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Math 488P/588 Additional Material

Additional Material on sets and functions

This write-up provides some additional background on sets and functions. The first part lists some useful
properties of direct and indirect images of a function.

0.1 Notation

Notation 0.1. a) If two subsets A and B of a space Ω are disjoint then we often write A
⊎
B rather

than A ∪B or A + B. Both {A and A{ denote the complement Ω \A of A.
b) R+ denotes the interval ]0,+∞[, R+ denotes the interval [0,+∞[,

c) The set N = {1, 2, 3, · · · } of all natural numbers excludes the number zero. We write N0 or Z+ or
Z≥0 for N

⊎
{0}

d) We generally write Ef or E(f) rather than E[f ] for the expected value of a random variable
f because it is very hard to distinguish E[|f |] from E‖f‖ but we shall occasionally use “[·]” with
expectations in case there are no absolute values around the expression that the expectation is taken
of.
i) Let E be a topological space (a set which allows the concept of continuity). C (E) or C 0(E) denotes
the set of all continuous real valued functions on E,

0.2 Direct images and indirect images (preimages) of a function

Here are references, preimages: [1] Kupferman, Raz: Lecture Notes in Probability (Hebrew University). And
another one: [2] Author unknown: mazur-330-func-1.pdf - Introduction to Functions Ch.2. And number
3: [3] Author unknown: mazur-330-func-2.pdf - Properties of Functions Ch.2. And number 4: [4] Author
unknown: mazur-330-sets-1.pdf - Ch.1: Introduction to Sets and Functions And number 3: [5] Author
unknown: mazur-330-sets-2.pdf - Ch.4: Applications of Methods of Proof

Definition 0.1. Let X,Y be two non-empty sets and f : X → Y be an arbitrary function with
domain X and codomain Y . Let A ⊆ X and B ⊆ Y . Let

1) f(A) = {f(x) : x ∈ A}(0.1)

2) f−1(B) = {x ∈ X : f(x) ∈ B}(0.2)
(0.3)
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We call f(A) the direct image of A under f and we call We call f−1(B) the indirect image or
preimage of B under f

Notational conveniences:

If we have a set that is written as {. . . } then we may write f{. . . } instead of f({. . . }) and f−1{. . . } instead
of f−1({. . . }). Specifically for x ∈ X and y ∈ Y we get f−1{x} and f−1{y}. Many mathematicians will
write f−1(y) instead of f−1{y} but this writer sees no advantages doing so whatsover. There seemingly are
no savings with respect to time or space for writing that alternate form but we are confounding two entirely
separate items: a subset f−1{y} of X v.s. an element f−1(y) of X . We can perfectly talk about the latter in
case that the inverse function f−1 of f exists.

In measure theory and probability theory the following notation is also very common: {f ∈ B} rather than
f−1(B) and {f = y} rather than f−1{y}

Let a < b ∈ R. We write {a ≤ f ≤ b} rather than f−1([a, b]), {a < f < b} rather than f−1(]a, b[),
{a ≤ f < b} rather than f−1([a, b[) and {a < f ≤ b} rather than f−1(]a, b]).

Proposition 0.1. Some simple properties:

f(∅) = f−1(∅) = 0(0.4)
A1 ⊆ A2 ⊆ X ⇒ f(A1) ⊆ f(A2)(0.5)

B1 ⊆ B2 ⊆ Y ⇒ f−1(B1) ⊆ f−1(B2)(0.6)
x ∈ X ⇒ f({x}) = {f(x)}(0.7)

f(X) = Y ⇐⇒ f is surjective(0.8)

f−1(Y ) = X always!(0.9)

Proof of all properties is immediate. �

Proposition 0.2 (f−1 is compatible with all basic set ops). In the following we assume that J is an
arbitrary index set, and that B ⊆ Y , Bj ⊆ Y for all j.
The following all are true:

f−1(
⋂
j∈J

Bj) =
⋂
j∈J

f−1(Bj)(0.10)

f−1(
⋃
j∈J

Bj) =
⋃
j∈J

f−1(Bj)(0.11)

f−1(B{) = f−1(B){(0.12)

f−1(B1 \B2) = f−1(B1) \ f−1(B2)(0.13)
(0.14)
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Proof of (0.10): Let x ∈ X . Then

x ∈ f−1(
⋂
j∈J

Bj) ⇐⇒ f(x) ∈
⋂
j∈J

Bj (def preimage)(0.15)

⇐⇒ ∀j f(x) ∈ Bj (def ∩)(0.16)

⇐⇒ ∀j x ∈ f−1(Bj) (def preimage)(0.17)

⇐⇒ x ∈
⋂
j∈J

f−1(Bj) (def ∩)(0.18)

Proof of (0.11): Let x ∈ X . Then

x ∈ f−1(
⋃
j∈J

Bj) ⇐⇒ f(x) ∈
⋃
j∈J

Bj (def preimage)(0.19)

⇐⇒ ∃j0 : f(x) ∈ Bj0 (def ∪)(0.20)

⇐⇒ ∃j0 : x ∈ f−1(Bj0) (def preimage)(0.21)

⇐⇒ x ∈
⋃
j∈J

f−1(Bj) (def ∪)(0.22)

Proof of (0.12): Let x ∈ X . Then

x ∈ f−1(B{) ⇐⇒ f(x) ∈ B{ (def preimage)(0.23)
⇐⇒ f(x) /∈ B (def (·){)(0.24)

⇐⇒ x /∈ f−1(B) (def preimage)(0.25)

⇐⇒ x ∈ f−1(B){ (·){)(0.26)

Proof of (0.13): Let x ∈ X . Then

x ∈ f−1(B1 \B2) ⇐⇒ x ∈ f−1(B1 ∩B{2) (def \)(0.27)

⇐⇒ x ∈ f−1(B1) ∩ f−1(B{2) (see (0.10)(0.28)

⇐⇒ x ∈ f−1(B1) ∩ f−1(B2)
{ (see (0.12)(0.29)

⇐⇒ x ∈ f−1(B1) \ f−1(B2) (def \)(0.30)

�

Proposition 0.3 (Properties of the direct image). In the following we assume that J is an arbitrary index
set, and that A ⊆ X , Aj ⊆ X for all j.
The following all are true:

f(
⋂
j∈J

Aj) ⊆
⋂
j∈J

f(Aj)(0.31)

f(
⋃
j∈J

Aj) =
⋃
j∈J

f(Aj)(0.32)
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Proof of (0.10): This follows from the monotonicity of the direct image (see 0.5):⋂
j∈J

Aj ⊆ Ai ∀i ∈ J ⇒ f(
⋂
j∈J

Aj) ⊆ f(Ai) ∀i ∈ J (see 0.5)(0.33)

⇒ f(
⋂
j∈J

Aj) ⊆
⋂
i∈J

f(Ai) (def ∩)(0.34)

(0.35)

First proof of (0.11)) - “Expert proof”:

y ∈ f(
⋃
j∈J

Aj) ⇐⇒ ∃ x ∈ X : f(x) = y and x ∈
⋃
j∈J

Aj (???)(0.36)

⇐⇒ ∃ x ∈ X and j0 ∈ J : f(x) = y and x ∈ Aj0 (???)(0.37)
⇐⇒ ∃ x ∈ X and j0 ∈ J : f(x) = y and f(x) ∈ f(Aj0) (???)(0.38)
⇐⇒ ∃ j0 ∈ J : y ∈ f(Aj0) (???)(0.39)

⇐⇒ y ∈
⋃
j∈J

f(Aj) (???)(0.40)

Alternate proof of (0.11)) - Proving each inclusion separately. Unless you have a lot of practice reading and
writing proofs whose subject is the equality of two sets you should write your proof the following way:

A. Proof of “⊆”:

y ∈ f(
⋃
j∈J

Aj) ⇒ ∃ x ∈ X : f(x) = y and x ∈
⋃
j∈J

Aj (???)(0.41)

⇒ ∃ j0 ∈ J : f(x) = y and x ∈ Aj0 (???)(0.42)
⇒ y = f(x) ∈ f(Aj0) (???)(0.43)

⇒ y ∈
⋃
j∈J

f(Aj) (???)(0.44)

B. Proof of “⊇”:

This is a trivial consequence from the monotonicity of A 7→ f(A):

Ai ⊂
⋃
j∈J

Aj ∀ i ∈ J ⇒ f(Ai) ⊂ f
( ⋃
j∈J

Aj

)
∀ i ∈ J (???)(0.45)

⇒
⋃
i∈J

f(Ai) ⊂ f
( ⋃
j∈J

Aj

)
∀ i ∈ J (???)(0.46)

�

You see that the “elementary” proof is barely longer than the first one, but it is so much easier to understand!

Proposition 0.4 (Indirect image and fibers of f ). We define on X the equivalence relation

x1 ∼ x2 ⇐⇒ f(x1) = f(x2), i.e.,(0.47)
[x]f = {x̄ ∈ X : f(x̄) = f(x)}, are the equivalence classes.(0.48)
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Then the following is true:

x ∈X ⇒
[

[x]f = {x̂ ∈ X : f(x̂ = f(x))} = f−1{f(x)}(0.49)

A ⊆X ⇒ f−1(f(A)) =
⋃
a∈A

[a]f .(0.50)

Proof of (0.49): The equation on the left is nothing but the definition of the equivalence classes generated by
an equivalence relation, the equation on the right follows from the definition of preimages.

Proof of (0.50):

As f(A) = f(
⋃

x∈A{x}) =
⋃

x∈A{f(x)} (see 0.32), it follows that

f−1(f(A)) = f−1(
⋃
x∈A
{f(x)})(0.51)

=
⋃
x∈A

f−1{f(x)} (see 0.11)(0.52)

=
⋃
x∈A

[x]f (see 0.49)(0.53)

�

Corollary 0.1.

A ∈X ⇒ f−1(f(A)) ⊇ A.(0.54)

Proof:

It follows from x ∼ x for all x ∈ X that x ∈ [x]f , i.e., {x} ∈ [x]f for all x ∈ X . But then

A =
⋃
x∈A
{x} ⊆

⋃
x∈A

[x]f = f−1(f(A))(0.55)

where the last equation holds because of (0.50). �

Proposition 0.5.

B ⊂ Y ⇒ f(f−1(B)) = B ∩ f(X).(0.56)

Proof of “⊆”:

Let y ∈ f(f−1(B)). There exists x0 ∈ f−1(B) such that f(x0) = y (def direct image). We have
a) x0 ∈ f−1(B) ⇒ y = f(x0) ∈ B (def. of preimage)
b) Of course x0 ∈ X . Hence y = f(x0) ∈ f(X). a and b together imply y ∈ B ∩ f(X).

Proof of “⊇”:

Let y ∈ f(X) and y ∈ B. We must prove that y ∈ f(f−1(B)). Because y ∈ f(X) there exists x0 ∈ X such
that y = f(x0). Because y = f(x0) ∈ B we conclude that x0 ∈ f−1(B) (def preimage). Let us abbreviate
A := f−1(B). Now it easy to see that

x0 ∈ f−1(B) = A ⇒ y = f(x0) ∈ f(f−1(B)).(0.57)

We have shown that if y ∈ f(X) and y ∈ B then y ∈ f(f−1(B)). The proof is completed. �
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Remark 0.1. Be sure to understand how the assumption y ∈ f(X) was used.

Corollary 0.2.

B ∈Y ⇒ f(f−1(B)) ⊆ B.(0.58)

Trivial as f(f−1(B)) = B ∩ f(X) ⊂ B. �

References

[1] Raz Kupferman. Lecture Notes in Probability (Hebrew University). 1st edition, 2009.

[2] Unknown. mazur-330-func-1.pdf - Introduction to Functions Ch.2. 1st edition.

[3] Unknown. mazur-330-func-2.pdf - Properties of Functions Ch.2. 1st edition.

[4] Unknown. mazur-330-sets-1.pdf - Ch.1: Introduction to Sets and Functions. 1st edition.

[5] Unknown. mazur-330-sets-2.pdf - Ch.4: Applications of Methods of Proof. 1st edition.

6



Index

direct image, 1

function
direct image, 1
preimage, 1

indirect image, 1

preimage, 1

symbols
A
⊎
B - disjoint union, 1

A{ - complement, 1
C (E),C 0(E) - continuous functions, 1
{A - complement, 1
N,N0, 1
R+ - ]0,+∞[, 1
R+ - [0,+∞[, 1
Z+,Z≥0, 1
f(A) - direct image, 1
f−1(B) - indirect image (preimage), 1

7


	Notation
	Direct images and indirect images (preimages) of a function
	References
	Index

