Formula Collection for Math 454 Final Exam – Not all items are relevant!

Abbreviations: • rv = r.v. = random variable; r.elem = random element • meas = measure • mble = measurable • fn = function • prob = probability • distr = distribution • conv = convergence • cont = continuous/continuity • Riem-∫-ble = Riemann integrable • w.r.t = with respect to • RN = Radon-Nikodým • cond.exp = conditional expectation • BM = Brownian motion • BAM = binom. asset model • BS = Black-Scholes • PF = portfolio • arbPF = arbitrage portfolio • self-fin = self-financing • MPoR = market price of risk • r-n = risk-neutral • r-n val = risk-neutral validation • ZCB = zero coupon bond • SDE/ODE/PDE = stochastic/ordinary/partial differential eqn • F-K = Feynman-Kac

- (a) \bullet power set $2^{\Omega} = \{$ all subsets of $\Omega \} \bullet \forall x \dots$: For all $x \dots \boxdot \exists x \text{ s.t.} \dots$ There is an $x \text{ such that } \dots$
- \boxdot \exists ! x s.t. . . . There is a unique x s.t. . . . \boxdot $p \Rightarrow q$ If p is true then q is true \boxdot $p \Leftrightarrow q$ p iff q, i.e., p true if and only if q true
- Intervals: $]a,b[=\{x\in\mathbb{R}:a< x< b,|a,b|_{\mathbb{Z}}=\{x\in\mathbb{Z}:a< x\le b,[a,b]_{\mathbb{Q}}=\{x\in\mathbb{Q}:a\le x\le b,$ etc.
- countable set A: can be sequenced: $\Box A = \{a_1, a_2, \dots, a_n\}$ (finite set) $\Box A = \{1, a_2, \dots\}$ ("countably infinite" set)
- ☑ \mathbb{Z} and \mathbb{Q} are countable, but \mathbb{R} is uncountable family $(x_i)_{i \in I}$: index set I may be uncountable $\bigcup_{i \in J} A_i = \{x : \exists i_0 \in J \text{ s.t. } x \in A_{i_0}\}$ $\bigcap_{i \in J} A_i = \{x : \forall i \in J x \in A_i\}$. Can use $A \biguplus B$ for $A \cup B$ if disjoint sets **De Morgan:** \square $(\bigcup_k A_k)^{\complement} = \bigcap_k A_k^{\complement} \square (\bigcap_k A_k)^{\complement} = \bigcup_k A_k^{\complement}$ **Distributivity:** $\square \bigcup_j (B \cap A_j) = B \cap \bigcup_j A_j \square \bigcap_{j \in I} (B \cup A_j) = B \cup \bigcap_j A_j$
- Cartesian products: $|X_1 \times \cdots \times X_n| = |X_1| \cdots |X_n|$ Indicator fn $\mathbf{1}_A(\omega) = ?$ preimages of $f: X \to Y$:

Arbitrary index set J and $B, B_j \subseteq Y$: $\bullet f^{-1}(\bigcap_{j \in J} B_j) = \bigcap_{j \in J} f^{-1}(B_j) \bullet f^{-1}(\bigcup_{j \in J} B_j) = \bigcup_{j \in J} f^{-1}(B_j)$

- (b) Integrals $\int_A f d\mu$: monotone & dominated conv. & other laws for $\int f d\mu$ Jensen ineq valid for what μ ?
- simple fn $g: \int g d\mu = ?$ $\int h(\vec{x}) d\vec{x}$ (Riemann) vs $\int h d\lambda^d$ $\mathfrak{B}^d = \sigma \{ d$ -dim rectangles $\}$ For what φ is $A \mapsto \int_A \varphi(\omega) \mu(d\omega)$ a prob meas? ILMD method used how? for what theorems?
- Use Fubini for both $\int_A f(\vec{y})d\vec{y}$ and $\int fd\lambda^d$ to compute multidim \int . 1_A Riem- \int -ble $\Rightarrow \lambda^d(A)$ defined how?
- mble $f:(\Omega,\mathfrak{F},\mu)\to (\Omega',\mathfrak{F}')$ img meas $\mu_f(A')$ (=???) on \mathfrak{F}' . Distrib P_X of a r.elem X defined how?
- $f:\Omega \to \mathbb{R}$, μ, ν σ -finite meas on (Ω,\mathfrak{F}) s.t. $\nu(A)=\int_A f d\mu$, $\Rightarrow f$ =(def) RN derivative $\frac{d\nu}{d\mu}$. meas $\nu \ll \mu \Leftrightarrow [\mu(A)=0 \Rightarrow \nu(A)=0]$; $\nu \sim \mu \Leftrightarrow [\mu(A)=0 \Leftrightarrow \nu(A)=0]$; [$\nu \ll \mu$ and μ, ν σ -finite] \Leftrightarrow [RN derivative $\frac{d\nu}{d\mu}$ exists].
- $\int_{\Omega} g \circ f(\omega) \mu(d\omega) = \int_{\Omega'} g(\omega') \mu_f(d\omega')$ (what are f, g w.r.t. μ ?) $\int f(\omega) \frac{d\nu}{d\mu}(\omega) \mu(d\omega) = \int f(\omega) \nu(d\omega)$ ($f, \mu, \nu, \frac{d\nu}{d\mu} = ?$);
- $f \leq g \mu$ -a.e. $\Leftrightarrow \int_A f d\mu \leq \int_A g d\mu$ for all $A \in \mathfrak{F}$ Y functionally dependent on $X \Leftrightarrow \sigma(\underline{\hspace{1cm}}) \subseteq \sigma(\underline{\hspace{1cm}})$ in what sense?
- (d1) 1-dim Stoch. calculus: simple process $Z_t \Rightarrow \text{It\^{o}}$ integral $\int_0^t Z_u dW_u = \dots$ $dt dW_t = ? dW_t dW_t = ?;$
- Itô isometry =? Itô processes $dX_t = A_t dt + B_t dW_t$, $dY_t = U_t dt + V_t dW_t$; then $\Box dX_t dY_t = ? \Box d[X, X]_t = ?$
- When is $t \mapsto \int_0^t X_u dY_u$ a martingale? Lévy: contin. paths martingale M_t ; $M_0 = 0$; $[M, M]_t = t \Rightarrow M_t = ?$
- 1-dim and multidim Itô formulas Itô product rule GBM and general GBM: $\Box dX_t = ? \Box$ meaning of α_t, σ_t
- (d2) multidim Stoch. calculus: \bullet d-dim BM $\vec{W}_t = ? \bullet [W^{(i)}, W^{(j)}]_t = ? \bullet dW_t^{(i)} dW_t^{(j)} = ? \bullet dX_t = \Theta_t dt + \vec{\Delta}_t \bullet d\vec{W}_t$ means? \bullet d-dim Lévy = ?
- (e) financial markets: contingent claim \mathcal{X} : \square simple if $\mathcal{X} = \Phi(S_T)$; \square $\Pi_t(\mathcal{X}) = \text{correct}$ (no arbitrage) price of \mathcal{X}
- self-fin PF $\vec{H}_t = ??$; arbPF = ?? replicating PF = ?? pricing principle = ?? complete market =?
- (e1) BAM (binomial asset model):
- Notation: \widetilde{P} = risk–neutral probab (P = real world probab) on $(\Omega, \mathfrak{F}, \mathfrak{F}_t)$
- def. BAM: ullet trading times $t=0,1,2,\ldots,T$; multiperiod BAM if T>1 ullet $B_0=1; B_t=(1+r)^t$ = money market acct price; $D_t=1/B_t$ = discount ullet $S_0=s=$ const; ullet $u,d,p_u,p_d,\tilde{u},\tilde{d}$ def'd HOW? ullet compute S_{t+1} from S_t HOW?

- PF $\vec{H}_t = (H_t^B, H_t^S)$: \Box \vec{H}_t bought at t-1, sold at t \Box $V_t = V_t^{\vec{H}} = H_t^B B_t + H_t^S S_t =$ sales value of \vec{H}_t \Box $x_t = H_t^B B_{t-1} =$ money in the bank at t_1 ; \Box $y_t = H_t^S =$ stock shares bought at t-1; no arb \Leftrightarrow WHAT? martingales (P? \widetilde{P} ?) are ...
- hedge PF for simple claim $\mathcal{X} = \Phi(S_T)$ at t+1 is $H^B_{t+1} = (1+r)^{-t}x_{t+1}$ and $H^S_{t+1} = y_{t+1}$, where x_{t+1}, y_{t+1} for the node $\mathfrak{N}_{t,k}$ (remember: $\vec{H}_t =$ purchased at time t-1!) in the tree excerpt shown below are, if $\Pi(\mathfrak{N}_{t,k}) =$ option price $\Pi_t(\mathcal{X})(\omega)$ $\Leftrightarrow S_t(\omega) = su^k d^{t-k} \Leftrightarrow \text{exactly } k \text{ upward moves and } t-k \text{ downward moves}$

■ Is one period BAM complete?
■ Is multiperiod BAM complete?

- (e2) contin time financial markets with only 1 riskless asset and self–fin PF \vec{H}_t : PF Value $V_t = V_t^{\vec{H}} = H_t^B B_t + \sum_{j>0} H_t^{(j)} S_t^{(j)}$ $X_t := H_t^B B_t = V_t \sum_{j>0} H_t^{(j)} S_t^{(j)}$ budget eqn: $dV_t = H_t^B dB_t + \sum_{j>0} H_t^{(j)} dS_t^{(j)}$
- If only 1 stock price S_t : can write $Y_t := H_t^S$ $V_t = X_t + H_t^S S_t = X_t + Y_t S_t$ budget eqn: $dV_t = H_t^B dB_t + Y_t dS_t$
- (e3) Black–Scholes market \bullet model of (classical) BS market: \Box constant $r, \alpha, \sigma \in \mathbb{R}$ meaning =?. \Box $dB_t =$? \Box $dD_t =$?
- \bullet $dS_t = ? \bullet (t, x) \mapsto \pi(t, x)$ is C^2 means $? \bullet \Phi(S_T) = \pi(WHAT?, WHAT?) \bullet hedge <math>\vec{H}_t$ for simple claim $\Phi(S_T) \Rightarrow \Phi(S_T) = \pi(WHAT?, WHAT?)$
- $\boxdot d\big(e^{-rt}V_t^{\vec{H}}\big) = (\alpha r)H_t^S e^{-rt}S_t dt + \sigma H_t^S e^{-rt}S_t dW_t = H_t^S d\big(e^{-rt}S_t\big) \ \boxdot \ \text{delta-hedging rule: } H_t^S =? \ \boxdot \ \text{BS PDE:} \\ \pi_t(t,x) + rx\,\pi_x\big(t,x) + \frac{1}{2}\,\sigma^2 x^2\pi_{xx}(t,x) = r\,\pi\big(t,x\big); \ \pi \ \text{must satisfy } \pi(T,x) = \Phi(\text{WHAT?}) \ \bullet \ \text{put-call parity means } \dots$
- Europ. call: \bullet $\Phi(x) = ? \bullet c(t,x) = \text{BSM}(\tau,x;K,r,\sigma) = xN\big(d_+(\tau,x)\big) Ke^{-r\tau}N\big(d_-(\tau,x)\big)$, where $0 \le t < T$,
- $\tau = T t, \ x > 0, \ d_{\pm}(\tau, x) = \frac{1}{\sigma\sqrt{\tau}} \left[\log \frac{x}{K} + \left(r \pm \frac{\sigma^2}{2}\right) \tau \right] \bullet \text{fwd contract: } \bullet \Phi(x) =? \bullet f(t, x) =?$
- Amer. puts and calls: which one should never be exercised before *T*?
- (f) r-n val (risk-neutral validation): Girsanov (d-dim): Given T>0, $(\Omega,\mathfrak{F},\mathfrak{F}_t,P)$ with d-dim BM \vec{W}_t and $\vec{\Theta}_t=\left(\Theta_t^{(1)},\ldots,\Theta_t^{(d)}\right)$ Let $Z_t:=\exp\left\{-\int\limits_0^t\vec{\Theta}_u\bullet d\vec{W}_u-\frac{1}{2}\int\limits_0^t\|\vec{\Theta}_u\|_2^2\,du\right\}$ s.t. $E\left[\int\limits_0^T\|\vec{\Theta}_u\|_2^2\,Z_u^2\,du\right]<\infty$. Then, $d\widetilde{P}=Z_TdP$ and $d\widetilde{W}_t$ satisfy ...?? $\mathfrak{F}_t=\mathfrak{F}_t^{\vec{W}}$ \Rightarrow martingale representation thm states WHAT?
- In 1–dim BS market: $\ \ \, \boxdot \ \, \theta_t = \text{MPoR} =?? \ \ \, \ \, \widetilde{P} \ \, \text{martingales are }??$ Which one is used for r–n val? $\ \ \, \boxdot$ r–n val formula: Def.13.4!! 1st/2nd fundamental thm of asset pricing = ??
- (g) Dividends and ZCBs in 1-dim B-S market: \bullet discrete time dividends with rate $a_j(\omega)$ at t_j : $S_{t_j}(\omega) = \ldots \bullet$ continuous time dividends with rate $A_t(\omega)$: $\Box dS_t = \ldots \Box$ If $d\widetilde{P} = Z_T dP$ is Girsanov measure and V_t = value of self-fin PF:

Is $D_t S_t$ a \widetilde{P} -martingale? Is $D_t V_t$ a \widetilde{P} -martingale? \bullet contract function of a ZCB is $\Phi(x) = ??: \bullet B(t,T)$ defined how?

- r-n val formula for ZCB is (14.39)!! B(t,T) and For_S(t,T) related how?
- (h) SDEs and PDEs (Stochastic and partial Differential Eqns) differential of an SDE =? Each initial condition yields $P^{u,a} + E^{u,a}$ that \square "play the role" of conditioning on $X_u = a$ \square show Markov property when replacing a with $X_u = X_u(\omega)$:

See (15.9), (15.10):
$$E\{h(X_t) \mid \mathfrak{F}_u\} = E\{h(X_t) \mid X_u\} = E^{u,X_u}h(X_t) = \int_{\mathbb{R}^n} h(x)P(u,X_u,t,dx)$$

- ullet 2-dim SDE w. dynamics $dX_t = \dots; dY_t = \dots;$ and initial conds when driven by 2-dim $\vec{W}_t = (W_t^{(1)}, W_t^{(2)})$
- F–K for r=0: $\vec{x}:=(x,y)$, etc: $(t,x,y)\mapsto g(t,\vec{x})=E^{t,\vec{x}}\,h\big(X_T,Y_T\big)$ solves PDE $\ \, \boxdot \, g_t+\beta_1g_x+\beta_2g_y+\frac{1}{2}(\gamma_{11}^2+\gamma_{12}^2)g_{xx}+(\gamma_{11}\gamma_{21}+\gamma_{12}\gamma_{22})g_{xy}+\frac{1}{2}(\gamma_{21}^2+\gamma_{22}^2)g_{yy}=0 \ \, \blacksquare \,$ terminal cond. = ?? F–K for r>0 = ?? 1–dim F–K = ?? Asian option defined how? Zero coupon yield Y(t,T) defined how?