1 Mean and SD, Shifting and Scaling, Regression

1.1 Mean and standard deviation

Given a numeric list $\vec{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ we write

$$
\bar{x}=\frac{1}{n} \sum x=\frac{1}{n} \sum_{j=1}^{n} x_{j}=\frac{x_{1}+x_{2}+\cdots+x_{n}}{n}
$$

for its mean or average and

$$
s_{x}=\sqrt{\frac{1}{n-1} \sum(x-\bar{x})^{2}}=\sqrt{\frac{1}{n-1} \sum_{j=1}^{n}\left(x_{j}-\bar{x}\right)^{2}}
$$

(the "root-mean-square" of the differences $x_{j}-\bar{x}$) for its standard deviation.
Given a numeric list $\vec{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$, we write

$$
\begin{equation*}
\overrightarrow{\tilde{x}}=\left(\tilde{x}_{1}, \tilde{x}_{2}, \ldots, \tilde{x}_{n}\right) \quad \text { where } \tilde{x}_{j}=\frac{x_{j}-\bar{x}}{s_{x}} \tag{1.1}
\end{equation*}
$$

for the corresponding list of \mathbf{z}-scores.

Change of scale:

	average	standard deviation
x_{j}	\bar{x}	SD_{x}
$y_{j}=x_{j} \pm c$	$\bar{y}=\bar{x} \pm c$	$\mathrm{SD}_{y}=\mathrm{SD}_{x}$
$u_{j}=x_{j} \cdot c(c \geqq 0)$	$\bar{u}=\bar{x} \cdot c$	$\mathrm{SD}_{u}=\mathrm{SD}_{x} \cdot c$
$v_{j}=x_{j} \cdot c(c<0)$	$\bar{u}=\bar{x} \cdot c$	$\mathrm{SD}_{v}=\mathrm{SD}_{x} \cdot(-c)$
$w_{j}=x_{j} \cdot c+b$	$\bar{w}=\bar{x} \cdot c+b$	$\mathrm{SD}_{w}=\mathrm{SD}_{x} \cdot\|c\|$
$\tilde{x}_{j}=\left(x_{j}-\bar{x}\right) / \mathrm{SD}_{x}$	$\overline{\tilde{x}}=0$	$s_{\tilde{x}}=1$

If you can relate x_{j} and y_{j} by a change of scale $y_{j}=a \cdot\left(x_{j}+b\right)$ then both lists have the same standard unit: $\tilde{y}_{j}=\tilde{x}_{j}$ for all j

1.2 Notation for regression

When doing regression for a scatter diagram, note that each observation is not a single number x_{j} but rather a pair of numbers $\left(x_{j}, y_{j}\right)$. There are two ways to place the arrows when writing such a scatter diagram as a list:

$$
\overrightarrow{(x, y)}:=(\vec{x}, \vec{y}):=\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{n}, y_{n}\right)\right)
$$

The five point summary. for such a scatter diagram is $\bar{x}, s_{x}, \bar{y}, s_{y}, r$ where we compute the correlation coefficient r as follows:
a. Build associated lists $\overrightarrow{\tilde{x}}, \overrightarrow{\tilde{y}}$ of standard units:

$$
\tilde{x}_{j}:=\frac{x_{j}-\bar{x}}{s_{x}}, \quad \tilde{y}_{j}:=\frac{y_{j}-\bar{y}}{s_{y}} .
$$

b. Create a new list \vec{p} from the products $p_{j}:=\tilde{x}_{j} \cdot \tilde{y}_{j}$.
c. Take the adjusted average of that list:

$$
r:=r_{x, y}:=\frac{n}{n-1} \bar{p}=\frac{p_{1}+p_{2}+\cdots+p_{n}}{n-1}=\frac{1}{n-1} \sum_{j=1}^{n}\left(\frac{x_{j}-\bar{x}}{s_{x}} \cdot \frac{y_{j}-\bar{y}}{s_{y}}\right)=\frac{1}{n-1} \sum_{j=1}^{n} z_{x_{j}} z_{y_{j}} .
$$

where $z_{x_{j}}=\frac{x_{j}-\bar{x}}{s_{x}}$ is the z-score of x_{j}, etc.

$$
r=\frac{\sum_{j=1}^{n}\left(x_{j}-\bar{x}\right)\left(y_{j}-\bar{y}\right)}{\sqrt{\sum_{j=1}^{n}\left(x_{j}-\bar{x}\right)^{2} \sum_{j=1}^{n}\left(y_{j}-\bar{y}\right)^{2}}}=\frac{\sum_{j=1}^{n}\left(x_{j}-\bar{x}\right)\left(y_{j}-\bar{y}\right)}{(n-1) s_{x} s_{y}} .
$$

Note that there is an ERROR in the formula on p. 157 of the SDM text. It reads, incorrectly,

$$
r=\frac{\sum_{j=1}^{n}\left(x_{j}-\bar{x}\right)\left(y_{j}-\bar{y}\right)}{\sqrt{\sum_{j=1}^{n}\left(x_{j}-\bar{x}\right)^{2}\left(y_{j}-\bar{y}\right)^{2}}} \quad \text { instead of the correct } \quad r=\frac{\sum_{j=1}^{n}\left(x_{j}-\bar{x}\right)\left(y_{j}-\bar{y}\right)}{\sqrt{\sum_{j=1}^{n}\left(x_{j}-\bar{x}\right)^{2} \sum_{j=1}^{n}\left(y_{j}-\bar{y}\right)^{2}}} .
$$

SD line and regression line for a scatter diagram

Both lines go through the point of averages with coordinates (\bar{x}, \bar{y}).

$$
\text { The SD line has slope } \begin{align*}
m & =\frac{s_{y}}{s_{x}} \quad \text { if } r>0, \tag{1.2}\\
m & =-\frac{s_{y}}{s_{x}} \quad \text { if } r<0, \tag{1.3}
\end{align*}
$$

The regression line has slope $m=r \cdot \frac{s_{y}}{s_{x}}$ always.

