Formula Collection for the final exam – Not all items are relevant!

"BM" means Brownian motion; P = real world probab, \widetilde{P} = martingale measure on filtered space $(\Omega, \mathfrak{F}, \mathfrak{F}_t)$

(1) (a) Most general differential is dX_t for a linear combination X_t of Itô processes: $dX_t = \sum_i A_t^{(i)} dt + \sum_j B_t^{(j)} dW_t$. If $dY_t =$ $\sum_{k} C_{t}^{(k)} dt$ (no dW_{t} terms), then $d(X_{t}Y_{t}) = 0$

(b) Learn by heart: • 1-dim and multidim Itô formulas **□** Itô product rule **□** geometric BM

(c) • Lévy: continuous paths martingale M_t with $M_0 = 0$ and quadratic variation of Brownian motion is a Brownian motion • $\mathfrak{F}_t = \mathfrak{F}^W_t \; \Rightarrow \; \text{all } \mathfrak{F}_t \text{ martingales are Ttô integrals}$

(2) (a) measurable $f : (\Omega, \mathfrak{F}, \mu) \to (\Omega', \mathfrak{F}')$ induces image measure $\mu_f(A') = \mu(f^{-1}(A'))$ on $\mathfrak{F}'.$

(b) random var. $X : (\Omega, \mathfrak{F}, P) \to (\mathbb{R}, \mathfrak{B})$ induces image measure $P_X(B) = P\{X \in B\}$ on Borel sets \mathfrak{B} .

 $\int_{\Omega} g \circ f(\omega) \mu(d\omega) = \int_{\Omega'} g(\omega') \mu_f(d\omega')$ (for g Borel measurable)

(3) $f \leq g \mu$ –a.e. $\Leftrightarrow \int_A f d\mu \leq \int_A g d\mu$ for all $A \in \mathfrak{F}$

(4) Let $(\Omega, \mathfrak{F}, P)$ be a probability space. let $\mathfrak{G}, \mathfrak{H}$ be sub– σ –algebras of \mathfrak{F} such that $\mathfrak{H} \subseteq \mathfrak{G}$. Let $\varphi : \mathbb{R} \to \mathbb{R}$ be measurable.

(a) $E[c_1X + c_2Y|\mathfrak{G}] = c_1E[X|\mathfrak{G}] + c_2E[Y|\mathfrak{G}]$. (b) If X is \mathfrak{G} -measurable, then $E[X \cdot Y|\mathfrak{G}] = X \cdot E[Y|\mathfrak{G}]$. (c) $E[E[X|\mathfrak{G}] | \mathfrak{H}] = E[X|\mathfrak{H}]$. **(d)** X independent of $\mathfrak{G} \Rightarrow E[X|\mathfrak{G}] = E[X]$. **(e)** φ convex $\Rightarrow \varphi(E[X | \mathfrak{G}]) \leq E[\varphi \circ (X) | \mathfrak{G}]$.

(5) If μ, ν are σ -finite measures on (Ω, \mathfrak{F}) and $f : \Omega \to \mathbb{R}$ satisfies $\nu(A) = \int_A f d\mu$, then f is called the Radon–Nikodým derivative $\frac{d\nu}{d\mu}$.

(6) Probability space $(\Omega, \mathfrak{F}, P)$, a countable partition $\Omega = \biguplus [G_j : j \in J]$ s.t. $G_j \in \mathfrak{F}$ and $P(G_j) > 0$ for all j. Let $\mathfrak{G} := \sigma\{G_j : j \in J\}$ Let the random variable X be integrable or satisfy $X\geqq 0.~$ \Box Then $E[X\mid\mathfrak{G}](\omega) = \sum_{j\in J}$ 1 $\frac{1}{P(G_j)}\,E\left[X 1_{G_j}\right]\cdot 1_{G_j}(\omega)$ a.s.

(7) Binomial model: trading times $t = 0, 1, 2, \ldots, T$; $\Box B_0 = 1$; $B_t = (1 + R)^t$; $\Box S_0 = s$; $S_{t+1} = uS_t$ w. $P\{u \text{ happens}}\} = p_u$ and $P\{d \text{ happens}} = -1$, $p_u = H^s(u) = H^s(u)$. $\Box S_0 = s$ is $S_{t+1} = uS_t$ w. $P\{u \text{ happens}} = p_u$ and $P\{d \text{ happens } \} = p_d = 1 - p_u \Box x_t = H_1^B (1 + R)^{t-1} = \text{money in the bank at } t_1; y_t = H_2^S = \text{stock shares acquired at } t-1; \Box$ For a contingent claim χ in particular a simple claim $\Phi(S_n) \Box (X) = \text{correct price of the claim in an arbitrage from market.}$ contingent claim \mathcal{X} , in particular, a simple claim $\Phi(S_T)$, $\Pi_t(\mathcal{X})$ = correct price of the claim in an arbitrage free market

(8) In the multiperiod binomial model, \mathcal{X} can be hedged. The portfolio quantities H_{t+1}^B and H_{t+1}^S are given by $H_{t+1}^B = (1+R)^{-t}x_{t+1}$ and $H_{t+1}^S = y_{t+1}$, where x_{t+1}, y_{t+1} for the node $\mathfrak{N}_{t,k}$ (remember: \vec{H}_t = purchases at time $t-1$!) in the tree excerpt shown below are, if $\Pi(\mathfrak{N}_{t,k})=$ option price $\Pi_t(\mathcal{X})(\omega) \Leftrightarrow S_t(\omega)=s u^k d^{t-k} \Leftrightarrow$ exactly k upward moves and $t-k$ downward moves

(9) (a) • contract functions for Ξ Europ call Ξ Europ put Ξ Fwd contract Ξ Fwd price For_t • market price of risk $(\alpha_t - R_t)/\sigma_t$ Ξ Bank acct price $B_0 = 1$, $B_t = e^{\int_0^t R_u du}$; Discount $D_t = 1/B_t$; $dB_t = ...$; $dD_t = ...$ \Box pricing principle = ...

(b) • portfolio \vec{H} : Value $V_t = H_t^B B_t + \sum_{j>0} H_t^{(j)} S_t^{(j)}$ \Box money in the bank = $X_t = H_t^B B_t = V_t - \sum_{j>0} H_t^{(j)} S_t^{(j)}$ \Box selffin. portf: $dV_t = H_t^B dB_t + \sum_{j>0} H_t^{(j)} dS_t^{(j)}$ • In Black–Scholes market with only 1 stock price S_t : also write $Y_t := H_t^S$, so \Box $V_t = X_t + H_t^S S_t = X_t + Y_t S_t$; \Box self-fin. portf: $dV_t = R_t X_t dt + Y_t dS_t$

(c) Greeks in classical Black–Scholes: Delta, Gamma, Rho, Theta, Vega - What are they?

(10) (a) • Euro call: $\Box c(t, x) = \text{BSM}(\tau, x; K, r, \sigma)$, where $\Box \tau = T - t \Box \text{BSM}(\tau, x; K, r, \sigma) = xN(d_{+}(\tau, x)) - Ke^{-r \tau}N(d_{-}(\tau, x))$, where $\Box d_{\pm}(\tau, x) = \frac{1}{\sigma \sqrt{\tau}} \left[\log \frac{x}{K} + \left(r \pm \frac{\sigma^2}{2} \right) \right]$ $\left[\frac{\tau^2}{2}\right)\tau\right]$

(b) • Forward price of a forward contract entered at $t = 0$ with a strike price K: $\Box K$ was fair at $t = 0$; Forward price at t would be fair strike price if contract would be entered today (at t)

(c) Π_t (Euro put) = Π_t (Euro call) – Π_t (forward contract)

(11) 1-dim Black–Scholes: \bullet classic vs generalized & dividends vs no dividends: \Box martingale measure = risk–neutral measure = ? **□** What are the martingales? For P? For \tilde{P} ? • classic Black–Scholes w. const. dividend rate a ($a = 0$ means no dividends): $\Box d_{\pm}(\tau,x) = \frac{1}{\sigma\sqrt{\tau}}\left[\log(\frac{x}{K}) + \left(r - a \pm \frac{\sigma^2}{2}\right)\right]$ $\int_{\tau_1}^{\tau_2} \int_{-\tau_2}^{\tau_1} \mathcal{F} \left[\mathcal{L}(\tau, x; K, r, \sigma) \right] = x e^{-a \tau} N \big(d_+(\tau, x) \big) - e^{-r \tau} K N \big(d_-(\tau, x) \big)$ • For $s(t,T) = \frac{S_t}{B(t,T)}$; $(0 \le t \le T)$ \Box What do those symbols stand for? • Generalized Black–Scholes: Value V_t of self-financing portfolio; $Y_t = H_t^S = #$ of stock shares: $\mathbf{\Xi} d(D_t S_t) = (\sigma_t D_t S_t) d\widetilde{W}_t$ $\mathbf{\Xi} d(D_t V_t) = (Y_t \sigma_t D_t S_t) d\widetilde{W}_t$ $\mathbf{\Xi}$ Above: What is \widetilde{W}_t ?

(12) multidim Black–Scholes: • 1st & 2nd fundamental theorems of asset pricing = WHAT? \Box Assumption f. #1: Existence of \widetilde{P} \Box Assumption f. #2: $\vec{\Theta}_t$ exists, and $\mathfrak{F}_t = \mathfrak{F}_t^{\vec{W}}$.

(13) (a) • 2-dim SDE: $\vec{W}_t = (W_t^{(1)}, W_t^{(2)})$; $\vec{X} = (X_t, Y_t) dX_t = \beta_1(t, X_t, Y_t) dt + \gamma_{11}(\dots) dW_t^{(1)} + \gamma_{12}(\dots) dW_t^{(2)}$; $dY_t =$ $\beta_2(\ldots)dt + \gamma_{21}(\ldots) dW_t^{(1)} + \gamma_{22}(\ldots) dW_t^{(2)} \equiv 0 \le u \le t \le T; \vec{a} \in \mathbb{R}^2, \vec{X}_u(\omega) = \vec{a} \Rightarrow E\{h(\vec{X}_t) \mid \mathfrak{F}_u\}(\omega) = E\{h(\vec{X}_t) \mid \vec{X}_u = \vec{a} \}$ \vec{a} } = $E^{u,\vec{a}}h(\vec{X}_t)$ **□** IF [\vec{X}_t solves SDE and $r \ge 0; 0 \le u \le t \le T; \vec{a} \in \mathbb{R}^2$ and $f(u, \vec{a}) := E^{u,\vec{a}}h(\vec{X}_T)$] THEN [f solves PDE $f_t + \beta_1 f_x + \beta_2 f_y + \frac{1}{2}(\gamma_{11}^2 + \gamma_{12}^2) f_{xx} + (\gamma_{11}\gamma_{21} + \gamma_{12}\gamma$