Expected Value and Variance of a Bernoulli trial

If $Y=Y(\omega)$ is a "Bernoulli variable" with success probability $P(Y=1)=p$ and failure probability $P(Y=0)=q=1-p$ then
(a) $E(Y)=p$,
(b) $\operatorname{Var}(Y)=p q$.

We show (a) although you saw in lecture that $E(Y)=p$. So here it is again:

$$
E(Y)=\sum_{y} y \cdot P(Y=y)=1 \cdot P(Y=1)+0 \cdot P(Y=0)=1 \cdot p+0 \cdot q=p
$$

We show (b): Seeing that $\operatorname{Var}(Y)=p q$ needs a lot more arithmetic.

$$
\operatorname{Var}(Y)=\sum_{y}(y-E(Y))^{2} \cdot P(Y=y)=\sum_{y}(y-E(Y))^{2} \cdot P(Y=y) \quad \text { since } E(Y)=p
$$

That is again a sum of two terms since the only possible outcomes are $y=1$ (success) and $y=0$ (failure). Thus

$$
\begin{aligned}
\operatorname{Var}(Y) & =(1-p)^{2} \cdot p+(0-p)^{2} \cdot q=\left(1-2 p+p^{2}\right) p+(-p)^{2} \cdot(1-p) \\
& =p-2 p^{2}+p^{3}+p^{2}-p^{3}=p-p^{2}=p(1-p)=p q
\end{aligned}
$$

