Zorns Lemma, or Why Every Vector Space Has a Basis

Notes by Michael Fochler, Department of Mathematical Sciences, Binghamton University, for a talk given to the Binghamton University Undergraduate Math Club on Nov.29, 2016

0.0.1 Sets

- Sets *X* are collections of stuff (elements); $x \in X$: *x* is an element of *X* a.
- Duplicates and order of elements are ignored: $X = \{-1, 1, -1, 1, ...\} = \{-1, 1\} = \{1, -1\}$ ٠
- **b.** Sets can contain sets, e.g., $\mathfrak{U} = \{]a, b[: a < b \}$; Powerset $2^X = \{ A : A \subseteq X \}$ (all subsets of X)
- We assume for collections of sets \mathfrak{U} that $\mathfrak{U} \subseteq 2^{\Omega}$ for some suitable "universal set" Ω •
- **c.** Intersections: $x \in A_1 \cap A_2 \Leftrightarrow x \in A_1$ and $x \in A_2$
- $x \in A_1 \cap \dots \cap A_n = \bigcap_{i=1}^n A_i \Leftrightarrow x \in A_j$ for all $1 \leq j \leq n$ ٠
- Collection of sets \mathfrak{U} ; $x \in \bigcap \mathfrak{U} = \bigcap [U : U \in \mathfrak{U}] \Leftrightarrow x \in U$ for all $U \in \mathfrak{U}$ ٠
- **d.** Unions: $x \in A_1 \cup A_2 \Leftrightarrow x \in$ at least one of A_1, A_2
- $x \in A_1 \cup \cdots \cup A_n = \bigcup_{j=1}^n A_j \iff x \in A_j$ for at least one $1 \leq j \leq n$ ٠
- Collection of sets \mathfrak{U} ; $x \in \bigcup \mathfrak{U} = \bigcup [U : U \in \mathfrak{U}] \Leftrightarrow x \in U$ for at least one $U \in \mathfrak{U}$ •
- Set difference $A \setminus B = \{x \in A : x \notin B\}$ e.
- Complement A^{\complement} of $A \subseteq \Omega$: $A^{\complement} = \Omega \setminus A$; $A, B \subseteq \Omega \Rightarrow A \setminus B = A \cap B^{\complement}$

0.0.2 Types of numbers

- **a.** Natural numbers: $\mathbb{N} = \{1, 2, 3, \dots\}$; Integers: $\mathbb{Z} = \{0, \pm 1, \pm 2, \dots\}$
- **b.** Rational #s: $\mathbb{Q} = \{\frac{n}{d} : n, d \in \mathbb{Z}, d \neq 0\}; \quad 5/8 \in \mathbb{Q}, \quad -7 = \frac{-7}{1} \in \mathbb{Q}, \quad 1.25 = \frac{5}{4} \in \mathbb{Q}, \quad 0.33\overline{3} = \frac{1}{3} \in \mathbb{Q}$ **c.** Real #s: $\mathbb{R} = \{$ all decimals $\} = \{m + \sum_{j=1}^{\infty} d_j 10^{-j} : m \in \mathbb{Z} \text{ and } d_j = 0, 1, 2, \dots, 9 \text{ (digits)} \}$ $\pi, \sqrt{2} \in \mathbb{R}$ but $\pi, \sqrt{2} \notin \mathbb{Q}$ Intervals $[a, b] = \{x \in \mathbb{R} : a \leq x < b\}, \]a, b[= \{x \in \mathbb{R} : a < x < b\}, \ldots$

0.0.3 Functions $f: X \to Y, x \mapsto f(x)$

- Domain $X \neq \emptyset$ (source of arguments), Codomain $Y \neq \emptyset$ (target contains function values f(x), a. assignment $x \mapsto f(x)$; can write $X \xrightarrow{f} Y$ instead of $f: X \to Y$
- **b.** Example 1: $f: [10, \infty[\to] 20, \infty[, x \mapsto f(x) = \sqrt{x-1}]$
- Example 2: $g: [10, \infty] \to [3, \infty], x \mapsto g(x) = \sqrt{x-1}$
- Example 3: $h: [1, 101] \rightarrow [0, 10], x \mapsto h(x) = \sqrt{x-1}$
- f, g, h are **different** because domains and/or codomains to not match
- **c.** Function $f: X \to Y$, $x \mapsto f(x)$; $\emptyset \neq X' \subseteq X$; $f|_{X'}: X_1 \to Y, \ x \mapsto f'(x) := f(x)$ is the restriction of f to X' and f is an extension of f' to X

0.0.4 Cardinality

- finite set *X*: card(*X*) = # of elements in *X*; empty set \emptyset is finite (no elements) \Rightarrow card(\emptyset) = 0 a.
- X is countably infinite if not finite but can be enumerated (sequenced): $X = \{x_1, x_2, x_3, \dots\}$ ٠
- X is countable if finite or countably infinite
- X is uncountable if it cannot be sequenced ٠
- *B* countable, $A \subseteq B \Rightarrow A$ countable b.
- Proof: discard b_i from $B = \{b_1, b_2, \dots\}$ if $b_i \notin A$
- A countable union $\bigcup_{n \in \mathbb{N}} A_n$ of countable sets A_n is countable. c.
- Proof: $A_n = \{a_{n,1}, a_{n,2}, \dots\}$; traverse the finite diagonals $D_k = \{a_{i,j} : i + j = k\}$ in order, starting with $D_2 = \{a_{1,1}\}$. Skip duplicates and empty slots.
- Fractions (rational #s) \mathbb{Q} is countable: $\mathbb{Q} = Q_1 \cup Q_2 \cup \cdots =$ countable union of finite sets $Q_n =$ all d. fractions with denominator *n* between -n and *n*: $Q_n = \{-\frac{n^2}{n}, -\frac{n^2-1}{n}, -\frac{n^2-2}{n}, \dots, \frac{n^2-2}{n}, \frac{n^2-1}{n}, \frac{n^2}{n}\}$ Decimals \mathbb{R} is uncountable because even the subset $A = \{\sum_{j=1}^{\infty} d_j 10^{-j} : d_j = 0, 1, 2, \dots, 8\}$ (digit 9 is
- e. excluded) is uncountable.
- Proof: Write $m.d_1d_2...$ for $m + \sum_{j=1}^{\infty} d_j 10^{-j}$. Assume A is countable: $A = \{x_1, x_2, ...\}$.

 $x_1 = 0.d_{1,1}d_{1,2}d_{1,3}\ldots$ $x_2 = 0.d_{2,1}d_{2,2}d_{2,3}\dots$ $x_3 = 0.d_{3,1}d_{3,2}d_{3,3}\dots$. $x_n = 0.d_{n,1}d_{n,2}d_{n,3}\ldots d_{n,n}\ldots$ Construct $x = 0.d_1d_2d_3...d_n...$ as follows:

 $d_1 = 4$ if $d_{1,1} = 3$ and 3 if $d_{1,1} \neq 3$, hence $x \neq x_1$; $d_2 = 4$ if $d_{2,2} = 3$ and 3 if $d_{2,2} \neq 3$, hence $x \neq x_2$; $d_3 = 4$ if $d_{3,3} = 3$ and 3 if $d_{3,3} \neq 3$, hence $x \neq x_3$; $d_n = 4$ if $d_{n,n} = 3$ and 3 if $d_{n,n} \neq 3$, hence $x \neq x_n$;

Result: $x \in A$ although $A = \{x_1, x_2, ...\}$ and $x \neq x_j$ for all j. Contradiction!

0.0.5 Vector spaces

(linear spaces)

- vector space (VS) V: Let $x, y, z \in V, \alpha, \beta, \gamma \in \mathbb{R}$; a.
- addition $(x, y) \mapsto x + y$: commutativity: x + y = y + x; associativity: (x + y) + z = x + (y + z)• zero vector $0 \in V$: x + 0 = x for all $x \in V$; Negative -x of x: x + (-x) = 0; x - y := x + (-y)
- scalar multiplication $(\alpha, x) \mapsto \alpha \cdot x = \alpha x$: $\alpha(\beta x) = (\alpha \beta)x$; 1x = x; .
- distributivity: $(\alpha + \beta)x = \alpha x + \beta x$; $\alpha(x + y) = \alpha x + \alpha y$ ٠
- Linear combinations are sums $\sum_{j=0}^{n} \alpha_j x_j = \alpha_1 x_1 + \ldots + \alpha_n x_n$ of scalar multiples of b. vectors $x_1, \ldots, x_n \in V$, scalars $\alpha_1, \ldots, \alpha_n \in \mathbb{R}$;
- Nonempty $U \subseteq V$ is sub(-vector)space if $a, b \in A$ and $\alpha \in \mathbb{R} \Rightarrow a + b \in A$ and $\alpha a \in A$; c.
- nullspace $\{0\}$ and V are subspaces of V; subspaces are VS ٠
- $U \subseteq V$ is subspace \Leftrightarrow any lin. comb. of vectors in *A* belongs to *A*.
- Any intersection of subspaces (arbitrarily many) is a subspace •

- **d.** $A \subseteq V, A \neq \emptyset$; (linear) span $span(A) = \{\sum_{j=1}^{k} \alpha_j x_j : k \in \mathbb{N}, \alpha_j \in \mathbb{R}, x_j \in A \ (1 \leq j \leq k) \}$ = $\{$ all lin. combs of vectors in $A \} = \bigcap [W : W$ is subspace and $W \supseteq A]$ = subspc generated by A
- **e.** $A \subseteq V, A \neq \emptyset$ is linearly dependent (LD) if there $(k \in \mathbb{N})$ and scalars $\alpha_1, \alpha_2, \ldots, \alpha_k \in \mathbb{R}$ and distinct $x_1, x_2, \ldots, x_k \in A$ such that not all scalars α_j are zero $(1 \leq j \leq k)$ and $\sum_{i=1}^k \alpha_j x_j = 0$.
- Note that if $\alpha_{j_0} \neq 0$ then $x_{j_0} = \sum_{j \neq j_0} \frac{-\alpha_j}{\alpha_{j_0}} \cdot x_j$ is a lin.comb. of the other x_j .
- **f.** $A \subseteq V, A \neq \emptyset$ is linearly independent (LI) if *A* is not LD: Let $k \in \mathbb{N}$, distinct $x_1, x_2, \ldots x_k \in A$ and $\alpha_1, \alpha_2, \ldots \alpha_k \in \mathbb{R}$. If $\sum_{j=1}^k \alpha_j x_j = 0$ then $\alpha_j = 0$ for all $1 \leq j \leq k$.
- Let $A \subseteq V$ be LI and also $span(A) \neq V$ and $y \in span(A)^{\complement}$. Then $A \cup \{y\}$ is LI.
- **g.** $B \subseteq V, B \neq \emptyset$ is a basis for V if **a.** B is LI and **b.** span(B) = V

0.0.6 Examples of vector spaces

a. \mathbb{R} is a VS (scalar product = ordinary product);

b.
$$\mathbb{R}^n$$
 is a VS: for $\vec{x} = (x_1, ..., x_n)^T = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$ (the transpose of $(x_1, ..., x_n)$), $\vec{y} = (y_1, ..., y_n)^T$
and $\alpha \in \mathbb{R}$ define $\vec{z} = \vec{z} + \vec{z}$ and $\vec{w} = \alpha \vec{x}$ as $z_i = x_i + y_i$, $w_i = \alpha x_i$

- \mathbb{R}^n has Basis $\vec{e}_1 = (1, 0, 0, ..., 0)^T$, $\vec{e}_2 = (0, 1, 0, ..., 0)^T$, ... $\vec{e}_n = (0, 0, ..., 0, 1)^T$: $\vec{x} = (x_1, ..., x_n)^T = \sum_{j=1}^n x_j \cdot \vec{e}_j$
- **c.** For any set $X \neq \emptyset$: $\mathscr{F}(X) := \{ \text{ all functions } f : X \to \mathbb{R} \}$; for $f, g \in \mathscr{F}(X), \alpha \in \mathbb{R}$: define sum f + g, scalar product $\alpha \cdot f$ as (f + g)(x) := f(x) + g(x) and $(\alpha f)(x) := \alpha f(x)$ $\mathscr{B}(X) := \{ f \in \mathscr{F}(X) : f \text{ is bounded } \}, \ \mathscr{B}(X) \text{ is a subspace of } \mathscr{F}(X)$ $(f \text{ bounded means: there is some } \alpha \in \mathbb{R} \text{ such that } |f(x)| \leq \alpha \text{ for all } x \in X \}$
- What is a basis for $\mathscr{F}(X)$? for $\mathscr{B}(X)$?

0.0.7 Partially ordered sets (PO sets)

- **a.** Equivalence relation $x \sim y$ on a set *X*: **a.** reflexive: $x \sim x$; **b.** symmetric: $x \sim y \Rightarrow y \sim x$; **c.** transitive: $x \sim y$ and $y \sim z \Rightarrow x \sim z$;
- _
- Example 2: Function $f : A \to B$; define $x \sim y$ on A: $x \sim y \Leftrightarrow f(x) = f(y)$
- **b.** Partial ordering (PO) $x \leq y$ on a set X ("*x* before *y*" or "*y* after *x*"): **a.** reflexive: $x \leq x$; **b.** antisymmetric: $x \leq y$ and $y \leq x \Rightarrow x = y$; **c.** transitive: $x \leq y$ and $y \leq z \Rightarrow x \leq z$;
- "PO set" (X, \preceq) , $A \subseteq X$. $a \preceq b$ for $a, b \in A$ makes (A, \preceq) a "PO subset" of (X, \preceq) .
- Example 1: $X \subseteq \mathbb{R} : x \preceq y \Leftrightarrow x \leq y$
- Example 2: $X \subseteq \mathbb{R} : x \preceq y \Leftrightarrow x \geqq y (!!)$
- Example 3: $X \subseteq 2^{\Omega}$: $A \preceq B \Leftrightarrow A \subseteq B \subseteq \Omega$.
- Example 4: $X, Y \neq \emptyset$; $\mathscr{X} \subseteq \{ (A, f) : A \subseteq X \text{ and } f \text{ is a function } A \xrightarrow{f} Y \}$. For $(A, f), (B, g) \in \mathscr{X}$ define $(A, f) \preceq (B, g) \Leftrightarrow a. A \subseteq B$; **b.** $f = g|_A$ (g extends f from A to B)
- **c.** A PO " \leq " on X is a total (linear) order on X if for any $x, y \in X$ $x \leq y$ or $y \leq x$ (or both): Any two items can be compared.
- PO set (X, \preceq) ; $C \subseteq X$ is a chain if $c \preceq d$ is a linear order on C

- Example 5: Any subset *X* of (\mathbb{R}, \leq) is a chain
- Example 6: Given is (X, ≤) from example 4. Let C be an indexed collection of pairs ((C_i, f_i))_{i∈I} such that C_i ⊆ X and f_i : C_i → Y. Assume there is an index i₀ such that C_{i0} ⊆ C_i for all i. Then C is a chain ⇔ for any two i, j ∈ I a. C_i ⊆ C_j or C_j ⊆ C_i
 b. There is a <u>unique</u> extension of f_{i0} to any of the supersets C_i ∈ C.
- **d.** PO set (X, \preceq) ; $m, m' \in X$; m is maximal in X if it does not have a successor: If $x \in X$ such that $m \preceq x$ then m = x. m' is the maximum of X if $m' \ge x$ for all $x \in X$. Maxima are unique. Write $m' = \max(X)$. $\max(X)$ is maximal in X.
- Example 7: If (X, \preceq) is totally ordered then $x \in X$ is maximal $\Leftrightarrow x = \max(X)$. But $\max(X)$ may not exist: $([0, 1[, \leq)]$ does not have a max even though it is linearly ordered.
- Example 8: For any *X* let $x \leq y \Leftrightarrow x = y$. Then each *x* is maximal but *X* has no max unless it only has one element.
- Example 9: Let $\mathscr{X} := \{[a,b] \in \mathbb{R} : b-a \leq 1\}$. Define $[a,b] \preceq [a',b'] \Leftrightarrow [a,b] \subseteq [a',b']$. Then any interval of length 1 is maximal. $\max(\mathscr{X})$ DNE.
- Example 10: Given is (\mathscr{X}, \preceq) from examples 4 and 6. (M, f) is maximal in $\mathscr{X} \Leftrightarrow f$ cannot be extended to a function g on a larger set B such that $(B, g) \in \mathscr{X}$.

0.0.8 Zorn's Lemma

a. The **ZL** property of a PO set (X, \preceq) :

Every chain $C \subseteq X$, possesses an upper bound $u \in X$, i.e., $x \preceq u$ for all $x \in C$. (ZL)

• Zorn's Lemma: If a PO set (X, \preceq) is **ZL** then it possesses a maximal element.

b. Zorn's Lemma is equivalent to the Axiom of Choice: Let $X \neq \emptyset$. Then there is a "choice function" $\psi : 2^X \setminus \emptyset \to X$ such that $\psi(A) \in A$ for each $A \in 2^X \setminus \emptyset$: In other words, it is possible for an arbitrary nonempty set X to specify a mechanism (the choice function) that allows one to choose some $a \in A$ from any non-empty $A \subseteq X$.

c. Accepting (rejecting) Zorn's lemma as a mathematical tool is equivalent to accepting (rejecting) the Axiom of Choice.

0.0.9 Every vector space has a basis

- **a.** VS (vector space $V, A \subseteq V$ such that A is LI (lin. independent); $\mathfrak{B} := \{B \subseteq V : B \supseteq A \text{ and } B \text{ is LI} \}$. Then the PO set $(\mathfrak{B}, \subseteq)$ is **ZL**.
- **b.** *V* has a basis which contains the set *A*.
- Proof: Zorn's Lemma ⇒ 𝔅 possesses a maximal element B^* which is LI because $B^* \in \mathfrak{B}$. Must show that $span(B^*) = V$. But otherwise there is $y \in span(B^*)^c$. From Ch.0.0.5: $B' := B^* \cup \{y\}$ is LI, hence $B' \in \mathfrak{B}$. But $B^* \subseteq B'$ together with $B^* \neq B'$ contradicts maximality of B^* .