interval
with endpoints sn and s0 such that

hn(ω) =
f(sn, ω) − f(s0, ω)

sn − s0
= ft(αn, ω) .

From assumption (2) we thus obtain |hn(ω)| 5 g(ω). ω 7→ ft(s0, ω) thus is µ–integrable. We apply
dominated convergence to formula (4.49) and obtain

lim
n→∞

∫
Ω
hn(ω) dµ(ω) =

∫
Ω
ft(s0, ω) dµ(ω).(4.50)

From the definition of hn and linearity of the integral we obtain∫
Ω
hn(ω) dµ(ω) =

∫
Ω f(sn, ω) dµ(ω) −

∫
Ω f(s0, ω) dµ(ω)

sn − s0
for all n ,

and this sequence of difference quotients has limit

lim
n→∞

∫
Ω
hn(ω) dµ(ω) = =

d

dt

∫
Ω
f(s0, ω) dµ(ω).

We apply formula (4.50) and obtain∫
Ω
ft(s0, ω) dµ(ω) =

d

dt

∫
Ω
f(s0, ω) dµ(ω). �

Here is a simple consequence of monotone convergence.

Theorem 4.8.

(1). Let (Ω,F, µ) be a measure space and let f = 0 be an extended real–valued, Borel–measurable
function on Ω. Then the set function

ν : F −→ [0,∞], ν(A) :=

∫
A
f dµ(4.51)

defines a measure on F.

PROOF:
A. To show that that 1∅ = 0, thus f · 1∅ = 0. Thus

ν(∅) =

∫
0 dµ = µ(A) · 0 = 0.

(We might have had to use the rule∞ · 0 = 0 once or even twice!)
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B. ν is monotone since A ⊆ A′ for measurable A and A′ implies f · 1A 5 f · 1A′ , thus

ν(A) =

∫
f · 1A dµ 5

∫
f · 1A′ dµ = ν(A′).

C. ν is σ–additive: Let An ∈ F be disjoint and A :=
⊎
n∈N

An. For k ∈ N let Bk :=
⊎
j5k

Aj . Then

0 5
n∑
j=1

f · 1Aj = f · 1Bn ↑ f · 1A,

and thus, by monotone convergence,

ν(A) =

∫
f · 1A dµ = lim

n→∞

∫
f · 1Bn . = lim

n→∞

k∑
j=1

∫
f · 1Aj = lim

n→∞

k∑
j=1

ν(Aj) =
∞∑
j=1

ν(Aj) �

4.5 The Standard Machine – Proving Theorems About Integration

Introduction 4.3. The easiest way to prove facts about integration in general and expectations in
particular is often to proceed as follows.

Step 1: prove the statement for indicator functions 1A.
Step 2: Use the linearity of f 7→

∫
fdµ to prove the statement for simple functions.

Step 3: Approximate measurable f = 0 by simple functions fn ↑ f and use the Mono-
tone Convergence Theorem to extend the result to such f .

Step 4: Prove the case for general f = f+ − f− by applying step 3 to f+ and f−.

Shreve calls this procedure the standard machine. �

We proceed according to the standard machine to prove the following generalized version of SCF2
Theorem 1.5.1.

Theorem 4.9. (Ω,F, µ) be a measure space and let (Ω′,F′) be a measuragle space. Assume that f : Ω→ Ω′

is m(F,F′). and g : Ω′ → R is m(F′,B1). We denote again by µf the image measure of µ under f on F′,
defined in Definition 4.11 on p.54 and given by

µf (A′) = µ{f ∈ A′} = µ{ω ∈ Ω : f(ω) ∈ A′}.

If g = 0 or g ◦ f is integrable then∫
g ◦ f dµ =

∫
g dµf , i.e.,

∫
g
(
f(ω)

)
dµ(ω) =

∫
g(ω′) dµf (ω′).(4.52)

PROOF:
Step 1. Assume that g = 1A′ for some A′ ∈ F′. Note that

1A′
(
f(ω)

)
= 1 ⇔ f(ω) ∈ A′ ⇔ ω ∈ f−1(A′),
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thus∫
Ω

1A′
(
f(ω)

)
dµ(ω) =

∫
Ω

1f−1(A′)(ω) dµ(ω) = µf−1(A′) = µf (A′) =

∫
Ω′

1A′(ω
′) dµf (ω′).

We have shown the validity of formula (4.52) for g = 1A′ .

Step 2. Let g = 0 be a simple function g =
n∑
j=1

cj1A′j (n ∈ N, cj = 0). It then follows from the linearity

of the integral and what we already haven proven in step 1 that∫
Ω
g ◦ f dµ =

n∑
j=1

cj

∫
Ω

1A′j ◦ f dµ =
n∑
j=1

cj

∫
Ω′

1A′j dµf =

∫
Ω′
g dµf .

Step 3. Assume that g is a nonnegative, F′ − −B1 measurable function. For each nonnegative
integer n let

Bj,n :=

{
j

2n
5 g <

j + 1

2n

}
(j = 0, 1, . . . , 4n − 1),

gn(ω′) :=

4n−1∑
j=0

j

2n
· 1Bj,n(ω′).

Then gn is a simple function which is constant on the preimages g−1
(
[ j

2n ,
j+1
2n [
)

of the partition

0 <
1

2n
<

2

2n
< · · · 4n

2n
= 2n.

We have gn 5 gn+1 for all n since each partition is a refinement of the previous one.
Moreover gn(ω′) ↑ g(ω′) for each ω since, if j is the index such that j

2n 5 g(ω′) < j+1
2n , then

ω′ ∈ Bj,n, thus gn(x) =
j

2n
5 g(ω′) <

j + 1

2n
, thus |gn(ω′)− g(ω′)| < j + 1

2n
− j

2n
=

1

2n
.

It now follows from Step 2 and the monotone convergence theorem that∫
Ω
g ◦ f dµ = lim

n→∞

∫
Ω
gn ◦ f dµ = lim

n→∞

∫
Ω′
gn dµf =

∫
Ω′
g dµf .

If f = 0 then we are done.
Step 4. From now on we may assume that g ◦ f is µ–integrable, i.e., both

∫
(g ◦ f)+dµ < ∞ and∫

(g ◦ f)−dµ <∞. We have shown in step 3 that the nonnegative functions g+ ◦ f and g− ◦ f satisfy∫
Ω
g+ ◦ f dµ =

∫
Ω′
g+ dµf ,

∫
Ω
g− ◦ f dµ =

∫
Ω′
g− dµf ,(4.53)

We also have

(g+ ◦ f)(ω) = g+
(
f(ω)

)
=
[
g
(
f(ω)

)]+
= (g ◦ f)+(ω),

(g− ◦ f)(ω) = g−
(
f(ω)

)
=
[
g
(
f(ω)

)]−
= (g ◦ f)−(ω).

(4.54)
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It follows that ∫
Ω
|g ◦ f | dµ =

∫
Ω

(g ◦ f)+ dµ +

∫
Ω

(g ◦ f)− dµ

(4.54)
=

∫
Ω

(g+ ◦ f) dµ +

∫
Ω

(g− ◦ f) dµ

(4.53)
=

∫
Ω′
g+ dµf +

∫
Ω′
g− dµf .

All quantities here are finite since
∫

(g ◦ f)+dµ < ∞ and
∫

(g ◦ f)−dµ < ∞. We thus may subtract
and obtain ∫

Ω
g ◦ f dµ =

∫
Ω′
g+ dµf −

∫
Ω′
g− dµf . �

4.6 Equivalent Measures and the Radon–Nikodým Theorem

It is not necessary for you to learn the next definition. It is of a technical nature to ensure that certain
important theorems are valid.

Definition 4.19 (σ–finite measure). ?

• Let (Ω,F, µ) be a measure space. We call µ a σ–finite measure if there exists a sequence
An ∈ F such that

µ(An) < ∞ for alln, and
⋃
n∈N

An = Ω. �

Example 4.8. ?

• All finite measures are σ–finite. In particular, all probability measures are σ–finite
• Lebesgue measure λn is σ–finite: For k ∈ N let Ak := [−k, k]n.

Then λn(Ak) = (2k)n <∞, and Ak ↑ Ω.
• Summation measure Σ (Definition 4.7 on p.46) is σ–finite:

For k ∈ N let Ak := {j ∈ Z : |j| 5 k}. Then Σ(Ak) = 2k + 1 <∞, and Ak ↑ Z. �

The next definition is an important one to remember.

Definition 4.20 (Radon–Nikodým derivative).
Let µ and ν be measures on a given measurable space (Ω,F), assume that µ is σ–finite (see Definition
4.19 (σ–finite measure) on p.68), and let f = 0 be in m(F,B1). If µ, ν, and f satisfy formula (4.51) of
Theorem 4.8 on p.65, i.e.,

ν(A) =

∫
A
f(ω) dµ(ω), for allA ∈ F,(4.55)
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then we call f the density of ν with respect to µ on F or also the Radon–Nikodým derivative of ν
with respect to µ on F. We write

f =
dν

dµ
or dν = f dµ or dν(ω) = f(ω) dµ(ω). �(4.56)

Remark 4.18. It follows from Theorem 4.13 on p.76 that if f̃ is a second function that satisfies ν(A) =∫
A f̃dµ for all A ∈ F, and if f and f̃ are µ–integrable, then f̃ = f µ–a.e.

One can prove that under the given assumptions which include the σ–finiteness of µ and nonnega-
tiveness of f and f̃ this almost everywhere uniqueness of the Radon–Nikodým derivative remains
true, and this allows us to refer to “the” Radon–Nikodým derivative. �

Remark 4.19. ? We explain now why we call the function f in formula (4.55) a derivative.
Consider the normal distribution with mean µ and variance σ2, i.e., the measure ν on B1 defined
by

ν(]a, b]) =

∫ b

a
f(x) dx =

∫
]a,b]

f dλ1, a, b ∈ R, a < b.(4.57)

where f is the normal density

f(x) =
1√

2πσ2
e

(x−µ)2

2σ2 .

Observe that formula (4.57) extends to arbitrary Borel sets (see Fact 4.1 on p.44). In other words, if
we write µ for λ1, then λ1, ν, and f satisfy formula (4.55), thus

f =
dν

dλ1
.

Actually ν is already defined by its values on intervals of the form ]−∞, x] since

ν(]a, b]) = ν(]−∞, b]) − ν(]−∞, a]).

This is of course known to us: The N(µ, σ2) distribution is given by its cumulative distribution
function

F (x) =

∫ x

−∞
f(u) du =

∫
]−∞,x]

f(x) dλ1(x).

It follows from the Fundamental Theorem of Calculus that f(x) = dF (x)
dx . We have seen that∫

f(x)dλ1(x) equals
∫
f(x)dx for Riemann integrable f , so we take liberty and write dx for dλ.

We have both

f(x) =
dF (x)

dx
, f(x) =

dν(x)

dx
.

This is the reason why a function f that satisfies formula (4.55) is called a (Radon–Nikodým) deriva-
tive.
A last comment: This example has nothing to do with normal distributions. All we needed was
that the function f in formula (4.57) is nonnegative, in m(B1,B1), and such that the function x →
F (x) = ν(] −∞, x]) is differentiable so that we can apply the Fundamental Theorem of Calculus.
Continuity of f at all points suffices for that. �
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Definition 4.21 (µ–continuous measure). ?

Let µ and ν be measures on a given measurable space (Ω,F).

• We call ν a continuous measure with respect to µ on F or a µ–continuous measure on
F, and we write ν � µ, if

µ(A) = 0 ⇒ ν(A) = 0, for allA ∈ F. �

• We call µ and ν equivalent measures and we write µ ∼ ν, if both

µ � ν and ν � µ. � �

Remark 4.20.
(1) Two measures µ and ν on (Ω,F) are equivalent if and only if

µ(A) = 0 ⇔ ν(A) = 0, for allA ∈ F.

Thus the relation µ ∼ ν above is an equivalence relation on the set of all
measures for (Ω,F).

(2) Two probabilities P and P̃ on (Ω,F) are equivalent if and only if the P–
almost sure events coincide with the P̃–almost sure events. �

Proposition 4.13. Let µ and ν be measures on a given measurable space (Ω,F) and assume moreover that
the measure ν has a Radon–Nikodým derivative with respect to µ on F. Then ν � µ.

PROOF: ? For convenience we write f rather than dµ
dν for the Radon–Nikodým derivative.

Thus f satisfies ν(A) =
∫
A fdµ for all A ∈ F.

We must show that
µ(A) = 0 ⇒

∫
f1A dµ = 0.

It suffices to show that
∫
hdµ = 0 for all simple functions h that satisfy 0 5 h 5 f1A since

∫
f1Adµ

is the supremum of all sucn integrals.

Since f1A = 0 on A{ and thus 0 5 h 5 f1A = 0 on A{ we obtain h = h1A.

h has the form h =
n∑
j=1

cj1Aj for suitable n ∈ N, cj ∈ R, and Aj ∈ F. Thus

∫
h dµ =

∫
h1A dµ =

∑
j

cj

∫
A

1Aj dµ =
∑
j

cjµ(A ∩Aj) 5
∑
j

cjµ(A) = 0.

The last equation follows from the assumption µ(A) = 0. �

70 Version: 2021-05-17



Math 454 – Additional Material Student edition with proofs

Theorem 4.10 (Radon–Nikodým Theorem). Let µ and ν be measures on a given measurable space (Ω,F)
and assume moreover that the measure µ is σ–finite. Then

ν possesses a Radon–Nikodým derivative of ν with respect to µ on F ⇔ ν � µ.

PROOF: ? The “⇒” direction was proven in Proposition 4.13. The proof of the reverse direc-
tion is outside the scope of this lecture. �

Corollary 4.2. Let P and P̃ be equivalent measures on a given measurable space (Ω,F). Then both Radon–
Nikodým derivatives dP̃

dP and dP

dP̃
exist, and they satisfy the relation

dP̃

dP
· dP
dP̃

= 1 a.e.

PROOF: ? The Radon–Nikodým Theorem guarantees the existence of both dP̃
dP and dP

dP̃
. For all

A ∈ F we have∫
A

dP̃

dP
· dP
dP̃

dP̃ =

∫
A

dP̃

dP

(
dP

dP̃
dP̃

)
=

∫
A

dP̃

dP
dP =

∫
A
dP̃ = P̃ (A).(A)

Let Z := dP̃
dP

dP

dP̃
. Assume to the contrary that we do not have Z = 1 a.e. Then

P{Z > 1 + ε} > 0 or P{Z < 1− ε} > 0 for some suitably small ε > 0.

We may assume that P{Z > 1 + ε} > 0. Then also P̃{Z > 1 + ε} > 0 since P̃ ∼ P . We write A for
{Z > 1 + ε} and obtain

P̃ (A)
(A)
=

∫
A
Z dP̃ = (1 + ε)P̃ (A) > P̃ (A).

We have reached a contradiction. �

Remark: Assume as in Corollary 4.2 that P and P̃ are equivalent measures. We write Z := dP̃
dP for

convenience. Let B0 := {Z = 0}. Then P̃ (B0) = 0 because

P̃ (B0) =

∫
B0

Z dP =

∫
B0

0 dP = 0.

Since P ∼ P̃ we also have P (B0) = 0.
Let X be an arbitrary, nonnegative, random variable. Then∫

XZ dP =

∫
B0

XZ dP +

∫
B{

0

XZ dP = 0 +

∫
B{

0

XZ dP. =

∫
B{

0

X1{Z 6=0}Z dP.

The above holds in particular for indicator functions X = 1A of any A ∈ F and tells us that we may
replace Z with Z1{Z 6=0}. This should have been expected since a Radon–Nikodým derivative is a
conditional expectation and thus determined only almost everywhere.
We thus may assume that

dP̃

dP
= 1

/ dP

dP̃
. �

71 Version: 2021-05-17



Math 454 – Additional Material Student edition with proofs

Remark 4.21. There is a more general version of the last corollary.
Let µ, ν, and ρ be three measures on a given measurable space (Ω,F). Assume that the measures µ
and ν are σ–finite, that ρ� ν and ν � µ. Then dρ

dµ exists and satisfies

dρ

dµ
=

dρ

dν
· dν
dµ

µ–a.e.

For the existence part observe that ρ� ν and ν � µ implies ρ� µ. �

4.7 Independence

All material in this chapter is standard an no effort is made to present the material different from
SCF2. Consult SCF2 ch.2.2 (Independence) for examples and more background information.

Introduction 4.4. We proceed in stages. Let (Ω,F, P ) be a probability space.
Stage 1.
We say that two sets A and B in F are independent if

P (A ∩ B) = P (A) · P (B).

Stage 2.
The following is SCF2 Definition 2.2.1. Let (Ω,F, P ) be a probability space, let G and H be sub–σ–
algebras of F, and let X and Y be random variables on (Ω,F, P ).

(a) We say that the σ–algebras G and H are independent if

P (A ∩ B) = P (A) · P (B) for all A ∈ G, B ∈ H.

(b) We say that the random variables X and Y are independent if the σ–algebras they
generate, σ(X) and σ(Y ), are independent.

(c) We say that the random variable X is independent of the σ–algebra G if the σ–
algebras σ(X) and G, are independent.

Note that independence of the (Borel–measurable) random variables X and Y implies that

X and Y are independent ⇔ P{X ∈ U andY ∈ V } = P{X ∈ U} · P{Y ∈ V }
for all Borel subsets U and V of R.

Stage 3.
SCF2 Definition 2.2.3 generalizes independence from two sub–σ–algebras or random variables to
countably many.
Let (Ω,F, P ) be a probability space, let G1,G2,G2, . . . be sub–σ–algebras of F, and letX1, X2, X3, . . .
be a sequence of random variables on (Ω,F, P ).

(a) We say that the σ–algebras G1,G2, . . . ,Gn are independent if

P (A1 ∩ A2 · · · ∩ An) = P (A1) · P (A2) · · ·P (An) for all Aj ∈ Gj , j = 1, . . . n.

(b) We say that the random variables X1, X2, . . . Xn are independent if the σ–algebras
they generate, σ(X1), σ(X1), . . . , σ(Xn), are independent.
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(c) We say that the sequence of σ–algebras Gj , j ∈ N is independent if, for each n ∈ N,
the σ–algebras Gj , j = 1, . . . , n are independent.

(d) We say that the sequence of random variables Xj , j ∈ N is independent if, for each
n ∈ N, the random variables Xj , j = 1, . . . , n are independent.

It is not hard to see that items (c) and (d) of that definition areequivalent to
(c’) We say that the sequence of σ–algebras Gj , j ∈ N is independent if, for each finite

subsequence n1, n2, . . . , nk of distinct integers nj , the σ–algebras Gnj , j = 1, . . . , k
are independent.

(d’) We say that the sequence of random variables Xj , j ∈ N is independent if, for
each finite subsequence n1, n2, . . . , nk of distinct integers nj , the random variables
Xnj , j = 1, . . . , k are independent.

We will use this observation to define independence of arbitrary (possibly uncountable) families of
sub–σ–algebras and random variables. �

Definition 4.22 (Independence). Let (Ω,F, P ) be a probability space, let Gi, i ∈ I , be an arbitrary,
indexed family of sub–σ–algebras of F, and let Xi, i ∈ I , be an arbitrary, indexed family of random
variables on (Ω,F, P ).

(a) We say that the σ–algebras Gi, i ∈ I , are independent if, for each finite subsequence
i1, i2, . . . , ik of distinct indices ij ∈ I ,

P (Ai1 ∩ Ai2 · · · ∩ Aik) = P (Ai1) · P (Ai2) · · ·P (Aik) for all Aij ∈ Gij , j = 1, . . . k.

(b) We say that the random variables Xi, i ∈ I , are independent if the σ–algebras they
generate, σ(Xi), i ∈ I , are independent.

Theorem 4.11 (SCF2 Theorem 2.2.5). Let X and Y be independent mndom variables, and let f and g be
Borel-measurable functions on R.

Then f ◦X and g ◦ Y are independent random variables.

PROOF: A simple consequence of the fact that the measurability of f and g yields σ(f ◦X) ⊆ σ(X)
and σ(g ◦Y ) ⊆ σ(Y ), so fewer equations of the form P (A∩B) = P (A)P (B) need to be verified. �

You will have to consult SCF2, ch.2.2 if you need a refresher on joint distributions to understand the
next theorem.

Theorem 4.12 (SCF2 Theorem 2.2.7). Let X and Y be random variables. We have equivalence

(1) ⇔ (2) ⇔ (3) ⇔ (4) ⇔ (5)

of the following conditions.
(1) X and Y are independent.
(2) The joint distribution measure (image measure of P under the measurable functions ω 7→ X(ω), ω 7→

Y (ω), ω 7→
(
X(ω), X(ω)

)
) factors:

PX,Y (A×B) = PX(A) · PY (B) for all Borel setsA,B ⊆ R.(4.58)
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(3) The joint cumulative distribution function factors:

FX,Y (a, b) = FX(a) · FY (b) for all a, b ∈ R.(4.59)

(4) The joint moment–generating function factors:

E
[
euX+vY

]
= E

[
euX

]
· E
[
evY
]

for allu, v ∈ R(4.60)

for which the expectations are finite.
(5) If there is a joint density then it factors:

fX,Y (x, y) = fX(x) · fY (y) for allx, y ∈ R.(4.61)

The conditions above imply but are not equivalent to the following.
(6) If there is a joint density then it factors:

E[X · Y ] = E[X] · E[Y ], provided E[|X · Y |] <∞.(4.62)

PROOF (outline): See the SCF2 text. �

4.8 Exercises for Ch.4

Exercise 4.1. Let (Ω,F, µ) be a measure space with a sub–σ–algebra G and let µ′ := µ
∣∣
G

be the
restriction µ′(G) := µ(G)(G ∈ G) of µ to G.
Prove that if f is a nonnegative and G–measurable function then∫

f dµ =

∫
f dµ′. �

4.9 Addenda to Ch.4

Definition:
The following has been added to Definition 4.5 (Abstract measures) on p.43:
• We call any subset N of a set with measure zero a µ–null set. Note that N need not

be measurable. �

You should visualize the next proposition for the case of one, two, three, and four events Aj .

Proposition 4.14. ?

Let (Ω,F) be a measurable space in which a finite or infinite sequence of events A1, A2, . . . is a partition of Ω
and generates F. Let J := {1, 2, . . . , n} in case of a finite sequence Aj : 1 5 j 5 n, and let J := N in case of
a sequence Aj : j ∈ N. Then our assumptions can be stated as follows.

Ai ∩Aj = ∅ for i 6= j,
⊎
j∈J

Aj = Ω, F = σ{Aj : j ∈ J}.(4.63)

Under those assumptions it is true that F consists of all countable unions An1

⊎
An2

⊎
. . . .
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PROOF: Left as an exercise.
Hint: What is the complement of the union An1

⊎
An2

⊎
. . . ? �

@@MFx-Auth

AAA The following definition should be part of Definition 4.9 of a random variable. See
p.50.

It seems awkward not to call a measurable function Ω → Ω′ from a probability space (Ω,F, P ) to a
measurable space (Ω′,F′) a random variable only because its function values are not numbers.
we will call them random items.

Definition 4.23 (Random item). ?

• Let (Ω,F, P ) be a probability space, (Ω′,F′) a measurable space, and let X : Ω → Ω′ be
m(F,F′). We call such a function a random item.

Note that all random variables are random items.

@@MFx-Auth

AAA The following proposition belongs after Corollary 4.1 on p.52.

Proposition 4.15. ?

Let (Ω,F) be a measurable space and f, g extended real valued Borel measurable functions. Then each one of
the sets

{f < g}, {f 5 g}, {f > g}, {f = g},

is F–measurable.

PROOF:
For the set {f < g} we proceed as follows. For q ∈ Q let Aq := {f < q < g}. Then Aq = {f <
q} ∩ {q < g} is measurable as the intersection of two measurable sets. Note that

f(ω) < g(ω) ⇔ there is (at least one) q ∈ Q such that f(ω) < q < g(ω),

and thus
{f < g} =

⋃
q∈Q

Aq.

It follows that {f < g} is measurable as the countable union of the measurable sets Aq.
From this we obtain measurabilty of the set {f 5 g} since

{f 5 g} =
⋂
n∈N

{
f < g +

1

n

}
.

Lastly, {f > g} and {f = g} are measurable as complements of the measurable sets {f 5 g} and
{f < g} �
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@@MFx-Auth

AAA The following theorem belongs after Theorem 4.4 on p.60.

Theorem 4.13. Let (Ω,F, µ) be a measure space and assume that the extended real–valued functions f, g ∈
m(F,B) both are µ–integrable. We have the following.

(4.64) If
∫
A
f dµ 5

∫
A
g dµ for all A ∈ F then f 5 g µ–a.e.

(4.65) If
∫
A
f dµ =

∫
A
g dµ for all A ∈ F then f = g µ–a.e.

PROOF: ? Let A := {f > g}. We will prove (4.64) by showing that the assumption µ(A) > 0

leads to the contradiction
∫
A fdµ >

∫
A gdµ.

For n ∈ N let An := {f > g+ 1
n}. Then An ↑ A, hence µ(An) ↑ µ(A). See Proposition 4.5 (Continuity

properties of measures) on p.47.
Assume to the contrary that µ(A) > 0. Then there exists γ > 0 such that µ(A) = 2γ and hence some
n ∈ N such that µ(An) = γ. Since f > g + 1

n on all of An,∫
An

f dµ =
∫
An

(
g +

1

n

)
dµ =

∫
An

g dµ +
1

n
µ(An) =

∫
An

g dµ +
γ

n
>

∫
An

g dµ.

We have reached a contradiction, thus (4.64) holds.
Proof of (4.65): Note that, according to the already proven validity of (4.64), the assumption∫

A
f dµ =

∫
A
g dµ for all A ∈ F implies f 5 g µ–a.e., and g 5 f µ–a.e.

This proves f = g µ–a.e. �
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5 Conditional Expectations

We will explore in Section 5.1 (Functional Dependency of Random Variables) in what sense a σ–
algebra can be interpreted as holding some or all stochastically relevant information about a random
variable before devoting the remainder of this chapter to the subject of conditional expectations.
For a random variable X on a probability space (Ω,F, P ) we will define its conditional expectation
E[X | G] with respect to a sub–σ–algebra G of F not as a number but as a G–measurable random
variable (a function of ω!) which satisfies the

partial averaging property
∫
G
E[X | G] dP =

∫
G
X dP for all G ∈ G.

This property gets its name from the fact that it implies matching averages

1

P (G)

∫
G
E[X | G] dP =

1

P (G)

∫
G
X dP for all G ∈ G with probability P (G) > 0 ,

i.e., for that part of the stochastically relevant information about X that is accessible in G.
In Section 5.2 (σ–Algebras Generated by Countable Partitions and Partial Averages) we examine
this first in the special case where G is generated by a countable partition

Ω = G1

⊎
G2

⊎
G3

⊎
· · ·

of events Gj before treating the general case in Section ?? (Conditional Expectations and Their Core
Properties in the General Case)

5.1 Functional Dependency of Random Variables

Proposition 5.1 (Doob Factorization Lemma). ?

Assume that Ω is a nonempty set, not necessarily a measurable space, that (Ω′,F′) is a measurable space, and
that f : Ω→ Ω′ is a function about which we assume nothing. Then f transforms Ω into a measurable space(
Ω, σ(f)

)
by means of the σ–algebra

σ(f) = {f−1(A′) : A′ ∈ F}.

See Definition 4.12 on p.54 and the proposition preceding it. Further assume that ϕ : Ω→ R is an extended
real valued function with domain Ω. The following then is true:

(1) ϕ is
(
σ(f),B1

)
–measurable ⇔ there is (F′,B1)–

measurable g such that ϕ = g ◦ f , i.e., ϕ(ω) =
g
(
f(ω)

)
for all ω ∈ Ω.

(2) If f = 0 then g can be chosen such that g = 0.
(3) If |f | <∞ then g can be chosen such that

|g| <∞.

(Ω, σ(f)) (Ω′,F′)

(R̄,B1)

f

g
ϕ

PROOF (outline):
We will only prove the nontrivial direction “⇒” of (1). The other direction is trivial since if there is
(F′,B1)–measurable g such that ϕ = g ◦ f then ϕ is

(
σ(f),B1

)
–measurable as the composition of

the
(
σ(f),F′

)
–measurable f with the (F′,B1)–measurable g.
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The proof of “⇒” is done according to the standard machine.
Step 1: ϕ is a σ(f) measurable indicator function, i.e., f = 1A for some A ∈ σ(f). But any such set
A must the preimage f−1(A′) for some A′ ∈ F′. Note that if f is not bijective then A will generally
not uniquely determine A′. We define

g := 1A′ ,

and it is easily verified that g ◦ f = 1A.

Step 2: For a nonnegative step function ϕ :=
k∑
j=1

cj1Aj (cj = 0, Aj ∈ σ(f)), we define

g :=
k∑
j=1

cj1A′j ,

where each A′j ∈ F′ is chosen such that Aj = f−1(A′j). Then g ◦ f = ϕ.
Step 3: For general measurable ϕ = 0 there exiss a sequence of simple functions ϕn such that ϕn ↑ ϕ.
See the proof of step 3 of Theorem 4.9 on p.66. According to Step 2 there exist F′–measurable
(simple) functions gn such that ϕn = gn ◦ f for each n. Clearly the sequence gn is non–decreasing
and thus has a F′–measurable limit g, and this function satisfies ϕ = g ◦ f .
The proof of (1) for general g and that of (3) will not be given since it is somewhat tedious to consider
the case∞−∞. But note that we also have done the proof of (2). �

Corollary 5.1. ? Given are a probability space (Ω,F, P ), a measurable space (Ω′,F′), a random item’
X by which we simply mean a (F,F′)–measurable function X , 16 and a random variable Y on (Ω,F, P ).
Note that our assumptions imply

σ(X) ⊆ F and σ(Y ) ⊆ F

so that all probablities P{X ∈ A′} and P{Y ∈ B} exist for all A′ ∈ F′ and B ∈ B.

Then σ(Y ) ⊆ σ(X) ⇔ there is (F′,B1)–measurable g such that
Y = g ◦X , i.e., Y (ω) = g

(
X(ω)

)
for all ω ∈ Ω.

(Ω,F, P ) (Ω′,F′)

(R̄,B1)

X

g
Y

PROOF (outline): This is an immediate consequence of the Doob Factorization Lemma, Proposition
5.1, since σ(Y ) ⊆ σ(X) ⇔ Y is

(
σ(X),B1

)
–measurable �

Remark 5.1. Given a probability space (Ω,F, P ), a measurable space (Ω′,F′), and a random item X
in m(F,F′), in particular, if (Ω′,F′) = (R,B1) and thus X is random variable,

we can interpret the σ–algebra σ(X) as the container of all stochastically relevant informa-
tion of X

in the sense that knowledge of all events that belong to σ(X) means knowledge of the probabilities
of all those events A ⊆ Ω that can be described in terms involving X .

16See Definition 4.23 on p.75 in the addenda to ch.sec:basic-meas-prob-theory.
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In this context the corollary to the Doob Factorization Lemma says the following:

If a random variable Y is stochastically known to a random variable X in the sense that its
stochastically relevant information σ(Y ) is part of that of X , i.e., σ(Y ) ⊆ σ(X) then that
by itself implies that Y is known to X on an ω by ω basis since the functional dependency
Y = g ◦X via the function ω′ 7→ g(ω′) determines Y (ω) from X as g

(
Y (ω)

)
. �

5.2 σ–Algebras Generated by Countable Partitions and Partial Averages

Introduction 5.1. We consider σ–algebras as stores of information from a different perspective. In
Section 5.1 (Functional Dependency of Random Variables) we were comparing the sigma–algebras
σX and σY of two random variables X and Y and saw that a functional dependency Y = g ◦ X
exists if σ(Y ) ⊆ σ(X).
Now we relate a random variable X on a probability space (Ω,F, P ) to a σ–algebra G ⊆ F which
only contains some but not all of the stochastically relevant information about X , i.e., we examine
the relationship of X and G in case that

σ(X) is not contained in G.

(A) Is there a random variable XG in m(G,B1) which is, in some sense, the best possible
approximation of X?

(B) Is such an XG uniquely determined?
(C) What happens in the extreme case G = {∅,Ω}?

Since we expect G and XG to be about stochastically relevant information of X and since all such
information is about probabilities, we should only expect uniqueness ofXG up to a set of probability
zero. We have at least a partial answer to (B):

XG is only determined up to a set of probability zero.

In other words, any random variable X ′G in m(G,B1) which satisfies X ′G = XG P–a.e. will serve as
well.
Consider the special case in which a finite or infinite sequence of events G1, G2, . . . is a partition of
Ω and generates G, i.e., if J denotes the finite or infinite index set for this sequence,

Gi ∩Gj = ∅ for i 6= j,
⊎
j∈J

Gj = Ω, G = σ{Gj : j ∈ J}.(5.1)

The partitioning events Gj are the “atoms” of G since each G ∈ G is a union of some or all of the
Gj . See Proposition 4.14 on p.74. Let n be the finite or infinite number of sets Gj .

(1) If |J | = 1 then Ω = G1, i.e., G = {∅,Ω}. Only constant functions Ω→ R are G–measurable,
and the best estimate ω 7→ XG(ω) of a random variable X by a number is its expectation
XG(ω) = E[X]. We have the answer to question (A).
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(2) If |J | = 2 then Ω = G1
⊎
G2, thus G2 = G{1, and G = {∅, G1, G2,Ω}. We now can

separately consider the cases ω ∈ G1, ω ∈ G2 and take the weighted averages on G1 and
G2, i.e. we define

XG(ω) :=

{
1

P (G1) E [X1G1 ] if ω ∈ G1,
1

P (G2) E [X1G2 ] if ω ∈ G2.

=
1

P (G1)
E [X1G1 ] · 1G1(ω) +

1

P (G2)
E [X1G2 ] · 1G2(ω)

=
∑
j=1,2

1

P (Gj)
E
[
X1Gj

]
· 1Gj (ω).

(3) For general J we take the weighted averages on each Gj and splice them into a function
of ω:

XG(ω) :=
1

P (Gj)
E
[
X1Gj

]
if ω ∈ Gj , i.e., XG(ω) =

∑
j∈J

1

P (Gj)
E
[
X1Gj

]
· 1Gj (ω).

We have to amend the equations given in (2) and (3) to account for the indices j for whichP (Gj) = 0.
We partition our index set J into two index sets

J = J1

⊎
J0, defined as J1 := {j ∈ N : P (Gj) > 0}, J0 := {j ∈ N : P (Gj) = 0},

We have seen already thatXG can be determined at best up to a P–null setA :=
⊎
J0
Gj has probabil-

ity zero as the countable union of P–null sets. Thus we do not change any stochastically properties
if we set XG to some arbitrary, constant, value, most conveniently zero. In other words, we replace
the definition given in (3) with

XG(ω) :=
∑
j∈J1

1

P (Gj)
E
[
X1Gj

]
· 1Gj (ω).(5.2)

We now quickly explore the connection between XG and conditional expectations E[X | G] with
respect to events G ∈ G. You have encountered such conditional expectations in your probability
course if X is a discrete random variable or if there is a conditional density:

E[X | G] =
∑
x

xP{X = x | G} if X is discrete, or

E[X | G] =

∫ ∞
−∞

xfX|G(x) dx if there is a conditional density fX|G(x), i.e.,

P (A | G) =

∫
A
fX|G(x) dx for all events A.

We obtain for indicator functions X = 1A(A ∈ F)

XG(ω) =
∑
j

1

P (Gj)
E
[
1Gj1A

]
· 1Gj (ω) =

∑
j

P (Gj ∩A)

P (Gj)
· 1Gj (ω)

=
∑
j

P (A | Gj) · 1Gj (ω) =
∑
j

E(1A | Gj) · 1Gj (ω) =
∑
j

E(X | Gj) · 1Gj (ω).
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This relationship

XG(ω) =
∑
j

E(X | Gj) · 1Gj (ω).(5.3)

between XG and conditional expectations of the form E[X | Gj ] can be extended by use of the
standard machine to arbitrary nonnegative or integrable random variables X
The proposition following this introduction will show that the integral equation∫

G
XG dP =

∫
G
X dP(5.4)

holds for events G ⊆ G. It will be the key to generalizing the definition of XG from σ–algebras
which are generated by a finite or countable partition Ω = G1,

⊎
G2
⊎
· · · of F–measurable sets Gj

to arbitrary sub–σ–algebras of F.
We will find for any σ–algebra G ⊆ F and nonnegative or integrable X a G–measurable XG which
satisfies formula (5.4). Since this formula yields matching “averages”

1

P (G)

∫
G
XG dP =

1

P (G)

∫
G
X dP(5.5)

for all events G ∈ G which have positive probability, there is hope that this random variable XG is
the answer to question (A) that was raised above. �

Proposition 5.2. ? We work under the assumptions of the introduction.

(1) Given are a probability space (Ω,F, P ) and a finite or infinite sequence G1, G2, . . . of elements of
F which constitute a partition of Ω. We write J for the finite or infinite index set for this sequence.
and J1 for the set of those indices j such that P (Gj) > 0.

(2) Let G := σ{Gj : j ∈ J} For an integrable or nonnegative random variable X on (Ω,F, P ) we
define again the G–measurable random variable XG via (5.2):

XG(ω) :=
∑
j∈J1

1

P (Gj)
E
[
X1Gj

]
· 1Gj (ω).

Then formula (5.4) holds for all G ∈ G.

PROOF: We employ the standard machine.
Step 1. If X = 1A for some A ∈ F then for each k ∈ J ,∫

Gk

XG dP =
∑
j∈J1

1

P (Gj)

∫
Gk

E
[
1A1Gj

]
· 1Gj dP

=
∑
j∈J1

1

P (Gj)

∫
Gk

P (A ∩Gj) · 1Gj dP

=
∑
j∈J1

1

P (Gj)
P (A ∩Gj) · P (Gk ∩Gj) dP.
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But the Gj are disjoint, thus P (Gk ∩Gj) = 0 for k 6= j, and P (Gk ∩Gj) = P (Gk) for k = j. Thus all
terms in the sum except the one for j = k vanish and we are left with∫

Gk

XG dP =
1

P (Gk)
P (A ∩Gk) · P (Gk) dP = P (A ∩Gk)

=

∫
Gk

1A dP =

∫
Gk

X dP.

Since all elements of G are a finite or infinite union Gj1
⊎
Gj2

⊎
· · · of the sets Gj this last result

extends to ∫
G
XG dP =

∫
G
X dP.

for an arbitrary event G ∈ G.

Step 2. If X =
m∑
i=1

αi1Ai for some m ∈ N, A1, . . . , Am ∈ F, and nonnegative α1, . . . αm, we obtain by

first using the definition of XG, then linearity of expectations, then using the result obtained in step
Step 1 for each random variable 1Ai , then linearity of the integral,∫

G
XG dP =

∑
j∈J1

1

P (Gj)

∫
Gk

E

[
m∑
i=1

αi1Ai1Gj

]
· 1Gj dP

=

m∑
i=1

αi

∑
j∈J1

1

P (Gj)

∫
Gk

E
[
1Ai1Gj

]
· 1Gj dP


=

m∑
i=1

αi

∫
G

1Ai dP =

∫
G

m∑
i=1

αi1Ai dP =

∫
G
X dP.

This proves the proposition in particular for all simple functions.

Step 3: Monotone convergence allows us to extend the result from simple functions to any nonneg-
ative random variable.
Step 4: If X is integrable then we apply the result obtain step 3 to X+ and X− and thus obtain it
also for X = X+ −X−. �

5.3 Conditional Expectations in the General Setting

What we have seen in the previous section was just of a motivational nature. We are ready now to
attack the general case of an arbitrary sub–σ–algebra G of F.

Theorem 5.1 (Existence Theorem for Conditional Expectations). Let (Ω,F, P ) be a probability space,
G a sub–σ–algebra of F,
I Let X be a nonnegative random variable on (Ω,F, P ), Let ν be the measure A 7→

∫
AXdP on F. Let

PG := P
∣∣
G

be the restriction of P to G, and let νG := ν
∣∣
G

be the restriction of ν to G, i.e., PG and νG are the
set functions defined as

PG(G) = P (G), νG(G) = ν(G), (G ∈ G).
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See Definition ?? (Restriction/Extension of a function) on p.??. Then PG is a probability measure and νG is a
measure on the measurable space (Ω,G), νG � PG. The Radon–Nikodým derivative

E
[
X | G

]
:=

dνG
dPG

is G–measurable and plays the role of XG in formula (5.4) on p.81 in the following sense. E
[
X | G

]
satisfies∫

G
E
[
X | G

]
dP =

∫
G
X dP for all G ∈ G.(5.6)

(II) LetX be an integrable random variable on (Ω,F, P ). The random variables E
[
X+ | G

]
and E

[
X− | G

]
exist according to (I). Define

E
[
X | G

]
:= E

[
X+ | G

]
− E

[
X− | G

]
.

Then E
[
X | G

]
satisfies formula (5.6).

PROOF: ?

PROOF of I: It is trivial that νG and PG are measures on the shrunken domain G since they assign
the same function values ν(G) and P (G) to their arguments G as ν and P .
We now show that νG � PG, i.e., if G ∈ G such that PG(G) = 0, then νG(G) = 0. We obtain this
from ν � P (see prop.4.13 on p.70) as follows.

PG(G) = 0 ⇒ P (G) = PG(G) = 0 ⇒ ν(G) = 0 ⇒ νG(G) = ν(G) = 0.

According to the Radon–Nikodým theorem this suffices to guarantee the existence of the Radon–
Nikodým derivative, determined uniquely P–a.s. 17 We decide to name it E

[
X | G

]
rather than

dνG
dPG

.
The next point is subtle and very important. Since the measures νG and PG live on the measurable
space (Ω,G) the Radon–Nikodým theorem applies to this space and E

[
X | G

]
is (G–measurable

and not only (F–measurable!
Now we prove formula (5.6). Let G ∈ G. Since the function E

[
X | G

]
1G is G–measurable it follows

that ∫
G
E
[
X | G

]
dP =

∫
E
[
X | G

]
1G dP =

∫
E
[
X | G

]
1G dPG =

∫
G
E
[
X | G

]
dPG.(5.7)

(See Exercise 4.1 on p.74 for the second equation.) Further,

E
[
X | G

]
=

dνG
dPG

, i.e., E
[
X | G

]
dPG =

dνG
dPG

dPG = dνG.(5.8)

We obtain from equations (5.7) and (5.8) that∫
G
E
[
X | G

]
dP =

∫
G
dνG = νG = ν(G) =

∫
G
X dP

The equation next to the last holds since the set functions νG = ν
∣∣
G

and ν are identical for arguments
G ∈ G

PROOF of II (Outline): Formula (5.6) holds for X+ and X−. It is a straightforward exercise to show
the validity of (5.6) from the linearity of the integral. �

17For the a.s. uniqueness of the Radon–Nikodým derivative see Remark 4.18 on p.69.
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Remark 5.2. We state once more that the partial averaging property (5.6) determines the G–
measurable random variable E

[
X | G

]
P–a.e. in the sense that if X∗ is another G–measurable

random variable such that ∫
G
XdP =

∫
G
X∗dP for all G ∈ G

then P{X∗ 6= E
[
X | G

]
} = 0. �

This last remark allows us to make the following definition (see SCF2 Definition 2.3.1).

Definition 5.1 (Conditional Expectation w.r.t a sub–σ–algebra).
Let (Ω,F, P ) be a probability space and X a nonnegative or integrable random variable.

For a sub–σ–algebra G of F we call any(!) random variable X∗ that satisfies
(a) (Measurability) X∗ is G–measurable,
(b) GGG–Partial averaging or Partial averaging∫

G
X∗ dP =

∫
G
X dP for all G ∈ G,(5.9)

a conditional expectation of X with respect to G.
In most cases it does not matter which version X∗ that satisfies (a) and (b) is chosen. It is
customary to let the symbol E

[
X | G

]
denote any such X∗ and refer to it as the conditional

expectation of X with respect to G.

If Z is another random variable on (Ω,F, P ) then σ(Z) ⊆ F, thus E
[
X | σ(X)

]
is defined. In

this case we will generally use the notation

E
[
X | Z

]
:= E

[
X | σ(Z)

]
.

We call E
[
X | Z

]
the conditional expectation of X with respect to Z. �

Remark 5.3. We can think of E[X | G] as an estimate of X based on only the information that is
available in G.
The term “partial averaging” indicates that only averages

1

P (G)

∫
G
X dP, G ∈ G and P (G) > 0,

are stochastically relevant information for E
[
X | G

]
. Those averages constitute just a part of the

averages
1

P (A)

∫
A
X dP, A ∈ F and P (A) > 0,

are stochastically relevant information for X itself.
Partial averaging makes it plausible that E[X|G] is a well chosen estimate ofX since all its averages
over sets in G match those of X . The larger G, the better an estimate for X we obtain.
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Consider in particular the case of the introduction 5.1 to this chapter on p.79 where G was generated
by a partitioning sequence Ω = G1

⊎
G2 · · · . In that case, we have

E[X | G](ω) =
∑
j∈J1

1

P (Gj)
E
[
X1Gj

]
· 1Gj (ω),(5.10)

where J1 is the set of indices for which P (Gj > 0). See formula 5.2 on p.80. So the estimate
E[X | G] of X is constant on each atom Gj of G. Moving to a partition with more sets with smaller
probabilities will definitely improve this estimate. �

Remark 5.4 (Factored conditional expectation). ? According to Proposition 5.1 (Doob Factor-
ization Lemma) on p.77 the σ(Z)–B1 measurable function on Ω,

E
[
X | Z

]
: Ω→ R, ω 7→ E

[
X | Z

]
(ω),

can be written as a function

E
[
X | Z

]
= g ◦ Z,(A)

where z 7→ g(z) is B1–B1 measurable. Very confusingly it is common to write

E[X | Z = z](B)

for this function g(z). Thus the functional relationship E
[
X | Z

]
(ω) = g

(
Z(ω)

)
which is obtained

by replacing the dummy variable z with the function value Z(ω), becomes

E[X | Z](ω) = E[X | Z = Z(ω)]. �(C)

The following is SCF2 Theorem 2.3.2 which I reproduce here essentially unaltered. In particular
I use his phrase “Taking out what is known” which sounds awkward but I would not know to
improve upon: the fact that a G–measurable random variable, i.e., one for which G all its stochasti-
cally relevant information, can be pulled out of a conditional expectation E[· · · | G] the same way a
constant number can be pulled out of an ordinary expectation E[. . . ].

Theorem 5.2. Let (Ω,F, P ) be a probability space. let G be a sub–σ–algebra of F.
(a) (Linearity of conditional expectations) If X and Y are integrable random variables and c1

and c2 are constants, then

E[c1X + c2Y |G] = c1E[X|G] + c2E[Y |G].(5.11)

This equation also holds if we assume that X and Y are nonnegative (rather than integrable) and
c1 and c2 are positive, although both sides may be +∞.

(b) (Taking out what is known) IfX and Y are integrable random variables,XY is integrable, and
X is G–measurable, then

E[X · Y |G] = X · E[Y |G].(5.12)

This equation also holds if we assume that X is positive and Y is nonnegative (rather than
integrable), although both sides may be +∞.
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(c) (Iterated conditioning) If H is a sub–σ–algebra of G (H contains less information than G) and
X is an integrable random variable, then

E
[
E[X|G

∣∣H] = E[X|H].(5.13)

This equation also holds if we assume that X is nonnegative (rather than integrable), although
both sides may be +∞.

(d) (Independence) If X is integrable and independent of G, then

E[X|G] = E[X].(5.14)

This equation also holds if we assume that X is nonnegative (rather than integrable), although
both sides may be +∞.

(e) (Conditional Jensen’s inequality) Let ϕ : R → R be a convex function, (see Definition 2.24
(Concave-up and convex functions) on p.27) and that X is integrable. Then

E[ϕ ◦ (X | G] = ϕ
(
E[X | G]

)
.(5.15)

This equation also holds if we assume that X is nonnegative (rather than integrable), although
both sides may be +∞.

PROOF: See the SCF2 text. �

Proposition 5.3. Let (Ω,F, P ) be a probability space, G a sub–σ–algebra of F, and X a nonnegative or
integrable random variable. Then

E[E[X | G] ] = E[X].

PROOF: The proof is left as an exercise. �

Note that

E
[
E[X|G]

]
= E[X].(5.16)

This equation simply is the partial–averaging property applied to G = Ω.
In other words, E[X|G] is an unbiased estimator of X .

The next theorem which Shreve calls the Independence Lemma can be very useful to actually com-
pute conditional expectations. This is SCF2 Lemma 2.3.4.

Theorem 5.3 (Independence Lemma). Let (Ω,F, P ) be a probability space, and let G be a sub–σ–algebra
of F. Suppose the random variables X1, . . . , XK are G–measurable and the random variables Y1, . . . , YL
are independent of G. Let f(x1, . . . , xK , y1, . . . , yL) be a function of the dummy variables x1, . . . , xK and
y1, . . . , yL, and define

g(x1, . . . , xK) = Ef(x1, . . . , xK , Y1, . . . , YL).(5.17)
Then E[f(X1, . . . , XK , Y1, . . . , YL)|G] = g(X1, . . . , XK).(5.18)

PROOF: See the outline given in the text. �
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6 Financial Models - Part 1

This entire chapter closely follows the book [3] Björk, Thomas: Arbitrage Theory in Continuous
Time and we use to a large degree the notation found there.

Definition 6.1 (Adapted stochastic processes – Informal definition). Everything considered in this
chapter happens in the context of a once and for all given probability space (Ω,F, P ). We must
introduce informally a few concepts which will be properly defined in a later chapter.

(1) We consider on (Ω,F, P ) a collection of sub–σ–algebras Ft of F which are associated with
the trading times t, and which we interpret as the information aavailable up to time t in a
financial market. It is natural to assume that information never decreases as time proceeds,
and we assume that, if t < t′ then Ft ⊆ Ft′ . We call (Ft)t the information filtration or also
simply the filtration of the financial market.

(2) Let (Ω′,F′) be some measurable space. This will usually be R with its Borel σ–algebra. A
stochastic process is a collection X = Xt = Xt(ω), indexed by the trading times t, of F–F′–
measurable functions Xt : Ω→ Ω′. We say that X is adapted to the filtration Ft and we call
X an Ft–adapted stochastic process if Xt is actually Ft–F′–measurable for each time t.

(c) A stochastic process Xt is a Markov process if its future development only depends on
its present state and not on any past information: E[ϕ

(
XT

)
|Ft] = E[ϕ

(
XT

)
|Xt] for all

nonnegative, Borel–measurable functions x 7→ ϕ(x). �

Remark 6.1. See chapter 7.1 (Stochastic Processes and Filtrations) as follows.
• For the exact definition of a stochastic Process see Definition 7.1 on p.113.
• For the exact definition of a filtration see Definition 7.5 on p.116.
• For the exact definition of an adapted Process see Definition 7.6 on p.117.
• The definition of a Markov process is precise. See Remark 7.9 on p.118. �

6.1 Basic Definitions for Financial Markets

Introduction 6.1. The finance part of this course is about pricing financial derivatives which are
financial instruments defined in terms of (derived from) one or more underlying assets like stocks
and bonds. Such financial derivatives are also called contingent claima. A prime example is a
European call option for which the underlying asset is a stock. This option is a contract written at
some time t0. It specifies that at the time of expiration T > t0 the holder of this option has the right,
but not the obligation, to buy a share of this stock for the price of K (dollars), the so called strike
price, regardless of the market price ST of that stock at time T .
We see several features in this example.
• The stock price S is a stochastic process St(ω) since it depends on time t and is non–

deterministic, i.e., it depends on randomness ω.
• The value of this contract at time of expiration is a function of the stock price ST (ω) at

that time: The contract allows us to make a profit XT −K if the price of the stock at time
T exceeds the strike price, and it is worthless (but does not lead to a loss) otherwise.
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• We call this contract value at time T the contract function X (ω) of this option. What we
just saw is that

X (ω) = Φ
(
ST (ω)

)
, where Φ(x) = (x−K)+ = max(x−K, 0).

We will write Π(t;X ) or Πt(X ) for the price process of a contingent claim X . It is obvious
that

ΠT (X ) = X ,

since paying more for the claim at expiration time would be an unwise decision by the
buyer, whereas offering the option for less would lead to a loss by the seller.

• Not so obvious: What is the appropriate price Πt(X ) at a time t prior to T ? In particular,
what should be the price of this contract at the time t0 when it is written? �

Definition 6.2 (Financial Market). A financial market model, usually just called a financial market,
is defined in the context of a filtered is comprised of the following.

• A collection of financial assets ~AAA =
(
AAA (0),AAA (1), . . . ,AAA (n)

)
,

e.g., stocks, bonds, options written on stocks, ...
• Trading times t = 0 at which the assets AAA (j) may be bought or sold. We speak of a

continuous time financial market if those trading times consist of an interval t0, T or
t0,∞ and of a discrete time financial market if those trading times consist of a finite
or infinite sequence t0 < t1 < t2 < . . . In either case we usually have t0 = 0.

• Unit prices ~St(ω) =
(
S

(0)
t (ω), S

(1)
t (ω), . . . , S

(n)
t (ω)

)
of the assets AAA (j).

• There usually will be a bank account asset. We then reserve slot zero for that asset. We
often write Bt rather than S(0)

t to improve readability. �

Remark 6.2. Interest is earned by holdings in a bank account and increases their value as time
progresses. We will consider different ways in which interest is earned.
This can be as simple as the case of trading times t = 0, 1, 2, 3, . . . with a fixed interest rate R per
unit time. In this case the value of the holdings increases by the factor 1 +R, so it increases between
times t and t+ k by a factor of (1 +R)k.
On the other end of the scale, if the interest rate is stochastic and varying in time, i.e., it is a stochastic
process Rt(ω), then the value of the holdings increases between trading times t and t′ by the factor

e
∫ t′
t Rudu. �

We list here a few more financial derivatives in addition to the European call.

Definition 6.3.
• A European put option is a contract written at some time t0. It specifies that at the time of

expiration T > t0 the holder of this option has the right, but not the obligation, to sell a share
of an underlying security for the price of K (strike price). Note that the contract function
which specifies the value of this derivative at time T to the contract holder is

Ψ
(
ST (ω)

)
, where Ψ(x) = (K − x)+ = max(K − x, 0).
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• An American call option is a contract written at some time t0. It specifies that at any time up
to the time of expiration T > t0 the holder of this option has the right, but not the obligation,
to buy a share of an underlying security stock for the price of K (strike price).

• An American put option is a contract written at some time t0. It specifies that at any time up
to the time of expiration T > t0 the holder of this option has the right, but not the obligation,
to sell a share of an underlying security for the price of K (strike price).

• A forward contract is a contract between two parties A (the seller of the contract) and B (the
buyer), written at some time t0. It specifies that at the time of expiration T > t0 A has the
obligation to sell a share of an underlying security for the price of K (strike price) and B has
the obligation to buy at this price. Clearly the value of the option to the buyer at time T is

Ψ
(
ST (ω)

)
, where Ψ(x) = x − K. �

Trade happens in this market, so people will have portfolios which list for each asset how many
units are being held. We have access to the market information F

~S
t up to the time t of the trade, i.e.,

we can base our trades on the development of the asset prices up to that time, but we cannot peek
into the future.

Definition 6.1 on p.87 gave the definition of a stochastic process adapted to the filtration (Ft)t which
represents the market information up to time t For the definition of a portfolio strategy we replace
each Ft with the smaller σ–algebra

F
~S
t := σ

(
S(j)
u : u 5 t, 0 5 j 5 n

)
of the information generated, up to time t, by the price processes S(0), . . . , S(n). We will also utilize
the definition of a Markov process given there.

Definition 6.4 (Portfolio strategy).

A portfolio or portfolio strategy is an F
~S
t –adapted stochastic process

~H = ~Ht(ω) =
(
H

(0)
t (ω), H

(1)
t (ω), . . . ,H

(n)
t (ω)

)
(6.1)

which denotes the holdings (quantity) H(j)
t someone has in asset AAA (j). Negative values

indicate that this quantity is not owned but owed. We speak of a Markovian portfolio if ~H
is a Markov process, i.e., it depends on current stock price ~St only and not also on its past,
i.e., on all of F~St .
We say that ~H has a long position in AAA (j) if H(j)

t > 0. We say that ~H has a short position
in this asset if H(j)

t < 0. �

Definition 6.5 (Portfolio value in continuous time). Assume that we have a portfolio ~H in a contin-
uous time financial market.
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The portfolio value associated with ~H is the stochastic process

V H
t := ~Ht • ~St =

n∑
j=0

H
(j)
t S

(j)
t = H

(0)
t S

(0)
t + H

(1)
t S

(1)
t + · · · + H

(n)
t S

(n)
t . �(6.2)

Things are more complicated to formulate in the case of discrete trading times.

Definition 6.6 (Portfolio value in discrete time).

Assume ~H is a portfolio in a discrete time financial market with a finite or infinite sequence
of trading times 0 5 t0 < t1 < · · · . The portfolio value of ~H is the stochastic process

V H
t0 := ~Ht1 • ~St0 =

n∑
j=0

H
(j)
t1
S

(j)
t0
,

V H
tk

:= ~Htk • ~Stk =

n∑
j=0

H
(j)
tk
S

(j)
tk

if k 6= 0.

(6.3)

Remark 6.3. Let us examine why portfolio value is defined differently in discrete and continuous
trading models.
A. The continuous case.
We interpret, for each trading time t, ~Ht as the holdings (number of shares) in asset AAA (j) at that
precise time t. The value of those AAA (j)–holdings is

quantity × price = H
(j)
t · S

(j)
t .

Thus the sum of those holdings,
n∑
j=0

H
(j)
t S

(j)
t , is the value of the entire portfolio at time t.

B. The discrete case.
B1. The case tk > t0, i.e., k > 0.
We interpret, for each trading time tk > t0, ~Htk as the holdings in asset AAA (j) during the interval
[tk−1, tk]. In other words, the quantities ~Htk are bought and sold at time tk−1 and held constant until
the next time of trade tk. The value of those AAA (j)–holdings at that time tk is based on the quantity
~Htk traded at the previous trading time tk−1 and on “today’s” asset price S(j)

tk
. This value thus is

quantity × price = H
(j)
tk
· S(j)

tk
,

and V H
tk

is the sum
n∑
j=0

H
(j)
t S

(j)
t of those holdings.

B2. The case k = 0.
As in the case B1, ~Ht1 is interpreted as the holdings in asset AAA (j) established at the intital trading
time t0 (and held constant until the future time t1). The value of those AAA (j)–holdings at time t0 is

90 Version: 2021-05-17



Math 454 – Additional Material Student edition with proofs

based on the quantity ~Ht1 traded “today” at time t0 and on “today’s” asset price S(j)
t0

. This value
thus is

quantity × price = H
(j)
t1
· S(j)

t0
,

and V H
t0 is the sum

n∑
j=0

H
(j)
t S

(j)
t of those holdings. �

Example 6.1. If AAA (3) denotes IBM stock which is traded at time t at a price of S(3)
t = $120.15 per

share and H
(3)
t = −27.78 shares then IBM stock contributes −3337.767 dollars to the value V H

t of
that portfolio. �

We stated earlier that money that is tied up in a riskless asset (zero coupon bond or bank account)

will appreciate between times t1 < t2 by the amount e
∫ t
t0
Rsds where the process R = Rt(ω) is the

interest rate at time t. We can turn this around and think of how much we are willing to pay at
time t1 for such a riskless asset if it pays the amount Zt2(ω) at time t2. The answer is that we will
discount that price to the amount

Zt1 = e−
∫ t2
t1
Rsds Zt1

since this amount accrues, when invested at t1 in a riskless asset, to the amount Zt2 .

Definition 6.7 (Discount process).

Assume that Rt is an interest rate process, for the riskless asset AAA (0), i.e., Rt(ω) is the
interest rate given at time t. Then the process

Intt := exp

[ ∫ t

0
Rs ds

]
(6.4)

represents the interest accrued between times 0 and t, i.e., an investment B0 in a bank ac-
count at time zero will have accrued toBt = B0 intt at time t. We call this process the money
market account price process of and we call

Dt := exp

[
−
∫ t

0
Rs ds

]
(6.5)

the discount process of AAA (0). �

Note that we have

(6.6) Dt =
1

Intt
=

B0

Bt
, assuming that Intt 6= 0.

The term money market account price process for Intt has been adopted from SCF2 Chapter 6.5. It
represents the value at time t of one currency unit which was invested in the riskless asset at time
zero and continuously rolled over at the interest rate Ru, 0 5 u 5 t. �
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Definition 6.8 (Self–financing Portfolio Strategy). A portfolio strategy is a self–financing portfolio
strategy if money can be shifted around at times of trade by selling some assets and reinvesting the
proceeds into other assets, subject to the following:
• It is not allowed to move any proceeds out of the portfolio to finance, e.g., the purchase

of consumer goods or the next vacation.
• There is no infusion of external money to purchase additional shares.

In other words, the acquisition of additional shares in such portfolios must be financed through the
sale of shares in some other asset. �

Remark 6.4. The above definition is not very mathematical and we should make precise its mean-
ing. That is done by means of a so called Budget equation which will look completely different
in the case of discrete time trading models such as the multiperiod binomial asset model (Chapter
6.2.2) than will be the case in continuous time trading models such as the Black–Scholes market
(Chapter 9). �

Remark 6.5. In calculus quite a bit of time is spent on how to model reality using differentiation
and integration. We interpret

f ′(x) =
dy

dx
= lim

∆x→0

∆y

∆x
(6.7)

as the quotient of an “infinitesimally small” change dy(x) in function value y = y(x) and an “in-
finitesimally small” change dx in argument x. This allows us to build a bridge between continuous
and discrete time trading. We amend what was said in remark 6.3 about the continuous case as
follows. Rather than viewing ~Ht as

“the holdings in asset AAA (j) at that precise time t”

we have the following two choices.
(1) we interpret

• ~Ht = the holdings in asset AAA (j) purchased at time t − dt at the asset price S(j)
t−dt, i.e.,

the trade took place “just before” time t and we paid the price S(j)
t−dt in force at that

time for each unit of the asset.
(2) we interpret

• ~Ht+dt = the holdings in asset AAA (j) purchased at time t at the asset price S(j)
t , i.e., we

use t + dt which stands for the time “just after” t to label the positions traded at time
t and purchased at the price S(j)

t in force at time t for each unit of the asset. �

We are now ready to elaborate, also in the continuous case, on Definition 6.8 of a self–financing
portfolio (p.92) where it was stated that such a portfolio strategy must satisfy

(1) It is not allowed to move any proceeds out of the portfolio to finance, e.g., the purchase
of consumer goods or the next vacation.

(2) There is no infusion of external money to purchase additional shares.
This will be done by means of a budget equation.
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Definition 6.9 (Budget Equation). A Budget equation for a portfolio states that exactly the value
resulting from the holdings established at the last trading time before the present trading time
will be used to establish the new holdings. This will look different for discrete time markets and
continuous time markets.

Budget equation for a discrete time financial market:

n∑
j=0

H
(j)
tk+1

S
(j)
tk

= V H
tk

=
n∑
j=0

H
(j)
tk
S

(j)
tk

for tk > t0.(6.8)

In the case of continuous time trading we write, according to choice (2) of Remark 6.5, H(j)
t+dt for the

holdings traded at time t:

Budget equation for a continuous time financial market:

n∑
j=0

H
(j)
t+dtS

(j)
t = V H

t =
n∑
j=0

H
(j)
t S

(j)
t for t > t0.(6.9)

Note that time t0 has been excluded because there is no reinvestment of the money that comes from
a previous trade. �

Remark 6.6. Formula (6.9) for the continuous time budget equation is preliminary. We need knowl-
edge about multidimensional stochastic calculus to transform it into

dV H
t = ~Ht • d~St =

N∑
i=1

hi(t) dSi(t). �

Proposition 6.1 (Self–financing criterion).

A portfolio strategy ~H is self–financing if and only if it satisfies the budget equation of Definition
6.9.

PROOF: This follows from the observation that both budget equations simply state that precisely
the value V H

t of the entire portfolio is reinvested in that portfolio. Thus ~H is “rebalanced” at each
time of trade without any inflow or outflow of funds. �

Definition 6.10 (Arbitrage Portfolio).
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A portfolio ~Ht is an arbitrage portfolio if it allows with zero probability of risk to create
money out of nothing with positive probability and does so without the infusion or with-
drawal of money at any trading time t > 0.
In other words, ~Ht is self–financing with a value process V H

t which satisfies

V H
0 = 0,(6.10)

P{V H
T =0} = 1,(6.11)

P{V H
T >0} > 0. �(6.12)

Note that the above is equivalent to replacing T with some 0 < t 5 T since we can invest the
positive amount V H

t entirely into the riskless bond and (asuming a nonnegative interest rate) have
at least that much profit at time T .

We are designing a model and will make some simplifying assumptions even though they may be
unrealistic in the real world.

Assumption 6.1. The market adheres to the following:

• The processes S(j)
t and H(j)

t can equal any real number.
• There is no bid–ask spread: The trading house will not charge more to sell an asset to

you than the price at which it is willing to buy it from you.
• There are no costs for executing a trade.
• The market is completely liquid: one can buy and/or sell unlimited quantities of any

asset. In particular one can borrow unlimited amounts from the bank (by acquiring a
short position in a bond).

The following condition is so central that we list it separately for emphasis.

• The market is efficient and thus free of arbitrage, i.e., it does not allow the existence
of arbitrage portfolios. �

Definition 6.11 (Contingent Claim). A contingent claim (financial derivative) is a FST –measurable
random variable X (ω). We call X a simple claims if there is a function s 7→ Φ(s) of stock price s
such that

X = Φ ◦ ST .

We occasionally refer to Φ as the contract function of that claim. �

Definition 6.12 (Hedging/Replicating Portfolio). Given are a contingent claim X and a portfolio ~H .
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(a) We say that ~H is a hedging portfolio or a replicating portfolio for X , and we say
that X is reachable by ~H , if ~H is self–financing and

V H
T = X almost surely.

(b) If all claims can be replicated then we say that the market is complete. �

Remark 6.7. We stress that part of the definition of a replicating portfolio is the condition that it be
self–financing. �

Part of Assumption 6.1 about a market is that there be no arbitrage. The next theorem states that in
such a market all hedgeable contingent claims can be priced correctly (without admitting arbitrage)
by means of their replicating portfolios. Björk refers to the next theorem as a pricing principle.

Theorem 6.1 (Pricing principle).

Given is a contingent claim X with a replicating portfolio strategy ~H .
For ~H to be free of arbitrage it it necessary that

Π(X ) = V H , i.e., Πt(X ) = V H
t , for all trading times t.

PROOF:
The case t = T is immediate: We mentioned already in the introduction 6.1 to Chapter 6.1 on Basic
Definitions for Financial Markets (see p.87) that we must have ΠT (X ) = X since otherwise we could
borrow money to purchase the lesser valued item and immediately sell it at the higher price.
It follows from the definition of a replicating portfolio that X = V H

T . This proves in conjunction
with ΠT (X ) = X that ΠT (X ) = V H

T .
Let us now assume that there is some 0 5 t0 < T such that Πt0(X ) 6= V H

t0 . We examine separately the
cases Πt0(X ) < V H

t0 and Πt0(X ) > V H
t0 and show that each one allows for arbitrage opportunities.

Case I: Πt0(X ) > V H
t0

1. t = t0 : We sell short a claim X at a price of Πt0(X ).
2. t = t0 : We us the proceeds to purchase a replicating portfolio ~Ht0 at its value, V H

t0 .
3. We invest the difference ∆ := Πt0(X ) − V h

t0 in the riskless asset.
4. Compounded interest will make that investment grow to ∆′ = ∆ at time t = T . The specific

value of ∆′ will depend on the interest rate process.
5. ~Ht0 will grow in value from V H

t0 at time t = t0 to V H
T at time t = T . We then sell the portfolio

and use that money to buy one unit of the claim. We use that security to cover the short sale
at time t = t0.

6. We have made a profit of ∆′ without investing any of our own money.

Case II: Πt0(X ) < V H
t0
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1. t = t0 : We sell short a hedge ~Ht0 for X at a price of V H
t0 .

2. t = t0 : We us the proceeds to purchase a claim X at a price of Πt0(X ).
3. We invest the difference ∆ := V h

t0 − Πt0(X ) in the riskless asset.
4. That investment will grow to ∆′ at time t = T .
5. X will be worth V H

T at time t = T since ~H replicates this claim. We then sell the claim, buy
~H from the proceeds, and use ~H to cover the short sale at time t = t0.

6. We have made a profit of ∆′ without investing any of our own money. �

6.2 The Binomial Asset Model

The binomial model is characterized by the following assumptions.

Assumption 6.2 (Binomial Asset Model). Trading in this model only happens at times t =
0, 1, 2, . . . . Thus it is a discrete time financial market in the sense of Definition 6.2 (Financial Market)
on p.88. There are only two assets.

(1) AAA (0) is a bond/bank account. We denote its price at time t by Bt. Interest is compounded
only at the trading times t = 1, 1, 2, . . . (no interest is due yet at start time zero), thus

B1 = (1 + R)B0, . . . , Bn = (1 + R)Bn−1 = (1 + R)nB0.(6.13)

(2) AAA (1) is a stock. No superscripts are needed and we denote its price process by St.
(3) St remains unchanged between trading times. At the next such time it will either go up by

a factor u with a probability pu, or it will do down by a factor d with a probability pd. Thus
the dynamics for St are

Sn = Sn−1 · Zn =

{
u · Sn−1, with probability pu > 0,

d · Sn−1, with probability pd > 0 ,
(6.14)

Here Zn :=

{
u, with probability pu > 0,

d, with probability pd > 0 .
(6.15)

is an iid sequence of Bernoulli trials with success probability pu
(4) We assume that B0 = 1 and S0 has the deterministic value S0 = s.
(5) We assume that trading ends at time T (an integer). The meaning of T will often be the time

of expiry of a contingent claim. �

Remark 6.8 (Portfolio Strategy for the binomial model).
According to Definition 6.4 (Portfolio Strategy) on p.89
a portfolio strategy for the binomial asset model is a process

~Ht(ω) =
(
H

(0)
t (ω), H

(1)
t (ω)

)
, t = 1, 2, . . . , T(6.16)

which denotes the holdings H(j)
t of an investor in AAA (0) and AAA (1) during the interval [t− 1, t]. Neg-

ative values indicate that this quantity is not owned but owed.
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Its portfolio value is

V H
0 := H

(0)
1 S

(0)
0 + H

(1)
1 S

(1)
0 ,

V H
t := H

(0)
t S

(0)
t + H

(1)
t S

(1)
t if t > 0. �

(6.17)

We next specify the budget equation that must be satisfied by a self–financing portfolio. See Defini-
tion 6.9 (Budget Equation) on p.93.

Proposition 6.2 (Budget equation in the binomial asset model). A portfolio strategy

~Ht(ω) =
(
H

(0)
t (ω), H

(1)
t (ω)

)
, t = 1, 2, . . . , T

for binomial asset model (see Remark 6.8 on p.96) is self–financing if and only if the following condition holds
for all t = 0, . . . , T − 1

Budget equation:

H
(0)
t (1 +R) + H

(1)
t St = H

(0)
t+1 + H

(1)
t+1St.(6.18)

PROOF: This is the self–financing criterion (Proposition 6.1 on p.93) since a bank account position
established at time t− 1 has increased, due to interest compounding, by a factor 1 +R. �

If we use the notation of [3] Björk, Thomas: Arbitrage Theory in Continuous Time and write xt for
H

(0)
t , yt for H(1)

t then the budget equation (6.18) reads

xt(1 +R) + ytSt = xt+1 + yt+1St. �

6.2.1 The One Period Model

In the one period model there are only two times t = 0 and t = 1. A portfolio ~H0 = (H
(0)
0 , H

(1)
0 ) is

purchased at t = 0.
We follow the notation of [3] Björk, Thomas: Arbitrage Theory in Continuous Time and write x for
H

(0)
0 , y for H(1)

0 . According to assumption 6.2, parts (4) and (3), the value process is
• V0 = x ·B0 + y · S0 = x + y · s,
• V1 = x(R+ 1) + ysZ.

Proposition 6.3. The model above is free of arbitrage if and only if the following conditions hold:

d < (1 +R) < u.(6.19)

PROOF that if (6.19) does not hold then there will be arbitrage portfolios:
It is clear that there are arbitrage portfolios if d = 1 + R since we can borrow money from the bank
and invest it in the stock, with a return at least as high as the interest we must pay on our loan.
There is positive probability pu that Z = u, and in this case we will not just break even but make a
profit.
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If u 5 1 +R then we sell that stock short and invest the proceeds in the bank with a return guaran-
teed to be high enough to buy that stock on the market and deliver it to the buyer. There is positive
probability pd that Z = d, and in this case we will not just break even but make a profit.
The proof of the reverse direction is left as exercise 6.1. See p.112. �

We focus just on the stock price process S = (S0, S1). Since S0 = s = const, σ(S0) = {∅,Ω}. Let
A := {S1 = su}. Since either S1 = su or S1 = sdwe obtainA{ = {S1 = sd} and σ(S1) = {∅,Ω, A,A{}
and then also σ(S0, S1) = σ(S1) = {∅,Ω, A,A{}.
We thus have completely determined the filtration (FSt )t=0,1 generated by S as

FS0 = {∅,Ω}, FS1 = {∅,Ω, A,A{}.

Let us restrict our probability space (Ω,F, P ) to the events known by S, i.e., we downsize F to
F := σ(S0, S1) = FS1 . Then P is completely specified by pu as follows.

P (∅) = 0, P (Ω) = 1, P (A) = pu, P (A{) = pd = 1 − pu.

The relation d < (1 +R) < u yields a unique number qu such that 1 +R is the convex combination

1 + R = (1− qu)d + quu = quu + qdd (define qd := 1 − qu).(6.20)

This pair of numbers, qu and qd, defines a probability measure Q on (Ω,F) via

Q(∅) := 0, Q(Ω) := 1, Q(A) := qu, Q(A{) := qd = 1 − qu.(6.21)

To summarize, absence of arbitrage allows us to define a probability measure Q on the information
σ–algebra σ(S0, S1) = FS1 = F of stock price S. Q is equivalent to P (see Exercise 6.2 on p.112).
We have seen in formula (6.13) on p.96 that the interest factor by which a hank account holding
increases between times zero and n is (1 +R)n. we can turn this around and see that an asset worth
Vn at time has to be discounted to 1

(1+R)nVn if one wants to determine how many units of the riskless

asset AAA (0) are needed today to generate that amount Vn at time n. We see that the discount process
in the binomial model is given by

D0 = 1, D1 =
1

1 +R
, ; . . . , Dn =

1

(1 +R)n
, . . .(6.22)

Proposition 6.4. The measure Q defined by qu (and qd = 1 − qu) of formula (6.20) on FS1 satisfies the
following.

(a) We obtain the present stock price from its price in the future by discounting that one and
taking its expectation with respect to the measure Q:

(6.23) S0 =
1

1 +R
· EQ[S1],

(b) The discounted stock price Mn = DnSn, n = 0, 1, is an FSn–martingale.
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PROOF of (a): Let EQ denote expectation with respect to the measure Q. Then

EQ[S1] = (su)Q{S1 = su} + (sd)Q{S1 = sd} = (su)qu + (sd)qd

= s
(
uqu + dqd

) (6.20)
= s(1 +R) = S0(1 +R).

PROOF of (b): Left as an exercise. �

We give some definitions in the sequel which will be restated later in a more general context.

Definition 6.13 (Martingale Measure). We call a probability measure Q that satisfies (a) and thus
also (b) of Proposition 6.4 a martingale measure. We also call it a risk–neutral measure, since,
using it for taking expectations, it has the following property. On average, when we account for the
riskless (“risk–neutral”) growth by discounting S1, this discounted value must equal the (known)
present value of the asset. �

We now compute the probabilities qu and qd which determine the martingale measure Q.

Proposition 6.5. The martingale probabilities qu and qd of formula (6.20) on p.98 can be explicitly computed
as

(6.24) qu =
(1 +R)− d

u− d
, qd =

u− (1 +R)

u− d
.

PROOF: Trivial. �

Definition 6.14 (Contingent Claim). A contingent claim (financial derivative) is a FS1 –measurable
random variable X (ω).
Note that FS1 = σ(S0, S1) = σ(S1) since S0 = s = const. Thus, by Doob’s factorization lemma, there
is a function x 7→ Φ(x) of stock price x such that

X = Φ ◦ S1.

We occasionally refer to Φ as the contract function of that claim.
In a more general setting it will not always be true that X can be written as a function of stock price
at expiration time. We then call contingent claims with a contract function Φ simple claims. �

To find an answer to the question how, in the one period model, a derivative X due at time t = 1
should be priced today, we introduce replicating portfolios. In the general case a portfolio was the
entire collection (process) ~H = ~Ht since assets can be traded at any time t. In the discrete case
t = t0 < t1 < t2 < · · · < T trades only happen at times tj , and those holdings

~Htj =
(
H0
tj , H

1
tj , . . . ,H

n
tj

)
remain constant until tj+1. In the finite case t = t0 < t1 < t2 < · · · < tm = T There is no more trade
at expiration time tm = T . Thus things are very simple in the one period model.
• Since T = 1, the only trade that influences V H

T takes place at t = 0.
• There are only two assets, the risk free asset with prices Bt = B0, B1, and the risky asset

St = S0, S1.
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Our entire portfolio strategy can be described by two numbers ~H0 = (x, y) which are deterministic
since we know today what our holdings are today

We recall our assumption that the market is efficient and that there is no arbitrage.

In a complete market all contingent claim can be hedged by a suitable portfolio. thus we know how
to correctly price those claims at any point in time: We use the value of the corresponding hedge at
that time. For this reason it is important to know conditions under which a market is complete. For
the one period model we have the following.

Proposition 6.6. If the one period binomial model is free of arbitrage then it is complete.

PROOF: Let X be an arbitrary claim with contract function Φ, i.e.,

X = Φ ◦ S1

We claim that that the portfolio ~H0 = (x, y), given by

x =
1

1 +R
· uΦ(sd)− dΦ(su)

u− d
,

y =
1

s
· Φ(su)− Φ(sd)

u− d
.

(6.25)

is a hedge for X . Rather than doing this the mathematically elegant way and showing that this
choice of x and y will lead to the equation V H

1 (ω) = X (ω) we proceed the opposite way.
We recall from formulas (6.13) and (6.14) on p.96 that, since S0 = const = s, and since money market
investments will increase by a factor 1 = R, the portfolio ~H0 = (x, y) yields at time t = 1 a value

V h
1 = x(1 +R) + y(sZ1) =

{
x(1 +R) + ysu, if Z1 = u,

x(1 +R) + ysd, if Z1 = d.

On the other hand

V h
1 = X = Φ(S1) = Φ(sZ1) =

{
Φ(su), if Z1 = u,

Φ(sd), if Z1 = d.

We equate the right–hand sides separately for Z1 = u and Z1 = d and obtain

(1 +R)x+ suy = Φ(su),

(1 +R)x+ sdy = Φ(sd).

This is a linear system of equations with determinant x(1 + R)sy · (d − u) which is not zero since
d < u. Thus there is a unique solution (x, y). It is easy to see that

x =
1

1 +R
· uΦ(sd)− dΦ(su)

u− d
,

y =
1

s
· Φ(su)− Φ(sd)

u− d
. �

(6.26)

We have seen in Proposition 6.4 on p.98 that discounted stock price is a martingale with respect to
risk–neutral measure Q. The next proposition states that the same is true for (arbitrage free) pricing
of contingent claims.
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Proposition 6.7. In the one period binomial model the discounted, arbitrage free, price process DtΠt(X ) of
a contigent claim X is a Q–martingale. In particular, we have risk–neutral valuation

Π0(X ) =
1

1 +R
· EQ[X ].(6.27)

PROOF: Let ~H be a hedging portfolio forX . Since trading only takes place at t = 0, ~H is determined
by (x, y) := ~H0 Moreover,

Π0(X ) = V H
0 = x · 1 + y · s

We use the expressions (6.26) (p.100) for x and y and afterwards the expressions (6.24) on p.100 for
the martingale probabilities qu and qd. We obtain

Π(0;X ) =
1

1 +R
·
[(1 +R)− d

u− d
Φ(su) +

u− (1 +R)

u− d
Φ(sd)

]
=

1

1 +R
·
(
Φ(su) · qu + Φ(sd) · qd

)
=

1

1 +R
EQ [Φ ◦ S1] =

1

1 +R
EQ [X ] . �

6.2.2 The Multiperiod Model

After having given special attention to the one period model we now continue with the general
binomial asset moded where expiration time T may be greater than one. We recall from Assumption
6.2 for the binomial model that the dynamics that govern the development of the price Bt of the
risk–less asset (the bond) and the price of the risky asset (the stock) St for t = 0, 1, . . . , T ) are, for
T = 3, described by the following diagrams.

1

Bond Price Dynamics

(1 + R) · 1 (1 + R)2 · 1 (1 + R)3 · 1

s

Stock Price Dynamics

su

sd

u

d

su2

sud

sd2

u

d

u

d

su3

su2d

sud2

sd3

u

d

u

d

u

d
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6.1 (Figure). Stock price dynamics

Notations 6.1. We look at a vertical slice of the diagram in Figure 6.1 by fixing a time t0 and name
its t0 + 1 nodes, starting at the bottom, Nt0,0,Nt0,1, . . . ,Nt0,t0 . This way Nt0,k is the node that was
reached from the start since exactly k of the t0 stock price movements were upward and t0 − k of
them were downward.
Thus Nt0,k is the node in the t0–slice of the diagram with stock price sukdt0−k. Clearly stock price
uniquely identifies the t0–node since d < u.
Assuming that the arbitrage free prices for a given simple claim exist we further write Π

(
Nt0,k

)
for this arbitrage free price belonging to that node, i.e., to the stock price sukdt0−k. We will see in
Theorem 6.2 on p.103 that in an arbitrage free market every simple claim has such prices for every
node in the tree. �

Some definitions such as that of a portfolio strategy and an arbitrage portfolio were already given in
a generality sufficient for the multiperiod binomial model, but those for martingale measures were
only established for the one period model and need to be generalized.

We next specialize Definition 6.10 (Arbitrage Portfolio) on p.93 to the multiperiod binomial model.

Definition 6.15 (Arbitrage portfolio in the multiperiod binomial model). An arbitrage portfolio is
a self-financing portfolio H with the properties

V H
0 = 0, P{V H

T = 0} = 1, P{V H
T > 0} > 0. �

Proposition 6.8. The multiperiod model is free of arbitrage if and only if

d < (1 +R) < u.(6.28)

PROOF: Same as for the one period case (Proposition 6.3 on p.97). �

We remind the reader of Assumption 6.1 on p.94 about efficient market behavior.

• The binomial model is free of arbitrage and we thus assume that

d < (1 +R) < u. �

We next adapt Definition 6.13 (Martingale Measure) on p.99 to the multiperiod model, remembering
from Proposition 6.4 which precedes it that a martingale measure was characterized by making the
discounted stock price a martingale.

Definition 6.16 (Martingale Measure). We call a probability measure Q that satisfies for all trading
times t = 0, 1, 2, . . . , T − 1 and for all possible values s′ of St the relation

s′ =
1

1 +R
· EQ[St+1|St = s′],

i.e., St =
1

1 +R
· EQ[St+1|St],

a martingale measure or also a risk–neutral measure. �
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Remark:
Stock price St in the multiperiod model is clearly Markov since we either have St+1 = uSt or
St+1 = dSt, and thus St+1 does not depend on stock price before t. It follows from the alternate
characterization of the Markov property in Remark 7.9 on p.118 that if Y is a random variable that
only depends on stock price information St, St+1, St+2, . . . then

EQ[Y | FSt′ ] = EQ[Y | St′ ], for all s′ < t.

In particular, since Y := St only depends on such information, it follows that

EQ[St | FSt′ ] = EQ[St | St′ ], for all s′ < t.

In particular it is true for martingale measure Q that discounted stock price is a Q–martingale, since

1

1 +R
· EQ[St+1 | Ft] =

1

1 +R
· EQ[St+1 | St] = St. �

Proposition 6.9. In the multiperiod model that does not admit arbitrage there is a unique martingale measure
Q. As in the one period model it is defined by the two “martingale probabilities”

qu =
(1 +R)− d

u− d
,

qd =
u− (1 +R)

u− d
.

PROOF: Same as the proof given for the one period model. See prop.6.4 on p.98 �

Definition 6.17 (Contingent Claim). A contingent claim (financial derivative) is a FST –measurable
random variable X (ω). We call X a simple claims if there is a function s 7→ Φ(s) of stock price s
such that

X = Φ ◦ S1.

We occasionally refer to Φ as the contract function of that claim. �

In the one period model absence of arbitrage was sufficient to yield completeness of the market, i.e.,
every claim can be hedged. In the multiperiod model we can still show that every simple claim, i.e.,
a claim for which the payoff X is a function Φ(ST ) of stock price at time T , can be hedged.

Theorem 6.2.

(1) The discounted option price 1
(1+R)T−t)

Πt(X ) is an FSt –martingale.
(2) The option price is computed at time 0 5 t 5 T for a stock price of St(ω) = sukdt−k,

attained by k upward moves and t− k downward moves, as

Πt(X ) =
1

(1 +R)T−t
EQ
[
Φ(ST ) | St = sukdt−k

]
.(6.29)
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(3) Every simple claim can be hedged. The portfolio quantities xt+1, yt+1 for the node Nt,k

(remember: xt, yt = purchases at time t−1!) in the tree excerpt shown below are as follows.

xt+1 =
1

1 +R
·
uΠ
(
Nt+1,k

)
− dΠ

(
Nt+1,k+1

)
u− d

,

yt+1 =
1

s
·

Π
(
Nt+1,k+1

)
−Π

(
Nt+1,k

)
u− d

.

(6.30)
St

Π
(
Nt,k

)

St · u

Π
(
Nt+1,k+1

)

St · d

Π
(
Nt+1,k

)

u

d

PROOF (outline): ?

For the following recall the notation we introduced for the nodes of the binomial tree displayed in
Figure 6.1 (Stock price dynamics) on p.102. Fix a time 0 5 t < T and assume that the arbitrage
free claim price are known for all nodes at time t + 1. We can consider those prices as the contract
function Φ′ of a new contingent claim

X ′ = Φ′(s′) where s′ = sdt+1, sudt, su2dt−1, . . . , sutd, sut+1

runs through the stock prices that can be attained at time t+ 1.
Fix 0 5 k 5 t and consider the node Nt,k in the tree. That node was reached by a combination of k
upward movements and t − k downward movements in stock price. The two nodes at time t + 1
that can be reached by either an upward move or a downward move in stock price are Nt+1,k+1 and
Nt+1,k.

We now condition on St = sukdt−k. Since such
conditioning makes stock price constant at t
we can apply our findings from the one period
model to the tree which consists of the nodes
Nt,k,Nt+1,k+1 and Nt+1,k.

sukdt−k

suk+1dt−k

sukdt−k+1

u

d

With the symbols introduced in Notations 6.1 on p.102 we have

Π
(
Nt+1,k+1

)
= Φ′(suk+1dt−k), and Π

(
Nt+1,k

)
= Φ′(sukdt−k+1).

We apply the risk–neutral valuation formula (6.27) of Proposition 6.7 on p.101 to this one- period
tree with the new contract function Φ′ and obtain the arbitrage free price of X for the node Nt,k,
which we denote by Π

(
Nt,k

)
, as

Π
(
Nt,k

)
= Πt(X ) = Π0(X ′) =

1

1 +R
· EQ[X ′]

=
1

1 +R

(
qu · Φ′(suk+1dt−k) + qd · Φ′(sukdt−k+1)

)
=

1

1 +R

(
qu ·Π

(
Nt+1,k+1

)
+ qd ·Π

(
Nt+1,k

))
.

(6.31)

Now we see how to do a proof by induction.
The base case T = 1 is valid by direct application of the one period model.
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Our (strong) induction assumption is that the proposition is valid for all simple claims X ′′ in multi-
period models with expiration time T ′′ < T .
We have seen above how to obtain from the claim X = Φ(ST ) the option prices for the nodes
corresponding to time t = T − 1. As we did above we construct from them a new claim

X ′′ = Φ′′(s′′) where s′′ = sdT , sudT−1, su2dT−2, . . . , suT−1d, suT .

According to our induction assumption we obtain from this the arbitrage free option price for a
stock price of St(ω) = sukdt−k attained by k upward moves and t− k downward moves as

Πt(X ′′) =
1

(1 +R)T−1−t E
Q
[
Φ′′(ST−1) | St = sukdt−k

]
.(6.32)

We combine this and formula6.32 and obtain (details being omitted, but we make use of the fact that
the claim is a function of stock price and that stock price is a Markov process, hence conditioning
the future on Ft means the same as doing that conditioning on St)

Π
(
Nt,k

)
=

1

(1 +R)T−1−t
1

(1 +R)
EQ
[
EQ
[
Φ(ST ) | FT−1

]
| Ft
]

=
1

(1 +R)T−t
EQ
[
Φ(ST ) | Ft

]
The above proves parts 1 and 2 of the theorem. The last
part follows from the formulas 6.25 given in Proposition
6.6 on 100 for a replicating portfolio ~H0 = (x, y) in the
one period case. The corresponding tree is as shown on
the right when we display stock price in the upper half
and option price in the lower half of each node.

St

Π
(
Nt,k

)

St · u

Π
(
Nt+1,k+1

)

St · d

Π
(
Nt+1,k

)

u

d

In other words the portfolio quantities for the node Π
(
Nt,k

)
are given by

xt+1 =
1

1 +R
·
uΠ
(
Nt+1,k

)
− dΠ

(
Nt+1,k+1

)
u− d

,

yt+1 =
1

s
·

Π
(
Nt+1,k+1

)
−Π

(
Nt+1,k

)
u− d

.

Since this computation can be done for all nodes before expiration time in the tree we know how to
set up the complete portfolia strategy ~Ht for t = 0, 1, . . . , T − 1. �

In the following we will draw trees which look like
the one to the right. (We did so already in the proof
of Theorem 6.2.) The nodes have an upper half
which denotes stock price and a lower half which
denotes the arbitrage free price of a claim. If there
is a label above such a node then it denotes the
quantities xt and yt of the correspontding replicat-
ing portfolio that correspond to that node.

180

100

x3 = −80,y3 = 1

270

190

90

10

u

d

The following example is taken from chapter 2 of [3] Björk, Thomas: Arbitrage Theory in Continu-
ous Time.

105 Version: 2021-05-17



Math 454 – Additional Material Student edition with proofs

Example 6.2. We set T = 3, s := S0 = 80, u = 1.5, d = 0.5, pu = 0.6, pd = 0.4 and R = 0.
These numbers have been chosen to make computations as simple as possible. Since there is no
interest 1 = 1 +R is the midpoint between u = 1.5 and d = 0.5, thus qu = qd = 0.5.
Figure 6.1 shows the binomial tree for this example. There are no values in the lower halfs of the
nodes for the claims prices since we did not yet decide on a claim).

80

d = 0.5,u = 1.5

120

40

u

d

180

60

20

u

d
u

d

270

90

30

10

u

d
u

d
u

d

Figure 6.1: Stock prices.

The claim we want to price is a European call with a strike price of K = $80.00, with an expiration
date of T = 3.
This is a simple clain X = Φ(ST ) with contract function Φ(s) = (s − 80)+ = max(s − 80, 0). We
immediately compute Π3(X ) for the stock prices S3 as follows.

Φ(270) = (270− 80)+ = 190; Φ(90) = (90− 80)+ = 10,

Φ(30) = (30− 80)+ = 0, Φ(10) = (10− 80)+ = 0,

Figure 6.2 shows the updated tree.
We know from formula (6.31) on p.104 how to compute a claims price from those of the two child
nodes to the right. With the notations introduced in Notations 6.1 on p.102,

Π
(
Nt,k

)
=

1

1 +R

(
qu ·Π(Nt+1,k+1) + qd ·Π(Nt+1,k)

)
.

For example, for node N2,2 we obtain S2 = 180, Π(N3,3) = 190, Π(N3,2) = 10. Thus

Π
(
N2,2

)
=

1

1 + 0

(
0.5 · 190) + 0.5 · 10

)
= 100.

Likewise, for node N2,1 we obtain S1 = 60, Π(N3,2) = 10, Π(N3,1) = 0. Thus

Π
(
N2,1

)
=

1

1 + 0

(
0.5 · 10) + 0.5 · 0

)
= 5.
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80

d = 0.5,u = 1.5

120

40

u

d

180

60

20

u

d
u

d

270

190

90

10

30

0

10

0

u

d
u

d
u

d

Figure 6.2: Stock prices and contract function values.

We just computed the two options prices for the descendants of node N1,1, the one with stock
price S1 = 120. Its associated price for the European call is

Π
(
N1,1

)
=

1

1 + 0

(
0.5 · 100) + 0.5 · 0.5

)
= 52.5.

80

d = 0.5,u = 1.5

120

52.5

40

u

d

180

100

60

5

20

u

d

u

d

270

190

90

10

30

0

10

0

u

d

u

d
u

d

Figure 6.3: Stock prices and contract function values.

Figure 6.3 shows the tree with those additional values.
We compute the arbitrage free option prices for the remaining three nodes in this order:

Π
(
N2,0

)
, Π
(
N1,0

)
, Π
(
N0,0

)
.

The completed tree is shown in Figure 6.4.
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80

27.5

d = 0.5,u = 1.5

120

52.5

40

2.5

u

d

180

100

60

5

20

0

u

d

u

d

270

190

90

10

30

0

10

0

u

d

u

d

u

d

Figure 6.4: Completed tree with all option prices.

The result of all the above: We have managed to compute the arbitrage free prices of the simple
claim with contract function X = Φ(S3) = (S3−K)+ for all possible stock prices St, t = 0, 1, 2, 3. In
particular we found that the correct price for the option at time zero is 27.5.
We are not finished yet. Next we compute the quantities xt and yt of the replication portfolio for
this claim.
We start at t = 0, and since we want to reproduce the claim
(52.5, 2.5) at t = 1, we can use formulas (6.30) of Theorem 6.2 on
p.103 and obtain x1 = −22.5, y1 = 5

8 since

x1 = 1
1+0 ·

1.5·2.5−0.5·52.5
1.5−0.5 = 3·5−1·105

4 = −90
4 = −22.5,

y1 = 1
s ·

Φ(u)−Φ(d)
u−d = 1

80 ·
52.5−2.5
1.5−0.5 = 50

80 = 5
8 .

80

27.5

x1 = −22.5,y1 = 5/8

120

52.5

40

2.5

You are encouraged to verify that the cost of this portfolio is indeed 27.5.

If an upward move takes place and S1 = 120 then the value of
our hedging portfolio at time 1 is computed from
x1 = −22.5 and y1 = 5

8 as −22.5 · (1 + 0) + 5
8 · 120 = 52.5.

To reproduce the claim claim (100, 5) at t = 2 we again use the
formulas (6.30) and obtain x2 = −42.5, y2 = 95

120 .
Again you should check that the cost of those holdings, valued
at a stock price of S1 = 120,

120

52.5

x2 = −42.5,y2 = 95/120

180

100

60

5

equals the value 52.5 of the previous holdings x1 and y1.
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If instead of an upward move a downward move had taken
place and S1 = 40 then the value of our hedging portfolio at
time 1 is computed from the same holdings
x1 = −22.5 and y1 = 5

8 as −22.5 · (1 + 0) + 5
8 · 40 = 2.5.

To reproduce the claim claim (100, 5) at t = 2 we again use the
formulas (6.30) and obtain x2 = −2.5, y2 = 1.8.
Again you should check that the cost of those holdings, valued
at a stock price of S1 = 120,

40

2.5

x2 = −2.5,y2 = 1/8

60

5

20

0

equals the value 52.5 of the holdings x1 and y1 established at time zero.

We can continue in this manner with the nodes at time t = 2 and afterwards at expiration time T = 3
and in this way compute the hedging portfolio holdings at each node of the tree. The resulting tree
is shown in figure 6.5.

80

27.5

x1 = −22.5,y1 = 5/8

Hedging Portfolio

120

52.5

x2 = −42.5,y2 = 95/120

40

2.5

x2 = −2.5,y2 = 1/8

u

d

180

100

x3 = −80,y3 = 1

60

5

x3 = −5,y3 = 1/6

20

0

x3 = 0,y3 = 0

u

d

u

d

270

190

90

10

30

0

10

0

u

d

u

d

u

d

Figure 6.5: Hedging portfolio holdings.

This concludes the example. �

Remark 6.9. The following is a cookbook recipe for computing the prices of a simple claim using
the risk–neutral validation method.

Step 1: Compute the martingale probabilities!
Note that the martingale probabilities qu, qd are constant for the entire tree since they only
depend on u, d, and R. In this example they are

qu =
(1 +R) − d

u − d
=

3
2 − 1
3
2 ,−

1
2

=
1
2

1
=

1

2
, qd = 1 − qu =

1

2
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Step 2: Use the risk–neutral valuation formula from the one–period model to compute for
each of the three t = 2 nodes in the tree its option price Π(2;X ) from the option prices
Π(3;X ) of the two t = 3 nodes that can be reached from this t = 2 node. We then compute

Π(2;X ) =
1

1 +R

[
qu ·Π(3;X ) of upward node + qd ·Π(3;X ) of downward node

]
.

This method can be employed for any binomial tree, for arbitrarily many periods.

Step 3: Let NNN be a t − 1 node in the binomial tree. We denote the reachable node to the
upper left by NNNu and the reachable node to the lower left by NNNd. We write Π(t − 1;NNN) for
the option price of node NNN and we write Π(t;NNNu) and Π(t;NNNd) for the option prices of NNNu

andNNNd.
If Π(t;NNNu) and Π(t;NNNd) have already been computed then we use the risk–neutral valuation
formula from the one–period model to compute Π(t− 1;NNN):

Π(t− 1;NNN) =
1

1 +R

[
qu ·Π(t;NNNu) + qd ·Π(t;NNNu)

]
. �

We mention again that this entire chapter 6 (Financial Models - Part 1) closely follows the book [3]
Björk, Thomas: Arbitrage Theory in Continuous Time.

Notations 6.2. We will write
V
(
Nt,k

)
(0 5 t 5 T ),

for the value process of the replicating portfolio strategy, determined in Theorem 6.2 on p.103 by
the formulas (6.30), when computed for the node Nt,k of the binomial tree. �

Proposition 6.10. Given are a simple claim X = Φ(ST ), its associated pricing process Πt(X ), and its
hedging portfolio ~Ht with value process V H

t . If we replace Πt(X ) and ~Ht with their tree node equivalents,
Π
(
Nt,k

)
and V

(
Nt,k

)
, we have the following.

The replicating portfolio is determined by the recursive formulas

V
(
Nt,k

)
=

1

1 +R

(
quV

(
Nt+1,k+1

)
+ qdV

(
Nt+1,k

))
,

V
(
NT,k

)
= Φ(sukdT−k).

(6.33)

Here qu and qd are the martingale probabilities from Proposition 6.9 on p.103, given by

(6.34) qu =
(1 +R)− d

u− d
, qd =

u− (1 +R)

u− d
.

Further, the hedging portfolio quantities xt+1, yt+1 for the node Nt,k are

xt+1 =
1

1 +R
·
uV
(
Nt+1,k

)
− dV

(
Nt+1,k+1

)
u− d

,

yt+1 =
1

s
·
V
(
Nt+1,k+1

)
− V

(
Nt+1,k

)
u− d

.

In particular, the arbitrage free price of the claim at t = 0 is given by V0(0).
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PROOF: This is just a rehash of Proposition 6.9 and Theorem 6.2 together with the pricing principle,
Theorem ?? on p.??, which states that

V
(
Nt,k

)
= Π

(
Nt,k

)
for all nodes Nt,k in the binomial tree.

�

Considering that stock price St develops according to an iid sequence of Bernoulli variables Zt
(with success probability pu under the “real world” measure P and success probability qu under the
risk–neutral measure (martingale measure)Q it should not come as a surprise that the options price
process ΠT (X ) for a simple claim X , and thus also the identical portfolio value process V H

t for a
replicating portfolio ~Ht, have a close connection with the binomial distribution.

Proposition 6.11 (Arbitrage free price at time zero). The arbitrage free price at t = 0 of a simple claim X
at time T is

Π(0;X ) =
1

(1 +R)T
· EQ[X ],(6.35)

where Q denotes the martingale measure, or more explicitly

Π(0;X ) =
1

(1 +R)T
·
T∑
k=0

(
T

k

)
qkuq

T−k
d Φ(sukdT−k).(6.36)

PROOF: (6.35) follows directly from the algorithm above.
To prove (6.36) we proceed as follows.
For t = 1, 2, . . . , T let Zt(ω) := 1 if the stock price moves up between t− 1 and t, and let Zt(ω) := 0
otherwise. We assume that we live in the risk–neutral world, so the probabilities for Zt = 1 and
Zt = 0 are

PQ{Zt = 1} = qu; PQ{Zt = 0} = qd.

Let K := Z1 + Z2 + · · ·+ ZT . Then K has a binom(T ; qu) distribution since it tracks the number of
successes (up–moves) of the iid Bernoulli trials Z1, . . . , ZT .
Since K = k ⇔ ST = sukdT−k and X = Φ(ST ) by def.?? (Contingent Claim) on p.?? it follows that

X = Φ(ST ) = Φ(suKdT−K).

For k = 0, 1, . . . , T let ψ(k) := Φ(sukdT−k). It follows for the expected value of X under risk–eutral
measure that

EQ[X ] = EQ[Φ(suKdT−K)] = EQ[ψ(K)]

=
T∑
k=0

ψ(k)PQ{K = k}

=

T∑
k=0

ψ(k) binom(T ; qu)(k)

=
T∑
k=0

ψ(k)

(
T

k

)
qku q

T−k
d

=

T∑
k=0

Φ(sukdT−k)

(
T

k

)
qku q

T−k
d .
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We apply (6.35) to the above and obtain (6.36). �

We end this section by proving absence of arbitrage.

Proposition 6.12 (No arbitrage criterion). The market that belongs to the multiperiod binomial model is
free of arbitrage if and only if

d < 1 +R < u.

PROOF: The necessity follows from the corresponding one period result. Assume that the condi-
tion is satisfied. We want to prove absence of arbitrage, so let us assume thatH (a potential arbitrage
portfolio) is a self-financing portfolio satisfying the conditions

P{V H
T = 0} = 1, P{V H

T > 0} > 0.

We first show that EQV H
T > 0 for such a portfolio. For n ∈ N let {An := V H

T =
1
n}. Since Q ∼ P ,

P{V H
T > 0} > 0 implies c := Q{V H

T > 0} > 0.
Since An ↑ {V H

T > 0} implies Q(An) ↑ Q{V H
T > 0} we get Q(An) > c

2 for some n. Thus

EQV H
T =

∫
Ω
V H
T dQ =

∫
An

V H
T dQ =

∫
An

1

n
dQ =

Q(An)

n
=

c

2n
> 0.

It follows from risk neutral valuation that

V H
0 =

1

(1 +R)T
· EQ[V H

T ] > 0.

This violates the condition V H
0 = 0 a.s. of an arbitrage portfolio H . �

6.3 Exercises for Ch.6

Exercise 6.1. Prove the following part of Proposition 6.3 on p.97 of this document: If

d < (1 +R) < u. �

then the one period binomial asset model is free of arbitrage.
Hint: Show that

V h
1 = ys (u− (1 +R)), if Z = u, ys(d− (1 +R)), if Z = d,

and examine this separately for y > 0 and y < 0.

Exercise 6.2. We asserted that the probability measure Q defined by (6.21) on p.98 is equivalent to
P on σ(S0, S1). Prove it. �
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7 Brownian Motion

7.1 Stochastic Processes and Filtrations

In finance and other disciplines we are interested in undertanding random evolutions in time, i.e.,
trajectories t 7→ X(t, ω) which are thought of be random and thus are a function of randomness
ω. Time may be discrete if we we observe X(t,Ω) only at countably many discrete times t = t0 <
t1 < t2 < · · · or it may be continuous if we observe X(t, ω) for t0 5 t 5 T or t0 5 t < T , where
0 5 t0 < T 5 ∞. For example, X(t, ω) can the price of a stock at some time future time t which is
unknown to us, and ω captures that uncertainty.

Definition 7.1 (Stochastic Process). A stochastic process X on a probability space (Ω,F, P ), often
just called a process, is a collection of random items Xt which take values Xt(ω) in a measurable
space (Ω′,F′). Being a random item, each Xt is F–F′ measurable.
The argument t takes values in an interval of the form [ t0, T ] or [t0, T [ or [ t0,∞[ and is interpreted
as time. Usually the start time t0 will be zero, and the end time T will be the time of expiration of a
financial derivative.

Unless something different is specified the symbol I will denote the index set of the stochas-
tic process X .

Depending on what is convenient we will include or omit the randomness argument ω, and the
same applies to the index t. Here is an incomplete list of the notation you will encounter for a
stochastic process.

X = Xt = X(t) = (Xt)t =
(
X(t)

)
t0≤t≤T = Xt(ω) = X(t, ω) = . . .

Unless stated otherwise we assume that X is numeric, i.e., Xt(ω) is an extended real number for
each randomness argument ω and time t. Thus each radom item Xt actually is a random variable.
However we will also deal with vector valued stochastic processes

~X = ~Xt = [X1(t), X2(t), . . . , XN (t)].

We will sometimes use the notation X(·, ω) if we want to emphasize that we consider the random-
ness ω as fixed and only t varies. We call this function X(·, ω) : t 7→ X(t, ω) the ω–trajectory or
ω–path or, in short, the trajectory or path of X .
We will also sometimes use the notation X(t, ·) if we want to emphasize X as the random variable
which results when we look at the potential outcomes at a fixed time t. �

We will introduce some more terminlogy for random items indexed by time which do not qualify
as stochastic processes in the sense of Definition 7.1 (Stochastic Process) on p.113 because the time
index does not live in a contiguous interval.

Definition 7.2. Given are a probability space (Ω,F, P ), a measurable space (Ω′,F′), an index set
I ⊂ [0,∞[, and a family X = (Xt, t ∈ I), of Ω′–valued random items with index set I . We further
assume that the indices t ∈ I are to be interpreted as points in time.

(a) If I is suitable as index set for a stochastic process, i.e., I is a contiguous interval, then we
also refer to X as a continuous time stochastic process. with start time k0.
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(b) If I is an infinite, contiguous sequence of integers 0 5 k0, k0 + 1, k0 + 2, . . . then we call X
a stochastic sequence. with start time k0.

(c) If I is an infinite sequence of real numbers 0 5 t0 < t1 < t2 < · · · or a finite sequence of
real numbers 0 5 t0 < t1 < t2 5 tn = T then we call X a discrete time stochastic process.
with start time t0 and, in the second case, with end time or expiration time T .

(d) If the index set of the form I = 1, 2, . . . n and we interpret X1, . . . Xn as the coordinate
values of an n–tuple then prefer to write

~X = (X1, . . . Xn) or ~X(ω) =
(
X1(ω), . . . Xn(ω)

)
and call this a random vector. �

Remark 7.1. Any nonnegative finite or infinite sequence of real numbers t0 < t1 < · · · is a suitable
index set for a discrete time stochastic process. Thus stochastic sequences and random vectors are
special cases of such processes.

We can classify collections of random items with an index set I ⊆ [0,∞[ as
• continuous time stochastic processes,
• discrete time stochastic processes. �

Before we can proceed we must discuss the information associated with a stochastic process. We
recall Proposition 4.9 in which we defined σ(f) := {f−1(A′) : A′ ∈ F′}, the σ–algebra generated by
f , for any function f : Ω→ Ω′ from an arbitrary, nonempty set Ω to a measurable space (Ω′,F′).
We can generalize this notion to more than one function as long as they all have the same domain
Ω. So let g : Ω→ Ω′′ also have a codomain which is a measurable space (Ω′′,F′′). we then can define

σ(f, g) := σ{A ⊆ Ω : A = f−1(A′) for someA′ ∈ F′ or A = f−1(A′′) for someA′′ ∈ F′′},

i.e., σ(f, g) is the smallest σ–algebra that contains all preimages of measurable events for both f and
g.
This definition easily scales for any finite or infinite, even uncountable, collection of functions fi :
Ω→ (Ωi,Fi) which have measurable spaces as codomains.

Definition 7.3. Let Ω be an arbitrary, nonempty set and let fi : Ω→ Ωi, i ∈ I be a family of functions
which have measurable spaces (Ωi,Fi) as codomains and are indexed by an arbitrary, nonempty,
index set I . No assumptions are made about I so do not think of indexing those functions fi by
“time”! We call the σ–algebra

σ(fi : i ∈ I) := σ{A ⊆ Ω : A = f−1
i (Ai) for some i ∈ I andAi ∈ Fi }(7.1)

generated by all preimages of measurable sets the σ–Algebra generated by the family of functions
fi �

Remark 7.2. This last definition can be applied to the special case of a collection of random items
Xi, i ∈ I on a probability space (Ω,F, P ), indexed again by an arbitrary index set I . Thus eachXi(ω)
is an element of a measurable spaces (Ωi,Fi). We then have

σ(Xi : i ∈ I) = σ
{
A ⊆ Ω : A = {Xi ∈ Ai} for some i ∈ I andAi ∈ Fi

}
.(7.2)
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Note that since each Xi is a random item, each preimage {Xi ∈ Ai} belongs to F, thus

σ(Xi : i ∈ I) ⊆ F.

we can interpret σ(Xi : i ∈ I) as the container of all stochastically relevant information of
X

See Remark 5.1 on p.78. �

We are now back to stochastic processes and index sets I which can be interpreted as time intervals.
As we just have seen we can associate with each stochastic process X = (Xt), t ∈ I the collection
(σ(Xt)) , t ∈ I . However we are more interested in the stochastically relevant information not of Xt

but that of the entire past of the process X up to time t which is stored in σ{Xs : s 5 t}. This leads
us to the definition of a filtration.

Definition 7.4 (Filtration for a processXt). For a continuous time or discrete time stochastic process
X with index set I we define for t ∈ I ,

FXt := σ{Xs : s ∈ I, s 5 t}(7.3)

As made plausible in Section 5.1 (Functional Dependency of Random Variables) in the context of a
single random variable, we can think of FXt as the stochastically relevant information of the process
X for all times s 5 t. We call the family (FXt )t∈I of all those sub–σ–algebras of F the filtration
generated by X . �

If this next remark just confuses you then you are advised to just skip it!

Remark 7.3. ? For a fixed time t a (F–measurable) event A is an element of FXt if there is a
functional dependency of 1A on the trajectory X(s), s ∈ I, s 5 t, More generally a random variable
Z is FXt –measurable if there is a functional dependency on the trajectory X(s), s ∈ I, s 5 t. 18 �

It is very important that you understand the next example without trying to apply any mathematical
reasoning.

Example 7.1 (Filtrations as seat of the information of the past). In the following we assume that X
is real valued and I = [0,∞[.

(1) Let A = {2.78 < Xs 5 3.14, for 5 5 s < 7}. then we have A ∈ FX7 but not A ∈ FX6.999

since observing the process Xs up to time t = 6.999 and seing that 2.78 < Xs 5 3.14 for
5 5 s 5 6.999 does not determine whether or not 2.78 < X7 5 3.14.

(2) For some arbitrary t, h > 0 Let B = {Xt+h < 0}. Then B ∈ FXt+h. but not B ∈ FXt , since one
cannot decide whether or not B has occurred just from knowing how X behaved up to and
including time t.

18We are not mathematically exact here since we have do not have “product σ–algebras” available as a tool to appro-
priately generalize Doob’s factorization lemma to families of random items (Xt)t in place of just a single Xt.
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(3) Assume that X has continuous trajectories s 7→ Xs(ω) so that the Riemann integral Z(ω) =
T∫
0

Xu(ω)du is defined for any given T > 0 and ω ∈ Ω. Z is FXT –measurable since knowing

the behavior of the trajectory X(·, ω) between times 0 and T is enough to understand the

behavior of
T∫
0

Xu(ω)du. But note that Z is not m(FXT−δ) for any δ > 0, no matter how small.

(4) Assume that X has continuous trajectories s 7→ Xs(ω) and let

τ(ω := inf{s = 0 : Xs(ω) = 20},

i.e., the random time τ denotes the first time that the trajectory enters the interval [20,∞[.
Then the event {τ 5 8.5} is in F8.5 since

τ(ω) 5 8.5 ⇔ Xs(ω) = 20 for some s 5 8.5,

and this clearly is determined by the behavior of Xs(ω) for 0 5 s 5 8.5.
(4a) More generally assume again that X has continuous trajectories. Let γ be an arbitrary real

number. Let
τ(ω := inf{s = 0 : Xs(ω) = γ}

be the time of first entry into [γ,∞[. Then {τ 5 t} is in Ft for any t > 0 since

τ(ω) 5 t ⇔ Xs(ω) = γ for some s 5 t.

(5) Assume that X has continuous trajectories s 7→ Xs(ω) and let

ρ(ω := sup{s = 0 : Xs(ω) = 20},

i.e., the random time ρ denotes the last time that the trajectory is inside the interval [20,∞[.
Then the event {ρ 5 t} is not in Ft for any t > 0 since we cannot predict at time t the future
behavior of the trajectory. (Why did I exclude the case t = 0?)

Remark 7.4. It is obvious that, for a time t after time s, more info (more measurable preimages) has
accrued until time t than just until the time s of the past. In other words,

if s < t then FXs ⊆ FXt .

This property by itself is so useful that we want to encapsulate it in its own definition. �

Definition 7.5 (Filtration-general). Let (Ω,F, P ) be a probability space and I ⊆ R. Assume that
for each t ∈ I there is a sub–σ–algebra Ft of F and that this family (Ft)t∈I satisfies monotony with
respect to t:

If s < t then Fs ⊆ Ft

for all s, t ∈ I . We call such a family a filtration on (Ω,F, P ), and we call the quadruple
(Ω,F, (Ft)t∈I , P ) usually denoted by (Ω,F, (Ft), P ) if there is no confusion about I or its particu-
lars are irrelevant for the discussion at hand, a filtered probability space. �

116 Version: 2021-05-17



Math 454 – Additional Material Student edition with proofs

We have a special definition for a processes X = (Xt)t∈I if its trajectories Xs, s ∈ I, s 5 t are deter-
mined by the member Ft of a filtration (Ft)t∈I .

Definition 7.6 (Adapted Process). LetX be a discrete time or continuous time process with index set
I on a filtered probability space (Ω,F, (Ft)t∈I , P ). If the trajectory X(s), s ∈ I, s 5 t is determined
by the information in Ft for each time t, i.e., if

Xs is Ft–measurable for each s ∈ I, s 5 t,

then we say that X is adapted to the filtration Ft, �

Remark 7.5. In a financial market filtrations appear, e.g., as follows. Given are one or more “under-
lying assets”, e.g., stocks, whose prices S(1), . . . , S(n) depend on time t and randomness ω, i.e., each
stock price S(j) is a stochastic process S(j)

t (ω). They will be “driven”, i.e., stochastically determined,
by one or more processes W (1), . . . ,W (m) called Brownian motions or Wiener processes. By this
we mean that each stock price S(j) is adapted to the filtration defined by

Ft := σ
(
W (j)
s : 1 5 j 5 m, s 5 t, s ∈ I

)
for each t ∈ I,

i.e., to the filtration generated by those Brownian motions.
Conditional expectations with respect to this fitration will play a key role in determining the price
of a financial derivative which is based on the underlying assets. �

Key properties of Brownian Motion will be that this process is both a martingale and a Markov
process and that stock prices are Markov processes. The next two definitions which are about those
two concepts are standard. They are straight copies from the SCF2 text.

Definition 7.7 (Martingale). Let (Ω,F, (Ft)t∈I , P ) be a filtered probability space.

We assume that I is the index set of an extended real valued, adapted, continuous time or
discrete time process X . We call X

(a) a martingale if E[Xt | Fs] = Xs a.s., for all s 5 t such that s, t,∈ I ,

(b) a submartingale if E[Xt | Fs] = Xs a.s., for all s 5 t such that s, t,∈ I ,

(c) a supermartingale if E[Xt | Fs] 5 Xs a.s., for all s 5 t s.t. s, t,∈ I . �

Remark 7.6. A simple proof by induction shows that if I = N then
(a) X is a martingale ⇔ E[Xn+1 | Fn] = Xn a.s., for all n ∈ N,

(b) X is a submartingale ⇔ E[Xn+1 | Fn] = Xn a.s., for all n ∈ N,

(c) X is a supermartingale ⇔ E[Xn+1 | Fn] 5 Xn a.s., for all n ∈ N. �

Remark 7.7.

Comparisons on an ω–by–ω basis involving conditional expectations can generally only be
asserted to hold almost surely since such conditional expectations only are determined up
to a set of probability zero. We will follow the example of Shreve and often drop the “a.e.”
in such statements. �
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Proposition 7.1. A martingale X satisfies E[Xs] = E[Xt] for any s, t ∈ I .

PROOF: The proof is left as an exercise. �

Definition 7.8 (SCF2 Definition 2.3.6 - Markov Process). Let (Ω,F, P ) be a probability space, let T be
a fixed positive number, let (Ft)t∈[0,T ], be a filtration of sub-a-algebras of F, and let X = (Xt)t∈[0,T ],
be an adapted stochastic process for which the codomain Ω′ of the random variables ω 7→ Xt(ω) is
the real numbers or Rn. It is thus more appropriate to write x = Xt(ω) instead of ω′ = Xt(ω).
Assume that for all 0 5 s 5 t 5 T and for every nonnegative, Borel–measurable function ft : x 7→
ft(x), one can find another Borel–measurable function fs : x 7→ fs(x) such that

E[ft
(
Xt

)
| Fs] = fs

(
Xs

)
.(7.4)

Then we call X a Markov process (with respect to the filtration (Ft)t∈[0,T ]. �

Remark 7.8. It is customary in this definition of a Markov process to consider the family (fu)u∈[0,T ]

of functions with argument x as a single function (u, x) 7→ f(u, x). Definition 7.8 thus is equivalent
to the following.

The process X is a Markov process if and only if the following is satisfied.
Let 0 5 t 5 T , and let f be an arbitrary, nonnegative, Borel–measurable function x 7→ f(x).
Then there is a function (u, x) 7→ f(u, x), 0 5 u 5 t, such that

E[f
(
t,Xt

)
|Fs] = f

(
s,Xs

)
for all 0 5 s 5 t. �(7.5)

Remark 7.9. There is yet another alternate definition of the Markov property which has the advan-
tage of being very well suited to determine in practical terms whether a process X is Markov:
The process X is a Markov process if and only if the following is satisfied.
Let 0 5 t 5 T , and let ϕ be an arbitrary, nonnegative, Borel–measurable function x 7→ ϕ(x). Then

E[ϕ
(
XT

)
|Ft] = E[ϕ

(
XT

)
|Xt].(7.6)

The interpretation is as follows: 19

The future development of a Markov process does not depend on the past, only on the
present.

The equivalence of (7.4) and (7.6) is not hard to see.
First assume that (7.4) holds true. Let ϕ be nonnegative and Borel–measurable. By assumption there
is a function ft that satisfies

E[ϕ
(
XT

)
| Ft] = ft

(
Xt

)
.

19https://en.wikipedia.org/wiki/Markov_property
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Since the right–hand side is a function of Xt the same must be true for the left–hand side, i.e.,
E[ϕ

(
XT

)
| Ft] is σ(Xt)–measurable. Thus

E[ϕ
(
XT

)
| Ft] = E

[
E[ϕ

(
XT

)
| Ft] | Xt

]
= E[ϕ

(
XT

)
| Xt].

Here we have used “taking out what is known” followed by the Iterated Conditioning property.
See Theorem 5.2 on p.85.

Now assume that (7.6) is satisfied. Let ft be nonnegative and Borel–measurable and s < t. Then

E[ft
(
Xt

)
|Fs] = E[ft

(
Xt

)
|Xs].

We argue as before and see that E[ft
(
Xt

)
|Xs] is σ(Xs)–measurable since it equals, by definition,

E[ft
(
Xt

)
|σ(Xs)]. We use Doob factorization and conclude that we can write this as a function

fs ◦Xs for a suitable Borel measurable function fs. In other words,

E[ft
(
Xt

)
|Fs] = fs ◦Xs.

This is formula (7.4). �

Remark 7.10. The concept of a Markov process also exists for discrete time stochastic processes.
Just replace the index set [0, T ] with the set I of the countable set of times and adjust the conditions
for such indices.
For example, the condition “for all 0 5 s 5 t” becomes “for all s, t ∈ I such that s 5 t”.
The above applies in particular to random sequences X1, X2, X3, . . . . If such a random sequence
satisfies one of the equivalent conditions (7.4), (7.5), (7.6), then it is customary to speak of a Markov
chain rather than a time discrete Markov process. �

Example 7.2. Here are two informal examples of Markov chains.
(1) The random sequence X(ω) = Xn, n = 0, 1, 2, 3, . . . , is defined as follows. We assume

that X0 = n0 for some fixed n0 ∈ Z, and

Xn =

{
Xn−1 + 1 with probability 0 < p < 1,

Xn−1 − 1 with probability 1− p.

Cleary, this sequence satisfies (7.6) since the value of Xn(ω) does not depend on any
Xj(ω) for j < n − 1. This Markov chain is called a random walk on the integers. In the
special case p = q = 1

2 we speak of a symmetric random walk. The beginning sections
of SCF2 Chapter 3 are about the symmetric random walk.
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(2) The price S = Sn(ω) of a stock at times n = 0, 1, 2, 3, . . . develops according to the fol-
lowing rules: S0 = s0 for some fixed real number s0, and

Sn =

{
u · Sn−1 with probability 0 < p < 1,

d · Sn−1 with probability 1− p,

for two fixed real numbers 0 < d < u. Typically we will have d < 1 < u so that u
signifies an upward movement in stock price and d signifies a downward movement.
This sequence also satisfies (7.6) since the value of Sn(ω) does not depend on the stock
price at times prior to n− 1.
We will examine this process as part of the binomial asset model in Chapter 6 (Financial
Models - Part 1). �

7.2 Digression: Product Measures ?

This optional section is very skeletal and its only purpose is to justify certain properties∫ b
a

∫
ΩXs(ω) dω ds.

Definition 7.9 (Product spaces and product measures of two factors).
Let (Ω1,F1, µ) and (Ω2,F2, ν) be two measure spaces with σ–finite measures µ and ν.

We call the σ–algebra

F1 ⊗ F2 := σ{A1 ×A2 : A1 ∈ F1, A1 ∈ F1 },(7.7)

which is generated by all “rectangles” of measurable factors A1 and A2, the product σ–
algebra of F1 and F2. One can show that the set function

A1 ×A2 7→ µ(A1) ν(A2)(7.8)

can be uniquely extended to a measure µ × ν on all of F1 ⊗ F2. We call µ × ν the product
measure, also just the product, of µ and ν, and we call

(Ω1 × Ω2,F1 ⊗ F2, µ× ν)

the product space, �

Example 7.3. We examine the case of two Euclidean spaces (Rm,Bm, λm) and (Rn,Bn, λn) with
their Borel sets and Lebesgue measures. It can be shown that

Bm ⊗Bn = Bm+n,

and it is obvious from the formula

λm × λn(B1 ×B2) = λm(B1)λn(B2) = λm+n(B1 ×B2)

and the uniqueness of the product measure, that λm × λn = λm+n. In particular, λ2 = λ× λ. �
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Theorem 7.1 (Fubini-Tonelli). Let (Ω1,F1, µ) and (Ω2,F2, ν) be two measure spaces with σ–finite mea-
sures µ and ν. Assume that the extended real valued function

f : (Ω1 × Ω2,F1 ⊗ F2, µ× ν)→ (R̄,B1)

is F1 ⊗ F2–B1–measurable. Then ω1 7→ f(ω1, ω2) is F1–measurable for each fixed ω2 (and thus can be
integrated with respect to µ1), and ω2 7→ f(ω1, ω2) is F1–measurable for each fixed ω1.

If f = 0 or f is µ× ν–integrable then∫
A1×A2

f dµ× ν =

∫
A1

(∫
A2

f(ω1, ω2) dν(ω2)

)
dµ(ω1)

=

∫
A2

(∫
A1

f(ω1, ω2) dµ(ω1)

)
dν(ω2).

(7.9)

In particular switching the order of integration yields the same result.

Remark 7.11. ?

• We have omitted some technical details concerning µ1–a.e. and µ2–a.e. properties in the
case of integrable f .

• The case for integrable f was proved first by Guido Fubini in 1907, the case for nonnega-
tive f two years later by Leonida Tonelli, both Italian mathematicians. Since Fubini was
first Theorem 7.1 is often just referred to as Fubini’s theorem.

• For general A ∈ F1 ⊗ F2 one defines “ω1–slices” Aω1 := {ω2 ∈ Ω2 : (ω1, ω2) ∈ A} and
“ω2–slices” Aω2 := {ω1 ∈ Ω1 : (ω1, ω2) ∈ A} and evaluates integrals over A as iterated
integrals involving those slices. We omit the arguments:∫

A
fdµ× ν =

∫
Ω1

(∫
Aω1

f dν

)
dµ =

∫
Ω2

(∫
Aω2

f dµ

)
dν. �

• We are interested in the case of an extended real valued continuous time stochastic pro-
cess X = X(t, ω), t ∈ I which we assume B(I)⊗ F–measurable. Recall that expectations
are integrals dP . Thus Fubini-Tonelli says that for [a, b[⊆ I ,∫

[a,b[×Ω
Xdλ1 × P =

∫ b

a
E[Xt] dt = E

[∫ b

a
Xt dt

]

7.3 Basic Properties of Brownian Motion

Definition 7.10 (Brownian motion). Given are the index set I := [0,∞[, a filtered probability space
(Ω,FFt, P ) with t ∈ I and a stochastic process W = Wt, t ∈ I .
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We call W a Brownian motion with respect to the filtration Ft if it satisfies the following.

(1) W is adapted to Ft.
(2) P{W0 = 0} = 1.
(3) P{t 7→Wt is continuous for ALL t } = 1.
(4) Let 0 5 s < t <∞. Then the increment Wt −Ws is independent of the σ–algebra Fs.
(5) Let 0 5 s < t <∞. Then Wt −Ws ∼NNN (0, t− s), i.e., Wt −Ws is normal with

E[Wt − Ws] = 0,

Var [Wt − Ws] = t − s. �
(7.10)

Remark 7.12. If Wt is a Brownian motion with respect to a filtration Ft then it also is one with
respect to its own filtration FWt defined as

FWt = σ(Ws : 0 5 s 5 t).

In that case independence of the increments can be verified by showing that
(4’) For any finite selection of times 0 5 t0 < t1 < · · · < tm <∞ the increments

Wt1 − Wt0 , Wt2 − Wt1 , . . . , Wtm − Wtm−1 are independent.
In this case we simply speak of Brownian motion without mentioning the filtration FWt .
�

A proof acceptable to mathematicians that definition 7.10 is free of contradictions and Brownian
motion actually exists (the tough part is proven continuity at all times t for the trajectories t 7→Wt(ω)
belonging to a set of probability 1) was first given by Norbert Wiener. For this reason you will find
books which refer to Brownian motion as Wiener process.

Definition 7.11 (Moment–generating function). Let X be a random variable on a probability space
(Ω,F, P ). If u is a real number then the random variable ω 7→ euX(ω) is nonnegative as an exponen-
tial, thus its expected value E

[
euX

]
is always defined (though it may be infinite).

Here is the multidimensional analogue. If ~X = (X1, . . . , Xn) is a random vector on (Ω,F, P ) and
~u = (u1, . . . , un) ∈ Rn then the expected value of the random variable

ω 7→ e~u•
~X(ω) = exp

 n∑
j=1

uj Xj(ω)


is always defined (though it may be infinite). In the above, as usual,

if ~a = (a1, . . . , an) ∈ Rn, ~b = (b1, . . . , bn) ∈ Rn, then ~a •~b =

n∑
j=1

ajbj

denotes the standard inner product of Rn

We can thus associate with any random variable X and random vector ~X the functions
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ΦX : R −→ [0,∞], defined as ΦX(u) = E
[
euX

]
.(7.11)

Φ ~X : Rn −→ [0,∞], defined as Φ ~X(u) = E
[
e~u•

~X(ω)
]
.(7.12)

We call ΦX (resp., Φ ~X ), the moment–generating function of X (resp., of ~X). In the multi-
dimensional case we also call Φ ~X ) the joint moment–generating function �

Proposition 7.2.

Let Z be a normal random variable with mean µ and variance σ2 on a probability space (Ω,F, P ).
Then its moment–generating function is

ΦZ(u) = eµu+ 1
2
σ2u2 .(7.13)

PROOF: I was not able to locate the proof in [6] Wackerly, Mendenhall and Scheaffer: Mathematical
Statistics with Applications). but it can be found in most text books on probability theory You can
find it for the case µ = 0 in the proof of SCF2, Theorem 3.2.1. �

Proposition 7.3. Let Wt, 0 5 t < ∞ be a Brownian motion on a filtered probability space (Ω,F,Ft, P ). If
s, t ∈ [0,∞[ then

E[Wt] = 0,(7.14)
Cov[Ws,Wt] = E[WsWt] = min(s, t).(7.15)

PROOF: See SCF2, ch.3.3.2 �

Proposition 7.4. ?

Let Wt, 0 5 t < ∞ be a Brownian motion on a filtered probability space (Ω,F,Ft, P ). Let 0 5 t0 < t1 <
· · · < tm. Then the covariance matrix for the m–dimensional random vector

(
Wt1 ,Wt2 . . . ,Wtm

)
is

E[Wt1Wt1 ] E[Wt1Wt2 ] ... E[Wt1Wtm ]

E[Wt2Wt1 ] E[Wt2Wt2 ] ... E[Wt2Wtm ]

...
...

. . .
...

E[WtmWt1 ] E[WtmWt2 ] ; ... E[WtmWtm ]

 =


t1 t1 ... t1
t1 t2 ... t2
...

...
. . .

...
t1 t2 ... tm

(7.16)

Moreover the moment–generating function for
(
Wt1 ,Wt2 . . . ,Wtm

)
is

ϕ(u1, . . . , um) = E
[
exp

{
umWtm + um−1Wtm−1 + · · · + u1Wt1

}]
= exp

{1

2
(u1 + u2 + um)2t1 +

1

2
(u2 + u3 + um)2(t2 − t1) + · · ·

· · ·+ 1

2
(um−1 + um)2(tm−1 − tm−2) +

1

2
u2
m(tm − tm−1)

}
.

(7.17)
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PROOF: See SCF2, ch.3.3.2 �

It is well known that moment–generating functions uniquely determine the distribution of random
variables and random vectors Thus we have the following.

Theorem 7.2 (SCF2 Theorem 3.3.2 – Characterizations of Brownian motion). ? Let (Ω,F, P ) be
a probability space with a process Wt, 0 5 t < ∞ such that W0(ω) = 0 and the assignment t 7→ Wt(ω)
defines a continuous function of t for each ω ∈ Ω.
Then we have equivalence

(1) ⇔ (2) ⇔ (3)

of the following:
(1) For all 0 = t0 < t1 < · · · < tm, the increments

Wt1 − Wt0 , Wt2 − Wt1 , . . . , Wtm − Wtm−1

are independent, and each of these increments is normally distributed with mean zero and variance
Var[Wtm − Wtm−1 ] = tm − tm−1.

(2) For all 0 = t0 < t1 < · · · < tm, the random variables Wt1 ,Wt2 . . . ,Wtm are jointly normal with
means E[Wtj ] = 0 and covariance matrix (7.16).

(3) For all 0 = t0 < t1 < · · · < tm, the random variables Wt1 ,Wt2 . . . ,Wtm have the joint moment–
generating function (7.17).

If any of (1), (2), (3), holds (and hence they all hold), then Wt, 0 5 t <∞ is a Brownian motion with respect
to FWt .

PROOF: �

The following is SCF2 Theorem 3.3.4.

Theorem 7.3 (Brownian motion is a martingale). LetW = Wt, t = 0, be a Brownian motion on a filtered
probability space Ω,F,Ft, P . Then W is an Ft–martingale.

PROOF: For 0 5 s 5 t, we have

E[Wt |Fs] = E[
(
Wt −Ws

)
+ Ws |Fs] = E[

(
Wt −Ws

)
|Fs] + E[Ws |Fs]

= E[Wt −Ws] + Ws = Ws.

The third equation results a) from the independence of Wt − Ws and Fs and b) from the Fs–
measurability of Ws. �

7.4 Digression: L1 and L2 Convergence ?

In this section we use the same symbol ‖ · ‖ for very different ways to define the size of an item, and
the same symbol d(·, ·) for very different ways to define the distance of two items.

Example 7.4. Here we give six examples of measuring sizes and distances. The first is well known
from linear algebra.
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(a) For vectors ~x = (x1, . . . , xn) ∈ Rn and ~y = (y1, . . . , yn) ∈ Rn we all accept that

‖~x‖2 :=

√√√√ n∑
j=1

xj2 and d2(~x, ~y) := ‖~x − ~y‖2(7.18)

are a good way to measure the size of ~x and the distance between ~x and ~y. If n = 2 then
~x and ~y are ε–close, i.e., have distance less than ε, ⇔ ~y lies within a circle of radius ε
around ~x.

(b) This is not quite as plausible but we might also be willing to accept

‖~x‖1 :=
n∑
j=1

|xj | and d1(~x, ~y) := ‖~x − ~y‖1(7.19)

as a way to measure the size of ~x and the distance between ~x and ~y. Now, if n = 2, the
vectors ~x and ~y are ε–close ⇔ ~y lies within the tilted rectangle with edges (x1 ± ε, y2)
and (x1, y2 ± ε).

(c) For real valued functions f, g : [a, b] → R, defined on an interval [a, b] ⊆ R, we could
measure the size ‖f‖L1 of f by the area enclosed by the graph of f , the x–axis, and the
vertical lines, y = a and y = b, and we could measure the distance d(f, g) between f and
g by the area which is enclosed by the graphs of f and g, and the vertical lines, y = a and
y = b. In other words,

‖f‖L1 :=

∫ b

a
|f(t)| dt and dL1(f, g) := ‖f − g‖L1 .(7.20)

(d) This time working with squares is not quite as plausible as what we did in (c), but we
might also be willing to accept for f, g : [a, b] → R to measure the size ‖f‖ of f and the
distance d(f, g) between f and g as follows.

‖f‖L2 :=

√∫ b

a
f(t)2 dt and dL2(f, g) := ‖f − g‖L2 .(7.21)

In the remaining examples we extend (d) to integrals of a more general type. The reader can easily
do the corresponding generalizations of (c).

(e) We can replace
∫
. . . dtwith

∫
. . . ϕ(t)dt for some fixed, measurable, nonnegative, ϕ : R→

R This includes the case of an interval −∞ < a < b <∞ since we can choese the density
ϕ to be zero outside [a, b]. So now we define for f, g : R → R, size and difference as
follows.

‖f‖L2 :=

√∫ ∞
−∞

f(t)2ϕ(t) dt and dL2(f, g) := ‖f − g‖L2 .(7.22)

This last example allows us to make the transition from functions defined for real arguments to

functions defined on an abstract domain Ω by replacing
∞∫
−∞

. . . ϕ(t) dt with the abstract integral
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∫
Ω . . . dµ(ω).

(f) Let (Ω,F, µ) be a measurable space with a σ–finite measure µ and assume that f and g
are real valued and Borel measurable functions on Ω. We define size and difference as
follows.

‖f‖L2 :=

√∫
Ω
f(ω)2 dµ(ω) and dL2(f, g) := ‖f − g‖L2 . �(7.23)

It can be shown that the functions ‖ · ‖ which occur in all the examples above satisfy the properties
of the following definition if we exclude elements x for which ‖x‖ =∞.

Definition 7.12 (Seminorm). Let V be a vector space (in the abstract sense). A function

‖ · ‖ : V −→ R, x 7→ ‖x‖

is called a seminorm on V if it satisfies the following.

‖x‖ = 0 for all x ∈ V and ‖0‖ = 0(7.24a)
‖αx‖ = |α| · ‖x‖ for all x ∈ V, α ∈ R(7.24b)
‖x+ y‖ 5 ‖x‖+ ‖y‖ for all x, y ∈ V(7.24c)

positive semidefiniteness
absolute homogeneity
triangle inequality �

It can also be shown that the functions d(·, ·) in all examples satisfy the properties of the follow-
ing definition if we exclude elements x, y for which d(x, y) = ∞. Matter of fact they are satisfied
whenever we set

d(x, y) := ‖y − x‖

for a seminorm ‖ · ‖ as defined above.

Definition 7.13 (Pseudometric spaces). Let X be an arbitrary, nonempty set.
A pseudometric on X is a real–valued function of two arguments

d(·, ·) : X ×X → R, (x, y) 7→ d(x, y)

with the following three properties:

d(x, y) = 0 and d(x, x) = 0 for all x, y ∈ X(7.25a)
d(x, y) = d(y, x) for all x, y ∈ X(7.25b)
d(x, z) 5 d(x, y) + d(y, z) for all x, y, z ∈ X(7.25c)

positive semidefiniteness
symmetry
triangle inequality

Let x, y ∈ X and ε > 0. We say that x and y are ε–close if d(x, y) < ε. �

There is a fundamental difference between the cases (a), (b) and the cases (c)–(f). In the first two
cases it is easy to see that positive semidefiniteness can be strengthened to “positive definiteness”

‖~x‖ = 0 ⇔ ~x = 0 and d(~x, ~y) = 0 ⇔ ~x = ~y.(7.26)
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On the other hand, regardless whether we interpret
∫
. . . dt as Riemann integral or Lebesgue inte-

gral, if f(t) = 1 for t = a+b
2 and zero else, and if g(t) = 0 for all t, then

‖f‖ = 0 and d(f, g) = 0

even though f 6= 0 and f 6= g.
One can actually show the following for σ–finite measures µ.

∫
|f | dµ = 0 ⇔

∫
f2 dµ = 0 ⇔ f = 0 µ–a.e.(7.27)

and thus ∫
|f − g| dµ = 0 ⇔

∫
(f − g)2 dµ = 0 ⇔ f = g µ–a.e.(7.28)

There is another difference but it is of more of a technical nature. We never have to worry
about ‖~x‖ = ∞ or d(~x, ~y) = ∞. In contrast to this we have, for example,

∫ 1
0 ln(x)dx = ∞ and∫ 1

0

(
ln(x)

)2
dx =∞.

Before we continue note that there is no substantial difference between examples c and d. Moreover
d and e are specific cases of example f. We thus focus our attention on a, b, f.

The “positive definiteness” property of formula 7.26 is so important that it leads to the following
definitions which are a lot more important than those of seminorms and pseudometrics.

Definition 7.14 (Norm). Let V be a vector space (in the abstract sense). A function

‖ · ‖ : V −→ R, x 7→ ‖x‖

is called a norm on V if it satisfies the following.

‖x‖ = 0 for all x ∈ V and ‖x‖ = 0 ⇔ x = 0(7.29a)
‖αx‖ = |α| · ‖x‖ for all x ∈ V, α ∈ R(7.29b)
‖x+ y‖ 5 ‖x‖+ ‖y‖ for all x, y ∈ V(7.29c)

positive definiteness
absolute homogeneity
triangle inequality

The pair (V, ‖ · ‖) is called a normed vector space �

Definition 7.15 (Metric spaces). Let X be an arbitrary, nonempty set.
A metric on X is a real–valued function of two arguments

d(·, ·) : X ×X → R, (x, y) 7→ d(x, y)

with the following three properties:
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d(x, y) = 0 for all x, y ∈ X and d(x, y) = 0 ⇔ x = y(7.30a)
d(x, y) = d(y, x) for all x, y ∈ X(7.30b)
d(x, z) 5 d(x, y) + d(y, z) for all x, y, z ∈ X(7.30c)

positive definiteness
symmetry
triangle inequality

The pair (X, d(·, ·)), usually just written as (X, d), is called a metric space. We’ll write X for short
if it is clear which metric we are talking about. �

7.5 Quadratic Variation of Brownian Motion

Notations 7.1. In the following the letter Π will not denote the pricing function of a contingent
claim as it did in Chapter 6 (Financial Models - Part 1), but a partition

Π = { t0, t1, . . . , tn }, where 0 = t0, < t1, < · · · < tn = T

is interpreted as a set of times for a stochastic process with index set I = [0, T ] for some fixed T > 0.
The step sizes tj − tj−1 are not assumed to be of equal size. We denote by

‖Π‖ := max {tj+1 − tj : j = 0, . . . , n− 1} .

the maximum step size (difference of neighboring times) of the partition. We will refer to ‖Π‖ as the
mesh of Π. �

SCF2 defines the first–order variation of a function [0, T ]→ R, but we have no use for it Instead we
directly introduce the quadratic variation of such functions. The following is SCF2 Definition 3.4.1

Definition 7.16 (Quadratic Variation). Let f : [0, T ]→ R be a (Borel measurable) function of time t.
We call

[f, f ](T ) := lim
‖Π‖→0

n−1∑
j=0

[ f(tj+1) − f(tj) ]2,(7.31)

the quadratic variation of f up to time T . Here the limit lim
‖Π‖→0

is to be understood in the same way

as ∫ b

a
f(t) dt = lim

‖Π‖→0

n−1∑
j=0

[ f(t∗j )(tj − tj−1), tj−1 5 t 5 tj ,

in the definiton of the Riemann integral. In other words, the limit is taken along partitions Π =
{0 = t0 < t1 < · · · < tn = T} in such a way that the mesh becomes smaller and smaller. �

Remark 7.13 (Notation for quadratic variation of stochastic processes). Quadratic variation makes
sense for any function that depends on “time” t, including the paths t 7→ Xt(ω) of a stochastic
process Xt, 0 5 t 5 T .

We will often write [X,X]T and [X,X]T (ω) rather than [X,X](T ) and [X,X](T, ω). �
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Remark 7.14. Let f : [0, T ] → R be a (Borel measurable) function with a continuous derivative.
Then [f, f ](T ) = 0.
You will find a proof of this in SCF2 Remark 3.4.2. �

SCF2 Theorem 3.4.3 states the following. Let W be a Brownian motion. Then, for almost surely all
ω ∈ Ω,

[W,W ]T (ω) = T for all T = 0.

He actually proves a lot less:

Theorem 7.4. Let W be a Brownian motion. For T > 0 and a partition Π = { t0, t1, . . . , tn } of [0, T ], let

QΠ :=

n−1∑
j=0

(Wtj+1 − Wtj )
2.

Then
lim
‖Π‖→0

E
[
(QΠ − T )2

]
= 0.

PROOF: See the proof of SCF2 Theorem 3.4.3. �

Remark 7.15 (About SCF2 Remarks 3.4.4). and 3.4.5]
SCF2 Remark 3.4.4 and 3.4.5 are to a large degree about making plausible the extremely important
relations

• dt dt = 0,
• dt dWt = dWt dt = 0,
• dWt dWt = dt.

Even though I have been able to follow those remarks line by line I fail to see understand how they
make it easier to understand this so called multiplication table for Brownian motion differentials.
I will explain them differently later in the course.
Here is one thing he says that should be clear to all.

Brownian motion accumulates quadratic variation at rate one per unit time. �

7.6 Brownian Motion as a Markov Process

Theorem 7.5. LetW be a Brownian motion on a filtered probability space (Ω,F,Ft, P ). ThenW is a Markov
process.

PROOF (outline): Let 0 5 s 5 t 5 T and ft : R → [0,∞, x 7→ ft(x) Borel–measurable. According
to Definition 7.8 which corresponds to SCF2 Definition 2.3.6 of a Markov process one must find
another Borel–measurable function fs : x 7→ fs(x) such that

E[ft
(
Wt

)
| Fs] = fs

(
Ws

)
.(7.32)
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It can be shown that

fs : R −→ R, x 7→ E [ft(x+Wt −Ws)](7.33)

is the sought after function. For the proof see SCF2 ch.3.5. �

We will show that Brownian motion has a transition density as defined next.

Definition 7.17. ?

Let X = Xt, 0 5 t <∞ be a real valued and adapted Markov process on a filtered probability space
(Ω,F,Ft, P ). Assume there exists a Borel measurable function

p :]0,∞× R× R −→ R; (τ, x, y) 7→ p(τ, x, y)(7.34)

which satisfies, for every nonnegative Borel measurable function f : R→ R the relation,

E[f
(
Xt

)
| Fs] =

∫ ∞
−∞

f(y) p(τ,Xs, y) dy.(7.35)

We call p(τ, x, y) the transition density for X . �

Remark 7.16. ?

Let B ⊆ R be a Borel subset and f(x) := 1B(x). Then (7.35) becomes

P{Xs+τ ∈ B | Fs}(ω) = E[1B
(
Xt

)
| Fs](ω) =

∫
B
p(τ,Xs(ω), y) dy.(7.36)

We recall from Remark 7.9 on p.118 that the expressions above are σ(Xs)–measurable. This can
also be seen directly since the random variable ω 7→

∫
R f(y) p(τ,Xs, y) dy is, for frozen τ , a function

of Xs(ω) only and hence σ(Xs) measurable. Thus conditioning with respect to Fs is the same as
conditioning with respect to Xs. This allows us to apply Doob factorization to P{· · · | Fs} just as
we did in Remark 5.4 on p.85 to E{· · · | Fs}. There is a Borel measurable function x 7→ g(x) such
that P{Xs+τ ∈ B | Xs} = g ◦Xs Again it is customary to write

P{Xs+τ ∈ B | Xs = x}

instead of g(x) for this function, and this turns out to be the ordinary conditional probability in the
case that discrete random variables or random variables with joint density functions are involved.
Formula (7.36) becomes, if Xs(ω) = x,

P{Xs+τ ∈ B | Xs = x} =

∫
B
p(τ, x, y) dy.(7.37)

Thus y 7→ p(τ, x, y) is exactly that “ordinary” conditional density for the probability of X ending up
at time s+ τ in a set B assuming that it’s trajectory was at time s in x.
The time s of conditioning does not appear in the expression on the right hand Thus this conditional
probability is equal to that of starting at time zero in x and ending up at time τ in B. This is
informally stated as follows. If I know the postion of X at time s then I can consider s as my new
start time. The trajectories τ 7→ Xs+τ will behave in terms of all probabilistic aspects just as they
were the trajectories Xτ that had originally started at time zero in x. �
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Proposition 7.5 (Transition density for Brownian motion).

p(τ, x, y) =
1√
2πτ

e−
(y−x)2

2τ .

PROOF: The proof is given as part of SCF2 Theorem 3.5.1. �

7.7 Additional Properties of Brownian Motion

We are skipping all of SCF2 Chapter 3.4.3 (Volatility of Geometric Brownian Motion) except for the
following definition.

Definition 7.18 (Geometric Brownian Motion). Let W be a Brownian motion on a filtered probabil-
ity space (Ω,F,Ft, P ). Let S0, α, σ be real numbers such that S0, σ > 0 We call the process

St := S0 exp

[
σWt +

(
α− 1

2
σ2

)
t

]
.(7.38)

geometric Brownian motion or also GBM. We will see in Example 8.1 on p.138 how GBM is ob-
tained as the solution of a SDE (stochastic differential equation) which models the price of the risky
asset (stock) in the Black–Scholes option pricing framework. �

Definition 7.19 (Exponential martingale).

Let W = Wt, t = 0, be a Brownian motion on a filtered probability space Ω,F,Ft, P , and
σ ∈ R. We call the process Z = Zt, t = 0, defined as

Zt := exp

[
σWt −

1

2
σ2t

]
,(7.39)

the level σ exponential martingale of W . �

Zt derives its name from the following theorem (SCF2 Theorem 3.6.1).

Theorem 7.6. Let W = Wt, t = 0, be a Brownian motion on a filtered probability space Ω,F,Ft, P and
σ ∈ R. Then the level σ exponential martingale of W is an Ft–martingale.

PROOF: See SCF2 Theorem 3.6.1 for the proof. �

7.8 Exercises for Ch.7
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8 One–Dimensional Stochastic Calculus

8.1 The Itô Integral for Simple Processes

This chapter is very sketchy as far as proofs are concerned since the material follows extremely closely that of
SCF2 Chapter 4.

Unless explicitly stated otherwise (Ω,F,Ft, P ) is a filtered probability space and W = Wt is
a Brownian motion on Ω with respect to Ft.
Often we assume a fixed expiration time T > 0 and W and all other stochastic processes
have index set [0, T ], but occasionally we also consider other index set, e.g., [0,∞[ or [t0, T
for some start time 0 5 t0 < T .

The next definition is from SCF2 ch.4.2.1.

Definition 8.1 (Simple Process). Let
Π := { t0, t1, . . . , tn }, where 0 = t0, < t1, < · · · < tn = T be a partition of [0, T ]. for some fixed
T > 0, with mesh ‖Π‖ := max {tj+1 − tj : j = 0, . . . , n− 1} . An adapted process Z = Zt is called
a simple process if t 7→ Zt(ω) is constant on each interval [tj , tj+1[ almost surely. �

The next definition is from SCF2 ch.4.2.1.

Definition 8.2 (Itô Integral of a Simple Process). Let Π := { t0, t1, . . . , tn }, where 0 = t0, <
t1, < · · · < tn = T be a partition of [0, T ] and let Z be a simple process on Ω which has constant
trajectories on each partitioning interval [tj , tj+1[. We call

t∫
0

∆udWu :=
k−1∑
j=0

∆(tj)[W (tj+1)−W (tj)] + ∆(tk)[Wt −W (tk)].(8.1)

the Itô integral of Z with respect to W . �

Theorem 8.1 (SCF2 Theorem 4.2.1). The Itô integral
t∫

0

∆udWu is an Ft–martingale.

PROOF: See SCF2. �

Because It =
t∫

0

ZudWu is a martingale and I(0) = 0, it follows that

E[It] = 0 for all t = 0. Thus V ar[It] = E[I2
t ].

The next theorem shows how to evaluate E[I2
t ].

Theorem 8.2 (SCF2 Theorem 4.2.2 - Itô isometry). The Itô integral defined by (8.1) on p.132 satisfies

E[I2
t ] = E[

∫ t

0
∆2
udu].(8.2)
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PROOF: See SCF2. �

Theorem 8.3 (SCF2 Theorem 4.2.3). The quadratic variation [I, I]t up to time t of the Itô integral It =
t∫

0

ZudWu is

[I, I]t =

∫ t

0
Z2
udu.(8.3)

PROOF: See SCF2. �

Remark 8.1. If we think of integration and differentiation as operations that cancel each other when
we look at

∫ t
0 ZudWu as a function of the upper limit of integration then we obtain

d

t∫
0

Zu dWu = Zt dWt(A)

Strictly speaking the above is the definition of the differential d
t∫

0

ZudWu in terms of the right hand

side.
This makes a lot of sense for Zt = 1. If we take the partition Π = {0, t} then Definition 8.2 (Itô
Integral of a Simple Process) yields∫ t

0
1 dWu = 1(Wt − W0) = Wt, thus applying d on both sides should give d

∫ t

0
1 dWu = dWt.

Formula (A) gives us exactly that. �

Remark 8.2. We write the Itô integral It =
t∫

0

ZudWu as a differential

d It = d

t∫
0

Zu dWu = Zt dWt.

We square both sides of this equation and obtain

dIt dIt = Z2
t dWt dWt = Z2

t dt. �

8.2 The Itô Integral for General Processes

Definition 8.3 (L2 convergence of stochastic processes). ?

We specialize the last observation from Example 7.4 on 124 to the following.
Given is a filtered probability space (Ω,F,Ft, P ) where T > 0 and 0 5 t 5 T . We can consider a
stochastic process Y as a measurable function of two variables,
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Y : ([0, T ]× Ω,B1 ⊗ F) −→ (R,B1); (t, ω) 7→ Yt(ω).(8.4)

See Definition 7.9 (Product spaces and product measures of two factors) on p.120 for the definition
of B1 ⊗ Ft.

A not very important note on the measurability of stochastic processes. We have been making this measur-
ability assumption and will keep doing so in this course without mentioning it explicitly, together with the
following one for processes assumed adapted to the filtration

(
Ft
)
t
:

Let t be fixed such that 0 < t 5 T . Then (u, ω) 7→ Xu(ω), considered as a function with domain [0, t] × Ω, is
assumed to be B1 ⊗ Ft–measurable for all 0 5 u 5 T .

We will keep glossing over such technical arguments and are only mentioning it here because we
integrate stochastic processes with respect to a product measure.
We apply formula (7.23) of Example 7.4 on 124 to the setting above and define L2–size ‖Y ‖L2 . and
L2–distance d(Y, Y ′). of such stochastic processes as follows.

‖Y ‖L2 :=

√∫
[0,T ]×Ω

Yt(ω)2 d(λ1 × P )(t, ω), and dL2(Y, Y ′) := ‖Y − Y ′‖L2 .

If Y = 0 or ‖Y ‖L2 < ∞ then The Fubini–Tonelli (Theorem 7.1 on p.121) applies, and we obtain
when writing E[. . . ] instead of

∫
Ω . . . dP and using Riemann integral notation

∫ T
0 . . . dt instead of

Lebesgue integral notation
∫

[0,T ] . . . dλ,

‖Y ‖L2 =

√
E

[∫ T

0
Z2
t dt

]
.(8.5)

Let X,X(1), X(2), X(3), · · · adapted, stochastic processes on Ω which satisfy ‖X‖L2 < ∞ and
‖X(n)‖L2 <∞ for all n. We say that the sequence X(n) converges in L2 to X , and we write

L2– lim
n→∞

X(n) = X, if lim
n→∞

dL2(X(n), X) = 0, i.e., lim
n→∞

E

[∫ T

0
(X

(n)
t −Xt)

2 dt

]
= 0. �(8.6)

Remark 8.3. We emphasize that ‖X‖L2 is a pseudonorm only, not a genuine norm, and dL2(Y, Y ′)
is a pseudometric only, not a genuine metric. If a sequence of processes X(n) converges in L2 to a
process X and X ′ is another process such that the set

A := {ω ∈ Ω : X(·, ω) andX ′(·, ω) differ on a set of Lebesgue measure 6= zero }

has probability zero then we also have L2– lim
n→∞

X(n) = X ′.

Here is an example. Ω = [0, 1], F = F1 = B1 for 0 5 t 5 1,

Xt(ω) =

{
1 if t = ω,

0 if t 6= ω,
X

(n)
t (ω) = X ′t(ω) = 0 for all 0 5 t, ω 5 1 and n ∈ N.

Then L2– lim
n→∞

X(n) = X = X ′ (= 0) even though there is no ω for which the trajectories X(·, ω)

and X ′(·, ω) are identical. �
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Fact 8.1. Let T > 0 and Zu, 0 5 t 5 T , be an adapted stochastic process that is square–integrable, i.e.,

‖Z‖L2 =

√
E

[∫ T

0
Z2
t dt

]
< ∞.(8.7)

Then the following is true.
(a) One can find a sequence Z(n) of simple processes that are also square–integrable such that

L2– lim
n→∞

Z(n) = Z (see formula (8.6)).

(b) There exists an adapted process Φ = Φt with continuous paths such that the Itô integrals I(n)
t :=

t∫
0

Z
(n)
u dWu converge in L2 to Φ, i.e.,

lim
n→∞

E

[∫ T

0
(Iu − Φu)2 du

]
= 0.

(c) We write
t∫

0

Z(n)
u dWu := Φt

for the process Φ = Φt described in (b) and call it the Itô integral of Z with respect to W . �

Theorem 8.4 (SCF2 Theorem 4.3.1 - Itô isometry). The process It :=
t∫

0

Z
(n)
u dWu defined in Fact 8.1 for

square integrable and adapted Z satisfies the following.

a. (Continuity) As a function of the upper limit of integmtion t, the paths of It are continuous.
b. (Adaptivity) For each t, It is Ft–measurable.

c. (Linearity) If It =
t∫

0

∆udWu and Jt =
t∫

0

ΓudWu,

then It ± Jt =
t∫

0

∆udWu ±
t∫

0

ΓudWu;

furthermore, for every constant c, cIt = c
t∫

0

∆udWu.

d. (Martingale) It is a martingale.

e. (Itô isometry) E[I2
t ] = E

t∫
0

∆2
udu.

f. (Quadratic variation) [I, I]t =
t∫

0

∆2
udu.

PROOF: Not given. �

8.3 The Itô Formula for Functions of Brownian Motion

Theorem 8.5 (SCF2 Theorem 4.4.1 - Itô–Doeblin formula for Brownian motion). Let f(t, x) be a func-
tion for which the partial derivatives ft(t, x), fx(t, x), and fxx(t, x) are defined and continuous, and let Wt
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be a Brownian motion. Then, for every T = 0,

f
(
T,WT

)
− f

(
0,W (0)

)
=

∫ T

0
ft
(
t,Wt

)
dt +

∫ T

0
fx
(
t,Wt

)
dWt +

1

2

∫ T

0
fxx
(
t,Wt

)
dt.(8.8)

PROOF: See SCF2 for a sketch. �

8.4 The Itô Formula for Functions of an Itô Process

Definition 8.4 (SCF2 Definition 4.4.3 - Itô process). Let Wt, t = 0, be a Brownian motion, and let
Ft, t = 0, be an associated filtration.

An Itô process on (Ω,F,Ft, P ) is a stochastic process

Xt = x +

∫ t

0
∆udWu +

∫ t

0
Θudu,(8.9)

which we also equivalently express as

dXt = ∆tdWt + Θtdt,(A)
X0 = x .(B)

Here ∆t and Θt are Ft–adapted processes, and x ∈ R. We call (A) the stochastic differential,
also just the dynamics, and (B) the initial condition of (8.9). Furthermore we say that

(A) and (B) express (8.9) in differential notation, and that (8.9) expresses (A) and (B) as an
integral equation. �

Remark:
(1). The phrase “.... which we also equivalently express as ....” is to be taken literally: We do

not mathematically distinguish between the integral equation (??) and the associated set
of stochastic differential (A) plus initial condition (B). They mean exactly the same thing.

(2). We bury into this footnote 20 a technical remark taken literally from SCF2. �

Lemma 8.1 (SCF2 Lemma 4.4.4). The quadratic variation of the Itô process (8.9) is

[X,X]t =

t∫
0

∆2
udu.(8.10)

PROOF: See SCF2 for a sketch. �

Definition 8.5 (SCF2 Definition 4.4.5). Given are an Itô process

Xt = X0 +

∫ t

0
∆udWu +

∫ t

0
Θudu,

20This note literally from SCF2: We assume that
t∫
0

∆udWu and
t∫
0

Θudu are finite for every t > 0 so that the integrals

on the right–hand side of formula (8.9) are defined and the Itô integral is a martingale. We shall always make such
integrability assumptions, but we do not always explicitly state them.
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on (Ω,F,Ft, P ) and an adapted process Γt, t = 0. We define 21

t∫
0

ΓudXu :=

t∫
0

Γu∆udWu +

t∫
0

ΓuΘudu. �(8.11)

Theorem 8.5 (Itô–Doeblin formula for Brownian motion) on p.135. which was stated for functions
f(t,Wt) can be generalized to functions f(t,Xt) where the second argument is an Itô process. This
will be done here.

Theorem 8.6 (SCF2 Theorem 4.4.6 - Itô–Doeblin formula for an Itô process). Let Xt, t = 0 be an Itô
process as described in Definition 8.4 on p.136, and let (t, x) 7→ f(t, x) be a function with continuous partial
derivatives ft(t, x), fx(t, x), andfxx(t, x). Then, for every T = 0,

f
(
T,XT

)
= f

(
0, X0

)
+

∫ T

0
ft
(
t,Xt

)
dt +

∫ T

0
fx
(
t,Xt

)
dXt

+
1

2

∫ T

0
fxx
(
t,Xt

)
dX[t, t]

= f
(
0, X0

)
+

∫ T

0
ft
(
t,Xt

)
dt +

∫ T

0
fx
(
t,Xt

)
∆tdWt

+

∫ T

0
fx
(
t,Xt

)
Θtdt +

1

2

∫ T

0
fxx
(
t,Xt

)
∆2
tdt.

(8.12)

PROOF: See SCF2. �

Remark 8.4.

Itô formula for an Itô process in differential notation:

df
(
t,Xt) = ft

(
t,Xt

)
dt + fx

(
t,Xt

)
dXt +

1

2
fxx
(
t,Xt

)
dXtdXt.(8.13)

The differential form of Xt = X0 +
∫ t

0 ∆udWu +
∫ t

0 Θudu is

dXt = ∆tdWt + Θtdt

from this we compute dXtdXt using the multiplication table as follows.

dXt dXt = (∆tdWt + Θtdt) (∆tdWt + Θtdt)

= Delta2
tdWtdWt + 2∆tΘtdWtdt + Θ2

tdtdt = ∆2
tdt

We make these substitutions in (8.13) and group the dt terms:

21We assume that E
[
t∫
0

Γ2
u∆2

udu

]
and

t∫
0

|ΓuΘu|du are finite for each t > 0 so that the integrals on the right-hand side

of (8.11) are defined.
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df
(
t,Xt

)
= fx

(
t,Xt

)
∆t dWt

+

(
ft
(
t,Xt

)
+ fx

(
t,Xt

)
Θt +

1

2
fxx
(
t,Xt

)
∆2
t

)
dt. �

(8.14)

Example 8.1 (Generalized Geometric Brownian Motion). Definition 7.18 on p.131 gave the defini-
tion of geometric Brownian Motion as the process

St = S0 exp

[
σWt +

(
α− 1

2
σ2

)
t

]
,

defined on a filtered probability space (Ω,F,Ft, P ) with a Brownian motion W = Wt.
We will obtain this process in a more general setting as the solution of a stochastic differential
equation. Let

Xt = exp

 t∫
0

σudWu +

t∫
0

(
αu −

1

2
σ2
u

)
du

 ,(8.15)

where αt and σt are adapted processes. Then X is an Itô process with differential

dXt = σtdWt +

(
αt −

1

2
σ2
t

)
dt, X0 = 0.(8.16)

From the multiplication table we obtain its squared differential

dXtdXt = σ2
t dWtdWt = σ2

t dt.(8.17)

Let S0 ∈]0,∞ (i.e., S0 is deterministic), and f(x) := S0e
x. Since f does have t as an argument it is

constant in t, thus ft = 0. There also is no need for using partial derivatives notation and we can
write f ′(x) for fx(x) and f ′′(x) for fxx(x). Note that

f ′(x) = f ′′(x) = f(x) = S0 e
x.

We define generalized geometric Brownian motion as the process

St := S0e
Xt = S0 exp

 t∫
0

σsdWs +

t∫
0

(
αs −

1

2
σ2
s

)
ds

 ,(8.18)

Since St = f(Xt) an application of the Itô formula yields

dSt = df
(
Xt

)
= f ′

(
Xt

)
dXt +

1

2
f ′′
(
Xt

)
dXtdXt

= S0e
Xt dXt +

1

2
S0e

Xt dXtdXt = St dXt +
1

2
StdXtdXt

(8.19)

This last formula describes a stochastic differential equation. It defines the random process St via
a formula for its differential dSt, and this formula involves the random process itself and also the
differential dWt of a Brownian motion. �
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Remark 8.5. It follows from formulas (8.16) and (8.17) that

StdXt
(8.16)
= σtSt dWt + αtSt dt −

1

2
σ2
t St dt

(8.17)
= σtSt dWt + αtSt dt −

1

2
St dXtdXt,

We plug this expression for StdXt into the last equation of (8.19) and obtain

dSt =

(
σtSt dWt + αtSt dt −

1

2
St dXtdXt

)
+

1

2
StdXtdXt

= σtSt dWt + αtSt dt.

dSt =

(
σtSt dWt + αtSt dt −

1

2
St dXtdXt

)
+

1

2
StdXtdXt

= σtSt dWt + αtSt dt.

That last formula

dSt = αtSt dt + σtSt dWt(8.20)

describes the dynamics of the process St. Interpreted as the price of a stock it expresses that
the asset has an instantaneous mean rate of return αt and volatility σt. “Instantaneous”
indicates that t 7→ αt(ω) depends on the paricular time (and the sample path ω) where the
price is observed.

Generalized GBM is an excellent wasy to model the price evolution of a risky asset for the following
reasons.
• It is always positive.
• The fluctuations introduced by the random term σtdWt express the risk inherent in in-

vesting in such an asset.
The drawback: The trajectories of St are continuous at all points in time. To consider asset prices
with jumps a different model is needed.
In the Black–Scholes market we specialize to constant α and σ. Then (8.18) becomes ordinary GBM

St = S0 exp

{
σWt +

(
α− 1

2
σ2

)
t

}
.(8.21)

If we further assume that the instantaneous mean rate of return α is zero then the asset price and its
dynamics are

St = S0 exp

{
σWt −

1

2
σ2 t

}
, dSt = σSt dWt.

We recognize St as the level σ exponential martingale of Definition 7.19 on p.131. We obtain a new
proof that St is a martingale from the fact that dSt = σSt dWt reveals this process as a stochastic
integral with respect to Brownian motion,

St = S0 +

∫ t

0
σuSu dWu. �
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Theorem 8.7 (SCF2 Theorem 4.4.9 - Itô integral of a deterministic integrand). Let Ws, s = 0, be a

Brownian motion and let ∆s be a nonrandom function of time. Define It =
t∫

0

∆sdWs. For each t = 0, the

random variable It is normally distributed with expected value zero and variance
t∫

0

∆2
sds.

PROOF: See SCF2. �

Example 8.2 (SCF2 Example 4.4.10 - Vasicek interest rate model). Given is a filtered probability
space (Ω,F,Ft, P ) with a Brownian motion W = Wt. Assume that the interest rate R = Rt(ω) in a
market economy is modeled by the SDE

dRt =
(
α− βRt

)
dt + σ dWt,(8.22)

α, β, σ ∈]0,∞[ are positive and deterministic constants. We call this the Vasicek model.
The solution to this SDE is

Rt = e−βtR0 +
α

β
(1− e−βt) + σe−βt

t∫
0

eβsdWs.(8.23)

For a proof see SCF2. �

Example 8.3 (SCF2 Example 4.4.11 - Cox–Ingersoll–Ross (CIR) interest rate model). Given is a fil-
tered probability space (Ω,F,Ft, P ) with a Brownian motion W = Wt. Assume that the interest rate
R = Rt(ω) in a market economy is modeled by the SDE

dRt =
(
α− βRt

)
dt + σ

√
Rt dWt,(8.24)

α, β, σ ∈]0,∞[ are positive and deterministic constants. We call this the Cox–Ingersoll–Ross model.

E[Rt] = e−βtR0 +
α

β
(1− e−βt).(8.25)

This is the same expectation as in the Vasicek model.

V ar[Rt] =
σ2

β
R0(e−βt − e−2βt) +

ασ2

2β2
(1− 2e−βt + e−2βt).(8.26)

In particular,

lim
t→∞

V ar[Rt] =
ασ2

2β2
. �

�

For a proof see SCF2. �
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8.5 Exercises for Ch.8

Exercise 8.1. Let Wt be a Brownian motion, Yt an adapted process on a filtered probability space
(Ω,F,Ft, P ). Assume that the process X has dynamics

dXt = Y 2
t dWt; X0 = 16.

Compute E[X10].
Hint: Stochastic integrals with respect to Brownian motion are martingales. �

Exercise 8.2 (Björk exc-4.2). Let

Z(t) :=
1

Xt
, where Xt is an Itô process with differential dX(t) = αX(t)dt+ σX(t)dW (t).

Prove that Zt also is an Itô process by showing that this process has a differential of the form dZt =
Φtdt+ ΨtdWt for suitable processes Φt and Ψt.
Hint: Apply the Itô formula with the function f(x) = x−1. �

Exercise 8.3. Let α ∈ R. Compute E[eαWt ] by doing the following.
(1). Let Yt := eαWt . Use Itô’s formula with f(x) := eαx to obtain

Yt = 1 + 1
2α

2

∫ t

0
Yudu+ α

∫ t

0
YudWu.( A)

(2). Define m(t) := E[Yt]. Apply Fubini to (A) and then differentiate d
dt to show that t 7→ m(t)

satisfies the ODE (ordinary differential equation)

m′(t) = α2

2 m(t), m(0) = 1.( B)

(3). (B) shows that m(t) satisfy a relation of the kind y′ = cy, y(0) = 1. Convince yourself that
this means that y(x) = ecx and show that m(t) = eα

2t/2

(4). Now it is easy to compute m(t) = E[eαWt ] and thus finish the problem. �
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9 Black–Scholes Model Part I: The PDE

Introduction 9.1. This chapter is based on the finance application oriented aspects of GBM (geo-
metric Brownian motion) that were briefly mentioned in Remark 8.5 about generalized GBM (p.139)
and replicating portfolios for a continent claim given in Chapter 6.2 (The Binomial Asset Model).
There the dynamics of price of the risky asset developed as a binomial tree: price either was multi-
plied by an upward factor u with probability pu, or it was multiplied by a downward factor d with
probability pd.
The Black–Scholes market model has in common with the Binomial Asset Model that there is a
single risky asset (a stock) in addition to a single risk free asset (zero coupon bond or money market
account). We will study the dynamics of the discounted asset price and build a hedging portfolio
based on the idea that its value must match, at each point in time, the price of the contingent claim
it replicates. From this condition we will derive a (deterministic) partial differential equation for
the pricing function of the claim. �

9.1 Formulation of the Black–Scholes Model

Notations 9.1. I will stay in this chapter close to SCF2 Chapter 4.5 (Black–Scholes–Merton Equa-
tion). I often will just copy the theorems and propositions presented there and refer to the text as
far as the proofs are concerned.
I also will mostly use that book’s notation and doing so make it easier for you to relate the material
presented here to the SCF2 text even though I much prefer the notation of [3] Björk, Thomas: Ar-
bitrage Theory in Continuous Time which I used in Chapter 6 (Financial Models - Part 1) of these
lecture notes. The following table summarizes the most important differences.

Björk Shreve
St St price of the risky asset (stock, the underlying).
Bt N/A unit price of the riskless asset. In SCF2 it is always 1.
~Ht N/A portfolio (# of shares) vector for all assets.

xt = H
(0)
t N/A # of shares (= dollar value) of the riskless asset.

yt = H
(1)
t ∆t # of shares of the risky asset.

Vt Xt value process of the portfolio.
Π(t;X ) N/A price process of a contingent claim X .
N/A c(t, x) pricing function of a European call. c(t, St) equals Π(t;X ).
N/A p(t, x) pricing function of a European put. p(t, St) equals Π(t;X ).

The most likely exception to me trying to stick with SCF2 notation will occur with respect to port-
folio holdings and values, but since only two assets are involved, including the bank account, I will
use a modified Björk notation and write HB

t rather than H(0)
t for the number of shares (dollars) in

the bank account (B = Bank account) and HS
t (S = Stock) rather than H(1)

t for the number of shares
in the risky asset.

The portfolio value process thus will be occasionally written as follows.

Vt = HB
t + HS

t St. �
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Definition 9.1 (Black–Scholes Market Model).
The Black–Scholes market model consists of a time T > 0, a risk free asset (bank account) with
price process B = Bt, 0 5 t 5 T , a risky asset with price process S = St, 0 5 t 5 T , a simple
contingent claim X = Φ(ST ) with expiration date T , contract function Φ(x), and price process
Πt(X ), such that the following conditions hold.

dBt = rBt dt; B0 = 1;(9.1)
dSt = αSt dt + σSt dWt; S0 ∈ [0,∞[;α, σ ∈]0,∞[ ,(9.2)
X = Φ(ST ) (simple contingent claim),(9.3)

• c : [0, T ]× [0,∞[ (t, x) 7→ c(t, x) twice continuously differentiable such that

Π(t;X ) = c(t, St) (price process of X )(9.4)

• The market is efficient: No arbitrage portfolios. �

Remark 9.1.
(1) dBt = rBtdt; B0 = 1 is equivalent to Bt = ert, i.e., an account which pays continuously

compounded interest at rate r per unit time.
(2) Formula (9.2) states that St is GBM with constant, instantaneous mean rate of return α and

constant volatility σ. See Remark 8.5 on p.139. There are more general models (Defini-
tion 12.1 on p.170) in which the constants α and σ are replaced by measurable functions
α(t, x), σ(t, x) of time and the price of the risky asset:

dSt = α(t, St)St dt + σ(t, St)St dWt; S0 ∈ [0,∞[.

(3) The symbol c was chosen for the function c(t, x) to remain in sync with the SCF2 text where
only the example of a (European) call is used when deriving the PDE for that function is
derived. Note that this function must satisfy the terminal condition

c(T, ST ) = Π(T ;X ) = Φ(ST ).(9.5)

(4) Smoothness (the existence of partial derivatives of any order) is not really necessary for
c(t, x). It suffices that this be a C2 function, , i.e., all partial derivatives of order 2 exist and
are continuous.

(4) You should recall from Assumption 6.1 on p.94 that we have always assumed that the mar-
ket is free of arbitrage, in addition to some other assumptions such as complete liquidity, no
transaction costs and no bid–ask spread. �

9.2 Discounted Values of Option Price and Hedging Portfolio

Proposition 9.1. The budget equation for a self–financing portfolio strategy in a Black–Scholes market is

dXt = ∆tdSt + r
(
Xt −∆tSt

)
dt.(9.6)
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Further we have the following equation for the portfolio value dynamics.

dXt = rXtdt + ∆t(α− r)Stdt + ∆tσSt dWt.

= r(Xt − ∆tSt)dt + r∆tStdt + (α− r)∆tStdt + ∆tσSt dWt.
(9.7)

PROOF: See SCF2, Chapter 4.5.1 (Evolution of Portfolio Value). �

Remark 9.2. Formula (9.7) signifies that a portfolio value change dXt is composed of
a. An average underlying rate of return r on the bank account value Xt −∆tSt,
b. An average underlying rate of return r+ (α− r) = α on the risky asset investment in height

of ∆tSt. Since people will not take a greater risk investing in a stock than putting money in
the bank we should expect that α = r, thus (α − r) is a risk premium for investing in the
stock.

c. A volatility term ∆tσStdWt which is proportional to the size ∆tσSt of the stock investment.
�

Remark 9.3. Budget equations in the continuous case will be formulated by means of “stochastic
differentials” once we have the necessary tools from stochastic calculus, and they will look quite
different from formula (6.9). See Remark 6.6 on p.93 which follows the definition of a continuous
trading budget equation. �

Proposition 9.2. The discounted portfolio value d
(
e−rtXt

)
satisfies

d
(
e−rtXt

)
= ∆t(α− r) e−rtSt dt + ∆tσe

−rtSt dWt

= ∆t d
(
e−rtSt

)
.

(9.8)

PROOF: See SCF2, Chapter 4.5.1 (Evolution of Portfolio Value). �

Remark 9.4. Formula (9.8) shows that change in the discounted portfolio value has notthing to do
with a change in the bank account. It entirely depends on the change in the discounted stock price.
�

We now investigate the ramifications of the existence of a deterministic function c(t, x) in the defi-
nition 9.1 of the Black–Scholes Market Model such that Π(t;X ) = c(t, St).

Proposition 9.3. The price dynamics of the contingent claim are

dc
(
t, St

)
=

[
ct
(
t, St

)
+ αSt cx

(
t, St

)
+

1

2
σ2S2

t cxx
(
t, St

) ]
dt + σSt cx

(
t, St

)
dWt.(9.9)

Those of the discounted option price e−rtc
(
t, St

)
are

d
(
e−rtc(St)

)
= e−rt

[
− rc

(
t, St

)
+ ct

(
t, St

)
+ αSt cx

(
t, St

)
+

1

2
σ2S2

t cxx
(
t, St

) ]
dt

+ e−rtσSt cx
(
t, St

)
dWt.

(9.10)

PROOF: See SCF2, Chapter 4.5.2 (Evolution of Option Value). �
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9.3 The Pricing Principle in the Black–Scholes Market

According to the pricing principle (Theorem 6.1 on p.95) an arbitrage free price c(t, St) of the con-
tingent claim requires that a replicating portfolio with value process Xt satisfies

c(t, St) = Xt, for all trading times t.

This is equivalent to e−rtXt = e−rtc(t, St
)

for all t. In terms of differentials:

d
(
e−rtXt

)
= d
(
e−rtc(t, St)

)
for all t,

X0 = c
(
0, S0

)(9.11)

We thus may equate the right hand sides of the formulas (9.8) and (9.10). We obtain after canceling
the factor e−rt everywhere and omitting the argument (t, St) of the function c and its derivatives
ct, cx, cxx,

∆tσSt dWt + ∆t(α− r)St dt

= σSt cx dWt +
[
− rc + ct + αSt cx +

1

2
σ2S2

t cxx

]
dt.

(9.12)

Since evolution with respect to dt is fundamentally different of that with respect to dWt it is allowed
to separately equate first the dWt terms and then the dt terms of formula (9.12). We first equate the
dWt terms and obtain after canceling σe−rtSt the

delta–hedging rule:

∆t = cx
(
t, St

)
for all t ∈ [0, T [.(9.13)

At each time t prior to expiration, the number of shares ∆t held by the hedging portfolio of the
short option position is the delta of the option price c(t, St) at that time.

Definition 9.2 (Delta (Greek)). For a contingent claim X in the Black–Scholes market with the func-
tion (t, x) 7→ c(t, x) yielding the price process Πt(X ) = c(t, St) we call the partial derivative of c(t, x)
with respect to stock price x,

delta :=
∂c

∂x
,(9.14)

the delta of the claim. Delta is one of the so called greeks of the claim. �

We next equate the dt terms of formula (9.12). We just proved that ∆t = cx(t, St), thus

cx(α− r)St = −rc + ct + αSt cx +
1

2
σ2S2

t cxx.

We cancel the term αStcx on both sides:

−rcxSt = −rc + ct +
1

2
σ2S2

t cxx.
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We reorder those terms and obtain

(9.15) rc = ct + rcxSt +
1

2
σ2S2

t cxx.

We bring back the arguments (t, St) and recall that the pricing principle asks that all equations we
have encountered must hold for all t:

r c
(
t, St

)
= ct

(
t, St

)
+ rSt cx

(
t, St

)
+

1

2
σ2S2

t cxx
(
t, St

)
for all t ∈ [0, T [,

together with the expiration time condition c(T, ST ) = Φ(ST ) of formula (9.5).
We summarize our findings. The pricing principle lets us demand that the pricing function of a
simple claim X = Φ(ST ) be function c(t, x) of time t and stock price x that solves the

Black–Scholes partial differential equation

ct(t, x) + rx cx
(
t, x) +

1

2
σ2x2cxx(t, x) = r c

(
t, x
)
, x = 0,(9.16)

subject to the terminal condition

c(T, x) = Φ(ST ).(9.17)

We use the equations V H
t = Xt = c(t, St and ∆t = cx(t, St) to express the hedging portfolio for the

claim X purely in terms of the claim pricing function.

~Ht =
(
c(t, St) − cx(t, St), cx(t, St)

)
(9.18)

In other words, at time t this portfolio invests c(t, St) − cx(t, St) in the bank and holds cx(t, St)
shares of the risky asset.

Remark 9.5. Observe that we only are concerned with stock price parameter x > 0 since St > 0 is
a GBM. Thus, if we can prove that the solution c(t, x) is continuous for all 0 5 t 5 T satisfies the
PDE just for 0 5 t 5 T and x = 0 then we are fine snce continuity of t 7→ c(t, St) and t 7→ Xt for
0 5 t 5 T implies that the hedge equation Xt = c(t, St) extends from 0 5 t < T to t = T , and the
boundary condition c(T, x) = Φ(x) yields XT = Φ(XT ).
To summarize, it is enough to show that the Black–Scholes PDE holds for all x = 0 and t ∈ [0, T [ �

9.4 The Black–Scholes PDE for a European Call

The Black–Scholes PDE (9.16) on p.146 is a purely deterministic PDE, and it can be solved by exclu-
sively using tools from the theory of partial differential equations which do not rely on probability
theory.
We need more knowledge of Itô calculus, in particular, the construction of martingale measures,
before we will solve this PDE. Obviously probability theory plays a heavy role there. Here we
simply present the solution for the special case of a European call, i.e., a simple contingent claim X
with contract function

Φ(x) = c(T, x) = (x−K)+.
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Remark 9.6. Here are two conditions specific to the European call.
a. In the case of a European call the solution of the Black–Scholes PDE must satisfy the following
boundary condition for stock price x = 0.

c(t, 0) = 0 for all t ∈ [0, T ].(9.19)

This is true for the following reason. Formula (9.16) states that y(t) := c(t, 0) satisfies the ODE

y′ = ry; thus y(t) = const · ert.

We obtain const by setting t = 0: y(0) = const · 1, i.e., const = y(0) = c(0, 0). Thus

c(t, 0) = c(0, 0) ert for all 0 5 t 5 T .(A)

K = 0, thus c(T, 0) = Φ(0) = (0−K)+ = 0. From (A): 0 = c(T, 0) = c(0, 0)erT .
But expiration T > 0, thus erT > 0, thus c(0, 0) = 0.
We use (A) once more: c(0, 0) = 0 ⇒ c(t, 0 = 0 · ert = 0 for all t.
In summary: c(t, 0 = 0 for all t.
B. This solution not only satisfies the initial condition c(t, 0) = 0 for all t which we had deduced in
Remark 9.6 above but also the growth condition

lim
x→∞

(
c(t, x) − (x− er(T−t)K)

)
= 0 for all t ∈ [0, T ].(9.20)

Since x − er(T−t)K is constant in x this condition implies that the value c(t, x) of the call option
grows at the same rate as x as x→∞. It will thus exceed the strike price K by a significant amount
for large x and it is very likely that this will remain true as t approaches T . Since it is very unlikely
for large x that ST −K < 0, i.e.,

(ST − K)+ 6= St − K,

(the holder of the option will almost certainly be in the money, i.e., make a profit), it should not
come as a surprise that the price for a European call approaches that of a claim with contract func-
tion Φ(x) = x −K. You may recall from Definition 6.3 on p.88 that this was the contract function
for a forward contract with strike price K. �

Without proof for now:

Theorem 9.1. The solution to the Black–Scholes partial differential equation (9.16) with terminal condition
(9.17), zero stock price condition (9.19), and growth condition (9.20) is

c(t, x) = xN
(
d+(T − t, x)

)
− Ke−r(T−t)N

(
d−(T − t, x)

)
, 0 5 t < T, x > 0,(9.21)

where

d±(τ, x) =
1

σ
√
τ

[
log

x

K
+

(
r ± σ2

2

)
τ

]
,(9.22)
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and N is the cumulative standard normal distribution

N(y) =
1√
2π

y∫
−∞

e−
z2

2 dz =
1√
2π

∞∫
−y

e−
z2

2 dz.(9.23)

PROOF: Will be given later, in Theorem ?? on p.??. �

Remark 9.7. We will sometimes write BSM(τ, x;K, r, σ) for c(t, x) (where τ = T − t, i.e., t = T − τ ).

We call BSM(τ, x;K, r, σ) the Black–Scholes–Merton function. Then (9.21) becomes

BSM(τ, x;K, r, σ) = xN
(
d+(τ, x)

)
− Ke−r τN

(
d−(τ, x)

)
,(9.24)

In this formula, τ and x denote the time to expiration and the current stock price, respec-
tively. The parametersK, r, and σ are the strike price, the interest rate, and the stock volatil-
ity, respectively. �

Remark 9.8. There is various software to calculate the parameters for Black–Scholes contract func-
tions Here are some links that were active as of April 16, 2021.

a. Magnimetrics Excel implementation:
https://magnimetrics.com/black-scholes-model-first-steps/

b. Drexel U Finance calculator:
https://www.math.drexel.edu/~pg/fin/VanillaCalculator.html

b. EasyCalculation.com:
https://www.easycalculation.com/statistics/black-scholes-mode.php �

9.5 The Greeks and Put–Call Parity

This chapter is largely a summary of SCF2 ch.4.5.5 and 4.5.6.
We assume for all of this chapter that we have a Black–Scholes market with interest rate r, instan-
taneous mean rate of return α, and volatility σ. All those are asumed to be constant. We further
assume that r = 0 and σ > 0.
We denote by F (t, x) the pricing function for a simple claim X with contract function Φ(x):

F (t, St) = Πt(X ).

For people working in finance it often matters greatly how stable or volatile the function this pricing
function is with respect to

1. changes in the price St of the underlying asset, i.e., changes in x,
2. changes in the interest rate r and the volatility σ.

Those changes are given by the derivatives of F . As far as derivatives with respect to r and σ are
concerned we can examine F with respect to a variety of values of r and σ, i.e., we can think of F
as a function

F̃ : (t, x, r, σ) 7→ F̃ (t, x, r, σ).

So we really mean, e.g., ∂F̃∂r when we write ∂P
∂r .
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Definition 9.3 (Björk Def.9.4: Greeks).
The following derivatives are part of what is known as the Greeks of the function F .

∆ =
∂F

∂x
delta(9.25)

Γ =
∂2F

∂x2
gamma(9.26)

ρ =
∂F

∂r
rho(9.27)

Θ =
∂F

∂t
theta(9.28)

ν =
∂F

∂σ
vega �(9.29)

Remark 9.9. When reading SCF2 you might get the impression that those Greeks only exist for the
pricing function c(t, x) of a European call but that is not so.

• One can replace c(t, x) with the pricing function F (t, x) of any simple contigu-
ous claim in the Black–Scholes market where the underlying asset has a geometric
Brownian motion as price process.

• In particular the Greeks exist for puts and forward contracts. �

Having stated that the Greeks are defined for all simple claims, the following formulas are specific
for the pricing function c(t, x) of a European call.

Proposition 9.4. The following is true for the Greeks of a European call.

delta = cx(t, x) = N
(
d+(T − t, x)

)
,(9.30)

gamma = cxx(t, x) =
1

σx
√
T − t

N ′
(
d+(T − t, x)

)
,(9.31)

theta = ct(t, x) = −rK e−r(T−t)N
(
d−(T − t, x)

)
− σx

2
√
T − t

N ′
(
d+(T − t, x)

)
.(9.32)

Because both the cumulative distribution functionN(x) densityN ′(x) of a standard normal random variable
are always strictly positive, Delta and Gamma are strictly positive and Theta is strictly negative.

PROOF: Not given here. Those proofs are just an exercise in differentiation. �

The delta hedging rule allows us to compute the replicating portfolio for a simple contract in the
Black–Scholes market.

Proposition 9.5. Let ~Ht =
(
HB
t , H

S
t

)
be the hedging portfolio for a simple claim with pricing function

F (t, x). Thus HB
t denotes the number of shares, i.e., dollars, in the bank account, and HS

t denotes the
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number of shares held in the risky asset (stock). Take note that this one incident where we do not use SCF2
notation (he writes Xt for HS

t )!
The following is true if it is known (or hypothesized) that St = x.

V H
t = F (t, x),(9.33)

HB
t = F (t, x)− x · Fx(t, x),(9.34)

HS
t = Fx(t, x).(9.35)

PROOF: Formula (9.33) is just the pricing principle which says that the value of a replicating port-
folio must always match the price of the option it replicates.
Formula (9.35) is the delta hedging rule which states the number of shares in the underlying (risky)
asset is the derivative of the pricing function F with respect to stock price, evaluated at x = St.

Formula (9.34) just reflects the simple fact that, since the hedge ~H is self–financing, whatever is not
invested in the underlying is in the bank.

HB
t = V H

t − St · V S
t , i.e., HB

t = F (t, x) − x · Fx(t, x)). �

Remark 9.10. The hedging portfolio tells us what amounts must be invested in bank account and
the underying by someone who holds a short position in the claim, i.e., someone who sold the
claim at t = 0 and wants to be able to have the funds available at t = T to deliver the derivative to
the buyer.
In the specific case of a European call option HS

t = cx(t, St) is positive. See Proposition 9.4. We thus
have the following.

• To hedge a short position in a European call, one needs to hold shares in the under-
lying and must borrow money from the bank to buy those shares.

• To hedge a long position in a Eoropean call, one must do the opposite, hold a posi-
tion of minus cx(t, St shares of stock (i.e., have a short position in stock) and invest,
assuming St = x, HB

t = c(t, x)−xcx(t, x) = Ke−r(T−t)N(d−) in the money market
account. See formula (9.30). �

We defined in Definition 6.3 on p.88 a forward contract as a simple claim with contract function
Φ(x) = x−K.

Proposition 9.6. We write f(t, x) for the pricing function of the forward contract. It is computed as follows.

f(t, x) = x− e−r(T−t)K.(9.36)

PROOF: Assume that this forward contract is sold at time zero for a price of f
(
0, S0

)
= S0− e−rTK.

Then a bank loan of e−rTK will allow the seller to buy a share of the underlying We look at the
portfolio strategy ~H = (HB, HS which thus has been established at t = 0 by the short sale of the
foward contract, i.e.,

HB
0 = −e−rTK, HS

0 = 1.
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This is a static hedge, i.e., there will be no further trades until time of expiration T . Note though
that the amount owed to the bank will increase due to compounded interest owed on the loan. At
time t the interest factor will be ert, thus the portfolio value is

V H
t = −ert · e−rTK + St = St − e−r(T−t)K.

In particular, at expiration time T , the portfolio value is

V H
T = ST − e−r(T−t)K = ST − K = Φ(ST ).

This static hedge thus is a replicating portfolio for the forward contract. It follows from the pricing
principle that

f(t, St) = V H
t = St − e−r(T−t)K for all 0 5 t 5 T. �

Associated with a forward contract is its forward price Fort, the fair price for this contract if it was
to be re-evaluated at a later time 0 5 t 5 T .

Definition 9.4 (Forward price). The forward price Fort of the underlying asset at time t is that value
of K for which the forward contract has value zero at time t.

Remark 9.11.
A. Given our assumption of a constant interest rate, Fort satisfies the equation

(9.37) St − e−r(T−t) Fort = 0. �

B. Note that For0 = K. This should not come as a surprise. Both parties in the contract will agree at
t = 0 to a strike price which does not give one of them an advantage over the other.
C. We solve formula (9.37) for Fort and obtain

Fort = er(T−t)St.(9.38)

D. Note that, for a given time t,

the forward price Fort is NOT the price (or value) f(t, St) of a forward contract. �

We recall from Definition 6.3 on p.88 that a European put with strike price K is a simple claim with
contract function Φ(x) = (K − x)+. It is an option to sell, rather than buy, a share of the underlying
at price K. Thus such an option generates a profit K − ST ) if share price at expiration is below K,
and it is worthless otherwise.
In the following we will write p(t, x) rather than F (t, x) for the pricing process of a European put
option.

We relate puts and calls by mean of the following simple identity.

Lemma 9.1. For any real number α,

α = α+ − (−α)+.(9.39)
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PROOF:

Case 1 : α = 0 ⇒ α+ = α, (−α)+ = 0 ⇒ α+ − (−α)+ = α − 0 = α.

Case 2 : α < 0 ⇒ α+ = 0, (−α)+ = −α ⇒ α+ − (−α)+ = 0 − (−α) = α. �

Corollary 9.1.

f
(
T, ST

)
= ST −K = (ST −K)+ − (K − ST )+ = c

(
T, ST

)
− p

(
T, ST

)
.

the contract function of a forward contract with strike price K coincides with that of a portfolio that
is long one European call and short one European put.

PROOF: This is an immediate consequence of Lemma 9.1. �

Proposition 9.7 (Put–call parity). We write, for one and the same strike price K,
• c(t, x) for the pricing function of a European call,
• p(t, x) for the pricing function of a European put,
• f(t, x) for the pricing function of a forward contract.

Then the following formula is satisfied:

Put–call parity:

f(t, x) = c(t, x) − p(t, x), for all x = 0, 0 5 t 5 T.(9.40)

PROOF: We apply the pricing principle to the formula p
(
T, ST

)
= c

(
T, ST

)
− f

(
T, ST

)
which is

immediate from Corollary 9.1 and obtain

p(t, x) = c(t, x) − f(t, x), for all x = 0, 0 5 t 5 T. �

Proposition 9.8. The pricing function p(t, x) of a European put with strike price K satisfies

p(t, x) = x
(
N
(
d+(T − t, x)

)
− 1
)
− Ke−r(T−t)

(
N
(
d−(T − t, x)

)
− 1
)

= Ke−r(T−t)N
(
− d−(T − t, x)

)
− x

(
N
(
− d+(T − t, x)

)
,

(9.41)

PROOF: This follows from put–call parity, the explicit formulas (9.21) and (9.22) for c(t, x) (see
p.147), and formula (9.36) on p.150 for f(t, x). �

9.6 Miscellaneous Notes About Some Definitions in Finance

In this chapter we list some financial terms that are mentioned in SCF2 without ever having been
formally defined. It will be continually in flow and its references thus are subject to change in newer
editions of these lecture notes.
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Remark 9.12.
The following is based on the Investopedia link http://www.math.fsu.edu/~pkirby/mad2104/
SlideShow/s2_1.pdf (Long Position vs. Short Position: What’s the Difference?).
SCF2 will deal a ot with hedges of short and long positions. Here is my understanding:

(a) A “(short option) hedging portfolio” is a portfolio ~h = (hB, hS) meant to hedge a
short position in the (call) option. Note that I am short an option and NOT a share
of the underlying: I have sold such an option and now use that portfolio to hedge
that sale, i.e., V ~ht (ω) = c

(
t, St(ω)

)
.

(b) A “long position in a call option” is one where I have bought such an option, and
I now want to create a portfolio ~h = (hB, hS) to hedge this long position. Note that
I am hedging the purchase of an option and NOT of a share of the underlying, i.e.,
V
~h
t (ω) = −c

(
t, St(ω)

)
. �

9.7 Exercises for Ch.9

None at this time!
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10 Multidimensional Stochastic Calculus

We generalize in this chapter the results of Chapter 8 (One–Dimensional Stochastic Calculus)

This chapter is very sketchy as far as proofs are concerned since the material follows extremely closely that of
SCF2 Chapter 4.6.

10.1 Multidimensional Brownian Motion

Definition 10.1 (Multidimensional Brownian Motion). Given are a filtered probability space
(Ω,F,Ft, P ) and d ∈ N.

A d–dimensional Brownian motion is a vector–valued stochastic process

~Wt =
(
W

(1)
t ,W

(2)
t . . . ,W

(d)
t

)
with the following properties.

(1) Each W (j)
t is a one–dimensional Brownian motion.

(2) If i 6= j, then the processes W (i)
t and W

(j)
t are independent, i.e., the σ–algebras

σ
(
W

(i)
t : t = 0

)
and σ

(
W

(j)
t : t = 0

)
are independent.

(3) The process ~Wt is Ft–adapted, i.e., the random vector ~Wt is Ft–measurable for
each t = 0.

(4) Future increments are independent of the past: If t = 0andh > 0 then the vector
~Wt+h − ~Wt is independent of Ft. �

Remark 10.1. SinceW (j) is a Brownian motion for each j = 1, . . . , d, all results derived for Brownian
motion apply to each one of those coordinate processes. In particular,

(1) [W (j),W (j)]t = t,
(2) dW

(j)
t dt = dtW

(j)
t = 0 and dW

(j)
t dW

(j)
t = t, �

Definition 10.2 (Cross variation). ?

Given are two adapted processes Xt and Yt on a filtered probability space (Ω,F,Ft, P ). Let T > 0
and Π := 0 = t0 < t1 < · · · < tk = T a partition of [0, T ]. We call the random variable

CΠ[X,Y ]T :=

n−1∑
k=0

(Xtk+1
− Xtk) (Ytk+1

− Ytk)

the sampled cross variation of X and Y on [0, T ] with respect to Π.
If there is a stochastic process Z = Zt such that

lim
‖Π‖→0

E
[
(CΠ[X,Y ]T − ZT )2

]
= 0

for all T > 0 then we write [X,Y ]t for Zt and call the process [X,Y ]t the cross variation of X and
Y . �
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Remark 10.2. Note that if X = Y then the process [X,X]t is the quadratic variation of X . �

Theorem 10.1. Let ~Wt =
(
W

(1)
t ,W

(2)
t . . . ,W

(d)
t

)
be a d–dimensional Brownian motion on a filtered proba-

bility space (Ω,F,Ft, P ) (d ∈ N). Let i and j be two integers such that 1 5 i < j 5 d. Then[
W (i),W (j)

]
t

= 0.

PROOF: See SCF2 ch.4.6.1. �

Theorem 10.2. Let ~Wt =
(
W

(1)
t ,W

(2)
t . . . ,W

(d)
t

)
be a d–dimensional Brownian motion on a filtered proba-

bility space (Ω,F,Ft, P ) (d ∈ N). Let i and j be two integers such that 1 5 i, j 5 d and i 6= j. Then

dW (i) dW (j) = 0.

PROOF: This can be shown with help of Theorem 10.1 on p.155. See SCF2 ch.4.6. for details. �

10.2 The Multidimensional Itô Formula

One can generalize The Itô formula which computes the differential f(t,Xt) to more than one Itô
process Xt, each of which is driven by a d–dimensional Brownian motion in the sense of the next
definition.

Definition 10.3. ?

Let ~Wt =
(
W

(1)
t ,W

(2)
t . . . ,W

(d)
t

)
be a d–dimensional Brownian motion on a filtered probability space

(Ω,F,Ft, P ) (d ∈ N).
We call a process Xt an Itô process driven by ~W if X has dynamics

dXt = Θt dt +
d∑
j=1

σj(t) dW
(j)
t = Θt dt + σ1(t) dW

(1)
t + . . . σd(t) dW

(d)
t ,

X0 = x,

(10.1)

for suitable adapted and sufficiently integrable processes Θt and ~σ(t) =
(
σ1(t) . . . , σn(t)

)
. In inte-

grated form (10.1) is equivalent to

Xt = x +

∫ t

0
Θu du +

d∑
j=1

∫ t

0
σj(u) dW (j)

u . �(10.2)

All this can be written more compactly if we extend the “bullet notation” ~x • ~y from vectors to
differentials and integrals as follows.

Notations 10.1. Let n ∈ N. If ~Γt =
(
Γ

(1)
t , . . . ,Γ

(n)
t

)
and ~At =

(
A

(1)
t , . . . , A

(n)
t

)
are vector valued

stochastic processes for which the expressions
t∫

0

Γ
(j)
u dA

(j)
u exist then we define

~Γt • d ~At :=
n∑
j=1

Γ
(j)
t dA

(j)
t ,

∫ t

0

~Γu • d ~Au :=

n∑
j=1

∫ t

0
Γ(j)
u dA(j)

u , �

(10.3)
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With this notation we can rewrite (10.1) and (10.2) as follows.

dXt = Θt dt + ~σ(t) d ~Wt; X0 = x,

Xt = x +

∫ t

0
Θu du +

∫ t

0
~σ(u) d ~Wu. �

Remark 10.3. It should be mentioned that Itô’s Lemma not only generalizes to d–dimensional Brow-
nian motions for d > 2 but also to functions

f(t, ~x) = f(t, x1, x2, . . . , xn)

in which each dummy argument xk can be replaced by an Itô process

dX
(k)
t = Θ

(k)
t dt +

d∑
j=0

σkj(t) dW
(j)
t ;

X
(k)
0 = x

(k)
0 .

We will not do that but rather follow SCF2 and limit ourselves to two Itô processes X and Y , which
are driven by a twodimensional Brownian motion. �

Notations 10.2. From now on we assume that ~Wt =
(
W

(1)
t ,W

(2)
t

)
is a twodimensional Brownian

motion and that Xt and Yt are the following Itô processes, driven by ~Wt.

dXt = Θ1(t) dt + σ11(t) dW
(1)
t + σ12(t) dW

(2)
t ,

dYt = Θ2(t) dt + σ21(t) dW
(1)
t + σ22(t) dW

(2)
t .

(10.4)

The integrands Θi(u) and σij(u) are adapted processes. We integrate and get

Xt = x0 +

t∫
0

Θ1(u) du +

t∫
0

σ11(u) dW (1)
u +

t∫
0

σ12(u) dW (2)
u ,

Yt = y0 +

t∫
0

Θ2(u) du +

t∫
0

σ21(u) dW (1)
u +

t∫
0

σ22(u) dW (2)
u .

(10.5)

Theorem 10.3. The multiplication rules for the multidimensional Itô calculus are

dt dt = 0, dt dW
(i)
t = 0,

dW
(i)
t dW

(i)
t = t, dW

(i)
t dW

(j)
t = 0 for i 6= j.
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PROOF: This follows from the onedimensional case (see Remark 7.15 on p.129), together with The-
orem 10.1 on p.155. �

Remark 10.4. The multiplication tables make computation of the differential dXtdYt of two Itô
processes Xt and Yt a trivial affair. For example, if those processes are given by (??) then

dXt dXt =
[
d
(
Θ1(t) dt + σ11(t) dW

(1)
t + σ12(t) dW

(2)
t

)]2
= Θ1(t)2dt dt + Θ1(t)dt σ11(t) dW

(1)
t + Θ1(t)dt σ12(t) dW

(2)
t

+ · · ·+ σ12(t)2 dW
(2)
t dW

(2)
t

Only two of those nine terms survice, those with differentials
dW

(1)
t dW

(1)
t = dt and dW (2)

t dW
(2)
t = dt. Thus

dXt dXt = σ11(t)2 dt + σ12(t)2 dt.

Here is one more example.

dXt dYt = Θ1(t)Θ2(t)dt dt + Θ1(t)dt σ21(t) dW
(1)
t + Θ1(t)dt σ22(t) dW

(2)
t

+ · · ·+ σ12(t)σ22(t) dW
(2)
t dW

(2)
t

Again only the two terms with differentials dW (1)
t dW

(1)
t and dW (2)

t dW
(2)
t are not zero. Thus

dXt dYt = σ11(t)σ21(t) dt + σ12σ22 dt. �

Here is the Itô formula for a sufficiently smooth function f(t, x, y) of time t and two more param-
eters which will accept two Itô processes driven by a twodimensional Brownian motion. This is
SCF2 Theorem 4.6.2

Theorem 10.4 (Two–dimensional Itô formula). Let f(t, x, y) be a function whose partial derivatives
ft, fx, fy, fxx, fxy, fyx, and fyy exist and are continuous. Let Xt and Yt be Itô processes driven by a two–
dimensional Brownian motion. The process (t, ω) 7→ f

(
t,Xt(ω), Yt(ω)

)
then has the dynamics

df
(
t,Xt, Yt

)
= ft

(
t,Xt, Yt

)
dt + fx

(
t,Xt, Yt

)
dXt + fy

(
t,Xt, Yt

)
dYt

+
1

2
fxx
(
t,Xt, Yt

)
dXtdXt + fxy

(
t,Xt, Yt

)
dXtdYt

+
1

2
fyy
(
t,Xt, Yt

)
dYtdYt.

(10.6)

PROOF: Omitted. �

Remark 10.5. Here is the Itô formula with integrals rather than differentials.
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f
(
t,Xt, Yt

)
− f

(
0, X0, Y0

)
=

t∫
0

[
σ11(u) fx

(
u,Xu, Yu

)
+ σ21(u) fy

(
u,Xu, Yu

)]
dW1(u)

+

t∫
0

[
σ12(u) fx

(
u,Xu, Yu

)
+ σ22(u) fy

(
u,Xu, Yu

)]
dW2(u)

+

t∫
0

[
ft
(
u,Xu, Yu

)
+ Θ1(u) fx

(
u,Xu, Yu

)
+ Θ2(u) fy

(
u,Xu, Yu

)
+

1

2

(
σ2

11(u) + σ2
12(u)

)
fxx
(
u,Xu, Yu

)
+
(
σ11(u)σ21(u) + σ12(u)σ22(u)

)
fxy
(
u,Xu, Yu

)
+

1

2

(
σ2

21(u) + σ2
22(u)

)
fyy
(
u,Xu, Yu

)]
du

(10.7)

Even though this version of the Itô formula is mathematically more precise than (10.6) it is harder
to remember and more cumbersome to use. Here is the other extreme, with all arguments of the
tunction f(t, x, y) and its partial derivatives omitted.

df
(
t,X, Y

)
= ft dt + fx dX + fy dY

+
1

2
fxx dXt dXt + fxy dXt dYt +

1

2
fyy dYt dYt. �

(10.8)

The following is arguably the most useful application of the multidimensional Itô formula.

Corollary 10.1 (Itô product rule). If Xt and Yt are two Itô processes then

d
(
Xt Yt

)
= Xt dYt + Yt dXt + dXt dYt.(10.9)

PROOF: We apply formula (10.8) with f(t, x, y) = xy. Then ft = 0, fx = y, fy = x, fxx = 0, fxy = 1,
and fyy = 0. The corollary follows easily. �

10.3 Lévy’s Characterization of Brownian Motion

Brownian motion Wt is characterized by the following.
• Wt is an Ft–martingale.
• W0 = 0 a.s.
• t 7→Wt(ω) is continuous a.s.
• Wt has quadratic variation [W,W ]t = t a.s.
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A theorem by the french mathematician Paul Pierre Lévy (1886–1971) shows that a stochastic pro-
cess Mt with those properties is in fact a Brownian motion, i.e., those properties guarantee that
future increments Wt+h−Wt are independent of Ft and they have a normal distribution with mean
zero and variance h.
d–dimensional Brownian motion ~Wt is characterized by the following.

• each coordinate W (j)t is a (onedimensional) Brownian motion.
• Different coordinate processes W (i) and W (j) are independent and they have

cross variation zero.
The multidimensional version of Lévy’s theorem proves that the reverse is true. Any process ~Mt

with those two properties is a d–dimensional Brownian motion.

first we state the onedimensional version. This is SCF2 Theorem 4.6.4

Theorem 10.5 (Lévy’s characterization of onedimensional Brownian Motion). Let Mt, t = 0, be a
martingale relative to a filtration Ft, t = 0. Assume thatM0 = 0,Mt has continuous paths, and [M,M ]t = t
for all t = 0. Then Mt is a Brownian motion.

PROOF: ? An outline of the proof can be found in SCF2. We just summarize the major steps.

(1) The following can be defined and proven with a continuous martingale Mt such
that M0 = 0 in place of a Brownian motion Wt. • Itô integrals

∫
0tZudMu, We

have the same multiplication rules

dt dt = dt dMt = dMt dt = 0, dMt dMt = t.

The last rule results from [M,M ]t = t.
• Itô processesXt = X0+

∫ t
0 ∆udMu+

∫ t
0 Θudu driven by a continouus martingale

Mt, • The Itô formula for the differential df(t,Xt) where Xt is an Itô process
driven by a continouus martingale Mt,

(2) Fix u ∈ R. The Itô formula is applied to the function

f(t, x) := exp

[
ux − 1

2
u2t

]
.

with the result that
E
[
euMt

]
= e

1
2
u2t.

(3) ThusMt has the same MGF as a Brownian motionWt, i.e., it is Brownian motion.
�

(4) Finally the independence of the increments Mt+h −Mt and Ft must be shown
for all t, h = 0. �

And this is the multidimensional version of Lévy’s theorem (SCF2 Theorem 4.6.5).

Theorem 10.6 (Lévy’s characterization of multidimensional Brownian Motion). Let the process ~Mt =(
M

(1)
t , . . . ,M

(d)
t

)
have continuous Ft–martingales M (j)

t as its coordinate processes. Assume further that
~M0 = 0, that the quadratic variations satisfy [M (j),M (j)]t = t for all j, and that the cross variations

[M (i),M (j)]t are zero for i 6= j. then ~Mt is a d–dimensional Brownian motion. In particular, the processes
M

(1)
t , . . . ,M

(d)
t are independent Brownian motions.
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PROOF: ? An outline of the proof can be found in SCF2 for d = 2. The idea is similar to that
of the onedimensional case. Make again use of the fact that the Itô formula applies to Itô processes
driven by continuous martingales and apply it, for fixed ~u = (u1, . . . , ud), to the function

f(t, x1, . . . , xd) := exp

 d∑
j=1

ujxj −
1

2
t

d∑
j=1

u2
j


to prove that the joint moment–generating functions of ~Mt and ~Wt are identical. This not only
implies that each coordinate process M (j)

t is a Brownian motion (it better be since that is part of our
assumptions) but also that this MGF factors and thus those processes are independent. We again
refer to SCF2 for further detail. �

The next proposition is a reformulation of SCF2 Example 4.6.6 (Correlated stock prices).

Proposition 10.1. ?

Assume that ~Wt =
(
W

(1)
t ,W

(2)
t

)
is a two–dimensional Brownian motion and that S(1)

t and S(2)
t are two

stocks with dynamics

dS
(1)
t = α1S

(1)
t dt + σ1S

(1)
t dW

(1)
t ,

dS
(2)
t = α2S

(2)
t dt + σ2S

(2)
t

[
ρ dW

(1)
t +

√
1− ρ2 dW

(2)
t

]
,

where σ1, σ2 > 0 and −1 5 ρ 5 1 are constant.
(1) Then the process

W ∗t := ρW
(1)
t +

√
1− ρ2W

(2)
t .

is a Brownian motion.
(2)

dS
(2)
t = α2S

(2)
t dt + σ2S

(2)
t dW ∗t ,

i.e., not only S(1)
t but also S(2)

t is a GBM with the same constants α2 and σ2.
(3) W

(1)
t and W ∗t have correlation ρ for all t. Thus those two processes are not independent.

Thus
(
W

(1)
t ,W ∗t

)
is not a twodimensional Brownian motion.

PROOF:
W ∗t is a continuous martingale as the sum ofcontinuous martingales and W ∗0 = 0. Further,

dW ∗t dW
∗
t = ρ2 dW

(1)
t dW

(1)
t + 2ρ

√
1− ρ2 dW

(1)
t dW

(2)
t + (1− ρ2) dW

(2)
t dW

(2)
t

= ρ2 dt + (1− ρ2) dt = dt.

Thus [W ∗,W ∗]t = t and assertion (1) follows from Theorem 10.5 (Lévy’s characterization of onedi-
mensional Brownian Motion).
Assertion (2) is true by definition of W ∗t and since we just proved that this process is a Brownian
motion.
To prove assertion (3) we compute Cov[W 1

t ,W
∗
t ]. Since dW (1)

t dW
(2)
t = 0,

dW
(1)
t dW ∗t = dW

(1)
t

(
ρ dW

(1)
t +

√
1− ρ2 dW

(2)
t

)
= ρ dW

(1)
t dW

(1)
t +

√
1− ρ2 dW

(1)
t dW

(2)
t = ρ dt.
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We integrate and take expectation and obtain

W
(1)
t W ∗t =

∫ t

0
W (1)
u dW ∗u +

∫ t

0
W ∗u dW

(1)
u + ρt.

Since the Itô integrals on the right–hand side are martingales,

E

[∫ t

0
W (1)
u dW ∗u

]
= E

[∫ 0

0
W (1)
u dW ∗u

]
= 0, and E

[∫ t

0
W ∗u dW

(1)
u

]
= E

[∫ 0

0
W ∗u dW

(1)
u

]
= 0.

From this and E[W 1
t ] = E[W ∗t ] = 0 we conclude that

Cov[W
(1)
t ,W ∗t ] = E[W

(1)
t W ∗t ] = ρt.

Assertion (3) follows since Var[W (1)
t ] = Var[W ∗t = t] �

10.4 Exercises for Ch.??

None at this time!
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11 Girsanov’s Theorem and the Martingale Representation Theorem

11.1 Conditional Expectations on a Filtered Probability Space

For all of this chapter let (Ω,F,Ft, P ) be a filtered probability space.

The following combines both SCF2 Lemma 5.2.1 and SCF2 Lemma 5.2.2.

Proposition 11.1. Let Z be a nonnegative random variable on a filtered probability space (Ω,F,Ft, P ) such
that E[Z] = 1 and P{Z = 0} = 0. Let P̃ be the measure with density Z w.r.t. P , i.e.,

P̃ (A) =

∫
A
Z(ω) dP (ω).

In other words, Z is the Radon–Nikodým derivative dP̃
dP . See Chapter 4.6 (Equivalent Measures and the

Radon–Nikodým Theorem). Then P̃ is a probability measure which is equivalent to P , i.e.,

P (A) = 0 ⇔ P̃ (A) = 0.

We write Ẽ for the expectation of a random variable Y w.r.t. P̃ , i.e.,

Ẽ(Y ) =

∫
Ω
U dP̃ .

For the following assume that t, h ∈ [ 0,∞ [ and that Y is an Ft–measurable random variable.
Let Zt := E[Z | Ft] Then the following relations hold.

Ẽ[Y ] = E[Y Zt],(11.1)

Ẽ
[
Y |Ft] =

1

Zt
E[Y Zt+h |Ft](11.2)

PROOF: ?

A. We show that P̃ is a probability measure which is equivalent to P .

P̃ (Ω) =

∫
Ω
Z dP = E[Z] = 1.

This proves that P̃ is a probability measure. Let A ∈ F such that P̃ (A) = 0. To show P̃ ∼ P we only
must prove that P (A) = 0 since P̃ � P on account of Proposition 4.13 on p.70.
Let Z ′ := (1/Z)1Z>0. Then

0 = P̃ (A) =

∫
A

1 dP =

∫
A
ZZ ′ dP +

∫
A

1 · 1Z=0 dP =

∫
A
ZZ ′ dP + 0

=

∫
(1AZ

′)Z dP =

∫
1AZ

′ dP̃ =

∫
A
Z ′ dP̃ = 0.

The last equality follows from Proposition 4.13, applied to µ := P̃ and f := Z ′. We have shown that
all P̃–null sets are P–null sets, thus P ∼ P̃ .
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B. Proof of (11.1). We use in sequence

• the definition of P̃ : dP̃ = ZdP ,
• iterated conditioning
• the “taking out what is known” rule
• the definition of Zt:

Ẽ[Y ] = E[Y Z] = E
[
E[Y Z |Ft] |

]
= E

[
Y E[Z |Ft]

]
= E[Y Zt]. �

C. Proof of (11.2). To prove that 1
Zt
E[Y Zt+h |Ft] is the conditional expectation of Y w.r.t. Ft and P̃

(not P !) we must show that
(1) 1

Zt
E[Y Zt+h |Ft] is Ft–measurable,

(2) 1
Zt
E[Y Zt+h |Ft] satisfies the partial averaging property

(A)
∫
A

1

Zt
E[Y Zt+h |Ft] dP̃ =

∫
A
Y dP̃ for all A ∈ Ft.

(1) is trivially since E[· · · | Ft] enforces Ft–measurability.
To prove (2) we first note that formula (11.1) with 1A

1
Zt
E[Y Zt+h |Ft] in place of Y yields

Ẽ

[
1A

1

Zt
E[Y Zt+h |Ft]

]
= E

[
1A

1

Zt
E[Y Zt+h |Ft] · Zt

]
= E

[
1AE[Y Zt+h |Ft]

]
,(B)

and when we apply it with 1AY in place of Y and Zt+h in place of Zt then we obtain

Ẽ[1AY ] = E[1AY Zt+h].(C)

To prove (A) we write∫
A

1

Zt
E[Y Zt+h |Ft] dP̃ = Ẽ

[
1A

1

Zt
E[Y Zt+h |Ft]

]
(B)
= E

[
1AE[Y Zt+h |Ft]

]
= E

[
E[1AY Zt+h |Ft]

]
= E

[
1AY Zt+h

] (C)
= Ẽ[1AY ] =

∫
A
Y dP̃ .

Here we have used the “taking out what is known” rule tobtain the equation after (B) and the
iterated conditioning rule for the equation that follows it. We have shown that (A) is satisfied. �

11.2 Onedimensional Girsanov and Martingale Representation Theorems

The following is SCF2 Theorem 5.2.3.

Theorem 11.1 (Girsanov’s Theorem in one dimension). Let T > 0 and let (Ω,F,Ft, P ) a filtered prob-
ability space where the filtration members Ft and all stochastic processes that are used in this theorem only
need to exist for 0 5 t 5 T . Let Wt, be a Brownian motion on this filtered space and let Θt, be an adapted
process which satisfies the integrability condition

? E

 T∫
0

Θ2
u Z

2
u du

 <∞.(11.3)
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where the process Zt is defined in terms of Θt by formula (11.4) below.

Let

Zt := exp

−
t∫

0

Θu dWu −
1

2

t∫
0

Θ2
u du

 ,(11.4)

P̃ (A) :=

∫
A
ZT dP for all A ∈ FT i.e., ZT =

dP̃

dP
,(11.5)

W̃t = Wt +

t∫
0

Θu du, i.e., dW̃t = dWt + Θt dt.(11.6)

Then P̃ is a probability equivalent to P and W̃t, 0 5 t 5 T , is a Brownian motion w.r.t. P̃ .

PROOF ? : See the proof of SCF2 Theorem 5.2.3. �

Remark 11.1. ?

Strictly speaking it is not correct to write ZT = dP̃
dP in (11.5) because the domain of the probability

measure P is all of F and P̃ only has domain FT . Rather, we have

ZT =
dP̃

dP
∣∣
FT

,

where P
∣∣
FT

is the restriction of the function P : F → [0, 1] to FT . See the formulation of Theorem
5.1 (Existence Theorem for Conditional Expectations) on p.82. �

Remark 11.2. The importance of the Girsanov theorem with respect to mathematical finance lies in
the following. We will see later that if stock price is a generalized GBM

dSt = αtSt dt + σtSt dWt, 0 5 t 5 T.(11.7)

and we have a discount process with an interest rate Rt which can be stochastic (adapted):

Dt = exp

[
−
∫ t

0
Rs ds

]
,(11.8)

(see Definition 6.5 on p.91), and if we define an adapted process Θt to be the so called market price
of risk,

Θt =
αt −Rt
σt

,(11.9)

then the discounted stock price has the dynamics

d (DtSt) = σtDtSt
[
Θtdt + dWt

]
.(11.10)
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We apply Girsanov theorem and substitute Wt with the Brownian motion W̃t of formula (11.6) in
that last equation. We obtain

d (DtSt) = σtDtSt dW̃t

]
.(11.11)

Itô calculus is defined for any Brownian motion and all its theorems are in force. Thus the process
DtSt is a martingale with respect to the probability P̃ , hence,

DtSt = Ẽ[DTST | Ft].(11.12)

Now let us switch to self–financing portfolios

~Ht =
(
HB
t , H

S
t

)
=
(
Xt −∆tSt,∆t

)
Here we have given both the notion of MF454 Chapter 6 (Financial Models - Part 1) and SCF2:
Recall that SCF2 writes ∆t for the shares HS

t held in the stock and Xt for the portfolio value V H
t .

From (11.12) it will follow that the discounted portfolio value process has dynamics

d
(
DtXt

)
= ∆tσtDtSt dW̃t.(11.13)

Thus DtXt also is a P̃–martingale. We obtain

DtXt = Ẽ[DTXT | Ft].(11.14)

Now we get to the really important part. If we have a contingent claim X with pricing process
Πt(X ) and ~H is a replicating (thus self–financing) portfolio, i.e., it is a hedge for that claim, i.e.,
XT = X . Then of course DTXT = DTX and the pricing principle which results from the no
arbitrage condition implies that

Xt = Πt(X ), hence DtXt = DtΠt(X ) for 0 5 t 5 T.(11.15)

We have found the long sought after pricing formula for a contingent claim based on a risky asset
with generalized GBM as its price process St. It follows from (11.14) and (11.15) that

Πt(X ) =
1

Dt
Ẽ[DTXT | Ft].(11.16)

This formula will be used, e.g., to derive the formula (9.21) of Theorem 9.1 on p.147 which gives the
explicit solution for the price process c(t, x) of a European call.
Before we get to develop the program outlined here we need some more theory to close the follow-
ing gap. Formulas (11.15) and (11.16) hold for hedging portfolios of a contingent claim. But what
claims are reachable? The martingale representation theorem which we will discuss next can be
used to prove that all claims can be hedged if the information for the stock price St is contained in
that of the driving Brownian motion Wt. �

We have seen that being a martingale represents a very strong condition concerning what such a
process can look like. Lévy’s characterization of onedimensional Brownian Motion (Theorem 10.5
on p.159) tells us that if a martingale has continuous paths, starts at zero and has the quadratic
variation of Brownian motion then it is in fact a Brownian motion. What we will see next is that any
martingale Mt with initial condition M0 = 0 which is adapted to the filtration FWt of a Brownian
motion Wt is an Itô integral Mt =

∫ t
0 ΓudWu for some suitable adapted process Γt.

The following is SCF2 Theorem 5.3.1.
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Theorem 11.2 (Martingale representation, one dimension).

Let T > 0. Assume that
• Wt, 0 5 t 5 T is a Brownian motion on a probability space (Ω,F, P ),
• FWt , 0 5 t 5 T is the filtration generated by this Brownian motion,
• Mt, 0 5 t 5 T , is a martingale with respect to this filtration:
◦ for every t, Mt is FWt –measurable,
◦ E[Mt |FWs ] = Ms, for all 0 5 s 5 t 5 T.

Then there exists an adapted process Γu, 0 5 u 5 T , such that

Mt =M0 +

∫ t

0
Γu dWu, 0 5 t 5 T.(11.17)

PROOF: Will not be given here. It also cannot be found in SCF2. �

Remark 11.3.

If the assumptions of the martingale representation hold then all martingales are continu-
ous since they are Itô integrals. This has some undesirable consequences.
If we want to model stock prices St which can jump at certain times without losing the very
important property that the disounted stock price DTSt is a martingale and sufficiently
many claims can be hedged then we need to include stochastic information, i.e., uncertainty,
different from or besides that of Brownian motion.

We will not get to that point in this course but note that this is done in SCF2 Chapter 11 (Introduction
to Jump Processes) in which stock price is driven by (generalized) Poisson processes in addition to
Brownian motion. �

We add the assumption Ft = FWt to Girsanov’s Theorem 11.1. This results in the following corollary
(SCF2 Corollary 5.3.2).

Corollary 11.1. Let T > 0 and let Wt, be a Brownian motion on a probability space (Ω,F, P ) Let Θt, be an
adapted process w.r.t. the filtration FWt , 0 5 t 5 T , i.e., the filtration generated by Wt (!) which satisfies the
integrability condition

? E

 T∫
0

Θ2
u Z

2
u du

 <∞.(11.18)
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• Let Zt := exp

−
t∫

0

Θu dWu −
1

2

t∫
0

Θ2
u du

 ,

• P̃ (A) :=

∫
A
ZT dP for all A ∈ FT , i.e., ZT =

dP̃

dP
,

• W̃t = Wt +

t∫
0

Θu du, i.e., dW̃t = dWt + Θt dt .

• Let M̃t, 0 5 t 5 T , be an FWt –martingale under P̃ (not P !)
Then there exists an FWt –adapted process Γ̃u, 0 5 u 5 T , such that

M̃t =M̃0 +

∫ t

0
Γ̃u dW̃u, 0 5 t 5 T.(11.19)

PROOF: Will not be given here. Just one comment. More needs to be done than just combining
Girsanov’s Theorem with the Martingale Representation Theorem since the process Mt is a P̃–
martingale with respect to a filtration FWt , and this filtration is not generated by a P̃–Brownian
motion but by the P–Brownian motion Wt ! �

Remark 11.2 on p.164 showed the significance of Girsanov’s Theorem and alluded to that of the
martingale representation theorem when modeling contingent claims with one underlying risky
asset. 11.1. We need multidimensional versions of those theorems to model claims with several
underlying risky assets.

11.3 Multidimensional Girsanov and Martingale Representation Theorems

We will use in this chapter the bullet notation for stochastic integrals
∫ t

0
~Γu • d ~Au and differentials

~Γt • d ~At which was introduced in Notations 10.1 on p.155.

The following is SCF2 Theorem 5.4.1.

Theorem 11.3 (Girsanov’s Theorem in multiple dimensions). Let T > 0 and let (Ω,F,Ft, P ) be a
filtered probability space where the filtration members Ft and all stochastic processes that are used in this
theorem only need to be defined for 0 5 t 5 T . Let ~Wt be a multidimensional Brownian motion

~Wt =
(
W

(1)
t , . . . ,W

(1)
t

)
(thus the coordinate processes Wi(t) are independent). w.r.t. the filtration Ft, 0 5 t 5 T . Let

~Θt =
(
Θ

(1)
t , . . . ,Θ

(1)
t

)
be a d–dimensional adapted process which satisfies the integrability condition

? E

 T∫
0

‖~Θu‖22 Z2
u du

 <∞.(11.20)
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Here ‖~x‖2 is the standard Euclidean norm in Rd. See Example 7.4 on p.124.

Let

Zt := exp

−
t∫

0

~Θu • d ~Wu −
1

2

t∫
0

‖~Θu‖2 du

 ,(11.21)

P̃ :A 7→
∫
A
ZT dP, i.e., ZT =

dP̃

dP
,(11.22)

~̃
Wt = ~Wt +

t∫
0

~Θu du, i.e., d
~̃
Wt = d ~Wt + ~Θt dt.(11.23)

Then P̃ is a probability equivalent to P and ~̃
Wt, 0 5 t 5 T , is a Brownian motion w.r.t. P̃ .

Note that the vector equations in 11.23 are to be understood componentwise:

W̃
(j)
t = W

(j)
t +

t∫
0

Θ(j)
u du, i.e., dW̃

(j)
t = dW

(j)
t + Θ

(j)
t dt for j = 1, . . . , d.

PROOF ? : Will not be given here. �

Remark 11.4. The following aspect of the multidimensional Girsanov Theorem deserves special

mention. ~̃
Wt being a d–dimensional Brownian motion implies that its component processes W̃ (j)

t

are independent w.r.t. the new probability P̃ . This is not at all an obvious consequence of the fact
that the components of the original Brownian motion ~W are independent under the probability P .
�

Next comes the multidimensional version of Theorem 11.2 (Martingale representation, one dimen-
sion) on p.166. This is SCF2 Theorem 5.4.2.

Theorem 11.4 (Martingale representation theorem, multiple dimensions). Let T be a fixed positive
time, and assume that

• ~Wt, 0 5 t 5 T is a d–dimensional Brownian motion on a probability space (Ω,F, P ),
• F

~W
t , 0 5 t 5 T is the filtration generated by this Brownian motion,

• Mt, 0 5 t 5 T , is a (one–dimensional) P–martingale with respect to this filtration.

Then there is an adapted d–dimensional process ~Γu =
(
Γ1(u), . . . ,Γd(u)

)
, 0 5 u 5 T , such that

Mt =M0 +

∫ t

0

~Γu • d ~Wu, 0 5 t 5 T.(11.24)

We now assume in addition to the assumptions stated so far the notation and assumptions of Girsanov’s
Theorem in multiple dimensions (Theorem 11.3). Then the following also is true.
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Let M̃t, 0 5 t 5 T , be a (one–dimensional) P̃–martingale with respect to F
~W
t , 0 5 t 5 T , the

filtration generated by the original Brownian motion ~Wt. Here P̃ is the probability from Girsanov’s

Theorem, equivalent to P , which makes the process ~̃Wt defined by

dW̃
(j)
t = dW

(j)
t + Θ

(j)
t dt and W̃

(j)
t = 0 for j = 1, . . . , d,

an F
~W
t –Brownian motion.

Then there is an adapted d–dimensional process ~̃Γu =
(
Γ̃

(1)
u , . . . , Γ̃

(d)
u

)
, 0 5 u 5 T , such that

M̃t =M̃0 +

∫ t

0

~̃
Γu • d

~̃
Wu, 0 5 t 5 T.(11.25)

PROOF: Will not be given here. �

11.4 Exercises for Ch.11

11.4.1 Exercises for xxx2

None yet
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12 Black–Scholes Model Part II: Risk–neutral Valuation

In this chapter we elaborate on Remark 11.2 which gave an outline of how Girsanov’s Theorem
(Theorem 11.1 would be crucial in pricing a contingent claim.

12.1 The Onedimensional Generalized Black–Scholes Model

In Chapter 9 (Black–Scholes Model Part I: The PDE), Definition 9.1 on p.143 stated the classical
assumptions of a Black–Scholes market economy. They are rather restrictive. For example, the
instantanous mean rate of return and volatility that are part of the dynamics of the risky asset price
St are assumed to be constant. We weaken those assumptions for most of this entire chapter 12.

Definition 12.1 (Generalized Black–Scholes market model). Let T > 0 and let (Ω,F,Ft, P ) be a
filtered probability space We only assume that the filtration Ft and all stochastic processes that will
be defined later exist for times 0 5 t 5 T Let Wt, 0 5 t 5 T , be a Brownian motion w.r.t Ft.
We no more requrie that the instantaneous mean rate of return α, the volatility σ of the risky asset
St, and the interest rate r that governs investments in the bank account are constant. Instead we
assume the following.

• Let Dt, St, Rt, αt, σt be Ft adapted processes.
• Assume that σt 6= 0 a.s. for any given t.

• Let Θt :=
αt − Rt

σt
, and Zt := e

−
t∫
0

Θu dWu− 1
2

t∫
0

Θ2
u du

. Assume that

(12.1) E

[ ∫ T

0
Θ2
u Z

2
u du

]
< ∞,

We speak of a generalized Black–Scholes market model if
dDt = −RtDt dt; D0 = 1;(12.2)
dSt = αtSt dt + σtSt dWt; S0 ∈ ]0,∞[ ;αt, σt ∈]0,∞[ ;(12.3)

The market is efficient: No arbitrage portfolios.(12.4)

• We interpret Dt as the discount process associated with a riskless asset (bank account): As-
sume that an investment will pay the amount 1 (dollar) at the future time t. Then it’s worth
today, at t = 0, only is the amount Dt, since this amount could be invested in the bank in-
stead where it would increase to 1 due to interest compounded at the rate Rt.

• We interpret St as the price process associated with a risky asset (e.g., stock). �

Remark 12.1. First some remarks about the process Dt.
(1) From (12.2) we obtain

(12.5) Dt = exp

[
−
∫ t

0
Rudu

]
.

This follows easily from differentiating the right hand side with respect to t.

170 Version: 2021-05-17



Math 454 – Additional Material Student edition with proofs

(2) We could have worked instead with the interest rate process

dBt = RtBtdt; B0 = 1, i.e., Bt = exp

[∫ t

0
Rudu

]
=

1

Dt

but usingDt instead will make it easier to relate the contents of this chapter to the SCF2 text.

Also be aware of the following.
(3) Formula (12.3) states that St is a generalized GBM with instantaneous mean rate of return

αt and volatility σt for which we have the explicit representation

(12.6) St = exp

 t∫
0

σudWu +

t∫
0

(
αu −

1

2
σ2
u

)
ds

 ,
See Remark 8.1 on p.138, the subsequent Remark 8.5, and (8.15) on p.138. .

(4) It was not necessary to explicitly require the adaptedness of the processes St and Dt. For-
mula (12.2) (equivalently, formula (12.5)) implies that, as far as measurability is concerned,
Dt only depends on the adapted processRs for s 5 t, and thus only on information in Ft, i.e.,
Dt is adapted. We conclude similarly that formula (12.3) (equivalently, formula (12.6)) im-
plies that measurability of St only depends on the adapted process Ws. Thus St is adapted.

(5) Recall from Assumption 6.1 on p.94 that we always assume that, besides being free of arbi-
trage, the market has complete liquidity, no transaction costs and no bid–ask spread. �

Remark 12.2. The degree of uncertainty, i.e., the risk of investing in the bank account is qualitatively
much smaller than that of investing in the stock for the following reasons.
Only the randomness of the process Rt within a small interval [t, t + h] affects that of the change
Dt+h −Dt. This results in quadratic variation [D,D]t = 0 since dtdt = 0, thus

dDt dDt = (−RtDt dt) (−RtDt dt) = R2
tD

2
t dt dt = 0

In contrast the randomness of σt within [t, t+h] is multiplied by that of the increments of the Brown-
ian moption Wt which are so unpredictable that they result in a quadratic variation [W,W ]t 6= 0. As
a consequence the nonzero volatility σt results in fluctuations of St which too are so unpredictable
that [S, S]t 6= 0. We see this from the dynamics of St:

dSt dSt = α2
tS

2
t dt dt + 2αtσtS

2
t dt dWt + σ2

t S
2
t dWt dWt = σ2

t S
2
t dt

From Itô isometry we obtain the strictly positive expression

[S, S]t+h − [S, S]t =

∫ t+h

t
σ2
uS

2
u du.

In the words of SCF2,

Unlike the price of the money market account, the stock price is susceptible to instantaneous
unpredictable changes and is, in this sense, “more random” than Dt. Our mathematical
model captures this effect because St has nonzero quadratic variation, while Dt has zero
quadratic variation. �
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Formula (11.9) of Remark 11.2 on p.164 already introduced the market price of risk. Here is the
formal definition.

Definition 12.2. For the generalized Black–Scholes market economy of Definition 12.1 on p.170,

the market price of risk. is the process

Θt =
αt −Rt
σt

,(12.7)

Note that Θt is adapted as the difference and quotient of adapted processes. �

Remark 12.3. The assumption (12.1) on p.170,

(12.8) E

[ ∫ T

0
Θ2
u Z

2
u du

]
< ∞,

will allow us to apply Girsanov’s Theorem to the market price of risk process. �

12.2 Risk–Neutral Measure in a Generalized Black–Scholes Market

Assumption 12.1.

We assume for the entire remainder of this Chapter 12 (Black–Scholes Model Part II: Risk–
neutral Valuation) that we have a generalized Black–Scholes market as defined in Definition
12.1 on p.170. �

Introduction 12.1. We recall definitions (6.13) on p.99 and (6.16) on p.102 of the binomial asset
model in which we defined a risk–neutral measure, also called there a martingale measure, as a
probability measure Q equivalent to the “true” probability which made discouned stock price DtSt
a Q–martingale. To see that, observe that the (not continuously) compounded interest earned be-
tween times t and t+ k (k ∈ N) in the bank is (1 +R)k, thus the discount factor is

Dt =
1

(1 +R)k
.

We are now in a position to prove with the help of Girsanov’s Theorem the existence of a risk–
neutral measure for a generalized Black–Scholes market. �

Definition 12.3 (Risk–neutral measure).

A risk–neutral measure P̃ for our generalized Black–Scholes economy, also called a mar-
tingale measure, is the following.

(1) P̃ is a probability measure on FT , i.e., P̃ (A) need only be defined for events A ⊆ Ω
which belong to FT

(2) P̃ ∼ P , i.e., P̃ and P are equivalent on FT :
If A ∈ FT then P̃ (A) = 0 ⇔ P (A) = 0.

(3) Discounted stock price DtSt is a P̃–martingale w.r.t. the filtration Ft. �
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Proposition 12.1. The discounted stock price has the following dynamics and explicit representation.

d (DtSt) =
(
αt − Rt

)
DtSt dt + σtDtSt dWt(12.9)

DtSt = S0 exp


t∫

0

σs dWs +

t∫
0

(
αs − Rs −

1

2
σ2
s

)
ds

 ,(12.10)

In other words, discounting St transforms this generalized GBM with instantaneous mean rate of
return αt and volatility σt into another generalized GBM with reduced instantaneous mean rate of
return αt −Rt and unchanged volatility σt.

We further can express d(DtSt) with help of the market price of risk process Θt given in (12.7) as follows.

d (DtSt) = σtDtSt
(
Θt dt + dWt

)
.(12.11)

PROOF: Formula (12.10) is obtained by multiplying the right hand sides of (12.5) and (12.6).
We replace in the formulas (8.18) on p.138 and (8.21) on p.139 which αt with αt−Rt and this proves
that the dynamics of the generalized GBM (12.9) are, in fact, given by (12.10).
Formula (??) follows immediately from (12.10) because αt −Rt = Θtσt. �

As a consequence of Girsanov’s Theorem we can prove the existence of a risk–neutral measure.

Theorem 12.1. Let the process Zt(0 5 t 5 T ) be defined as follows.

Zt := exp

−
t∫

0

Θu dWu −
1

2

t∫
0

Θ2
u du

 ,

Here Θt is the market price of risk process, Θt =
αt −Rt
σt

, of Definition 12.2 on p.172. Then

• the measure P̃ : A 7→
∫
A
ZT (ω) dP (ω) (A ∈ FT ) is a probability on FT and P̃ ∼ P .

• The process W̃t = Wt +

t∫
0

Θu du, equivalently, dW̃t = dWt + Θt dt and W̃0 = 0 ,

is an Ft–Brownian motion w.r.t the new probability measure P̃ .
• Discounted stock price DtSt is a P̃–martingale.

PROOF: We may apply Theorem 11.1 (Girsanov’s Theorem in one dimension) on p.163 to the market
price of risk process Θt since (12.1) implies that the integrability condition (11.3) of that theorem is
satisfied. The only item that is not an immediate consequence of Theorem 11.1 is the assertion that
DtSt is a P̃–martingale.

We see this by substituting dW̃t = dWt + Θtdt into formula (12.11). We obtain

d (DtSt) = σtDtSt
(
dW̃t

)
,

i.e., DtSt = S0 +

∫ t

0
σuDuSu dW̃u.

(12.12)
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We are allowed above to write S0 for D0S0 because D0 = e−
∫ 0
0 Rudu = e0 = 1. Since W̃t is an Ft–

Brownian motion under P̃ , DtSt is the sum of the F0–measurable constant S0 and a P̃–Itô integral
of an Ft–Brownian motion, hence it is a P̃–martingale w.r.t to Ft. �

Corollary 12.1 (Existence of a risk–neutral measure).

• The probability measure P̃ of Theorem 12.1 is a risk–neutral measure for the generalized
Black–Scholes market in he sense of Definition 12.3 on p.172.

• The dynamics of discounted stock price when using W̃t instead of Wt are

(12.13) d (DtSt) = σtDtSt
(
dW̃t

)
.

PROOF: Formula (12.13) was established in the proof of Theorem 12.1. The remainder is an obvious
consequence of that theorem. �

Remark 12.4. Note the following.

• (12.13) holds true both under the “real” probability P and the risk–neutral probability P̃ !
It just so happens that the Θtdt part of dW̃t = dWt + Θtdt prevents DtSt from being a
martingale with respect to P unless Θt = 0, i.e., αt = Rt, for 0 5 t 5 T .

• Think of the above as follows. We may assume that the risk premium αt − Rt in the real
market, i.e., under the real world probability P , is positive on average. (See Remark 9.2
on p.144.) The redistribution of probability mass under risk–neutral probability P̃ has the
following effect. The upward trend of discounted stock price which happens under P as
a cause of the Θtdt term is neutralized by P̃ since this probability gives additional mass to
those ω for which αt < Rt, at the expense of those ω for which αt > Rt. �

12.3 Dynamics of Discounted Stock Price and Portfolio Value

We saw in Chapter 9.2 (Discounted Values of Option Price and Hedging Portfolio) that in a (clas-
sical) Black–Scholes market the budget equation for a self–financing portfolio is given by formula
(12.14) on p.174,

dXt = ∆tdSt + r
(
Xt −∆tSt

)
dt.

In the generalized Black–Scholes market we obtain dXt by replacing the constant interest rate r with
the varying interest rate Rt(ω).

Proposition 12.2. The budget equation for a self–financing portfolio strategy in a Black–Scholes market is

dXt = ∆t dSt + Rt
(
Xt −∆t St

)
dt(12.14)

Further we have the following equation for the portfolio value dynamics.

dXt = RtXt dt + ∆tσtSt
[

Θt dt + dWt

]
.(12.15)
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PROOF: Equation (12.14) is obvious. It just states that the number ∆t of shares held in the risky
asset increases by the change dSt inasset price, and the value of the bank account holdingsXt−∆tSt
changes during dt according to the interest rate, Rt.
We repeat here the proof of (12.15) as can be found in SCF2, Chapter 5.2.3 (Value of Portfolio Process
Under the Risk–Neutral Measure).

dXt = ∆t dSt + Rt
(
Xt −∆t St

)
dt

= ∆t

(
αtSt dt + σtSt dWt

)
+ Rt

(
Xt −∆t St

)
dt

= RtXt dt + ∆t

(
αt −Rt

)
St dt + ∆tσtSt dWt

= RtXt dt + ∆tσtSt
[

Θt dt + dWt

]
.

The last equation follows from αt −Rt = σtΘt. �

Proposition 12.3. The discounted portfolio value DtXt has dynamics

d
(
DtXt

)
= ∆tσtDtSt dW̃t.(12.16)

PROOF: Again we follow SCF2. To obtain d(DtXt) we use the Itô product rule

d(DtXt) = Dt dXt + XtdDt + dDt dXt.(A)

First we note that

dDtdXt = (−RtDtdt)
(
(RtXt + ∆tσtStΘt) dt + ∆tσtSt dWt

)
= 0,

because dtdt = 0 and dtdWt = 0. That plus dDt = −RtDtdt applied to (A) yields

d(DtXt) = Dt dXt − Xt(RtDtdt) + 0.

Next we apply (12.15) and obtain

d(DtXt) = Dt

(
RtXt dt + ∆tσtSt

[
Θt dt + dWt

])
− Xt(RtDtdt)

= DtRtXt dt + Dt∆tσtSt
[

Θt dt + dWt

]
−XtRtDtdt

= Dt∆tσtSt
[

Θt dt + dWt

]
.

This proves (12.15). �

It follows from Proposition 12.3 that DtXt is a martingale under P̃ , thus

DtXt = Ẽ[DTXT |Ft] = Ẽ[DTVT |Ft] for all 0 5 t 5 T.(12.17)

Now assume that Xt is the value of the hedging portfolio for a contingent claim X We follow SCF2
notation and write

VT instead of X , and Vt instead of Πt(X ),

to denote contract value and pricing function of a contingent claim.
It follows from the pricing principle that Vt = Xt and thus DtVt = DtXt must be satisfied to avoid
arbitrage. We obtain from Proposition 12.3 the following
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Corollary 12.2. Assume that Xt is the value process of a hedging portfolio for a contingent claim with price
process Vt (0 5 t 5 T ). Then

DtVt = Ẽ[DTVT |Ft], 0 5 t 5 T.

Vt = Ẽ
[
e−

∫ T
t RuduVT

∣∣∣Ft] , 0 5 t 5 T.

PROOF: The equation for DtVt results from this process being a P̃–martingale. The formula for Vt
is then obtained by noting that

DT = exp

(
−
∫ T

0
Ru du

)
= exp

(
−
∫ t

0
Ru du

)
exp

(
−
∫ T

t
Ru du

)
and observing that the exponential e−

∫ t
0 Ru du is Ft measurable and can be pulled out of the condi-

tional expectation. �

Definition 12.4 (Risk–neutral valuation formula). We call either one of the Corollary 12.2 formulas,

DtVt = Ẽ[DTVT |Ft], 0 5 t 5 T.(12.18)

Vt = Ẽ
[
e−

∫ T
t RuduVT

∣∣∣Ft] , 0 5 t 5 T.(12.19)

the risk–neutral pricing formula, also the risk–neutral valuation formula for a contingent
claim with contract function VT . �

12.4 Risk–Neutral Pricing of a European Call

Assumption 12.2. For this entire subchapter we assume the following.

• The instantaneous mean rate of return is constant: αt(ω) = α.
• The volatility is constant: σt(ω) = σ.
• The interest rate is constant: Rt(ω) = r.
• the derivative security payoff is VT = (ST −K)+. �

We now derive the Black–Scholes formula for the price of a European call. 22 Since the contract
function for a European call is

VT = Φ(ST ) = (ST − K)+,

22SCF2 does not ask that αt be constant, presumably because this variable does not directly show in the formula

c
(
t, St

)
= Ẽ

[
e−r(T−t)(ST −K)+

∣∣Ft ] .
But without that assumption St would not be a GBM, only a generalized GBM which would not be Markov since the
entire past enters the dynamics dSt = αtStdt+ σStdt.

176 Version: 2021-05-17



Math 454 – Additional Material Student edition with proofs

the right–hand side of the risk–neutral valuation formula (??) on p.?? reads

Ẽ
[
e−r(T−t)(ST −K)+

∣∣Ft ] .(12.20)

We are looking for a way to evaluate this expression only using data known at time t. This could be
accomplished if there was a function (t, x) 7→ c(t, x) of time t and stock price x such that

c
(
t, St

)
= Ẽ

[
e−r(T−t)(ST −K)+

∣∣Ft ] .(12.21)

There is hope to find such a function because the geometric Brownian motion St is a Markov pro-
cess, thus the right–hand side of (12.21) only depends on stock price St and time t, but not on the
stock price prior to time t.
To achieve that goal we fix a time 0 5 t 5 T and define

τ := T − t; Y := − W̃T − W̃t√
τ

.(12.22)

h(t;x, y) := e−rτ
(
x · exp

{
−σ
√
τy +

(
r − σ2

2

)
τ

}
− K

)+

.(12.23)

Note that Y is standard normal w.r.t. P̃ since W̃t, t = 0, is a P̃–Brownian motion.
We next provide three lemmas which have the following purpose.
• Lemma 12.1 shows that we can work with h(t;St, Y ) instead of e−rτ (ST −K)+.
• Lemma 12.2 gives the definition of c(t, x) in terms of h(t;x, y).
• Lemma 12.3 allows us to actually compute c(t, x). The result will be formula (9.21) of Theo-

rem ?? on p.147 where it was stated without proof.

Lemma 12.1. With the above definitions we can rewrite the risk–neutral valuation formula (12.20) for a
European call as follows.

Ẽ
[
e−rτ (ST −K)+

∣∣Ft ] = Ẽ
[
h(t;St, Y )

∣∣Ft ](12.24)

PROOF: According to (??) on p.??,

St = S0 exp


t∫

0

σs dW̃s +

t∫
0

(
Rsds −

1

2
σ2
s

)
ds

 = S0 exp

{
σ W̃t +

(
r − 1

2
σ2

)
t

}
.

For t = T we obtain similarly that ST = S0 exp
{
σ W̃T +

(
r − 1

2 σ
2
)
T
}

. Thus

ST
St

= exp

{[
σ W̃T +

(
r − 1

2
σ2

)
T

]
−
[
σ W̃t +

(
r − 1

2
σ2

)
t

]}
= exp

{
σ (W̃T − W̃t) +

(
r − 1

2
σ2

)
(T − t)

}
,
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thus

ST = St · exp

{
σ (W̃T − W̃t) +

(
r − 1

2
σ2

)
(T − t)

}
= St · exp

{
−στ −(W̃T − W̃t)

τ
+

(
r − 1

2
σ2

)
(T − t)

}
(12.22)

= St · exp

{
−στ Y +

(
r − 1

2
σ2

)
(T − t)

}
.

It follows from that equation for ST that

h(t;St, Y ) = e−rτ
(
St · exp

{
−σ
√
τY +

(
r − σ2

2

)
τ

}
− K

)+

= e−rτ (ST − K)+.

We apply conditional expectations Ẽ[· · · | Ft] to both sides and assertion (12.24) follows. �

We remember our goal: find a function (t, x) 7→ c(t, x) such that (12.21) holds:

c
(
t, St

)
= Ẽ

[
e−r(T−t)(ST −K)+

∣∣Ft ] .(12.25)

Lemma 12.1 allows us to reformulate this problem as follows: Let h(t;x, y) be the function given in
formula (12.23). We want to find a function (t, x) 7→ c(t, x) such that

c(t, St) = Ẽ
[
h(t;St, Y )

∣∣Ft ] .(12.26)

The next lemma shows how to define this function c(t, x).

Lemma 12.2. Let

c(t, x) := Ẽ[h(t;x, Y )].(12.27)

where h(t;x, y) is the function defined in (??). Then c(t, St) satisfies (12.26) and hence also the risk–neutral
pricing formula (12.21), i.e.,

c(t, St) = Ẽ
[
e−rτ (ST −K)+

∣∣Ft ] .(12.28)

PROOF: We fix 0 5 t 5 T . Since St is Ft–measurable and Y = −W̃T−W̃t√
τ

is, as a function of the

Brownian increment W̃T − W̃t, independent of Ft, it follows for each tixed 0 5 t 5 T from the
Independence Lemma (Lemma 5.3 on p.86) 23 that

c(t, St) = Ẽ
[
h(t;St, Y )

∣∣Ft ] .
23 There we wrote h(x, y) instead of h(t;x, y)

and g(x) = E[h(x, Y )] instead of c(t, x) = Ẽ[h(t;x, Y )]
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This proves the validity of (12.26). We apply Lemma 12.1 and (12.28) follows. �

We have shown that the function c(t, x) = Ẽ[h(t;x, Y )] allows us to price a European call option,
at time t, conditioned on the stock price St at that time, via the risk–neutral pricing formula

Vt = c
(
t, St

)
= Ẽ

[
e−r(T−t)(ST −K)+

∣∣Ft ] .(12.29)

It follows from the definition of h(t;x, y) given in (12.23) that

c(t, x) = Ẽ[h(t;x, Y )] = Ẽ

[
e−rτ

(
x · exp

{
−σ
√
τY +

(
r − σ2

2

)
τ

}
− K

)+
]
.

This is an ordinary expected value of a function which depends on ω only by means of the P̃–
standard normal random variable Z. This we have learned to work with and we are able to obtain
a concrete representation of c(t, x) by computing this expected value. We use again the symbols
d−(τ, x) and d+(τ, x) introduced in (??) on p.??:

d±(τ, x) =
1

σ
√
τ

[
log

x

K
+

(
r ± σ2

2

)
τ

]
,(12.30)

Lemma 12.3. The pricing function c(t, x) for a European call option is given by the formula

c(t, x) = xN
(
d+(τ, x)

)
− e−rτKN

(
d−(τ, x)

)
.(12.31)

PROOF: It is true for any random variable U with a P̃–density fU (u) and for any deterministic

(measurable) function u 7→ ϕ(u) that Ẽ[ϕ(U)] =
∞∫
−∞

ϕ(u)fU (u) du.

We apply this to the random variable Y which has density fY (y) = 1√
2π
e−y

2/y since it is standard
normal, and to the function h(t;x, Y ) of Y . We obtain

c(t;x)
(12.27)

= Ẽ[h(t;x, Y )] =

∞∫
−∞

h(t;x, y)
1√
2π

e−
y2

2 dy

(12.23)
=

1√
2π

∞∫
−∞

e−rτ
(
x · exp

{
−σ
√
τy +

(
r − σ2

2

)
τ

}
− K

)+

e−
y2

2 dy

Since the function u 7→ log(u) is strictly increasing: u < u′ ⇔ log u < log u′, and since always
e−rτ > 0, the integrand is positive (i.e., not zero) if and only if

log x +

{
−σ
√
τy +

(
r − σ2

2

)
τ

}
> logK

⇔ log x − logK +

(
r − σ2

2

)
τ > σ

√
τy

⇔ σ
√
τy <

log x

logK
+

(
r − σ2

2

)
τ

⇔ y <
1

σ
√
τ

[
log x

logK
+

(
r − σ2

2

)
τ

]
= d−(τ, x).

(12.32)
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Therefore

c(t, x) =
1√
2π

d−(τ,x)∫
−∞

e−rτ
(
x exp

{
−σ
√
τy +

(
r − 1

2
σ2

)
τ

}
− K

)
e−

1
2
y2 dy.

We can simplify

e−rτ x e−σ
√
τy+ (r− 1

2
σ2)τ = x e−rτ e−σ

√
τyerτ e−

σ2

2
τ = x e−σ

√
τy e−

σ2

2
τ

and obtain

c(t, x) =
1√
2π

d−(τ,x)∫
−∞

x exp

{
−y

2

2
− σ
√
τy − σ2τ

2

}
dy − 1√

2π

d−(τ,x)∫
−∞

e−rτKe−
1
2
y2 dy

=
x√
2π

d−(τ,x)∫
−∞

exp

{
−1

2
(y + σ

√
τ)2

}
dy − e−rτKN

(
d−(τ, x)

)

The last equation was obtained by replacing the integral
d−(τ,x)∫
−∞

e−
1
2
y2 dy over the standard normal

density with the CDF, N
(
d−(τ, x)

)
. Thus

c(t, x) =
x√
2π

d−(τ,x)+σ
√
τ∫

−∞

exp

{
−z

2

2

}
dz − e−rτKN

(
d−(τ, x)

)
= xN

(
d+(τ, x)

)
− e−rτKN

(
d−(τ, x)

)
.

We have proven formula (12.31). The last equation holds because, according to (12.30),

d+(τ, x) = d−(τ, x) + σ
√
τ

=
1

σ
√
τ

[
log

x

K
+

(
r +

1

2
σ2

)
τ

]
. �

(12.33)

We have thus given the proof of Theorem 9.1 on p.147 since the classical Black–Scholes market
condidions under which it was stated satisfy the assumptions 12.2 on p.176. The difference is that
the function c(t, x) was given there as the solution to the (deterministic) Black–Scholes PDE (9.16)

ct(t, x) + rx cx
(
t, x) +

1

2
σ2x2cxx(t, x) = r c

(
t, x
)
, x = 0,

with terminal condition

c(T, x) = (x − K)+,

whereas we derived the same function in this chapter as an application of the risk–neutral valuation
formula.
The next theorem just reformulates the results of the preceding lemmas.
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Theorem 12.2. We defined in Remark 9.7 on p. 148, for τ = T − t, i.e., t = T − τ ,

BSM(τ, x;K, r, σ) := c(t, x), where c(t, x) = xN
(
d+(τ, x)

)
− e−rτKN

(
d−(τ, x)

)
.(12.34)

If we redefine BSM (τ, x;K, r, σ) to be

BSM(τ, x;K, r, σ) = Ẽ

[
e−rτ

(
x exp

{
−σ
√
τY +

(
r − 1

2
σ2

)
τ

}
− K

)+
]
,(12.35)

where Y is a standard normal random variable under P̃ , then the following holds true:

BSM(τ, x;K, r, σ) =xN
(
d+(τ, x)

)
− e−rτKN

(
d−(τ, x)

)
.(12.36)

PROOF: Follows from the preceding Lemmas and the fact that the right–hand side of (12.36)
matches the definition of c(t, x) given in (12.34). �

12.5 Completeness of the Onedimensional Generalized Black–Scholes Model

We have seen in Corollary 12.2 on p.176 that any contingent claim that can be replicated can be
priced by means of the risk–neutral valuation formula.

Vt = Ẽ
[
e−

∫ T
t RuduVT

∣∣∣Ft] , 0 5 t 5 T.(12.37)

The question that has not been aswered is the following. What claims can be hedged? We will
explore that in this cnapter.
We assume that we operate in a generalized Black–Scholes market as was defined in Definition 12.1
on p.170, in particular, that the market price of risk process Θt is such that the integrability condition
(12.1) given in that definition is satisfied and thus Girsanov’s Theorem can be applied.

Assumption 12.3. We need to apply the martingale representation theorem and must make the
following additional assumptions.

The filtration Ft is generated by the Brownian motion Wt and F only contains information
generated that Brownian motion up to time T . In other words,

Ft = FWt = σ{Wu : u 5 t} for all 0 5 t 5 T,

F = FWT .

We have the following result. See SCF2, ch.5.3.2 (Hedging with One Stock).

Theorem 12.3 (Completeness of the onedimensional Generalized Black–Scholes market). Given the
additional assumptions 12.3, we have the following.
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The onedimensional Generalized Black–Scholes market is complete, i.e., every contingent claim can
be hedged. Further, the quantity ∆t of the replicating portfolio is given for any 0 5 t 5 T by either
of

∆tσtDtSt = Γ̃t,(12.38)

∆t =
Γ̃t

σtDtSt
.(12.39)

Here the process Γ̃t is implicitly defined by the equation

DtVt =V0 +

∫ t

0
Γ̃u dW̃u, 0 5 t 5 T,(12.40)

i.e., d(DtVt) = Γ̃t dW̃t 0 5 t 5 T.(12.41)

PROOF: We create the hedge ~Ht by first looking at the pricing function Vt of the claim X = VT that
the value process Xt of ~Ht must replicate for each t We then deduce from that the quantity ∆t of the
underlying risky asset (and thus the bank account holdings Xt − St∆t) for ~Ht.

Since ~H replicates X , the pricing principle mandates Xt = Vt for all t. From risk–neutral validation
(12.37) we obtain

Vt = Ẽ
[
e−

∫ T
t RuduVT

∣∣∣Ft] , 0 5 t 5 T.(12.42)

Since Vt = Xt, DtVt = DtXt. This plus the other risk–neutral validation formula which expresses
the fact that the discounted portfolio value DtXt is a P̃–martingale yields

DtVt = Ẽ
[
DTVT

∣∣∣Ft] , 0 5 t 5 T.(12.43)

It now follows from Corollary 11.1 (p.166) to the martingale representation theorem in one dimen-
sion that there exists an FWt –adapted process Γ̃u, 0 5 u 5 T , such that (12.40) holds. Here we made
use of the fact that

D0 = e−
∫ 0
0 Rudu = e0 = 1, hence, D0V0 = V0.

We compare (12.41) to formula (12.16) on p.175 for the differential of DtVt,

d
(
DtXt

)
= ∆tσtDtSt dW̃t.

Since σtDtSt > 0 as the product of three strictly positive quantities, we obtain the desired quantity
∆t for the number of shares of a hedge ~H for our claim if it is chosen by either of (12.38) or (12.39).
�

Remark 12.5. Note that the formulas for ∆t given in the preceding theorem are of no practical value
to compute this process since the process Γ̃t cannot be constructed: The martingale representation
theorem is an existence only theorem. �
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12.6 Multidimensional Financial Market Models

Assumption 12.4. For this entire subchapter we assume the following.
Given are a filtered probability space (Ω,F,Ft, P ), a d–dimensional Brownian motion

~Wt =
(
W

(1)
t ,W

(2)
t . . . ,W

(d)
t

)
w.r.t. the filtration Ft (d ∈ N), and m risky assets (stocks)

~AAA =
(
AAA (0),AAA (1), . . . ,AAA (n)

)
,

with stock prices ~St =
(
S

(1)
t , . . . , S

(m)
t

)
.

We assume that each stock price S(i)
t is driven by ~Wt, with dynamics

dS
(i)
t = α

(i)
t S

(i)
t dt + S

(i)
t

d∑
j=1

σij(t) dW
(j)
t , i = 1, . . . ,m,(12.44)

and that we have the usual discount process which is based on an adapted interest rate
process Rt.

dDt = −RtDt dt,D0 = 1, i.e., Dt = exp

(
−
∫ t

0
Ru du

)
.(12.45)

In the above we assume that the vector valued process ~αt =
(
α

(1)
t , . . . , α

(m)
t

)
which we call the mean

rate of return vector, vector and the matrix valued adapted process
(
σij(t)

)
i=l,...,m;j=l,...,d

which we
call the volatility matrix both are Ft–adapted processes.
We further define the processes

σ
(i)
t :=

√√√√ d∑
j=1

σij(t), i = 1, . . . ,m.(12.46)

B
(i)
t :=

d∑
j=1

∫ d

0

σij(u)

σ
(i)
u

dW (j)
u , i = 1, . . . ,m.(12.47)

ρik(t) :=
1

σ
(i)
t σ

(k)
t

d∑
j=1

σij(t)σkj(t). i, k = 1, . . . ,m.(12.48)

We also assume that σ(i)
t > 0 for all t. �

We have the following result.

Proposition 12.4. ? Each process Bt(i) is a Brownian motion. The multiplication table is

dB
(i)
t dB

(i)
t =

d∑
j=1

σ2
ij(t)

(σ
(i)
t )2

dt = dt, i = 1, . . . ,m,(12.49)

dB
(i)
t dB

(k)
t = ρik(t) dt i, k = 1, . . . ,m, i 6= k,(12.50)
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and the covariances are

Cov
[
B

(i)
t B

(k)
t

]
= E

∫ t

0
ρik(u) du.(12.51)

PROOF: See Chapter 5.4.2 (Multidimensional Market Model) in SCF2. �

Corollary 12.3. ? Consider the special case that the volatility matrix is constant in t and ω, allowing
us to write

σij := σij(t, ω), σ(i) := σ
(i)
t (ω).

A. Then the right hand side of (12.48) also is constant in t and ω and we can write

ρik := ρik(t) =
1

σ(i)σ(k)

d∑
j=1

σijσkj for i, k = 1, . . . ,m.

B. Further Cov
[
B

(i)
t , B

(k)
t

]
= ρik t and the correlation between B(i)

t and B(j)
t is ρik.

PROOF: ? Trivial. as far as constancy of ρik and the equation Cov
[
B

(i)
t , B

(k)
t

]
= ρik · t are

concerned The assertion about the correlation follows from

Var
[
B

(i)
t

]
= t for all i = 1, . . . ,m. �

Now some terminology.

Definition 12.5. ? When the volatility matrix is not constant in t and ω then we call ρik(t) =

ρik(t, ω) the instantaneous correlation between B(i)
t and B(k)

t .

Proposition 12.5. ? Given the dynamics (12.44) for ~St and (12.45) for Dt, the discounted stock price

vector Dt
~St has dynamics

d
(
DtS

(i)
t

)
= DtS

(i)
t

[ (
α

(i)
t −Rt

)
dt +

d∑
j=1

σij(t) dW
(j)
t

]
.(12.52)

PROOF: See Chapter 5.4.2 (Multidimensional Market Model) in SCF2. �

We must generalize the definition of risk–neutral measure given in Definition 12.3 on p.172 for a
financial market with a single risky asset price driven by a single Brownian motion to the multidi-
mensional model.

Definition 12.6 (Risk–neutral measure for multiple risky assets).

A risk–neutral measure or martingale measure P̃ in the multitimensional market model
given in the assumptions 12.4 on p.183 is the following.

(1) P̃ is a probability measure on FT , i.e., P̃ (A) need only be defined for events A ⊆ Ω
which belong to FT

(2) P̃ ∼ P , i.e., P̃ and P are equivalent on FT :
If A ∈ FT then P̃ (A) = 0 ⇔ P (A) = 0.

(3) Discounted stock price DtS
(i)
t is a P̃–martingale w.r.t. the filtration Ft for ALL

i = 1, . . . ,m. �
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The following is SCF2 Lemma 5.4.5.

Proposition 12.6. ? Let ~Ht be a self–financing portfolio with price processXt. If a risk–neutral measure

P̃ exists in the model then the discounted portfolio value DtXt is an Ft–martingale under P̃ .

PROOF: See SCF2, before the statement of Lemma 5.4.5. �

Remark 12.6. We state here for the reader’s convenience the definition 6.10 of an arbitrage portfolio.
on p.93 in SCF2 notation.

A portfolio ~Ht is an arbitrage portfolio if its value process Xt satisfies

X0 = 0,(12.53)
P{XT = 0} = 1,(12.54)
P{T > 0} > 0. �(12.55)

Here is how we define the vector valued version of a market price of risk process.

Definition 12.7.

If it exists then the market price of risk process is an adapted process

~Θt =
(
Θ

(1)
t , . . . ,Θ

(d)
t

)
which solves the system of equations, called the market price of risk equations,

αi(t) − Rt =
d∑
j=1

σij(t)Θj(t), i = 1, . . . ,m,(12.56)

and which satisfies the Girsanov integrability condition (formula (11.20) on p.167). �

Remark 12.7. The existence of a market price of risk process is of central importance for an efficient
market.

(1) If there is no solution to the market price of risk equations, then we have a financial market
model which is not free of arbitrage. It is not suitable for pricing contingent claims. For
a simple example of a model which does not have a solution to the market price of risk
equations and an arbitrage portfolio that this allows to be created see SCF2 Example 5.4.4.

(2) SCF2 does not state Girsanov integrability as a condition for ~Θ but we do it here because if
Girsanov’s Theorem cannot be applied then there is no guarantee that a risk–neutral mea-
sure P̃ exists. We thus are not able to guarantee that there are no possibilities for arbitrage.
For this see the first fundamental theorem of asset pricing below (Theorem 12.5 on p.186).
�

Theorem 12.4.
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If a solution to the market price of risk equations

αi(t) − Rt =
d∑
j=1

σij(t)Θj(t), i = 1, . . . ,m,

exists then the market model possesses a risk–neutral probability measure.

PROOF: ? Let P̃ be the probability equivalent to P which is created in Theorem 11.3 (Gir-
sanov’s Theorem in multiple dimensions) on p.167. We recall that the process
~̃
Wt =

(
W̃ 1
t , . . . , W̃

d
t

)
with dynamices

dW̃
(j)
t = dW

(j)
t + Θ

(j)
t dt, W̃

(j)
0 = 0,(12.57)

is a d–dimensional Ft–Brownian motion under the probability P̃ . We plug the market price of risk
equations into formula (12.52) on p.184: and obtain

d
(
DtS

(i)
t

)
= DtS

(i)
t

 d∑
j=1

σij(t)Θj(t) dt +

d∑
j=1

σij(t) dW
(j)
t


= DtS

(i)
t

d∑
j=1

σij(t)
[
Θj(t) dt + dW

(j)
t

]
(12.57)

= DtS
(i)
t

d∑
j=1

σij(t)dW̃
(j)
t

]
.

Since each W̃ (j)
t is a P̃–martingale so is each discounted stock price DtS

(i)
t . �

Next comes SCF2 Theorem 5.4.7.

Theorem 12.5.

First fundamental theorem of asset pricing:
If the market model given in Assumption 12.4 on p.183 has a risk–neutral probability measure, then
it does not admit arbitrage.

PROOF: ? Let P̃ be a risk–neutral measure and assume we have aelf–financing portfolio ~H

with initial value X0 = 0. Since DtV T is a P̃–martingale and thus has constant expectation across
all times 0 5 t 5 T and D0 = e−

∫ 0
0 Rudu = e0 = 1 we have

Ẽ
[
DTXT

]
= Ẽ

[
D0X0

]
= X0 = 0.(12.58)

Assume further that ~H satisfies condition (12.54),

P{XT = 0} = 1. Then P{XT < 0} = 0, thus P̃{XT < 0} = 0.(12.59)
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If we can show that it is impossible for ~H to satisfy (12.55): P{XT > 0} > 0, then we are done since
this means that no self–financing portfolio can satisfy all three conditions (12.53) (12.54), (12.55) of
an arbitrage portfolio. So

let us assume to the contrary that P{XT > 0} > 0.(A)

Since P ∼ P̃ and thus both probabilities assign zero to the same events, we also have P̃{XT > 0} >
0. Moreover {XT > 0} = {DTXT > 0} becauseDT (ω) is strictly positive for all ω as an exponential.

Let Aj := {DTXT = 1
j } and A := {DTXT > 0}. If we write 2a for P̃ (A) then a > 0. Since

A =
⋃
j∈N

Aj and thus, by (4.27b) on p.47, P̃ (Aj) ↑ 2a,

there is some index j0 such that P̃ (Aj0) = a. We have

0
(12.58)

= Ẽ[DTXT ] =

∫
Ω
DTXT dP̃ =

∫
A
DTXT dP̃ +

∫
{DTXT=0}

DTXT dP̃ +

∫
{DTXT<0}

DTXT dP̃ .

The second integral of the right hand expression is zero because the integrand vanishes on
{DTXT = 0}. The third integral of the right hand expression is zero any integral over a set of
measure zero is zero. This follows from Proposition 4.13 on p.70. Hence,∫

A
DTXT dP̃ = 0.

Since Aj0 ⊂ A and DTXT > 0 on A,

0 =

∫
A
DTXT dP̃ =

∫
Aj0

DTXT dP̃ =
∫
Aj0

1

j0
dP̃ =

1

j0
P̃ (Aj0) =

a

j0
> 0.

Thus assumption (A) has lead us to the contradiction 0 > 0. This proves that P{XT > 0} > 0

and thus ~H is not an arbitrage portfolio. Since ~H was an arbitrary self–financing portfolio We have
shown that the model is free of arbitrage. �

Remark 12.8. Take a moment to reflect on how the proof of that last theorem was able to switch
between the equivalent probabilities P and P̃ by making use of

P̃ (...) = 0 ⇔ P (...) = 0,

P̃ (...) > 0 ⇔ P (...) > 0,

P̃ (...) = 1 ⇔ P (...) = 1.

Theorem 12.3 (Completeness of the onedimensional Generalized Black–Scholes market) in Sub-
chapter 12.5 (Completeness of the Onedimensional Generalized Black–Scholes Model) gave con-
ditions under which the onedimensional market is complete, i.e., every contingent claim that is
reasonably integrable can be hedged. See Definition 6.12 (Hedging/Replicating Portfolio) on p.94.
We now want to examine under which conditions the multidimensional market is complete.
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Assumption 12.5. We add to Assumption 12.4 the following conditions.

(1) The market price of risk equations of Definition 12.7 on p.185,

αi(t) − Rt =
d∑
j=1

σij(t)Θj(t), i = 1, . . . ,m,

have a solution process ~Θt =
(
Θ

(1)
t , . . . ,Θ

(d)
t

)
.

(2) Ft = F
~W
t , i.e., our filtration is generated by the d–dimensional Brownian motion

~Wt. �

Remark 12.9. The first of the above conditions implies that the conditions of Theorem 12.4 on p.185
are satisfied, hence there exists a risk–neutral probability P̃ .
Both conditions together ensure that the multidimensional martingale representation theorem is
satisfied: Every Ft–martingale Mt under risk–neutral probability P̃ is of the form

Mt = M0 +

d∑
j=1

∫ t

0
Γ̃u dW̃u.

Here the process W̃t is the P̃–d–dimensional Brownian motion

W̃t = Wt +

∫ t

0
Θu du.; �

Theorem 12.6 (Completeness of the multidimensional market).

This item has been removed!

The next theorem is SCF2 Theorem 5.4.9.

Theorem 12.7.

Second fundamental theorem of asset pricing:
Assume that a risk–neutral probability measure exists. Then

The market is complete ⇔ The risk–neutral probability measure is unique.

The proof is not given here. See SCF2! �

12.7 Exercises for Ch.12

Exercise 12.1. Prove the formula (12.9) of Proposition 12.1 on p.173:

dDtSt =
(
αt −Rt

)
DtSt dt + σtDtSt dWt
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directly from the dynamics given in Definition 12.1 on p.170,

dDt = −RtDt dt,

dSt = αtSt dt + σtSt dWt,

by applying the Itô product rule to dDtSt. �

Exercise 12.2. Prove the “⇒” direction of Theorem 12.7 (Second fundamental theorem of asset pric-
ing) on p.188 of this document: If the multidimensional market is complete then the risk–neutral
probability measure is unique. �

Exercise 12.3.

This item has been removed!
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13 Dividends

Many if not most stocks pay a dividend per share at discrete times, say, anually or semi–annually
or quarterly, We also consider stocks that pay dividends continually. Such stocks do not exist in
reality but they provide insight into modeling aspects and they also are a good approximation for a
mutual fund which holds many different kinds of stocks which all pay their dividends at different
dates.
Note that whatever money is paid out as a dividend to shareholders diminishes the company assets
and thus reduces the share value accordingly.
• If a quarterly dividend of 2 dollars per share is paid at time t then stock price per share

St will go down by 2 dollars.
• If dividends are paid continuously at a rate At(ω) per unit time then a dividend of (ap-

proximately) AtStdt is paid per share during [t, t+ dt] and we must subtract AtStdt from
dSt.

Both cases will yield more powerful results if we specialize to constant dividend rates which vary
neither with time t nor with randomness ω. Accordingly, we subdivide this chapter into
• continuously paying dividends
• dividends paid at discrete times,
• constant dividend rates.

We will limit ourselves to the onedimensional case: A single (onedimensional) Brownian motion
which drives a single underlying risky asset (stock).
We try to use SCF2 notation whenever feasible.

It will be shown in Proposition 13.2 on p.192 that the probability measure P̃ which is constructed
in Girsanov’s Theorem by means of the market price of risk process Θt is no longer a risk–neutral
measure as was defined in Definition 12.3 on p.172 since it does not make discounted stock price
DtSt a martingale.
It turns out though that discounted portfolio value DtXt for a self–financing portfolio remains a
P̃–martingale.

We thus decide to use in this chapter on dividends the term Girsanov measure or Girsanov
probability rather than risk–neutral measure for that probability P̃ .

13.1 Continuously Paying Dividends

Assumption 13.1. Unless stated otherwise we assume that we have a generalized Black–Scholes
market as defined in Definition 12.1 (Generalized Black–Scholes market model) on p.170, with the
following modification.
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We assume that the risky asset pays a continuous dividend at a rate of At(ω) per unit time
and that this continuous time dividend rate process At is Ft–adapted and non–negative
We noted in the introduction to this chapter that this will affect the stock price dynamics
and we replace formula (12.3) with the following.

dSt = αtSt dt + σtSt dWt − AtSt dt; S0 ∈ ]0,∞[ ; αt, σt ∈]0,∞[ ;(13.1)

All other processes remain unchanged. In particular we have the same discount processDt,
market price of risk process Θt, Girsanov measure P̃ , and the process W̃t = Wt +

∫ t
0 Θudu

which becomes a Brownian motion under P̃ . �

We thus have

dDt = −RtDt dt; D0 = 1,(13.2)

Θt =
αt −Rt
σt

,(13.3)

dW̃t = dWt + Θt dt; W̃0 = 0. �(13.4)

Proposition 13.1. The value and discounted value of a self–financing portfolio have the following dynamics.

dXt = RtXt dt + ∆tStσt
(
Θt dt + dWt

)
= RtXt dt + ∆tStσt dW̃t,(13.5)

d
(
DtXt

)
= ∆tDtStσt dW̃t.(13.6)

In particular, the discounted portfolio process DtXt is a P̃–martingale.

For the proof see SCF2 ch.5.5.1. �

Remark 13.1. A. Discounted portfolio value being a P̃–martingale is all it takes to use risk–neutral
valuation for contingent claims. Let ~H with portfolio value Xt be a hedge for a contingent claim
X = VT with pricing process Vt = Πt(X ). Then XT = VT , thus DTVT = DTXT and, according to
the pricing principle, Vt = Xt for all 0 5 t 5 T . Moreover, since DtXt is an Ft–martingale under P̃ ,

DtVt = DtXt = Ẽ
[
DTVT | Ft

]
for 0 5 t 5 T,

thus Vt = Ẽ
[
D−1
t DTVT | Ft

]
= Ẽ

[
e−

∫ T
t RuduVT | Ft

]
for 0 5 t 5 T.

B. Note that formula (13.5) for dXt matches formula 12.15 on p,174, and Note that formula (13.6)
for d(DtXt) matches formula 12.16 on p,175.
C. A closer inspection of the proof of Theorem 12.3 (Completeness of the onedimensional General-
ized Black–Scholes market) on p.181 shows that it only depends on risk–neutral valuation and the
items mentioned in points A and B of this remark. We thus obtain the next theorem in the case of a
stock with a continuously paying dividend. �

Theorem 13.1. Given the assumptions 12.3 on p.181 in addition to the assumptions 13.1 made at the begin-
ning of this chapter we have the following.
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The onedimensional Generalized Black–Scholes market with continuous dividend payments is com-
plete, i.e., every contingent claim can be hedged. Further, the quantity ∆t of the replicating portfolio
is given for any 0 5 t 5 T by either of

∆tσtDtSt = Γ̃t,(13.7)

∆t =
Γ̃t

σtDtSt
.(13.8)

Here the process Γ̃t is implicitly defined by the equation

DtVt =V0 +

∫ t

0
Γ̃u dW̃u, 0 5 t 5 T,(13.9)

i.e., d(DtVt) = Γ̃t dW̃t 0 5 t 5 T.(13.10)

PROOF: ? We can copy the proof of Theorem 12.3 word for word This follows from the

previous remark and the fact that the definitions of Θt and thus P̃ and W̃t have not changed. �

We have seen that the discounted value of a self–financing portfolio is a P̃–martingale. The next
proposition shows that this is no more true for discounted stock price.

Proposition 13.2. ? If At 6= 0 then the process DtSt is not a P̃–martingale. Instead the process

e
∫ t
0 AuduDtSt is a P̃–martingale. That process has explicit representation

e
∫ t
0 AsdsDtSt = exp

{∫ t

0
σs dW̃s −

1

2

∫ t

0
σ2
s ds

}
.

PROOF: See SCF2. �

13.2 Dividends Paid at Discrete Times

We now examine the case when the stock pays its dividend not at all times t but only at times
0 < t1 < t2 < · · · < tn < T .
At each time tj the risky asset loses value in height of the dividend that is paid, If we assume that
the dividend paid at time tj is ajStj , i.e., the dividend rate is aj , then stock price will go down by
that amount.
We need to be able to model continuous time processes that possess a jump at some time t∗.

Definition 13.1. Let t 7→ f(t) be a function of time t, let t∗ be a fixed time, and asume that lim
t↑t∗

f(t)

exists. We write

f(t∗−) := lim
t↑t∗

f(t)

and call this expression the left sided limit of f at t∗. We usually us subscripts Xt rather than
parenthesized time arguments for stochastic processes Xt(ω). Then we write Xt∗−. �

192 Version: 2021-05-17



Math 454 – Additional Material Student edition with proofs

To take this into account we must modify the assumptions 13.1 of Chapter 13.1 (Continuously Pay-
ing Dividends) accordingly.

Assumption 13.2.
(1) Unless stated otherwise we assume that we have a generalized Black–Scholes market as

defined in Definition 12.1 (Generalized Black–Scholes market model) on p.170, with the fol-
lowing modification.

(2) We assume that the risky asset pays its dividend only at the discrete points in time 0 < t1 <
t2 < · · · < tn < T . The dividend rate at time tj is denoted by aj = aj(ω) We assume that
those rates are Ft–adapted in the sense that each aj is Ftj–adapted. We further assume that
0 5 aj 5 1 since the dividend cannot exceed the value of the stock. We write t0 := 0 and
tn+1 := T , and a0 := an+1 := 0 in case that no dividend is paid at those dates.

(3) We assume that St is a generalized geometric Brownian motion for each interval
[tj , tj+1[. The initial condition absorbs the drop in stock price:

dSt = αtSt dt + σtSt dWt, where αt, σt ∈]0,∞[ ;(13.11)
Stj = Stj− − atjStj− .(13.12)

(4) All other processes remain unchanged. In particular we have the same discount process Dt,
market price of risk process Θt, Girsanov measure P̃ , and the process W̃t = Wt +

∫ t
0 Θudu

which becomes a Brownian motion under P̃ .

We thus have

dDt = −RtDt dt; D0 = 1,(13.13)

Θt =
αt −Rt
σt

,(13.14)

dW̃t = dWt + Θt dt; W̃0 = 0. �(13.15)

Remark 13.2.
(1) Since the dividend rate at tj is aj the dividend paid on a share of stock is ajStj−. Thus stock

price Stj after the dividend payment is the difference

(13.16) S(tj) = S(tj−) − ajS(tj−) = (1− aj)S(tj−).

(2) If aj = 0, no dividend is paid and Stj = Stj−.
(3) If aj = 1, the full value of the asset is paid and St = 0 for all t = tj . �

Proposition 13.3. The value of a self–financing portfolio has the same dynamics as in the case of no dividends
or a continuously paid dividend. See Proposition 13.1 on p.191

dXt = RtXt dt + ∆tStσt
(
Θt dt + dWt

)
= RtXt dt + ∆tStσt dW̃t,(13.17)

d
(
DtXt

)
= ∆tDtStσt dW̃t.(13.18)
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In particular, the discounted portfolio process DtXt is a P̃–martingale and risk–neutral validation still ap-
plies:

DtVt = DtXt = Ẽ
[
DTVT | Ft

]
for 0 5 t 5 T,

thus Vt = Ẽ
[
D−1
t DTVT | Ft

]
= Ẽ

[
e−

∫ T
t RuduVT | Ft

]
for 0 5 t 5 T.

PROOF: ? For the proof see SCF2 ch.5.5.2. �

13.3 Constant Dividend Rates

First the continuous time case.

Assumption 13.3. We not only assume that a := At(ω) is constant in t and ω but that the same is
true for r := Rt, α := αt, σ := σt. In other words, we have a classical Black–Scholes market as in
Chapter 9 (Black–Scholes Model Part I: The PDE). �

In the case of no divdidends we had seen in Subchapter 9.4 (The Black–Scholes PDE for a European
Call) that the pricing function of a European call is

c(t, x) = xN
(
d+(T − t, x)

)
− Ke−r(T−t)N

(
d−(T − t, x)

)
, 0 5 t < T, x > 0,(13.19)

where

d±(τ, x) =
1

σ
√
τ

[
log

x

K
+

(
r ± σ2

2

)
τ

]
,(13.20)

Here is the main result in the case of continuous and constant dividend payments with rate a.

Proposition 13.4. Under the assumptions 13.3 the pricing process Vt for European call can be written as a
function c(t, St) of time t and stock price St where c(t, x) is the following function:

c(t, x) = xe−aτN
(
d+(T − t, x)

)
− Ke−r(T−t)N

(
d−(T − t, x)

)
,(13.21)

for 0 5 t < T , and x > 0 Here we define

d±(τ, x) =
1

σ
√
τ

[
log

x

K
+

(
r − a± σ2

2

)
τ

]
.(13.22)

As usual N is the cumulative standard normal distribution

N(y) =
1√
2π

y∫
−∞

e−
z2

2 dz =
1√
2π

∞∫
−y

e−
z2

2 dz.(13.23)

For the proof see SCF2 ch.5.5.1. �

Now we switch to discrete time dividend payments.
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Assumption 13.4. We replace the assumptions 13.3 with the following.
We assume that the processes r := Rt, α := αt, σ := σt are constant in t and ω, i.e., we have a
classical Black–Scholes market as in Chapter 9 (Black–Scholes Model Part I: The PDE).
In addition we now also have finite list of discrete time dividend rates aj as wa had defined in the
assumptions 13.2 of Subchapter 13.2 (Dividends Paid at Discrete Times) except that

We assume that those rates aj are deterministic.

Proposition 13.5. Under the assumptions 13.3 the pricing process Vt for European call can be written as a
function c(t, St) of time t and stock price St where c(t, x) is the following function:

c(t, x) = x
n−1∏
j=0

N
(
d+(τ, x)

)
− Ke−rτN

(
d−(τ, x)

)
,(13.24)

for 0 5 t < T , and x > 0 Here we define τ := T − t and

d±(τ, x) =
1

σ
√
τ

[
log

x

K
+

(
r − a± σ2

2

)
τ

]
.(13.25)

As usual N is the cumulative standard normal distribution

N(y) =
1√
2π

y∫
−∞

e−
z2

2 dz =
1√
2π

∞∫
−y

e−
z2

2 dz.(13.26)

For the proof see SCF2 ch.5.5.1. �

Remark 13.3. The software suggested earlier to calculate the parameters for Black–Scholes contract
functions also handles the case of a constant, continuous dividend:

a. Magnimetrics Excel implementation:
https://magnimetrics.com/black-scholes-model-first-steps/

b. Drexel U Finance calculator:
https://www.math.drexel.edu/~pg/fin/VanillaCalculator.html

b. EasyCalculation.com:
https://www.easycalculation.com/statistics/black-scholes-mode.php �

13.4 Forward Contracts and Zero Coupon Bonds

We now assume that a dividend is NOT paid for the risky asset, thus discounted stock
price DtSt is a martingale under the Girsanov measure P̃ and P̃ is a genuine risk–neutral
measure.

When we speak of having bought a $100 zero–coupon bond with a maturity date T then we mean
that we bought a bond which will pay us $100 at time T without paying any interest beforehand.
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We will follow SCF2 and think of this as owning 100 zero coupon bonds which pay one dollar each
at time T .

Definition 13.2.
• A zero–coupon bond is a contingent claim with contract value VT = 1 at time T . We call T

the maturity date of the zero–coupon bond.
• We denote the price of such a zero–coupon bond at time 0 5 t 5 T by B(t, T ). �

Proposition 13.6. If P̃ is a risk–neutral probability then

B(t, T ) :=
1

Dt
Ẽ[DT | Ft], for 0 5 t 5 T 5 T̄.(13.27)

PROOF: This is risk–neutral validation applied to a contingent claim with constant value 1 at time
T . �

The following is SCF2, Theorem 5.6.2.

Theorem 13.2. ?

Let T > 0. Assume that there is unlimited liquidity in the market for zero–coupon bonds with maturity date
0 5 T ′ 5 T . Let X be a forward contract with expiration date T for an underlying asset with price St. Then
the following holds, regardless of the strike price of that contract.
The forward price Fort at time t (see Definition 9.4 on p.151) is

ForS(t, T ) =
St

B(t, T )
, 0 5 t 5 T 5 T̄.(13.28)

PROOF: The proof given here is the one to be found in SCF2 Remark 5.6.3.
We apply risk–neutral validation to the forward contract. Let K denote the strike price of that
contract. Then its value at time T is VT = ST −K, thus

Vt =
1

Dt
Ẽ[DT

(
ST −K

)
|Ft]

=
1

Dt
Ẽ[DTST |Ft] −

K

Dt
Ẽ[DT |Ft].(A)

Note that DtSt is a martingale under risk–neutral probability P̃ and so is DtV
′
t if V ′t is the pricing

function of a claim with contract value V ′T = 1, i.e., of a zero–coupon bond with maturity T . Note
that DT = DT · 1 = DTV

′
T and that V ′t = B(t, T ) by the very definition of B(t, T ). It follows from

(A) that

Vt =
1

Dt
DtSt −

K

Dt
DtB(t, T ) = St −KB(t, T ).

The forward price ForS(t, T ) was defined as that strike priceK that would make the foward contract
a fair deal for both parties at time t, i.e., that would result in a zero value for the price V1 of that
contract at time t. Thus

0 = St − ForS(t, T )B(t, T ),

and we have obtained (13.28). �
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13.5 Exercises for Ch.13

Exercise 13.1. Theorem 13.2 on p.196 was done by means of a risk–neutral measure argument. In
SCF2 a proof of this theorem (Theorem 5.6.2 on p.241 in the book) is given by means of a no arbitrage
allowed argument, but only case 1 where the “seller” of the forward contract is not allowed to make
a profit is covered in detail.
The last four lines of the proof indicate what must be done for the proof of case 2: The seller cannot
have a loss: »..... If it is negative, the agent could instead have taken the opposite position .....«
Give a detailed proof of that case 2 by modifying the proof of case1. �
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14 Stochastic Methods for Partial Differential Equations

Many if not most stocks pay a dividend per share at discrete times, say,

14.1 Stochastic Differential Equations

Definition 14.1 (Stochastic differential equation). Let Wt, t = 0, be a Brownian motion on a filtered
probability space (Ω,F,Ft, P ) and let

β, γ : [0, T ] → R, (t, x) 7→ β(t, x), γ : [0, T ] → R, (t, x) 7→ γ(t, x),

be two (measurable) deterministic functions.

We call a stochastic differential plus family of initial conditions,

dXt = β
(
t,Xt

)
dt + γ

(
t,Xt

)
dWt,(14.1)

Xt0 = x0, for all 0 5 t0 5 t 5 T and x0 ∈ R,(14.2)

a stochastic differential equation with drift coefficient β, diffusion coefficient γ, , and
initial conditions, , (14.2). This can be referred to more compactly as an SDE with drift β,
diffusion γ, and initial conditions (14.2).

We say that the SDE with stochastic differential (14.1) and initial conditions (14.2) has a solution, if
for EACH (u, a) such that 0 5 u 5 T and a ∈ R there is a stochastic process Xu,a = Xu,a

t (ω) with
dynamics and initial condition given by

dXu,a
t = β

(
t,Xu,a

t

)
dt + γ

(
t,Xu,a

t

)
dWt,(14.3)

Xu,a
u = a, .(14.4)

Since each statement Xu,a
u = a uniquely determines a pair (t, a) ∈ [0, T ] × R and vice versa, it is

convenient to refer to the initial condition (t, a). �

We will see as part of the next Facts collection that, all processes Xu,a are the same and that we can
discard the superscripts.

Fact 14.1. ? Solutions of an SDE have the following properties.

(1) The SDE of Definition 14.1 possesses a solution under very general conditions on drift β(t, x) and
diffusion γ(t, x) must satisfy.

(2) This solution is described for all initial conditions Xu = a, i.e., for all 0 5 u 5 T and a ∈ R, by one
and the same process (t, ω) 7→ Xt(ω). In other words, all processes Xu,a

t coincide and thus we can
and will drop the superscript and write Xt instead of Xu,a

t .
(3) For the following review Remark 5.4 (Factored conditional expectation) on p.85. For any initial

condition
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We can associate with every initial condition (u, a) a probability measure P u,a on the codomain
R of the real valued process Xt which acts like the conditional probability

(14.5) P u,a{Xt ∈ B} = P{Xt ∈ B | Xu = a}

(4) We can express this in terms of the corresponding expectation Eu,a =
∫
. . . dP u,a:

(14.6) Eu,a{h(Xt)} = E{h(Xt) | Xu = a}

This formula remains valid if we replace a with Xu(ω):

Eu,Xu(ω){h(Xt)} = E{h(Xt) | Xu = Xu(ω)}. = E{h(Xt) | Xu}(ω).

We finally drop the argument ω and obtain

Eu,Xu{h(Xt)} = E{h(Xt) | Xu}.

Now formula (14.6) asserts that

(14.7) Eu,Xu{h(Xt)} = E{h(Xt) | Xu}. �

The following is SCF2 Theorem 6.3.1.

Theorem 14.1. The original expectation E[. . . ] of (Ω,T,Tt, P ) is intimately related to the expectations
Eu,a[. . . ] belonging to the initial conditions (u, a) by means of conditioning:

(14.8) Eu,Xu{h(Xt)} = E{h(Xt) | Xu} = E{h(Xt) | Fu}.

PROOF: ? The first equation is a repetition of (14.7).

The solutionXt is a Markov process, i.e., conditioning on the present information σ(Xu) is the same
as conditioning on the entire past Fu. This proves the second equation. �

The following is SCF2 Theorem 6.4.1.

Theorem 14.2 (Feynman–Kac Theorem).
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Let T > 0. We examine again the SDE with differential (14.1) and initial conditions (14.2),

dXt := β
(
t,Xt

)
dt + γ

(
t,Xt

)
dWt; Xt0 = x0 (0 5 t0 < T, x0 ∈ R).(14.9)

Let x 7→ Φ(x) be Borel–measurable such that Et,x[Φ
(
XT

)
] <∞, for all 0 5 t 5 T and x ∈ R. Let

(t, x) 7→ f(t, x) be the function

f(t, x) := Et,x[Φ
(
XT

)
](14.10)

Then f(t, x) is a solution to the following PDE plus terminal condition

ft(t, x) + β(t, x)fx(t, x) +
1

2
γ2(t, x)fxx(t, x) = 0(14.11)

f(T, x) = Φ(x) for all x.(14.12)

You can find an outline of the proof in the SCF2 text. �

The following is SCF2 Theorem 6.4.3.

Theorem 14.3 (Discounted Feynman–Kac).

Let T > 0. We examine again the SDE with differential (14.1) and initial conditions (14.2),

dXt := β
(
t,Xt

)
dt + γ

(
t,Xt

)
dWt; Xt0 = x0 (0 5 t0 < T, x0 ∈ R).(14.13)

Let x 7→ Φ(x) be Borel–measurable such that Et,x[Φ
(
XT

)
] <∞, for all 0 5 t 5 T and x ∈ R. Let

(t, x) 7→ f(t, x) be the function

f(t, x) := Et,x[e−r(T−t)Φ
(
XT

)
](14.14)

Then f(t, x) is a solution to the following PDE plus terminal condition

ft(t, x) + β(t, x)fx(t, x) +
1

2
γ2(t, x)fxx(t, x)− rf(t, x) = 0,(14.15)

f(T, x) = Φ(x) for all x.(14.16)

You can find an outline of the proof in the SCF2 text. �

Remark 14.1. The two Feynman–Kac theorems are general theorems which relate the solution of an
SDE to that of an associated PDE + terminal condition. In stochastic finance we do option pricing
by means of risk–neutral validation and we need a suitable setup in the model. Here is a very
important case.
• The SDE describes the dynamics dSt = . . . of stock price.
• The PDE solution f(t, x) will be the arbitrage free price of a simple claim at time t if stock

price then is St = x,
• The terminal condition f(T, x) = Φ(x) will be the contract function of that claim, i.e.
X = Φ(ST ).
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• f(t, x) = Et,x[e−r(T−t)Φ
(
XT

)
] is guaranteed to be the solution of the PDE

ft +βfx + 1
2γ

2fxx− rf = 0, but what is it good for if E[...] is not risk neutral measure and
Et,St [e−r(T−t)Φ

(
XT

)
] is NOT the arbitrage free price Vt of the option? since the Brownian

motion Wt in the dynamics of
So the following must be done: Find the market price of risk process Θt to find P̃ and W̃t and
rewrite the dynamics

dSt = β(t, St) dt + γ(t, St) dWt,

with new coefficients β′ and γ′ and the P̃– Brownian motion W̃t:

dSt = β′(t, St) dt + γ′(t, St) dW̃t.

Now (discounted) Feyman Kac gives you the correct PDE

ft(t, x) + β′(t, x)fx(t, x) +
1

2
γ′2(t, x)fxx(t, x)− rf(t, x) = 0,

f(T, x) = Φ(x) for all x.

for which the solution f(t, x) does what you wanted: Vt = f(t, St).
Examples for this are SCF2 Example 6.4.4 - Options on a geometric Brownian motion and the interest
rate models of SCF2 Chapter 6.5. �

14.2 Interest Rates Driven by Stochastic Differential Equations

Given is a filtered probability space (Ω,F,Ft, P ) with a risk–neutral probability P̃ and an Ft–
adapted Brownian motion W̃ under P̃ .
We assume we have a market model in which the interest rate Rt(ω) is a stochastic process, but
not of the most general kind, i.e., just Ft–adapted and nothing more. We rather assume that Rt is
modeled by a stochastic Differential Equation

dRt = β
(
t, Rt

)
dt + γ

(
t, Rt

)
dW̃t.(14.17)

Since interest rates for short–term borrowing are modeled by such an SDE we speak of a short–rate
model for Rt. Very simple models for fixed income markets fall into this category.
We recall from Definition 6.7 (Discount process) on p.91 that

Intt = exp

{∫ t

0
Rs ds

}
is the money market account price process and

Dt =
1

Intt
= exp

{
−
∫ t

0
Rs ds

}
is the discount process of the bank account.
Clearly the dynamics of those processes are

dDt = −RtDt dt, dIntt = InttRt dt.
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We saw in Chapter 13.4 (Forward Contracts and Zero Coupon Bonds) that a zero–coupon bond with
maturity date T is a contingent claim wich constant contract value VT = 1 and that the (arbitrage
free) price B(t, T ) at time 0 5 t 5 T is, under risk–neutral probability P̃ ,

B(t, T ) =
1

Dt
Ẽ[DT | Ft]. = Ẽ[e−

∫ T
t Rs ds | Ft].

Definition 14.2 (Yield). We define the yield of zero–coupon bond between times t and T as

Y (t, T ) := − 1

T − t
logB(t, T )(14.18)

�

Remark 14.2. Formula (14.18) is equivalent to

B(t, T ) = e−Y (t,T ) (T−t).(14.19)

One sees from this formula that Y (t, T ) is the constant rate of continuously compounding interest
between times t and T that corresponds to the price B(t, T ) of a zero–coupon bond maturing at T .
�

Proposition 14.1.
Given the dynamics of (14.17) for the interest rate Rt, there is a function f(t, x such that B(t, T ) = f(t, Rt.
This function satisfies the PDE plus terminal condition

ft(t, r) + β(t, r)fr(t, r) +
1

2
γ2(t, r)frr(t, r) = rf(t, r),(14.20)

f(T, r) = 1 for all r.(14.21)

PROOF: See SCF2, Chapter 6.5. �

14.3 Stochastic Differential Equations and their PDEs in Multiple Dimensions

Theorem 14.4 (Twodimensional Feynman–Kac).

Let T > 0. Let ~Wt =
(
W1(t),W2(t)

)
be a two-dimensional Brownian motion ( i.e., the components

W1(t),W2(t) are two independent, one–dimensional Brownian motions.

et ~Xt := (X1(t), X2(t)) be a vector of two Itô processes which satisfy the system of SDEs

dX1(s) = β1

(
s,X1(s)

)
ds + γ11

(
s,X1(s), X2(s)

)
dW1(s) + γ12

(
s,X1(s), X2(s)

)
dW2(s),

dX2(s) = β2

(
s,X1(s)

)
ds + γ21

(
s,X1(s), X2(s)

)
dW1(s) + γ22

(
s,X1(s), X2(s)

)
dW2(s).

A. This pair of SDEs has under certain mild conditions on the processes βi
(
s,X1(s)

)
and

γ22

(
s,X1(s), X2(s)

)
a solution ~Xt starting at X1(t) = x1 and X2(t) = x2. Regardless of the initial

condition, this solution is a Markov process.

202 Version: 2021-05-17



Math 454 – Additional Material Student edition with proofs

Let a Borel-measurable function h(y1, y2) be given. Corresponding to the initial condition t, x1, x2, where
0 5 t 5 T , we define

g(t, x1, x2) := Et,x1,x2 h
(
X1(T ), X2(T )

)
,(14.22)

f(t, x1, x2) := Et,x1,x2
[
e−r(T−t) h

(
X1(T ), X2(T )

) ]
(14.23)

Then

gt +β1gx1 + β2gx2

+
1

2
(γ2

11 + γ2
12)gx1x1 + (γ11γ21 + γ12γ22)gx1x2 +

1

2
(γ2

21 + γ2
22)gx2x2 = 0,

(14.24)

ft +β1fx1 + β2fx2

+
1

2
(γ2

11 + γ2
12)fx1x1 + (γ11γ21 + γ12γ22)fx1x2 +

1

2
(γ2

21 + γ2
22)fx2x2 = rf.

(14.25)

Further these PDE solutions f(t, x1, x2) and g(t, x1, x2) also satisfy the terminal conditions

g(T, x1, x2) = f(T, x1, x2) = h(x1, x2) for all x1 and x2.

PROOF: See SCF2 Chapter 6.6 �

14.4 Exercises for Ch.14

Exercise 14.1. Let T , Xt, Φ(x), f(t, x) be as defined in Theorem 14.2 (Feynman–Kac Theorem) on
p.199. Prove that the process

Mt := f(t,Xt) = Et,x[Φ(XT )]

is a martingale. Hint: Use formula (14.8) on p.199. �
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15 Other Appendices

15.1 Greek Letters

The following section lists all greek letters that are commonly used in mathematical texts. You do
not see the entire alphabet here because there are some letters (especially upper case) which look
just like our latin alphabet letters. For example: A = Alpha B = Beta. On the other hand there
are some lower case letters, namely epsilon, theta, sigma and phi which come in two separate forms.
This is not a mistake in the following tables!

α alpha θ theta ξ xi φ phi
β beta ϑ theta π pi ϕ phi
γ gamma ι iota ρ rho χ chi
δ delta κ kappa % rho ψ psi
ε epsilon κ kappa σ sigma ω omega
ε epsilon λ lambda ς sigma
ζ zeta µ mu τ tau
η eta ν nu υ upsilon

Γ Gamma Λ Lambda Σ Sigma Ψ Psi
∆ Delta Ξ Xi Υ Upsilon Ω Omega
Θ Theta Π Pi Φ Phi

15.2 Notation

This appendix on notation has been provided because future additions to this document may use
notation which has not been covered in class. It only covers a small portion but provides brief
explanations for what is covered.
For a complete list check the list of symbols and the index at the end of this document.

Notations 15.1. a) If two subsets A and B of a space Ω are disjoint, i.e., A ∩ B = ∅, then we often
writeA

⊎
B rather thanA∪B orA+B. BothA{ and, occasionally, {A denote the complement Ω\A

of A.
b) R>0 or R+ denotes the interval ]0,+∞[, R=0 or R+ denotes the interval [0,+∞[,
c) The set N = {1, 2, 3, · · · } of all natural numbers excludes the number zero. We write N0 or Z+ or
Z=0 for N

⊎
{0}. Z=0 is the B/G notation. It is very unusual but also very intuitive. �

Definition 15.1. Let (xn)n∈N be a sequence of real numbers. We call that sequence nondecreasing
or increasing if xn 5 xn+1 for all n ∈ N.
We call it strictly increasing if xn < xn+1 for all n ∈ N.
We call it nonincreasing or decreasing if xn = xn+1 for all n.
We call it strictly decreasing if xn > xn+1 for all n ∈ N. �
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List of Symbols

(X, d(·, ·)) – metric space , 128
At – dividend rate process, 191
B(t, T ) zero–coupon bond price , 196
C2 – twice continuously diffble, 143
[a, b[, ]a, b] – half-open intervals , 16
[a, b] – closed interval , 16
N(z) - std normal cumul. distrib. , 148, 194
Fort - forward price at t, 151
Fort - forward price at t, 151
d±(τ, x) , 147, 194, 195
m(F) – measurable fn. , 50
m(F,F′) – measurable fn. , 50
⇒ – implication , 9
‖Y ‖L2 – L2–size (stoch proc) , 134
‖f‖L1 – L1–norm , 125
‖f‖L2 – L2–norm , 125, 126
‖x‖ – (semi) norm , 126, 127
‖x‖1 , 125
‖x‖2 – Euclidean norm , 125
B(R̄) – extended Borel σ–algebra , 42
B(R) – Borel σ–algebra of R , 42
B(Rn) – Borel σ–algebra of Rn , 42
P(Ω), 2Ω – power set , 13⋂[

Ai : i ∈ I
]

, 32⋂
i∈I Ai , 32⋃[
Ai : i ∈ I

]
, 32⋃

i∈I Ai , 32
∅ – empty set, 7
dν
dµ – Radon–Nikodym deriv. , 69∫
A fdµ,

∫
A f(ω)dµ(ω),

∫
A f(ω)µ(dω) , 59

1A – indicator function of A , 38
µ ∼ ν – equivalent measures , 70
ν � µ – continuous measure , 70
±∞ – ± infinity , 16
ρik(t) – instantaneous correlation, 183
σ(f) – σ–algebra generated by f , 54
|x| – absolute value , 16
]a, b[Q – interval of rational #s , 16
]a, b[Z – interval of integers , 16
]a, b[ – open interval , 16
aj – discrete time dividend rate, 193
c(t, x) – Eoropean call pricing, 143
d(x, y) – (pseudo) metric , 126, 127
dL1(f, g) – L1–distance , 125

dL2(Y, Y ′) – L2–distance (stoch proca) , 134
dL2(f, g) – L2–distance , 125, 126
p(t, x) - European put, 151
x ∈ X – element of a set, 6
x /∈ X – not an element of a set, 6
(Ω,F, (Ft), P ) – filtered prob. space, 116
(Ω,F, (Ft)t∈I , P ) – filtered prob. space, 116
A{ – complement of A , 10
Dt, – discount process, 91
E[X | Z = z] cond. exp. w.r.t Z , 85
P–a.s. – almost surely , 51
Vt
(
Nt,k

)
, – hedge at Nt,k , 110

Xn → X P–a.s. – convergence P–a.s. , 62
∆ – delta (the greek), 149
Γ – gamma (the greek), 149
Φ(·) – contract function, 94, 99, 103
Π
(
Nt0,k

)
– arbitrage free claims price, 102

Θ – theta (the greek), 149
Nt,k – node k at time t, 102
~X – random vector , 114∫
fdµ,

∫
f(ω)dµ(ω),

∫
f(ω)µ(dω) , 58

N0 – nonnegative integers, 16
R+ – positive real numbers, 16
R>0 – positive real numbers, 16
R≥0 – nonnegative real numbers, 16
R 6=0 – non-zero real numbers, 16
R+ – nonnegative real numbers, 16
Z≥0 – nonnegative integers, 16
Z+ – nonnegative integers, 16
N – natural numbers, 14
Q – rational numbers, 14
R – real numbers, 14
Z – integers, 14
Z – integers, 14
X – contingent claim, 94, 99, 103
F1 ⊗ F2 product σ–algebra , 120
FXt – filtration of stoch. process X , 115
µ–a.e. – almost everywhere , 51
µ× ν product measure , 120
ν – vega (the greek), 149
ρ – rho (the greek), 149
Intt – interest accrued, 91
fn → f µ–a.e. – convergence µ–a.e. , 62

(xj)j∈J – family , 22
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1A – indicator function of A , 38
2Ω,P(Ω) – power set , 13
[X,Y ]t – cross variation, 154
χA – indicator function of A , 38
{A – complement , 204
λ1, λ2, . . . , λn, – Lebesgue measure , 45
N,N0 , 204
R+,R>0 , 204
R+,R=0 , 204
R>0,R+ , 204
R=0,R+ , 204
Z+,Z=0 , 204
epi(f) – epigraph , 27
ΦX(u) – moment–generating function , 123
|X| – size of a set , 13
{} – empty set, 7
A
⊎
B – disjoint union , 204

A ∩B – A intersection B, 9
A \B – A minus B , 10
A ⊂ B – A is strict subset of B, 8
A ⊆ B – A is subset of B , 8
A ( B – A is strict subset of B, 8
A4B – symmetric difference of A and B , 10
A ]B – A disjoint union B , 9
A{ – complement , 204
B ⊃ A – B is strict superset of A, 8
B ) A – B is strict superset of A, 8
CΠ[X,Y ]T – sampled cross variation, 154
f : X → Y – function, 20
f(A) – direct image , 35
f(t−) – value immediately before t, 192
f−1(B) – indirect image, preimage , 35
Xt− – value immediately before t, 192
(Ω,F) – measurable space , 40
(Ω,F, µ) – measure space , 43
[X,X]T , [X,X](T ) – quadratic variation , 128
{A – complement of A , 10
7→ – maps to , 19
F – σ–algebra , 40
µ(·) – measure , 43
µ – finite measure , 43
µ – measure , 43
R = R∪{−∞,∞} – extended real numbers , 39
R+ – nonnegative extended , 39
Π – partition of time interval , 128
Π(t;X ) – price of claim X , 88

Πt(X ) – price of claim X , 88
AAA (j) – financial asset , 88
σ(E) – σ–alg. genned by E, 41
σ(fi : i ∈ I) – σ–alg. genned by functions fi, 114
|f |, f+, f− , 17
A ∪B – A union B , 9
A ⊇ B – A is superset of B, 8
Bt – bank account unit value , 88
f ∨ g, f ∧ g – max(f, g),min(f, g) , 17
St – stock price , 88
V H
t – portfolio value, 90, 97
x ∨ y – max(x, y) , 17
x ∧ y – min(x, y) , 17
x+, x− – positive, negative parts , 16

a.e. – almost everywhere , 51
a.s. – almost surely , 51
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Index

C2 function, 143
L2–distance (stochastic processes), 134
L2–size (stochastic process), 134
µ–null set, 43
σ–algebra, 40

product σ–algebra, 120
σ–algebra generated by a function, 54
σ–field, 40
σ–finite measure, 68
ε–closeness, 126

absolute value, 16
abstract integral, 57, 58
adapted stochastic process, 87
adapted to a filtration, 117
almost everywhere, 51
almost surely, 51
American call, 89
American put, 89
antiderivative, 27
arbitrage portfolio, 94, 102
argument, 20
assignment operator, 20

Black–Scholes
market model, 143

Black–Scholes Black–Scholes market model
generalized, 170

Black–Scholes PDE, 146
Black–Scholes–Merton function, 148
bond

zero–coupon, 196
Borel σ–algebra, 42
Borel sets, 42
Brownian motion, 117, 122

exponential martingale, 131
geometric, 131
geometric, generalized, 138
multidimensional, 154

budget equation, 92, 93, 97

call
Americall, 89

cartesian product, 21
characteristic function, 38

claim
simple, 94, 99, 103

closed interval, 16
codomain, 20
complement, 10
concave-up, 27
conditional expectation

partial averaging, 84
conditional expectation w.r.t a random variable,

84
conditional expectation w.r.t a sub–σ–algebra, 84
contingent claim, 87, 94, 99, 103

reachable, 95
continuous measure, 70
continuous time financial market, 88
continuous time stochastic process, 113, 114
contract function, 94, 99, 103
convergence of stochastic processes in L2, 134
convex, 27
correlation

instantaneous, 184
Cox–Ingersoll–Ross interest rate model, 140
cross variation, 154

De Morgan’s Law, 12, 34
decimal, 14
decimal digit, 14
decimal numeral, 14
decimal point, 14
decreasing sequence, 204
delta, 145
delta–hedging rule, 145
density of a measure, 69
differential, 133

stochastic, 136
differential equation

stochastic, 138
diffusion coefficient, 198
digit, 14
direct image, 35
direct image function, 35
discount process, 91
discrete time financial market, 88
disjoint, 9
distribution, 54
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distribution measure, 54
dividend rate, 193

discrete time, 193
dividend rate process

continuous time, 191
domain, 20
drift coefficient, 198
dummy variable (setbuilder), 7
dynamics, 136

element of a set, 6
empty set, 7
epigraph, 27
equivalent measures, 70
European call, 87
European put, 88
even, 14
event, 44
expectation

conditional, w.r.t a random variable, 84
conditional, w.r.t a sub–σ–algebra, 84

exponential martingale, 131
extended real–valued function, 39

family, 22
mutually disjoint, 33

filtration, 87, 116
generated by a process, 115

financial derivative, 94, 99, 103
financial market

continuous time, 88
discrete time, 88

financial market model, 88
finite measure, 43
finite sequence, 22
forward contract, 89
forward price, 151
function, 20

argument, 20
assignment operator, 20
codomain, 20
direct image, 35
direct image function, 35
domain, 20
function value, 20
indirect image function, 35
integrable, 58

inverse, 20
maps to operator, 20
measurable, 50
preimage function, 35
simple, 57

function sequence
limit almost everywhere, 62

function value, 20

GBM (geometric Brownian motion), 131
generalized Black–Scholes market model, 170
generalized geometric Brownian motion, 138
generated σ–Algebra

by collection of sets, 41
by family of functions, 114

geometric Brownian motion, 131
generalized, 138

Girsanov measure, 190
Girsanov probability, 190
graph, 20
greek letters, 204
Greeks, 149
greeks, 145

delta, 145

half-open interval, 16
hedge

static, 151

iff, 8
image measure, 54
in the money, 147
increasing sequence, 204
independence

σ–algebras, 73
random variables, 73

index set, 22
indexed family, 22
indicator function, 38
indirect image, 35
indirect image function, 35
induced measure, 54
induction

proof by, 24
induction principle, 24
infinite sequence, 22
information filtration, 87
initial condition, 136, 147
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initial conditions (SDE), 198
injective, 20
instantaneous correlation, 184
integer, 15

even, 14
odd, 14

integrable function, 58
integral, 57, 58

abstract, 57, 58
definite, 26
indefinite, 27

integral equation, 136
integral over a subset, 59
interest rate process, 91
intersection

family of sets, 32
interval

closed, 16
half-open, 16
open, 16

inverse function, 20
irrational number, 15
Itô integral w.r.t. Brownian motion, 132, 135
Itô process, 136
Itô process driven by a multidimensional Brow-

nian motion, 155

Lévy, Paul Pierre, 159
Lebesgue measure, n-dimensional, 45
left sided limit, 192
limit

left sided, 192
limit almost everywhere of a function sequence,

62
limit almost surely of a sequence of random vari-

ables, 62
long position, 89

maps to operator, 20
market

complete, 95
free of arbitrage, 94

market price of risk, 172, 185
market price of risk equations, 185
Markov chain, 119
Markov process, 87, 118

transition density, 130

Markovian portfolio, 89
martingale, 117
martingale measure, 99, 102, 172, 184
mathematical induction principle, 24
maturity date, 196
maximum, 17
mean rate of return, 183

instantaneous, 139
measurable function, 50
measurable set, 40
measurable space, 40
measure, 43

σ–finite, 68
continuous, 70
density, 69
equivalence, 70
induced, 54
martingale measure, 99, 102
product, 120
product measure, 120
Radon–Nikodym derivative, 69
risk–neutral, 99, 102

measure space, 43
product space, 120

member of a set, 6
member of the family, 22
mesh, 128
metric, 127
metric space, 128

ε–closeness, 126
moment–generating function, 123

joint, 123
money market account price process, 91
multidimensional Brownian motion, 154
multiplication table for Brownian motion differ-

entials, 129
mutually disjoint, 9

natural number, 15
negative part, 16
nondecreasing sequence, 204
nondecreasing sequence of sets, 32
nonincreasing sequence, 204
nonincreasing sequence of sets, 32
norm, 127
null measure, 43
null set, 43
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numbers
integer, 14
irrational number, 15
natural numbers, 14
rational numbers, 14
real numbers, 14

odd, 14
open interval, 16

parallelepiped, n-dimensional, 44
partial averaging (conditional expectation), 84
partition, 13, 33, 128

mesh, 128
partitioning, 13, 33
path, 113
portfolio, 89

arbitrage portfolio, 94
hedging portfolio, 95
Markovian, 89
replicating portfolio, 95
self–financing, 92

portfolio strategy, 89
portfolio value, 90
position

long position, 89
short position, 89

positive part, 16
power set, 13
preimage, 35
preimage function, 35
pricing principle, 95
principle of mathematical induction, 24
probability, 43
probability distribution, 54
probability mass function, 46
probability measure, 43
probability space, 43

filtered, 116
process

stochastic process, 113
product σ–algebra, 120
product measure, 120
product of measures, 120
product space, 120
proof by cases, 12
pseudometric, 126

put
American, 89
European, 88

put–call parity, 152

quadratic variation, 128

Radon–Nikodym derivative, 69
random item, 75
random variable, 51

moment–generating function, 123
random variables

limit almost surely, 62
random vector, 114

moment–generating function, 123
random walk, 119
random walk, symmetric, 119
rational number, 15
reachable

contingent claim, 95
real number, 15
recurrence relation, 23
recursion, 23
risk–neutral measure, 99, 102, 172, 184
risk–neutral pricing formula, 176
risk–neutral valuation formula, 176

sampled cross variation, 154
SDE (stochastic differential equation), 198
self–financing portfolio strategy, 92
seminorm, 126
sequence, 22

decreasing, 204
finite, 22
finite subsequence, 22
increasing, 204
infinite, 22
nondecreasing, 204
nonincreasing, 204
start index, 22
stochastic, 114
strictly decreasing, 204
strictly increasing, 204
subsequence, 22

set, 6
difference, 10
difference set, 10
disjoint, 9
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intersection, 9
mutually disjoint, 9
proper subset, 8
proper superset, 8
setbuilder notation, 6
size, 13
strict subset, 8
strict superset, 8
subset, 8
superset, 8
symmetric difference, 10
union, 9

short position, 89
short–rate model, 201
simple claim, 94, 99, 103
simple function, 57
simple process, 132
size, 13
square–integrable, 135
standard machine (for proofs), 66
start index, 22
static hedge, 151
stochastic differential, 136
stochastic differential equation, 138

has a solution, 198
stochastic differential equation (SDE), 198
stochastic process, 87, 113

L2–distance, 134
L2–size, 134
adapted, 87
adapted to a filtration, 117
continuous time, 113, 114
convergence in L2, 134
simple, 132

stochastic sequence, 114
strictly decreasing sequence, 204
strictly increasing sequence, 204
submartingale, 117
subsequence, 22

finite, 22
summation measure, 47
supermartingale, 117
surjective, 20
symmetric random walk, 119

trajectory, 113
transition density, 130

triangle inequality, 18, 25

unbiased estimator, 86
union

family of sets, 32
universal set, 10

Vasicek interest rate model, 140
vector space

normed, 127
volatility, 139
volatility matrix, 183

Wiener process, 117, 122

yield, 202

zero measure, 43
zero–coupon bond, 196
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