Binomial and Geometric Models

A binary random phenomenon is a random phenomenon (need not be numeric) X which has exactly two outcomes:

- "success" with probability p,
- "failure" with probability $q=1-p$.

So X has a probablity distribution as seen to the right.
(In this example: $p=0.25$, success $=1$, failure $=0$)

Given is a finite or infinite sequence $X_{1}, X_{2}, X_{3}, \ldots$ of random phenomena (need not be binary).
a. If each X_{j} has the same distribution (the process does not change with j : we get the same probability histogram for each j), we say that

- $X_{1}, X_{2}, X_{3}, \ldots$ are identically distributed.
b. If, MOREOVER, each trial X_{j} is independent of the others, we say that
- $X_{1}, X_{2}, X_{3}, \ldots$ are "iid": independent and identically distributed.

If we have a finite or infinite sequence $X_{1}, X_{2}, X_{3}, \ldots$ of binary random phenomena then we call each one of those X_{j} a Bernoulli trial rather than a binary random phenomenon if the sequence is iid.
In other words,
$X_{1}, X_{2}, X_{3}, \ldots$ are Bernoulli trials if
a. each X_{j} has exactly two outcomes: success or failure,
b. the success probability $p=P\left(X_{j}\right)=$ "success" does not change with j
(hence each X_{j} has the same probability distribution),
c. the X_{j} are independent.

Examples of Bernoulli trials:
a. $\quad X_{j}=j$-th toss of a fair coin: success $=$ Heads; $p=0.5, q=0.5$
b. $\quad X_{j}=j$-th throw of a fair die: success $=5$ or $6 ; p=2 / 6=1 / 3=0.333, q=2 / 3$.
c. $\quad X_{j}=j$-th opening of a cereal box: success $=$ Hope Solo picture; $p=0.2, q=0.8$

Convert to (numerical) random variables: Change success to 1 and failure to 0 .
a. $\quad X_{j}=j$-th toss of a coin: assign 1 if Heads, assign 0 if Tails; $p=0.5$
b. $\quad X_{j}=j$-th throw of a die: assign 1 if 5 or 6 ; assign 0 otherwise; $p=2 / 6=0.333$.
c. $X_{j}=j$-th opening of a cereal box: assign 1 if Hope Solo picture; assign 0 otherwise; $p=0.2$

Write s for success, f for failure

Geometric Model GEOM(p):

- Sequence of (iid) Bernouli trials $X_{1}, X_{2}, X_{3}, \ldots$ with success probability $p=P\left(X_{j}=s\right)$
- $\mathrm{T}:=$ first index n such that $X_{n}=$ success (random "time"!)
- Outcome $\{T=n\}$ same as $\left\{X_{1}=f\right.$ and $X_{2}=f$ and \ldots and $X_{n-1}=f$ and $\left.X_{n}=s\right\}$.
- Product rule (the X_{j} are independent!)):
$P(T=n)=P\left(X_{1}=f\right) \times P\left(X_{2}=f\right) \times \cdot \times P\left(X_{n-1}=f\right) \times P\left(X_{n}=s\right)$
- $=q \cdot q \cdots q \cdot p=q^{i-1} \cdot p$

Example: Repeatedly rolling a die.

- Compute P (first 1 comes at the 4 -th throw).
- Solution: $X_{j}=j$-th roll; $p=P\left(X_{j}=1\right)=1 / 6 ; P(T=4)=q \cdot q \cdot q \cdot p$

$$
=(5 / 6)^{3} \cdot 1 / 6=(125 / 216) / 6 \approx 0.965=9.65 \%
$$

Binomial Model BINOM(n,p):

- Finite sequence of n (iid) Bernouli trials $X_{1}, X_{2}, X_{3}, \ldots X_{n}$ with success probability $p=P\left(X_{j}=s\right)$,
- Encode success as 1 , failure as 0 , so $p=P\left(X_{j}=1\right)$,
- $S_{n}:=X_{1}+X_{2}+\cdots+X_{n}=$ \# of successes in those n trials
- Probability of k successes in n trials is

$$
P\left(S_{n}=k\right)=\binom{n}{k} \cdot p^{k} \cdot q^{n-k} ; \text { Binomial coefficient }\binom{n}{k}={ }_{n} C_{k}=\frac{n!}{k!(n-k)!}
$$

Example: Toss a coin 6 times ($n=6$)

- Compute P(exactly 2 tails).
- Solution: $X_{j}=j$-th toss; $p=P($ Tails $)=P\left(X_{j}=1\right)=1 / 2$;
- $P($ exactly 2 tails $)=P\left(S_{6}=2\right)=\binom{6}{2} \cdot(1 / 2)^{2} \cdot(1-1 / 2)^{6-2}$
$=\frac{6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1}{(4 \cdot 3 \cdot 2 \cdot 1)(2 \cdot 1)} \cdot 0.25 \cdot 0.0625=\frac{6 \cdot 5}{2 \cdot 1} \cdot 0.25 \cdot 0.0625 \approx 0.23=23 \%$

