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0.0.1 Sets

a. Sets X are collections of stuff (elements); x ∈ X : x is an element of X
• Duplicates and order of elements are ignored: X = {−1, 1,−1, 1, . . . } = {−1, 1} = {1,−1}
b. Sets can contain sets, e.g., U = { ]a, b[ : a < b}; Powerset 2X = {A : A ⊆ X} (all subsets of X)
• We assume for collections of sets U that U ⊆ 2Ω for some suitable “universal set” Ω

c. Intersections: x ∈ A1 ∩A2 ⇔ x ∈ A1 and x ∈ A2

• x ∈ A1 ∩ · · · ∩An =
⋂n
j=1Aj ⇔ x ∈ Aj for all 1 5 j 5 n —

• Collection of sets U; x ∈
⋂
U =

⋂ [
U : U ∈ U

]
⇔ x ∈ U for all U ∈ U

d. Unions: x ∈ A1 ∪A2 ⇔ x ∈ at least one of A1, A2

• x ∈ A1 ∪ · · · ∪An =
⋃n
j=1Aj ⇔ x ∈ Aj for at least one 1 5 j 5 n —

• Collection of sets U; x ∈
⋃
U =

⋃ [
U : U ∈ U

]
⇔ x ∈ U for at least one U ∈ U

e. Set difference A \B = {x ∈ A : x /∈ B}
• Complement A{ of A ⊆ Ω: A{ = Ω \A; A,B ⊆ Ω ⇒ A \B = A ∩B{

0.0.2 Types of numbers

a. Natural numbers: N = {1, 2, 3, . . . }; Integers: Z = {0,±1,±2, . . . }
b. Rational #s: Q = {nd : n, d ∈ Z, d 6= 0}; 5/8 ∈ Q, −7 = −7

1 ∈ Q, 1.25 = 5
4 ∈ Q, 0.333̄ = 1

3 ∈ Q
c. Real #s: R = { all decimals } = {m+

∑∞
j=1 dj10−j : m ∈ Z and dj = 0, 1, 2, . . . , 9 (digits) }

π,
√

2 ∈ R but π,
√

2 /∈ Q Intervals [a, b[ = {x ∈ R : a 5 x < b}, ]a, b[ = {x ∈ R : a < x < b}, . . .

0.0.3 Functions f : X → Y, x 7→ f(x)

a. Domain X 6= ∅ (source of arguments), Codomain Y 6= ∅ (target contains function values f(x),

assignment x 7→ f(x); can write X
f→ Y instead of f : X → Y

b. Example 1: f : [10,∞[→ ]− 20,∞[ , x 7→ f(x) =
√
x− 1

− Example 2: g : [10,∞[→ ]3,∞[ , x 7→ g(x) =
√
x− 1

− Example 3: h : [1, 101] → [0, 10] , x 7→ h(x) =
√
x− 1

• f, g, h are different because domains and/or codomains to not match
c. Function f : X → Y, x 7→ f(x); ∅ 6= X ′ ⊆ X ;

f
∣∣
X′ : X1 → Y, x 7→ f ′(x) := f(x) is the restriction of f to X ′ and f is an extension of f ′ to X
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0.0.4 Cardinality

a. finite set X : card(X) = # of elements in X ; empty set ∅ is finite (no elements)⇒ card(∅) = 0
• X is countably infinite if not finite but can be enumerated (sequenced): X = {x1, x2, x3, . . . }
• X is countable if finite or countably infinite
• X is uncountable if it cannot be sequenced
b. B countable, A ⊆ B ⇒ A countable
− Proof: discard bj from B = {b1, b2, . . . } if bj /∈ A
c. A countable union

⋃
n∈NAn of countable sets An is countable.

− Proof: An = {an,1, an,2, . . . }; traverse the finite diagonals Dk = {ai,j : i + j = k} in order, starting
with D2 = {a1,1}. Skip duplicates and empty slots.

d. Fractions (rational #s) Q is countable: Q = Q1 ∪ Q2 ∪ · · · = countable union of finite sets Qn = all
fractions with denominator n between −n and n: Qn = {−n2

n ,−
n2−1
n ,−n2−2

n , . . . , n
2−2
n , n

2−1
n , n

2

n }
e. Decimals R is uncountable because even the subset A = {

∑∞
j=1 dj10−j : dj = 0, 1, 2, . . . , 8} (digit 9 is

excluded) is uncountable.
− Proof: Write m.d1d2 . . . for m+

∑∞
j=1 dj10−j . Assume A is countable: A = {x1, x2, . . . }.

x1 = 0.d1,1d1,2d1,3 . . .
x2 = 0.d2,1d2,2d2,3 . . .
x3 = 0.d3,1d3,2d3,3 . . .
. . . . . . . . . . . . . . . . . .
xn = 0.dn,1dn,2dn,3 . . . dn,n . . .
. . . . . . . . . . . . . . . . . .

Construct x = 0.d1d2d3 . . . dn . . . as follows:
d1 = 4 if d1,1 = 3 and 3 if d1,1 6= 3 , hence x 6= x1;
d2 = 4 if d2,2 = 3 and 3 if d2,2 6= 3 , hence x 6= x2;
d3 = 4 if d3,3 = 3 and 3 if d3,3 6= 3 , hence x 6= x3;
. . . . . . . . . . . . . . . . . .
dn = 4 if dn,n = 3 and 3 if dn,n 6= 3 , hence x 6= xn;

Result: x ∈ A although A = {x1, x2, . . . } and x 6= xj for all j. Contradiction!

0.0.5 Vector spaces

(linear spaces)

a. vector space (VS) V : Let x, y, z ∈ V, α, β, γ ∈ R;
• addition (x, y) 7→ x+ y: commutativity: x+ y = y+ x; associativity: (x+ y) + z = x+ (y+ z)

zero vector 0 ∈ V : x+ 0 = x for all x ∈ V ; Negative −x of x: x+ (−x) = 0; x− y := x+ (−y)
• scalar multiplication (α, x) 7→ α · x = αx: α(βx) = (αβ)x; 1x = x;
• distributivity: (α+ β)x = αx+ βx; α(x+ y) = αx+ αy

b. Linear combinations are sums
∑n

j=0 αjxj = α1x1 + . . .+ αnxn of scalar multiples of
vectors x1, . . . , xn ∈ V , scalars α1, . . . , αn ∈ R;

c. Nonempty U ⊆ V is sub(–vector)space if a, b ∈ A and α ∈ R ⇒ a+ b ∈ A and α a ∈ A;
• nullspace {0} and V are subspaces of V ; subspaces are VS
• U ⊆ V is subspace ⇔ any lin. comb. of vectors in A belongs to A.
• Any intersection of subspaces (arbitrarily many) is a subspace
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d. A ⊆ V , A 6= ∅; (linear) span span(A) = {
∑k

j=1 αjxj : k ∈ N, αj ∈ R, xj ∈ A (1 5 j 5 k) }
= { all lin. combs of vectors in A} =

⋂[
W : W is subspace and W ⊇ A

]
= subspc generated by A

e. A ⊆ V , A 6= ∅ is linearly dependent (LD) if there (k ∈ N) and scalars α1, α2, . . . αk ∈ R and distinct
x1, x2, . . . xk ∈ A such that not all scalars αj are zero (1 5 j 5 k) and

∑k
j=1 αjxj = 0.

• Note that if αj0 6= 0 then xj0 =
∑

j 6=j0
−αj

αj0
· xj is a lin.comb. of the other xj .

f. A ⊆ V , A 6= ∅ is linearly independent (LI) if A is not LD: Let k ∈ N, distinct x1, x2, . . . xk ∈ A
and α1, α2, . . . αk ∈ R. If

∑k
j=1 αjxj = 0 then αj = 0 for all 1 5 j 5 k.

• Let A ⊆ V be LI and also span(A) 6= V and y ∈ span(A){. Then A ∪ {y} is LI.
g. B ⊆ V , B 6= ∅ is a basis for V if a. B is LI and b. span(B) = V

0.0.6 Examples of vector spaces

a. R is a VS (scalar product = ordinary product);

b. Rn is a VS: for ~x = (x1, .., xn)T =

 x1

...
xn

 (the transpose of (x1, .., xn)), ~y = (y1, .., yn)T

and α ∈ R define ~z = ~z + ~z and ~w = α~x as zj = xj + yj , wj = αxj
• Rn has Basis ~e1 = (1, 0, 0, .., 0)T , ~e2 = (0, 1, 0, .., 0)T , . . . ~en = (0, 0, .., 0, 1)T :

~x = (x1, .., xn)T =
∑n

j=1 xj · ~ej
c. For any set X 6= ∅: F (X) := { all functions f : X → R}; for f, g ∈ F (X), α ∈ R:

define sum f + g, scalar product α · f as (f + g)(x) := f(x) + g(x) and (αf)(x) := αf(x)
B(X) := {f ∈ F (X) : f is bounded }, B(X) is a subspace of F (X)
(f bounded means: there is some α ∈ R such that |f(x)| 5 α for all x ∈ X)

• What is a basis for F (X)? for B(X)?

0.0.7 Partially ordered sets (PO sets)

a. Equivalence relation x ∼ y on a set X :
a. reflexive: x ∼ x; b. symmetric: x ∼ y ⇒ y ∼ x; c. transitive: x ∼ y and y ∼ z ⇒ x ∼ z;

−
− Example 2: Function f : A→ B; define x ∼ y on A: x ∼ y ⇔ f(x) = f(y)

b. Partial ordering (PO) x � y on a set X (“x before y” or “y after x”): a. reflexive: x � x;
b. antisymmetric: x � y and y � x ⇒ x = y; c. transitive: x � y and y � z ⇒ x � z;

• “PO set” (X,�), A ⊆ X . a � b for a, b ∈ A makes (A,�) a “PO subset” of (X,�).
• Example 1: X ⊆ R : x � y ⇔ x 5 y
− Example 2: X ⊆ R : x � y ⇔ x = y (!!)
− Example 3: X ⊆ 2Ω: A � B ⇔ A ⊆ B ⊆ Ω.

− Example 4: X,Y 6= ∅; X ⊆ { (A, f) : A ⊆ X and f is a function A
f→ Y }. For (A, f), (B, g) ∈X

define (A, f) � (B, g) ⇔ a. A ⊆ B; b. f = g
∣∣
A

(g extends f from A to B)
c. A PO “�” on X is a total (linear) order on X if for any x, y ∈ X x � y or y � x (or both):

Any two items can be compared.
• PO set (X,�); C ⊆ X is a chain if c � d is a linear order on C
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− Example 5: Any subset X of (R,5) is a chain
− Example 6: Given is (X ,�) from example 4. Let C be an indexed collection of pairs

(
(Ci, fi)

)
i∈I

such that Ci ⊆ X and fi : Ci → Y . Assume there is an index i0 such that Ci0 ⊆ Ci for all i.
Then C is a chain ⇔ for any two i, j ∈ I a. Ci ⊆ Cj or Cj ⊆ Ci
b. There is a unique extension of fi0 to any of the supersets Ci ∈ C .

d. PO set (X,�); m,m′ ∈ X ; m is maximal in X if it does not have a successor: If x ∈ X such that
m � x then m = x. m′ is the maximum of X if m′ = x for all x ∈ X .
Maxima are unique. Write m′ = max(X). max(X) is maximal in X .

− Example 7: If (X,�) is totally ordered then x ∈ X is maximal ⇔ x = max(X).
But max(X) may not exist: ([ 0, 1[,5) does not have a max even though it is linearly ordered.

− Example 8: For any X let x � y ⇔ x = y. Then each x is maximal but X has no max unless it only
has one element.

− Example 9: Let X := {[a, b] ∈ R : b − a ≤ 1}. Define [a, b] � [a′, b′] ⇔ [a, b] ⊆ [a′, b′]. Then any
interval of length 1 is maximal. max(X ) DNE.

− Example 10: Given is (X ,�) from examples 4 and 6. (M,f) is maximal in X ⇔ f cannot be
extended to a function g on a larger set B such that (B, g) ∈X .

0.0.8 Zorn’s Lemma

a. The ZL property of a PO set (X,�):

Every chain C ⊆ X , possesses an upper bound u ∈ X , i.e., x � u for all x ∈ C. (ZL)

• Zorn’s Lemma: If a PO set (X,�) is ZL then it possesses a maximal element.
b. Zorn’s Lemma is equivalent to the Axiom of Choice: Let X 6= ∅. Then there is a “choice function”

ψ : 2X \ ∅ → X such that ψ(A) ∈ A for each A ∈ 2X \ ∅:
In other words, it is possible for an arbitrary nonempty set X to specify a mechanism (the choice
function) that allows one to choose some a ∈ A from any non-empty A ⊆ X .

c. Accepting (rejecting) Zorn’s lemma as a mathematical tool is equivalent to accepting (rejecting) the
Axiom of Choice.

0.0.9 Every vector space has a basis

a. VS (vector space V , A ⊆ V such that A is LI (lin. independent); B := {B ⊆ V : B ⊇ A and B is LI }.
Then the PO set (B,⊆) is ZL.

b. V has a basis which contains the set A.
− Proof: Zorn’s Lemma ⇒ B possesses a maximal element B? which is LI because B? ∈ B.

Must show that span(B?) = V . But otherwise there is y ∈ span(B?)c. From Ch.0.0.5: B′ := B? ∪ {y}
is LI, hence B′ ∈ B. But B? ⊆ B′ together with B? 6= B′ contradicts maximality of B?. �
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