Math 330 Notes 00A

Notes on the Auxiliary Documents on Sets, Functions and Relations
I use some notation that does not coincide with that used in some or all of the additional reading material I posted in home page and syllabus:

Discrepancies in notation:
"Math 330": the notation used in class
"B/G": the notation in Beck/Geoghean
"Sets 1": the notation in mazur-330-sets-1.pdf
"Sets 2": the notation in mazur-330-sets-2.pdf
"Sets 2": the notation in mazur-330-sets-2.pdf
Note that some of the documents briefly refer to alternate notation.

Math 330	B/G	Sets 1	page \#	Notes
\bar{N}_{0}	$\overline{\mathbb{Z}}_{\geq 0}$	N	p. 10^{-}	
N	\mathbb{N}	\mathbb{Z}^{+}	p. 10	the set $\{1,2,3, \ldots\}$
A^{c} or A^{\complement}	N / A	A^{\prime}	p. 11	U : Universal set
$A \backslash B$	$A-B$	$A-B$	p. 13	difference of sets
$A \cap B$ or $A B$	$A \cap B$	$A \cap B$	p. 13	$A B$ is common in probability \mathcal{E} statistics
Math 330	B / G	Sets 2	page \#	Notes
$\bar{A} \bar{\triangle} \bar{B}$	\bar{N} / \bar{A}	$\bar{A} \bar{\oplus} \bar{B}$	p. 977^{-}	symm. difference of sets
2^{A}	$\bar{P} \overline{(\bar{A})}$	$\left.{ }^{-} \overline{\mathscr{P}} \bar{A} \bar{A}\right)$	p. 98^{-}	power set $\{\bar{B} \cdot \bar{B} \subseteq \bar{A}$

Some of the documents use more logic than used in class or to be found in B / G :

B	Documents	Notes
		. ${ }_{\text {lf }}$
Stmt $_{1} \Longleftrightarrow$ Stmi $_{2}$	Stmi $_{1} \leftrightarrow$ Stmt $_{2}$	quivalence: Stmt if and only if Stmt ${ }_{2}$
N/A	Stmt $_{1} \vee$ Stmi $_{2}$	Disjunction (inclusive Or): Stmt $_{1}$ Or Stmt ${ }_{2}$ or both
N/A	Stmt $_{1} \wedge$ Stmt $_{2}$	Conjunction: Both Stmt ${ }_{1}$ And Stmt ${ }_{2}$

Example from the Sets 2 document, p.96: Definition: Two sets A and B are equal $(A=B)$ if

$$
\forall x[x \in A \leftrightarrow x \in B] \quad \text { or, equivalently, } \quad \forall x[(x \in A \rightarrow x \in B) \wedge(x \in B \rightarrow x \in A)]
$$

translates to
Definition: Two sets A and B are equal $(A=B)$ if

$$
x \in A \Longleftrightarrow x \in B] \quad \text { or, equivalently, } \quad[x \in A \Rightarrow x \in B] \text { and }[x \in B \Rightarrow x \in A]
$$

