Zorns Lemma, or Why Every Vector Space Has a Basis

Notes by Michael Fochler, Department of Mathematical Sciences, Binghamton University,
for a talk given to the Binghamton University Undergraduate Math Club on Nov.29, 2016
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Sets
Sets X are collections of stuff (elements); x € X: x is an element of X
Duplicates and order of elements are ignored: X = {—1,1,-1,1,...} ={-1,1} = {1,—-1}
Sets can contain sets, e.g., 4l = { ]a,b[: a < b}; Powerset2¥ = {A: A C X} (all subsets of X)
We assume for collections of sets il that 4l C 2 for some suitable “universal set”
Intersections: x € AjN Ay & z€ Ajand z € Ay
reAiN---NA, = ﬂ?zlAj & reAjforalll S j<n—
Collectionof sets ; z e U = N [U:U €] & z€UforallU € 4
Unions: z € Ay UAy; & z € atleastoneof Ay, A
reMU---UA, = Uj_; A & v € Ajforatleastonel = j=n—
Collection of sets 4; z € it = |J [U:U € Y] & =z € U for atleast one U € &l
Set difference A\ B ={z € A:x ¢ B}
Complement Aof ACQ: AL=Q\4; AL BCQ = A\B=AnB

Types of numbers

Natural numbers: N = {1,2,3,...}; Integers: Z = {0,+1,+£2,...}
Rational #s: Q = {4 :n,d € Z,d #0}; 5/8€Q, -T=7€Q, 125=%€Q, 0333=4¢€0Q
Real #s: R = { all decimals } = {m + 372, d;1077 :m € Zand d; = 0,1,2,...,9 (digits) }
7,v/2 € Rbutm,v/2 ¢ Q Intervals [a, b[— {reR:ax<b}, Ja,b[= {zreR:a<z<b},...

Functions f : X —» Y, z+— f(z)

Domain X # {) (source of arguments), Codomain Y # () (target contains function values f(z),

assignment z — f(z); can write X 1, ¥ instead of f:X->Y
Example 1: f:[10,00[ = ]| —20,00[, z — f(z) =+vz —1
Example 2: ¢ :[10,00[ = |3,00[, z — g(z) =Vz — 1
Example 3: h:[1,101] — [0, 10], x — h(z) =Vx —1
f, g, h are different because domains and/or codomains to not match
Function f : X =Y, z+ f(z); 0 # X' C X;
i X1 =Y,z f(x) := f()is the restriction of f to X" and f is an extension of f’ to X




0.0.4 Cardinality

a. finite set X: card(X) = # of elements in X; empty set () is finite (no elements) = card(f)) = 0

e X is countably infinite if not finite but can be enumerated (sequenced): X = {z1,z2,x3,...}

e X is countable if finite or countably infinite

e X is uncountable if it cannot be sequenced

b. B countable, A C B = A countable

—  Proof: discard b; from B = {b1,b,...}ifb; ¢ A

c. A countable union | J, .y An of countable sets A,, is countable.

— Proof: A, = {an1,an2,...}; traverse the finite diagonals Dy, = {a;; : i + j = k} in order, starting
with Dy = {a;1}. Skip duplicates and empty slots.

d. Fractions (rational #s) Q is countable: Q = @1 U Q2 U -- - = countable union of finite sets Q,, = all
fractions with denominator n between —n and n: @, = {—%2, - ”27:1, _n?=2 ”27:2, ”27:1, %2}

..
e. Decimals R is uncountable because even the subset A = {> 72, d; 1077 :d; =0,1,2,...,8} (digit 9 is
excluded) is uncountable.
—  Proof: Write m.dydy ... form + 3772, d;j1077. Assume A is countable: A = {z1,z9,...}.
xrT = O.d171d172d173 ce
T = O.d2’1d272d273 e
r3 = O.d371d3,2d373 NP

Construct z = 0.dy1dads .. .d, ... as follows:
di =4 ifdy; =3 and 3if d11 # 3, hence x # zy;
dg =4 if d2,2 =3 and 3 if d272 7& 3 ’ hence z 7é xTo,
d3 =4 ifd33 =3 and 3if d3 3 # 3, hence x # z3;
d, =4 itd,, =3 and 3if d,,, # 3, hence z # x,;
Result: z € A although A = {z1,22,...} and  # z; for all j. Contradiction!

0.0.5 Vector spaces

(linear spaces)

vector space (VS) V: Letz,y,z€V, a,8,7€R;
e addition (z,y) — x+y: commutativity: x +y = y+x; associativity: (z+y)+z =2+ (y+2)
zerovector0 € V:z+0 =z forallz € V; Negative —zofx: x+(—2z)=0; z—y:=z+(—y)
scalar multiplication (o, ) — -z = az: a(fz) = (af)z; lz = z;
distributivity: (o + f)z = azx + fz; a(z+y) = ar+ oy
Linear combinations are sums Z;‘:O a;x; = oqx + ... + ayxy, of scalar multiples of
vectors x1,...,x, € V,scalars aq,...,a, €R;
Nonempty U C V is sub(—vector)spaceif a,b € Aanda € R = a+bec Aandaa € 4;
nullspace {0} and V are subspaces of V; subspaces are VS
U C Vis subspace < any lin. comb. of vectors in A belongs to A.
Any intersection of subspaces (arbitrarily many) is a subspace
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d. ACV,A+#(; (linear) span span(A) = {Z§=1 ajzj:keNojeRz; e A1Sj<k)}
= { alllin. combs of vectorsin A} = () [W : W is subspace and W D A] = subspc generated by A
e. ACV,A#0islinearly dependent (LD) if there (k € N) and scalars a1, a9, ...a; € R and distinct
x1,x2,...2, € Asuch that not all scalars «; are zero (1 = j < k) and Z§:1 ajxr; = 0.
e Note thatif aj, # Othen zj, =3, .. ;TO;J - x; is a lin.comb. of the other x;.
f. ACYV,A+#(islinearly independent (LI) if A is not LD: Let k£ € N, distinct 1, x2,... 2 € A
and ai,as,...ap € R If Z?zl ajr; = Othenaj =0foralll £ j S k.
e LetAC VbeLlandalso span(A) # V and y € span(A)C. Then AU {y} is LI
g. BCYV,B#(0isabasisfor Vifa. BisLland b. span(B) =V

0.0.6 Examples of vector spaces

a. Risa VS (scalar product = ordinary product);

1
b. R"isaVS:for# = (z1,..,2,)" = ( : ) (the transpose of (21, ..,2n)), T = (Y1, -, Yn)’
Tn
and a € Rdefine 7= 7+ Zand W = o as zj; = z; + yj, wj = ax;
e R"hasBasis ¢; = (1,0,0,..,0)”, & = (0,1,0,..,0)7,... &, = (0,0,..,0,1)T:
T = (1, "7xn)T = Z?:l Tj - €
c. Foranyset X # (: Z#(X):= {all functions f : X — R}, for f,g € F#(X),a €R:
define sum f + g, scalar product o - f as (f + g)(z) := f(z) + g(z) and (af)(z) = af(x)
B(X):={feZ(X): fisbounded }, #(X)isa subspace of . (X)
(f bounded means: there is some a € R such that |f(z)| < a for all z € X)
e What is a basis for .7 (X)? for #(X)?

0.0.7 Partially ordered sets (PO sets)

a. Equivalence relation z ~ y on a set X:
a. reflexive: z ~ z; b. symmetric: x ~y =y ~ z; c. transitive: z ~yand y ~ z =z ~ z;

— Example 2: Function f : A — B;definex ~yon A:z ~y < f(z) = f(y)
b. Partial ordering (PO) z < y on a set X (“x before y” or “y after z”): a. reflexive: z < z;
b. antisymmetric: z <yandy <z = x =1y; c transitive: x <yandy <z =z < z;
e “POset” (X,=x), ACX. a=<bfora,be Amakes (4, <) a “PO subset” of (X, X).
e Examplel: X CR:z <y =y
— Example2: X CR:z <y z2y(!)
— Example3:X§2Q:AjB(:)AgB§Q.
— Example4: X,)Y #0; 2 C {(A,f): AC X and f is a function A EN Y} For (A, f), (B,g) €
define (A, f) X (B,g) & a. ACB; b. f= g’A (g extends f from A to B)
c. APO”=<"onXis a total (linear) order on X if for any xz,y € X = < y or y < z (or both):

Any two items can be compared.
e POset(X,=); C C X isachainif ¢ < dis alinear order on C



0.0.8

0.0.9

Example 5: Any subset X of (R, <) is a chain
Example 6: Given is (2, <) from example 4. Let ¢ be an indexed collection of pairs ((C;, f;))
such that C; C X and f; : C; — Y. Assume there is an index i such that C;, C C; for all i.
Then ¢ is a chain < forany twoi,j €l a.C; C CjorC; CC;
b. There is a unique extension of f;, to any of the supersets C; € %'
PO set (X,=); m,m’ € X; m is maximal in X if it does not have a successor: If x € X such that
m < rthenm = 2. m/is the maximum of X if m’ > z forall x € X.
Maxima are unique. Write m’ = max(X). max(X) is maximal in X.
Example 7: If (X, <) is totally ordered then = € X is maximal < z = max(X).
But max(X) may not exist: ([ 0, 1], <) does not have a max even though it is linearly ordered.
Example 8: For any X letz <y < 2 = y. Then each z is maximal but X has no max unless it only
has one element.
Example 9: Let 2" := {[a,b] € R: b—a < 1}. Define [a,b] < [d/,V'] < [a,b] C [¢/,V]. Then any
interval of length 1 is maximal. max(.2") DNE.
Example 10: Given is (27, <) from examples 4 and 6. (M, f) is maximal in 2~ <« f cannot be
extended to a function g on a larger set B such that (B,g) € 2.
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Zorn’s Lemma

The ZL property of a PO set (X, <X):

Every chain C' C X, possesses an upper bound u € X, ie, z 2 uforallz € C. (ZL)

Zorn’s Lemma: If a PO set (X, <) is ZL then it possesses a maximal element.

Zorn’s Lemma is equivalent to the Axiom of Choice: Let X # (). Then there is a “choice function”
¥ : 2%\ ) — X such that ¢(A) € A foreach A € 2%\ {):

In other words, it is possible for an arbitrary nonempty set X to specify a mechanism (the choice
function) that allows one to choose some a € A from any non-empty A C X.

Accepting (rejecting) Zorn’s lemma as a mathematical tool is equivalent to accepting (rejecting) the
Axiom of Choice.

Every vector space has a basis

VS (vector space V, A C V such that A is LI (lin. independent); B := {BCV :B D Aand BisLI }.
Then the PO set (%8, C) is ZL.

V has a basis which contains the set A.

Proof: Zorn’s Lemma = B possesses a maximal element B* which is LI because B* € ‘B.

Must show that span(B*) = V. But otherwise there is y € span(B*)°. From Ch.0.0.5: B’ := B* U {y}
is LI, hence B’ € 8. But B* C B’ together with B* # B’ contradicts maximality of B*. W



	Sets
	Types of numbers
	Functions f : X Y,  x f(x)
	Cardinality
	Vector spaces
	Examples of vector spaces
	Partially ordered sets (PO sets)
	Zorn's Lemma
	Every vector space has a basis

