Math 330 Notes 00A

Notes on the Auxiliary Documents on Sets, Functions and Relations

I use some notation that does not coincide with that used in some or all of the additional reading material I posted in home page and syllabus:

Discrepancies in notation:

"Math 330": the notation used in class

"B/G": the notation in Beck/Geoghean

"Sets 1": the notation in mazur-330-sets-1.pdf

"Sets 2": the notation in mazur-330-sets-2.pdf

"Sets 2": the notation in mazur-330-sets-2.pdf

Note that some of the documents briefly refer to alternate notation.

Math 330	B/G	Sets 1	page #	Notes
\mathbb{N}_0	$\mathbb{Z}_{\geq 0}$	N	p.10	$the set \{0, 1, 2,\}$
\mathbb{N}	\mathbb{N}	\mathbb{Z}^+	p.10	<i>the set</i> $\{1, 2, 3, \dots\}$
A^c or A^{\complement}	N/A	A'	p.11	U: Universal set
$A \setminus B$	A - B	A - B	p.13	difference of sets
$A \cap B \text{ or } AB$	$A \cap B$	$A \cap B$	p.13	AB is common in probability & statistics
Math 330	B/G	Sets 2	page #	Notes
$\bar{A}\bar{\Delta}\bar{B}$	\bar{N}/\bar{A}	$A \oplus B$	p.97	symm. difference of sets
$2^{A^{}}$	$\overline{P(A)}$	$\bar{\mathscr{P}}(\bar{A})$	p.98	$power \ set \ \{\overline{B} : \overline{B} \subseteq \overline{A}$

Some of the documents use more logic than used in class or to be found in B/G:

B/G	Documents	Notes
$\overline{Stmt_1} \Rightarrow \overline{Stmt_2}$	$\bar{S}t\bar{m}t_1 \rightarrow \bar{S}t\bar{m}t_2$	<i>Implication:</i> If Stmt ₁ Then Stmt ₂
$Stmt_1 \iff Stmt_2$	$Stmt_1 \leftrightarrow Stmt_2$	Equivalence: $Stmt_1$ if and only if $Stmt_2$
N/A	$Stmt_1 \lor Stmt_2$	Disjunction (inclusive Or): $Stmt_1$ Or $Stmt_2$ or both
N/A	$Stmt_1 \wedge Stmt_2$	<i>Conjunction:</i> Both $Stmt_1$ And $Stmt_2$

Example from the Sets 2 document, p.96: Definition: Two sets A and B are equal (A = B) if

 $\forall x [x \in A \leftrightarrow x \in B] \quad or, equivalently, \quad \forall x [(x \in A \to x \in B) \land (x \in B \to x \in A)]$

translates to

Definition: Two sets A *and* B *are equal* (A = B) *if*

$$x \in A \iff x \in B$$
] or, equivalently, $[x \in A \Rightarrow x \in B]$ and $[x \in B \Rightarrow x \in A]$