Formula Collection for the final exam - Not all items are relevant!

"BM" means Brownian motion; P = real world probab, \widetilde{P} = martingale measure on filtered space $(\Omega, \mathfrak{F}, \mathfrak{F}_t)$

(1) (a) Most general differential is dX_t for a linear combination X_t of Itô processes: $dX_t = \sum_i A_t^{(i)} dt + \sum_j B_t^{(j)} dW_t$. If $dY_t = \sum_k C_t^{(k)} dt$ (no dW_t terms), then $d(X_tY_t) = 0$

(b) Learn by heart: • 1-dim and multidim Itô formulas 🖸 Itô product rule 🖸 geometric BM

(c) • Lévy: continuous paths martingale M_t with $M_0 = 0$ and quadratic variation of Brownian motion is a Brownian motion • $\mathfrak{F}_t = \mathfrak{F}_t^W \Rightarrow$ all \mathfrak{F}_t martingales are Ttô integrals

(2) (a) measurable $f: (\Omega, \mathfrak{F}, \mu) \to (\Omega', \mathfrak{F}')$ induces image measure $\mu_f(A') = \mu(f^{-1}(A'))$ on \mathfrak{F}' .

(b) random var. $X : (\Omega, \mathfrak{F}, P) \to (\mathbb{R}, \mathfrak{B})$ induces image measure $P_X(B) = P\{X \in B\}$ on Borel sets \mathfrak{B} .

 $\int_{\Omega} g \circ f(\omega) \mu(d\omega) = \int_{\Omega'} g(\omega') \mu_f(d\omega')$ (for g Borel measurable)

(3) $f \leq g \mu$ -a.e. $\Leftrightarrow \int_A f d\mu \leq \int_A g d\mu$ for all $A \in \mathfrak{F}$

(4) Let $(\Omega, \mathfrak{F}, P)$ be a probability space. Let $\mathfrak{G}, \mathfrak{H}$ be sub- σ -algebras of \mathfrak{F} such that $\mathfrak{H} \subseteq \mathfrak{G}$. Let $\varphi : \mathbb{R} \to \mathbb{R}$ be measurable.

(a) $E[c_1X + c_2Y|\mathfrak{G}] = c_1E[X|\mathfrak{G}] + c_2E[Y|\mathfrak{G}]$. (b) If X is \mathfrak{G} -measurable, then $E[X \cdot Y|\mathfrak{G}] = X \cdot E[Y|\mathfrak{G}]$. (c) $E[E[X|\mathfrak{G}] \mid \mathfrak{H}] = E[X|\mathfrak{H}]$. (d) X independent of $\mathfrak{G} \Rightarrow E[X|\mathfrak{G}] = E[X]$. (e) φ convex $\Rightarrow \varphi(E[X \mid \mathfrak{G}]) \leq E[\varphi \circ (X) \mid \mathfrak{G}]$.

(5) If μ, ν are σ -finite measures on (Ω, \mathfrak{F}) and $f: \Omega \to \mathbb{R}$ satisfies $\nu(A) = \int_A f d\mu$, then f is called the Radon–Nikodým derivative $\frac{d\nu}{d\nu}$.

(6) Probability space $(\Omega, \mathfrak{F}, P)$, a countable partition $\Omega = \biguplus [G_j : j \in J]$ s.t. $G_j \in \mathfrak{F}$ and $P(G_j) > 0$ for all j. Let $\mathfrak{G} := \sigma\{G_j : j \in J\}$ Let the random variable X be integrable or satisfy $X \ge 0$. \square Then $E[X \mid \mathfrak{G}](\omega) = \sum_{j \in J} \frac{1}{P(G_j)} E\left[X \mathbf{1}_{G_j}\right] \cdot \mathbf{1}_{G_j}(\omega)$ a.s.

(7) Binomial model: trading times t = 0, 1, 2, ..., T; $\square B_0 = 1$; $B_t = (1+R)^t$; $\square S_0 = s$; $S_{t+1} = uS_t$ w. $P\{u \text{ happens }\} = p_u$ and $P\{d \text{ happens }\} = p_d = 1 - p_u \square x_t = H_t^B(1+R)^{t-1} = \text{money in the bank at } t_1; y_t = H_s^F = \text{stock shares acquired at } t - 1$; \square For a contingent claim \mathcal{X} , in particular, a simple claim $\Phi(S_T)$, $\Pi_t(\mathcal{X}) = \text{correct price of the claim in an arbitrage free market}$

(8) In the multiperiod binomial model, \mathcal{X} can be hedged. The portfolio quantities H_{t+1}^B and H_{t+1}^S are given by $H_{t+1}^B = (1+R)^{-t}x_{t+1}$ and $H_{t+1}^S = y_{t+1}$, where x_{t+1}, y_{t+1} for the node $\mathfrak{N}_{t,k}$ (remember: \vec{H}_t = purchases at time t - 1!) in the tree excerpt shown below are, if $\Pi(\mathfrak{N}_{t,k})$ = option price $\Pi_t(\mathcal{X})(\omega) \Leftrightarrow S_t(\omega) = su^k d^{t-k} \Leftrightarrow$ exactly k upward moves and t - k downward moves

(9) (a) • contract functions for \Box Europ call \Box Europ put \Box Fwd contract \Box Fwd price For t • market price of risk $(\alpha_t - R_t)/\sigma_t$) \Box Bank acct price $B_0 = 1$, $B_t = e^{\int_0^t R_u du}$; Discount $D_t = 1/B_t$; $dB_t = ...$; $dD_t = ...$ \Box pricing principle =

(b) • portfolio \vec{H} : Value $V_t = H_t^B B_t + \sum_{j>0} H_t^{(j)} S_t^{(j)}$ \square money in the bank = $X_t = H_t^B B_t = V_t - \sum_{j>0} H_t^{(j)} S_t^{(j)}$ \square self-fin. portf: $dV_t = H_t^B dB_t + \sum_{j>0} H_t^{(j)} dS_t^{(j)}$ • In Black-Scholes market with only 1 stock price S_t : also write $Y_t := H_t^S$, so \square $V_t = X_t + H_t^S S_t = X_t + Y_t S_t$; \square self-fin. portf: $dV_t = R_t X_t dt + Y_t dS_t$

(c) Greeks in classical Black-Scholes: Delta, Gamma, Rho, Theta, Vega - What are they?

(10) (a) • Euro call: $\mathbf{c} c(t,x) = \text{BSM}(\tau,x;K,r,\sigma)$, where $\mathbf{c} \tau = T-t \mathbf{c} \text{BSM}(\tau,x;K,r,\sigma) = xN(d_+(\tau,x)) - Ke^{-r\tau}N(d_-(\tau,x))$, where $\mathbf{c} d_{\pm}(\tau,x) = \frac{1}{\sigma\sqrt{\tau}} \left[\log \frac{x}{K} + \left(r \pm \frac{\sigma^2}{2}\right) \tau \right]$

(b) • Forward price of a forward contract entered at t = 0 with a strike price K: $\Box K$ was fair at t = 0; Forward price at t would be fair strike price if contract would be entered today (at t)

(c) $\Pi_t(\text{Euro put}) = \Pi_t(\text{Euro call}) - \Pi_t(\text{forward contract})$

(11) 1-dim Black–Scholes: • classic vs generalized & dividends vs no dividends: • martingale measure = risk–neutral measure = ? • What are the martingales? For P? For \tilde{P} ? • classic Black–Scholes w. const. dividend rate a (a = 0 means no dividends): • $d_{\pm}(\tau, x) = \frac{1}{\sigma\sqrt{\tau}} \left[\log(\frac{x}{K}) + \left(r - a \pm \frac{\sigma^2}{2}\right) \tau \right]$. • BSM($\tau, x; K, r, \sigma$) = $xe^{-a\tau}N(d_{+}(\tau, x)) - e^{-r\tau}KN(d_{-}(\tau, x))$ • For_S(t, T) = $\frac{S_t}{B(t,T)}$; ($0 \le t \le T$) • What do those symbols stand for? • Generalized Black–Scholes: Value V_t of self–financing portfolio; $Y_t = H_t^S = \#$ of stock shares: • $d(D_tS_t) = (\sigma_t D_t S_t) d\widetilde{W}_t • d(D_t V_t) = (Y_t \sigma_t D_t S_t) d\widetilde{W}_t$ • Above: What is \widetilde{W}_t ?

(12) multidim Black–Scholes: • 1st & 2nd fundamental theorems of asset pricing = WHAT? • Assumption f. #1: Existence of \tilde{P} • Assumption f. #2: $\tilde{\Theta}_t$ exists, and $\mathfrak{F}_t = \mathfrak{F}_t^{\tilde{W}}$.

(13) (a) • 2-dim SDE: $\vec{W}_t = (W_t^{(1)}, W_t^{(2)}); \vec{X} = (X_t, Y_t) \ dX_t = \beta_1(t, X_t, Y_t) \ dt + \gamma_{11}(\dots) \ dW_t^{(1)} + \gamma_{12}(\dots) \ dW_t^{(2)}; \ dY_t = \beta_2(\dots) \ dt + \gamma_{21}(\dots) \ dW_t^{(1)} + \gamma_{22}(\dots) \ dW_t^{(2)} = 0 \le u \le t \le T; \ \vec{a} \in \mathbb{R}^2, \ \vec{X}_u(\omega) = \vec{a} \Rightarrow E\{h(\vec{X}_t) \mid \vec{\mathfrak{S}}_u\}(\omega) = E\{h(\vec{X}_t) \mid \vec{X}_u = \vec{a}\} = E^{u,\vec{a}}h(\vec{X}_t) \quad \Box \text{ IF } [\vec{X}_t \text{ solves SDE and } r \ge 0; \ 0 \le u \le t \le T; \ \vec{a} \in \mathbb{R}^2 \text{ and } f(u,\vec{a}) := E^{u,\vec{a}}h(\vec{X}_T) \text{] THEN } [f \text{ solves PDE } f_t + \beta_1 f_x + \beta_2 f_y + \frac{1}{2}(\gamma_{11}^2 + \gamma_{12}^2) f_{xx} + (\gamma_{11}\gamma_{21} + \gamma_{12}\gamma_{22}) f_{xy} + \frac{1}{2}(\gamma_{21}^2 + \gamma_{22}^2) f_{xy} = rf, \text{ and } \forall \vec{x} : f(T, \vec{x}) = h(\vec{x}) \text{]}$