Binomial and Geometric Models

A **binary random phenomenon** is a random phenomenon (need not be numeric) *X* which has exactly two outcomes:

- "success" with probability *p*,
- "failure" with probability q = 1 p.

So *X* has a probability distribution as seen to the right. (In this example: p = 0.25, success = 1, failure = 0)

Given is a finite or infinite sequence X_1, X_2, X_3, \ldots of random phenomena (need not be binary).

- **a.** If each X_j has the same distribution (the process does not change with j: we get the same probability histogram for each j), we say that
 - X_1, X_2, X_3, \ldots are identically distributed.
- **b.** If, MOREOVER, each trial X_j is independent of the others, we say that
 - *X*₁*, X*₂*, X*₃*,...* are "iid": independent and identically distributed.

If we have a finite or infinite sequence $X_1, X_2, X_3, ...$ of binary random phenomena then we call each one of those X_j a **Bernoulli trial** rather than a binary random phenomenon if the sequence is iid.

In other words,

 X_1, X_2, X_3, \ldots are Bernoulli trials if

- **a.** each X_j has exactly two outcomes: success or failure,
- **b.** the success probability $p = P(X_j) =$ "success" does not change with *j*
- (hence each X_j has the same probability distribution),
- **c.** the X_j are independent.

Examples of Bernoulli trials:

- **a.** $X_j = j$ -th toss of a fair coin: success = Heads; p = 0.5, q = 0.5
- **b.** $X_j = j$ -th throw of a fair die: success = 5 or 6; p = 2/6 = 1/3 = 0.333, q = 2/3.
- c. $X_j = j$ -th opening of a cereal box: success = Hope Solo picture; p = 0.2, q = 0.8

Convert to (numerical) random variables: Change success to 1 and failure to 0.

- **a.** $X_j = j$ -th toss of a coin: assign 1 if Heads, assign 0 if Tails; p = 0.5
- **b.** $X_j = j$ -th throw of a die: assign 1 if 5 or 6; assign 0 otherwise; p = 2/6 = 0.333.
- c. $X_j = j$ -th opening of a cereal box: assign 1 if Hope Solo picture; assign 0 otherwise; p = 0.2

Geometric Model GEOM(p):

- Sequence of (iid) Bernouli trials X_1, X_2, X_3, \ldots with success probability $p = P(X_j = s)$
- T := first index n such that X_n = success (random "time"!)
- Outcome $\{T = n\}$ same as $\{X_1 = f \text{ and } X_2 = f \text{ and } \dots \text{ and } X_{n-1} = f \text{ and } X_n = s\}$.
- Product rule (the *X_i* are independent!)):
- $P(T=n) = P(X_1 = f) \times P(X_2 = f) \times \cdots \times P(X_{n-1} = f) \times P(X_n = s)$
- $= q \cdot q \cdots q \cdot p = q^{i-1} \cdot p$

Example: Repeatedly rolling a die.

- Compute P(first 1 comes at the 4–th throw).
- Solution: $X_j = j$ -th roll; $p = P(X_j = 1) = 1/6$; $P(T = 4) = q \cdot q \cdot q \cdot p$ = $(5/6)^3 \cdot 1/6 = (125/216)/6 \approx 0.965 = 9.65\%$

Binomial Model BINOM(n,p):

- Finite sequence of *n* (iid) Bernouli trials $X_1, X_2, X_3, ..., X_n$ with success probability $p = P(X_j = s)$,
- Encode success as 1, failure as 0, so $p = P(X_j = 1)$,
- $S_n := X_1 + X_2 + \dots + X_n = #$ of successes in those *n* trials
- Probability of k successes in n trials is

$$P(S_n = k) = \binom{n}{k} \cdot p^k \cdot q^{n-k}$$
; Binomial coefficient $\binom{n}{k} = {}_nC_k = \frac{n!}{k!(n-k)!}$

Example: Toss a coin 6 times (n = 6)

- Compute P(exactly 2 tails).
- Solution: $X_j = j$ -th toss; $p = P(Tails) = P(X_j = 1) = 1/2$;
- $P(\text{exactly 2 tails}) = P(S_6 = 2) = \binom{6}{2} \cdot (1/2)^2 \cdot (1 1/2)^{6-2}$ = $\frac{6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1}{(4 \cdot 3 \cdot 2 \cdot 1)(2 \cdot 1)} \cdot 0.25 \cdot 0.0625 = \frac{6 \cdot 5}{2 \cdot 1} \cdot 0.25 \cdot 0.0625 \approx 0.23 = 23\%$