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1 Some Preliminaries

1.1 About This Document

These lecture notes are supporting material to the required text of this Math 447 course on proba-
bility theory. This text is [11] Wackerly, D. and Mendenhall, W. and Scheaffer, R.L.: Mathematical
Statistics with Applications, 7th edition.
At this point in time (December, 2023) it focuses on some of the foundations of probability theory
which cannot be found at a sufficient level of generality in that text. Examples are preimages and
σ–algebras. It has not been determined at this point in time what further topics will be included at
some future time.
Note the uses of the symbol ? for material that will not appear on exams, quizzes and other
graded assignments. Unless you see this symbol in a footnote, please note that I will utilize such
material and build on it in my lectures. Thus, you should understand this material well enough to
follow my lectures, even though you will not be directly tested on it.
Also we use colored boxes according to the following. Generally speaking,

These boxes contain important definitions or parts thereof.

These boxes contain important theorems and proposiitions or parts thereof.

These boxes contain other kinds of important items that are worth while to know.

1.2 A First Look at Probability

“All models are wrong, but
some are useful”.

Attributed to the statistician George E. P. Box
(1919–2013)

This quote certainly applies to the probabilistic models and the role they play in answering statisti-
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cal questions such as
• How do I collect data to predict next month’s average unemployment rate?
• What is the risk that this prediction will be off by more than 0.5 percent?

You probably agree that we also could have formulated the second question as follows.
• What is the probability that this prediction will be off by more than 0.5 percent?

It is not easy to find a satisfactory answer to that question and it will depend on the assumptions
that go into your model. We will consider probability in much simpler settings.

Example 1.1 (Empirical probability). The concept of probability serves as a model for quantifying
how likely an event will happen that depends on chance. When we say that the probability of
obtaining an even number when rolling a die equals 0.5, then we mean the following.
Assume that
• X1 denotes the action of rolling that die for the first time.
• X2 denotes the action of rolling that die for the second time.
• . . . Xk denotes the action of rolling that die for the kth time.

We expect in the long run, i.e., for large k, close to half of X1, X2, . . . , Xk result in an even outcome.
We formulate this in the language of mathematics as follows:
• We write P for probability.
• We write {2, 4, 6} for the event that rolling the die results in a 2 or a 4 or a 6, i.e., in an even

outcome.
• We write nk for the number of outcomes during those k rolls that result in a 2 or a 4 or a 6.
• We define P{2, 4, 6} = lim

k→∞

nk
k

and call this limit the probability of the event {2, 4, 6}.

We expect this particular limit to be 0.5.
Any event associated with the roll of a die can be expressed as a list of integers 1 ≤ i1 < i2 < · · · <
im ≤ 6 if we interpret it in the following sense: The roll results in one of the numbers in that list.
Let us write Ω (this symbol denotes the Greek capital letter Omega) 1 for the set of all potential
outcomes. It is customary to drop the word “potential” and refer to the elements of Ω simply as
outcomes. In this example, Ω = {1, 2, 3, 4, 5, 6} and the outcomes are 1, 2, . . . , 6.
We stated above that events associated with the roll of a die can be expressed as a list 1 ≤ i1 < i2 <
· · · < im ≤ 6. This list corresponds to the set A = {i1, i2, . . . , im}. Observe that A ⊆ Ω i.e., each
element of A also belongs to Ω. 2 We call all subsets of Ω events.
We can apply the steps we used to determine P{2, 4, 6} to ANY event A ⊆ Ω. Now, nk denotes the
number of outcomes during the first k rolls that result in a number that is listed in A. We define

P (A) = lim
k→∞

nk
k
.(1.1)

To be precise, this formula denotes the empirical probability of the event A.
Observe that the assignment A 7→ P (A) of (1.1) satisfies the following for all subsets A of Ω:

1For a list of all Greek letters see Section 12.1 (Greek Letters) on page 239.
2See Definition 2.3 (Subsets and supersets) on p.16 on page 239.

5 Version: 2024-05-06



Math 447 – MF Lecture Notes Student edition with proofs

• 0 ≤ P (A) ≤ 1.
• P (∅) = 0, since nk = 0 for all k. (∅ is empty set which contains no elements.)
• P (Ω) = 1, since nk = k for all k.
• If the subsets A,B of Ω have no elements in common (we speak of mutually disjoint sets), then

the union P (A ∪B) satisfies

P (A ∪B) = P (A) + P (B) .(?)

To see the validity of (?), let nk(A) be the number of times an outcome in A is observed during k
trials, and let and nk(B) be defined likewise for B. Since an outcome ω is in A ∪ B if and only if ω
either belongs to A or to B, we have nk(A ∪B) = nk(A) + nk(B), hence,

P (A ∪B) = lim
k→∞

nk(A ∪B)

k
= lim

k→∞

nk(A)

k
+ lim

k→∞

nk(B)

k
= P (A) + P (B) .

Note the following about the nature of the formula P (A) = lim
k→∞

nk
k

for subsets A of Ω.

� It is a function A 7→ P (A) = lim
k→∞

nk
k

the same way x 7→ f(x) = x2 + 4 is a function.

� We are familiar with the latter: It assigns to each argument x (which happens to be a real number)
the function value f(x), also a real number. For example, f(3) = 32 + 4 = 13.

� The function A 7→ P (A) is harder to deal with only because its arguments A are not numbers or
vectors of such numbers. Rather, those arguments are events, i.e., sets. �

You are strongly encouraged to take a first look at Section 2.4 (Functions and Sequences). It should be thorough
enough to understand the following:
• The assignment A 7→ P (A) discussed at the end of Example 1.1 constitutes a function

P : { all subsets of Ω } −→ [0, 1]

in the sense of Definition 2.14 on p.27.

Remark 1.1. There are some issues with (1.1) as a definition of P (A).
What if the limit lim

k→∞
nk/k does not exist? For example, the following is very unlikely but not

impossible.
Let ωk denote the outcome of the kth roll of the die. Assume that we obtain the following sequence
of outcomes:
• ω1 = 1.
• From now on, only the number 6 appears until nk/k > 5. We write K(1) for that index k.
• From now on, only the number 1 appears until nk/k < 2. We write K(2) for that index k.
• From now on, only the number 6 appears until nk/k > 5. We write K(3) for that index k.
• From now on, only the number 1 appears until nk/k < 2. We write K(4) for that index k.
• ..... and so on .....

The resulting sequence K(1) < K(2) < K(3) < · · · satisfies the following: 3

3A strict proof can be obtained by using the fact that the limit of a sequence does not depend its first k members, no
matter how big k may be chosen.
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• There are infinitely many indices k = K(1),K(3),K(5), . . . such that
nk
k

> 5.

• There are infinitely many indices k = K(2),K(4),K(6), . . . such that
nk
k

< 2.

Accordingly, lim
k→∞

nk
k

does not exist and we were not able to determine P (A).

But there are issues even if that limit exists. Consider again the event A = {2, 4, 6}. Let us assume
that, by some freak of nature, all outcomes ωk are 4. 4 Accordingly, we declare that P (A) = 1. The
teamleader has doubts about this result and asks for a repetition of the experiment. This time all
outcomes ωk are either 3 or 5.
What to do? Should we decide that P (A) = 0? Should the experiment repeated once more? How
about settling on the average (1 + 0)/2 = 1/2?
You may decide that this is a completely ficticious example without any bearing on reality and the
author will agree. However, you should consider the following:
• The infinite repetition of an action such as rolling a die is in itself fictitious and so is the concept of

the limit of a (infinite) sequence.

• In the real world the determination of probabilities P (A) often is based on (1.1) as follows: It
is decided to conduct an experiment of k trials. The larger this number k is chosen, the more
confidence we will have that P (A) is a good enough APPROXIMATION of the likelihood that the
event A happens.

However, there are other factors to consider that will limit the size of k.
• The more repetitions, the longer it will take to obtain the result. IfA is the event that the Old Faith-

ful geyser in Yellowstone National Park erupts to a height of at least 150 feet and it is not possible
for some reason to use the previously obtained records, then we must base the determination of
P (A) on a very small number of observations.

• Money is another limiting factor. The more repetitions, the more it will cost to obtain the result.
�

Example 1.2 (Single roll of a die). To avoid the issues concerning the use of formula (1.1) (empirical
probability) on p.5, we also could have used the concept of a fair die instead, i.e., a die for which
each of the outcomes 1, 2, . . . , 6 is equally likely, so each outcome must have the same likelihood
(probability) of 1/6. Since the even outcomes are 2, 4, 6, we obtain

P{ even outcome } = P{2, 4, 6} =
1

6
+

1

6
+

1

6
= 0.5 .(1.2)

Note that fair dice do not exist in the real world. Matter of fact, if we had a sample of 1, 000 dice
and we were able to determine with infinite precision the probability that a throw of die #k comes
up even, chances are that we would obtain several different answers, due to imperfections in the
manufacturing process.
But let us assume, for arguments sake, there is such a thing as a fair die. We model the random
action of rolling such a fair die just once as follows.

4You will learn the following: If each j1, j2, . . . is a given potential outcome (an integer between 1 and 6), then
P{ω1} = j1, P{ω2} = j2, . . . , P{ωk) = jk} = (1/6)k. That number becomes very small for large k, since the se-
quence (1/6)k converges to zero. Nevertheless, (1/6)k > 0 for each fixed k, so it is not impossible to obtain ωk = 4 for all
k. (This is the case where j1 = j2 = · · · = jk = 4 for all k).
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• As in Example 1.1 (Empirical probability), on p.5, the set Ω of all (potential) outcomes is
{1, 2, 3, 4, 5, 6}.

• We associate with each outcome ω ∈ Ω the probability P ({ω}) = 1/6.
• Let A ⊆ Ω, i.e., A is a subset of Ω, i.e., each element of A also belongs to Ω.
• For each outcome ω ∈ Ω there is a corresponding event {ω} ⊆ Ω. 5 Such “atomar” events also are

referred to as outcomes.
• We generalize (1.2) and associate with each event A ∈ Ω the probability

(1.3) P (A) =
∑
ω∈A

P ({ω}) .

Here,
∑
ω∈A

P ({ω}) means that we sum up all those expressions P ({ω}) that satisfy ω ∈ A.

• For example, let A = {2, 4, 6} and B = {ω ∈ Ω : ω > 4}. Thus. A is the event of rolling an even
outcome and B is that of rolling a 5 or 6. Then,

P (A) =
∑
ω∈A

P ({ω}) = P ({2}) + P ({4}) + P ({6}) =
1

6
+

1

6
+

1

6
=

1

2
,

P
(
B
)

= P
(
{5, 6}

)
= P ({5}) + P ({6}) =

1

6
+

1

6
=

1

3
.

It is customary to write P{...} for P ({...}). Thus, the last equation can also be written as

P
(
B
)

= P{5, 6} = P{5} + P{6} =
1

6
+

1

6
=

1

3
.

The assignment A 7→ P (A) satisfies the following for all subsets A of Ω:
• 0 ≤ P (A) ≤ 1.
• P (∅) = 0, since nk = 0 for all k. (∅ is empty set which contains no elements.)
• P (Ω) = 1, since nk = k for all k.
• If the subsets A,B of Ω have no elements in common (we speak of mutually disjoint sets), then

the union P (A ∪B) satisfies

P (A ∪B) = P (A) + P (B) .(?)

Note that this was also the case for the assignment A 7→ P (A) in Example 1.1 (Empirical probabil-
ity). �

Example 1.3 (Two rolls of a die). Consider what happens if two fair dice are rolled. The set of
outcomes is

Ω = {1, 2, . . . , 6}2 = {1, 2, . . . , 6} × {1, 2, . . . , 6} = {ω : ω = (i, j) and i, j = 1, 2, . . . , 6} .
5Such sets of size 1 are often called singleton sets or simply singletons.
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• We make a willful decision to consider the outcomes (i, j) and (j, i) different for i 6= j. For exam-
ple, if die #1 is red and #2 is white, we distinguish between the outcome of a red 2 and a white 5
and that of a red 5 and a white 2. Then Ω consists of 36 outcomes

(1, 1), (1, 2), . . . , (1, 6), (2, 1), (2, 2), . . . , (2, 6), . . . , (6, 1), (6, 2), . . . , (6, 6)

and each outcome ω ∈ Ω has probability P{ω} = 1/36.
• Just as in Example 1.2 those probabilities of the outcomes determine the probability of any event

A ∈ Ω as was the case in formula (1.3) by

(1.4) P (A) =
∑
ω∈A

P ({ω}) .

• For example, if A = { die #1 shows a 4} = {(4, j) : j = 1, 2, . . . , 6} then

P (A) =
∑
ω∈A

P ({ω}) =
∑

(i,j)∈A

P ({(i, j)})

= P{(4, 1)} + P{(4, 2)} + · · ·+ P{(4, 6)} = 6

(
1

36

)
=

1

6
.

� As in examples 1.1 (Empirical probability) and 1.2 (Single roll of a die), we have a function A 7→
P (A) which assigns the events A ⊆ Ω to their probabilities P (A) �

The assignment A 7→ P (A) in (1.4) satisfies the following for all subsets A of Ω:
• 0 ≤ P (A) ≤ 1.
• P (∅) = 0, since nk = 0 for all k. (∅ is empty set which contains no elements.)
• P (Ω) = 1, since nk = k for all k.
• If the subsets A,B of Ω have no elements in common (we speak of mutually disjoint sets), then

the union P (A ∪B) satisfies

P (A ∪B) = P (A) + P (B) .(?)

Note that this was also the case for the assignmentA 7→ P (A) in Example 1.1 (Empirical probability)
and in Example 1.2. �

Example 1.4 (Sum of two die rolls). Consider what happens if two fair dice are rolled and we are
interested in the sum of points obtained that way. For example,
• the outcome 8 is obtained when either of the following are rolled:

� a 2 and a 6 � a 3 and a 5 � a 4 and a 4 � a 5 and a 3 � a 6 and a 2.
• the outcome 5 is obtained when either of the following are rolled:

� a 1 and a 4 � a 2 and a 3 � a 3 and a 2. � a 4 and a 1.
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• Now, the set of outcomes is
Ω = {2, 3, . . . , 11, 12} .

Since a roll of two dice has 36 outcomes (1, 1), . . . , (6, 6) and each of those has probability 1/36 (see
Example 1.3), it follows for the outcomes 8 and 5 that

• P ({8}) =
5

36
; P ({5}) =

4

36
.

Here is the complete list of outcome probabilities P ({ω}):

P ({2}) =P ({12}) =
1

36
; P ({3}) = P ({11}) =

2

36
; P ({4}) = P ({10}) =

3

36
;

P ({5}) =P ({9}) =
4

36
; P ({6}) = P ({8}) =

5

36
; P ({7}) =

6

36
.

(1.5)

• In the previous two examples each outcome had the same probability. We see that this is not the
case for the sum of points obtained when rolling two dice.

• As in the previous examples, the probability of any event A ∈ Ω is obtained as the sum P ({ω})
over all outcomes ω of the event:

(1.6) P (A) =
∑
ω∈A

P ({ω}) .

• For example, if A = { the sum is between 8 and 11}, then

P (A) =
∑
ω∈A

P ({ω}) =
11∑
ω=8

P ({ω})

= P{8} + P{9} + P{10} + P{11} = (5 + 4 + 3 + 2)

(
1

36

)
=

7

18
.

� As in examples 1.1, 1.2 and 1.3, we have a function A 7→ P (A) which assigns the events A ⊆ Ω to
their probabilities P (A) �

Let us examine what the examples we have studied so far have in common.

Remark 1.2. In the examples given so far a probability P (A) was assigned to each event A ⊆ Ω. In
each case thhis assignment A 7→ P (A) satisfies the following.

0 ≤ P (A) ≤ 1 .(1.7)
P (∅) = 0 . Here ∅ denotes the empty set which contains no elements.(1.8)
P (Ω) = 1 .(1.9)

If the subsets A,B of Ω have no elements in common (we speak of mutually disjoint sets), then the
union P (A ∪B) satisfies

P (A ∪B) = P (A) + P (B) .(1.10)
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• The probabilist likes to speak of the probability space Ω, since it comes with a probability mea-
sure (WMS: probability function), A 7→ P (A), which assigns to the events A of Ω, the probability
P (A) that this event might “occur” or “happen”.

• Statisticians tend to speak of the sample space S (that’s S as in S ample). An element s of S still
is referred to as an outcome, but some, like WMS, also call the elements of S the sample points
of S.

We translate some of the examples already encountered into the language of sample spaces and
sample points.
• In example 1.2 (Single roll of a die) on p.7, the elements 1, 2, 3, 4, 5, 6 of the the sample space

S = {1, 2, . . . , 6} (the outcomes or sample points of S represent all possible “samples” that can be
obtained from the single roll of a die. Note that each of those six potential samples has size n = 1.

• In example 1.3 (Two rolls of a die) on p.8, the sample points (1, 1), (1, 2), . . . , (6, 5), (6, 6) of the
the sample space S = {1, 2, . . . , 6}2 represent all possible samples that can be obtained from two
rolls of a die. Note that each of those 36 potential samples has size n = 2.

• In example 1.4 (Sum of two die rolls) on p.9, the sample points 2, 3, . . . , 12 of the the sample space
S = {2, 3, . . . , 12} represent all possible “samples” that can be obtained from adding the points of
two roll of a die. Note that each of those 11 potential samples has size n = 1. �

Example 1.5. This example needs more computational skills than the ones we have encountered so
far.
• To understand whether a traffic light works as expected, the following experiment is conducted.

200 cars are observed and a record is made for each one of those cars whether it reached the
intersection on red, green or yellow.

• This “sampling action” of observing those 200 cars results in ONE sample point of size 200. Its
actual outcome depends on chance

• Once the experiment is completed, the sampling action has resulted in a realization of the sam-
pling action (the SPECIFIC sample point that was obtained). If we write r for red, g for green, y
for yellow, this realization might be, e.g., {r, r, y, g, g, g, r, y, . . . , r}.

• Once that realization has been obtained, the sampling action has lost its random character.
• The sample space S of all (potential) sample points for this experiment is huge: It contains 3200

sample points. This will be discussed in Chapter 4 (Combinatorial Analysis)
• Each eventA ⊆ S comes with a probability P (A) and one can show that the assignmentA 7→ P (A)

satisfies the formulas (1.7) – (1.10) of Remark 1.2 on p.10. �

Here is a formal definition of probability. It is based on the formulas (1.7) – (1.10) of Remark 1.2
on p.10. This definition is PRELIMINARY and will be amended! Since sampling does not play a
role, we will talk about a probability space Ω rather than a sample space S.

Definition 1.1 (Probability measure - Preliminary Definition). A probability measure P on a set Ω
is a function 6 which assigns to each subset A of Ω a real number P (A) between 0 and 1 as follows.

6we’ll review functions briefly in Section 2.1 (Sets, Numbers, Sequences and Functions) on page 15.
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(a) P (∅) = 0 and P (Ω) = 1. Here ∅ denotes the empty set which contains no elements.
(b) If the subsets A,B of Ω have no elements in common, then probability is additive:

P (A ∪B) = P (A) + P (B) . �(1.11)

Remark 1.3.

• Note that Definition 1.1 makes no mention about how one should interpret the num-
ber P (A)!

For example, one could take a fair coin and define P (H) := 0.1, P (T ) := 0.9. Here, H denotes
Heads and T denotes Tails. This defines a probability A 7→ P (A) on the sample space S := {H,T}.
7

If this example strikes you as nonsensical, here is a model used by Wall Street that uses a probability
measure in which the probability of an event is different from the chance that this event will happen.
The so called binomial asset model is a probabilistic model to determine today’s price of a stock
option which will be exercised at some future point in time. 8 In this model, trading of a specific
stock (e.g., IBM or Amazon), happens at times 0, 1, 2, . . . . There are only two possible ways that
stock price can change and there are two “real world” probabilities, one for each possibility:
• pu := P{ the price of a share of stock changes by the factor u.
• pd := P{ the price of a share of stock changes by the factor d < u = 1− pu.

These two numbers pu and pd are sufficient to determine a probability space Ω and probability
measure P for trading in that stock.
Strangely enough, pu and pd are replaced by the so-called risk–neutral probability p̃u and p̃d which
are sufficient to determine an altgernate probability measure P̃ on that same probability space Ω.

Even stranger, the real world probability measure P has no bearing on the determination of P̃ , i.e.,
of p̃u and p̃d. 9 And yet, even though p̃u and p̃d do not reflect the actual probabilities that govern the
stock price, they are used to set today’s price of an option on that stock that can be redeemed only,
say, 90 days from today. �

In the next example we combine Example 1.3 and Example 1.4.

Example 1.6. When computing the outcome probabilities of the sum of points obtained by rolling
two dice, we argued with a result obtained in Example 1.3: There the probability of an outcome
(i, j) was 1/36 for all i, j = 1, 2, . . . , 6. It should not be surprising that there is a connection between
the probability models of those examples. Each one of those examples had a set of outcomes which
we denoted Ω and a function P : A 7→ P (A) which associated a probability P (A) with each event
A ⊆ Ω. Since this example deals with both outcome sets and both probability assignments, we must
change our notation. We proceed as follows.

7To complete the definition of P , we define P (S) := P (H) + P (T ) = 1 and P (∅) := 0.
8Since this is not a course on probabilistic finance, we must refer you to the literature for details. Some references are

[10] Shreve, Steve: Stochastic Calculus for Finance I: The Binomial Asset Pricing Model, [2] Björk, Thomas: Arbitrage
Theory in Continuous Time and this author’s Math 454 lecture notes (Spring 2023).

9Rather, the interest earned by depositing money in a bank plays a major role.
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• We keep the symbols used in Example 1.3 and define

Ω := {1, 2, . . . , 6} × {1, 2, . . . , 6} = {ω : ω = (i, j) and i, j = 1, 2, . . . , 6} ,

P{(i, j)} :=
1

36
for i, j = 1, 2, . . . , 6 .

• For the outcome set and probability assignment of Example 1.4, we write

Ω′ := {2, 3, . . . , 11, 12} ,

P ′{2} := P ′{12} :=
1

36
, P ′{3} := P ′{11} :=

2

36
, . . . See (1.5) on p.10.

Note that P ′{k} equals the probability that the sum of the two die rolls equals k, since both proba-
bilities are defined by the same formula, (1.5).
We establish a relationship between the “probability spaces” (Ω, P ) and (Ω′, P ′) as follows.
Let (i, j) ∈ Ω, i.e., i is the outcome of rolling die #1 and j is that of rolling die #2. The assignment

(i, j) 7→ Y (i, j) := i+ j(1.12)

then associates with this outcome an integer between 2 and 12, i.e., an outcome in Ω′. 10

For k ∈ Ω′, let

Ak := { (i, j) ∈ Ω : Y (i, j) = k } .(1.13)

We claim that

P ′{k} = P (Ak) .(1.14)

That claim is proved by the following chain of equations:

P ′{k} = probability that total points of both dice rolled is k

=
1

36
· the number of elements in Ak.

=
∑
ω∈Ak

1

36
=

∑
(i,j)∈Ak

P{(i, j)} = P (Ak) .

Equation #1 is merely the definition of P ′{k}, #2 follows from (1.5) on p.10 and the definition of Ak,
#3 is true by the definition of

∑
. . . , #4 is just the definition of P{(i, j)} and the last equation follows

from (1.4) on p.9. We can rewrite (1.14) as follows.
• If B = {k} and A = {(i, j) ∈ Ω : Y (i, j) ∈ B}, then P ′(B) = P (A)

Next, let k 6= `. Note that Ak and A` have no outcomes in common. Both P and P ′ are probabilities
and satisfy the additivity formula (1.11) on p.12. Thus,

P ′{k, `} = P (Ak
⊎
A`) = P{ (i, j) ∈ Ω : Y (i, j) = k or Y (i, j) = ` }

= P
{

(i, j) ∈ Ω : Y (i, j) ∈ {k, `}
}(1.15)

10Hence, this assignment is a function Y : Ω −→ Ω′ in the sense of Definition 2.14 on p.27.
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We can rewrite (1.15) as follows.
• If B = {k, `} and A = {(i, j) ∈ Ω : Y (i, j) ∈ B}, then P ′(B) = P (A)

Generalization of (1.14) and (1.15): We will see the following in Section 3.4 (Random Variables and
their Probability Distributions)

If B ⊆ Ω′} and A = {(i, j) ∈ Ω : Y (i, j) ∈ B}, then P ′(B) = P (A).(1.16)

We will then call a function Y that assigns elements of Ω to elements of Ω′ a random element and
speak of the probability measure P ′ on Ω′, which is uniquely specified by the probability measure
P on Ω and the function Y , as the distribution of Y . �
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2 Sets, Numbers, Sequences and Functions

Introduction 2.1. �

The student should read this chapter carefully, with the expectation that it contains material
that they are not familiar with, as much of it will be used in lecture without comment. Very
likely candidates are power sets, a function f : X → Y where domain X and codomain Y
are part of the definition.

2.1 Sets – The Basics

An entire book can be filled with a mathematically precise theory of sets. For our purposes the
following “naive” definition suffices:

Definition 2.1 (Sets).

• A set is a collection of stuff called members or elements which satisfies the following
rules: The order in which you write the elements does not matter and if you list an
element two or more times then it only counts once.

• We write x1 ∈ X to denote that an item x1 is an element of the set X and x2 /∈ X to
denote that an item x2 is not an element of the set X .

• Occasionally we are less formal and write x1 in X for x1 ∈ X and x2 not in X for
x2 /∈ X .

We write a set by enclosing within curly braces the elements of the set. This can be done by listing
all those elements or giving instructions that describe those elements. For example, to denote by X
the set of all integer numbers between 18 and 24 we can write either of the following:

X := {18, 19, 20, 21, 22, 23, 24} or X := {n : n is an integer and 18 ≤ n ≤ 24}

Both formulas clearly define the same collection of all integers between 18 and 24. On the left the
elements of X are given by a complete list, on the right setbuilder notation, i.e., instructions that
specify what belongs to the set, is used instead.
For the above example we have 20 ∈ X , 27− 6 ∈ X , 38 /∈ X , ’Jimmy’ /∈ X .
It is customary to denote sets by capital letters and their elements by small letters We try to adhere
to this convention as much as possible. �

Example 2.1. We looked in the introduction at the set Ω = {1, 2, 3, 4, 5, 6} of potential outcomes for
the roll of a die. Then 3 ∈ Ω, 5 ∈ Ω, −2 /∈ Ω, 2.34 /∈ Ω. �

Example 2.2 (No duplicates in sets). The following collection of alphabetic letters is a set:

S1 = {a, e, i, o, u}

and so is this one:
S2 = {a, e, e, i, i, i, o, o, o, o, u, u, u, u, u}

Did you notice that those two sets are equal? �

15 Version: 2024-05-06



Math 447 – MF Lecture Notes Student edition with proofs

Remark 2.1. The symbol n in the definition of X = {n : n is an integer and 18 ≤ n ≤ 24} is a
dummy variable in the sense that it does not matter what symbol you use. The following sets all
are equal to X :

{x : x is an integer and 18 ≤ x ≤ 24},
{α : α is an integer and 18 ≤ α ≤ 24},
{Z : Z is an integer and 18 ≤ Z ≤ 24} �

Definition 2.2 (empty set).

∅ denotes the empty set. It is the set that does not contain any elements. �

Definition 2.3 (subsets and supersets).

• We say that a set A is a subset of the set B and we write A ⊆ B if any element of A
also belongs to B. Equivalently we say that B is a superset of the set A and we write
B ⊇ A . We also say that B includes A or A is included by B. Note that A ⊆ A and
∅ ⊆ A is true for any set A.

• If A ⊆ B but A 6= B, i.e., there is at least one x ∈ B such that x /∈ A, then we say that
A is a strict subset or a proper subset of B. We write “A ( B” Alternatively we say
that B is a strict superset or a proper superset of A and we write “B ) A”)

BBB

AAA

Figure 2.1: Set inclusion: A ⊆ B, B ⊇ A �

Remark 2.2. (a) We STRONGLY discourage the use of “A ⊂ B” in place of “A ( B” and of “B ⊃ A”
in place of “A ) B”. These are outdated symbols for A ⊆ B and A ⊇ B
(b) Two sets A and B are equal means that they both contain the same elements. In other words,
since U ⊆ V means that the set V contains all elements of the set U ,

A = B ⇔
[
A ⊆ B and B ⊆ A

]
.(2.1)

In the above, “⇔“ denotes the phrase “if and only if”: The expression to the left (“A = B”)
means the same as the expression to the right (“A ⊆ B and B ⊆ A”). The square brackets
only serve to clarify that everything inbetween belongs to the scope of the right–hand side
of “⇔“. �
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Definition 2.4 (unions, intersections and disjoint unions). Given are two arbitrary setsA andB. No
assumption is made that either one is contained in the other or that either one is not empty!

• The unionA∪B (pronounced "A union B") is defined as the set of all elements which
belong to at least one of A,B.

• The intersection A ∩ B (pronounced "A intersection B") is defined as the set of all
elements which belong to both A and B.

• We callA andB disjoint , also mutually disjoint , if A ∩B = ∅. We then often write
A ]B (pronounced “A disjoint union B”) rather than A ∪B.

A ∪B: A ∪B ∪ C: A ∩B: A ∩B ∩ C:

A B A B

C

A B A B

C

Figure 2.2: Union and intersection of sets

Since A ∪ B = B ∪ A and A ∩ B = B ∩ A and A ] B = B ] A, it is obvious how to specify those
operations to any finite or infinite collection of sets. Let J be a nonempty, finite or infinite subset of
the set Z = {0,±1,±2,±3, . . . } of all integers. In particular, J = Z is allowed. Assume that each
j ∈ J is associated with a set Aj . 11 We say that

• The union
⋃
j∈J

Aj is defined as the set of all elements which belong to at least oneAj ,

where j ∈ J .
• The intersection

⋂
j∈J

Aj is defined as the set of all elements which belong to each Aj ,

where j ∈ J .
• We call this collection of sets disjoint , also mutually disjoint , if Ai ∩Aj = ∅when-

ever i, j ∈ J and i 6= j. We then often write
⊎
j∈J

Aj rather than
⋃
j∈J

Aj . �

Remark 2.3. If J = {k?, k? + 1, k? + 2, . . . , k? − 1, k?}, we also write

k?⋃
j=k?

Aj ,
k?⋂
j=k?

Aj ,
k?⊎
j=k?

Aj , for
⋃
j∈J

Aj ,
⋂
j∈J

Aj ,
⊎
j∈J

Aj .

11You might call this a collection of sets Ai which is indexed by the elements of J and write
(
Aj
)
j∈J for this indexed

collection.
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If J = {k?, k? + 1, k? + 2, . . . , }, we also write

∞⋃
j=k?

Aj ,
∞⋂
j=k?

Aj ,
∞⊎
j=k?

Aj , for
⋃
j∈J

Aj ,
⋂
j∈J

Aj ,
⊎
j∈J

Aj .

Examples: If I = {−1, 0, 1, 2}, then
⋂
i∈I

Ai =
2⋂

i=−1
Ai = A−1 ∩A0 ∩A1 ∩A2.

If U = {5, 6, 7, . . . }, then
⋃
j∈U

Cj =
∞⋂
j=5

Cj = C5 ∪ C6 ∪ C7 ∪ · · · . �

Remark 2.4. Convince yourself that for any sets A,B and C.

A ∩B ⊆ A ⊆ A ∪B,(2.2)
A ⊆ B ⇒ A ∩B = A and A ∪B = B,(2.3)
A ⊆ B ⇒ A ∩ C ⊆ B ∩ C and A ∪ C ⊆ B ∪ C.(2.4)

The symbol ⇒ stands for “allows us to conclude that”. So A ⊆ B ⇒ A ∩ B = A means
“From the truth of A ⊆ B we can conclude that A ∩ B = A is true”. Shorter: “From A ⊆ B
we can conclude that A ∩ B = A”. Shorter: “If A ⊆ B, then it follows that A ∩ B = A”.
Shorter: “If A ⊆ B, then A ∩B = A”. More technical: A ⊆ B implies A ∩B = A. �

Definition 2.5 (set differences and symmetric differences). Given are two arbitrary sets A and B.
No assumption is made that either one is contained in the other or contains any elements!

• The difference set or set difference A \ B (pronounced "A minus B") is defined as
the set of all elements which belong to A but not to B:

(2.5) A \B := {x ∈ A : x /∈ B}

• The symmetric difference A4B (pronounced "A delta B") is defined as the set of all
elements which belong to either A or B but not to both A and B:

(2.6) A4B := (A ∪B) \ (A ∩B) �

Definition 2.6 (Universal set).

Usually there always is a big set Ω that contains everything we are interested in and we
then deal with all kinds of subsets A ⊆ Ω. Such a set is called a “universal” set. �
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Example 2.3.
(a) Often the context are the real numbers and their subsets. An appropriate universal

set will then be R. 12

(b) We will discuss at length why the set {1, 2, 3, 4, 5, 6} can be considered a universal
set in the context of rolling a die. See Section 1.2 (A First Look at Probability). �

If there is a universal set, it makes perfect sense to talk about the complement of a set:

Definition 2.7 (Complement of a set). Let Ω be a universal set. The complement of a set A ⊆ Ω

consists of all elements of Ω which do not belong to A. We write A{. In other words:

(2.7) A{ = Ω \A = {ω ∈ Ω : x /∈ A} �

A \B: A4B: Universal set: A{:

A B A B
ΩΩΩ AAA

A{A{A{

Figure 2.3: Difference, symmetric difference, universal set, complement

Remark 2.5. Note that for any kind of universal set Ω it is true that

Ω{ = ∅, ∅{ = Ω. �(2.8)

Example 2.4 (Complement of a set relative to the unit interval). Assume we are exclusively dealing
with the unit interval, i.e., Ω = [0, 1] = {x ∈ R : 0 ≤ x ≤ 1}. Let a ∈ [0, 1] and δ > 0 and

(2.9) A = {x ∈ [0, 1] : a− δ < x < a+ δ}

the “δ–neighborhood” 13 of a (with respect to [0, 1] because numbers outside the unit interval are
not considered part of our universe). Then the complement of A is

A{ = {x ∈ [0, 1] : x ≤ a− δ or x ≥ a+ δ}. �

Draw some Venn diagrams to visualize the following formulas. It is very important that you un-
derstand each one of them rather than simply trying to memorize them.

12R is the set of all real numbers, i.e., the kind of numbers that make up the x-axis and y-axis in a beginner’s calculus
course (see Section 2.3 (Numbers) on p.23).

13Draw a picture: The δ–neighborhood of a is the set of all points (in the universal set [0, 1]) with distance less than δ
from a.
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Proposition 2.1. Let A, B, X be subsets of a universal set Ω and assume A ⊆ X . Then

A ∪ ∅ = A; A ∩ ∅ = ∅(2.10a)
A ∪ Ω = Ω; A ∩ Ω = A(2.10b)

A ∪A{ = Ω; A ∩A{ = ∅(2.10c)
A4B = (A \B) ] (B \A)(2.10d)
A \A = ∅(2.10e)
A4∅ = A; A4A = ∅(2.10f)
X4A = X \A(2.10g)
A ∪B = (A4B) ] (A ∩B)(2.10h)
A ∩B = (A ∪B) \ (A4B)(2.10i)
A4B = ∅ if and only if B = A(2.10j)

PROOF: The proof is left as exercise 2.2. See p.38. �

Next we give a very detailed and rigorous proof of a simple formula for sets. You definitely want
to remember the formulas, but it’s perfectly OK to skip the proof.

Proposition 2.2 (Distributivity of unions and intersections for two sets). Let A,B,C be sets. Then

(A ∪ B) ∩ C = (A ∩ C) ∪ (B ∩ C),(2.11)
(A ∩ B) ∪ C = (A ∪ C) ∩ (B ∪ C).(2.12)

PROOF: ? We only prove (2.11). The proof of (2.12) is left as exercise 2.1.

PROOF of “⊆”: Let x ∈ (A ∪ B) ∩ C. It follows from (2.2) on p.18 that x ∈ (A ∪ B), i.e., x ∈ A or
x ∈ B (or both). It also follows from (2.2) that x ∈ C. We must show that x ∈ (A ∩ C) ∪ (B ∩ C)
regardless of whether x ∈ A or x ∈ B.
Case 1: x ∈ A. Since also x ∈ C, we obtain x ∈ A∩C, hence, again by (2.2), x ∈ (A ∩ C) ∪ (B ∩ C),
which is what we wanted to prove.
Case 2: x ∈ B. We switch the roles of A and B. This allows us to apply the result of case 1, and we
again obtain x ∈ (A ∩ C) ∪ (B ∩ C).
PROOF of “⊇”: Let x ∈ (A ∩ C) ∪ (B ∩ C), i.e., x ∈ A ∩ C or x ∈ B ∩ C (or both). We must
show that x ∈ (A ∪ B) ∩ C regardless of whether x ∈ A ∩ C or x ∈ B ∩ C.
Case 1: x ∈ A ∩ C. It follows from A ⊆ A ∪ B and (2.4) on p.18 that x ∈ (A ∪ B) ∩ C, and we
are done in this case.
Case 2: x ∈ B ∩ C. This time it follows from A ⊆ A ∪ B that x ∈ (A ∪ B) ∩ C. This finishes the
proof of (2.11).
Epilogue: The proofs both of “⊆” and of “⊇” were proofs by cases, i.e., we divided the proof into
several cases (to be exact, two for each of “⊆” and “⊇”), and we proved each case separately. For
example we proved that x ∈ (A ∪ B) ∩ C implies x ∈ (A ∩ C) ∪ (B ∩ C) separately for the cases
x ∈ A and x ∈ B. Since those two cases cover all possibilities for x the assertion “if x ∈ (A∪B)∩C
then x ∈ (A ∩ C) ∪ (B ∩ C)” is proven. �
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Proposition 2.3 (De Morgan’s Law for two sets). Let A,B ⊆ Ω. Then the complement of the union is
the intersection of the complements, and the complement of the intersection is the union of the complements:

a. (A ∪B){ = A{ ∩B{ b. (A ∩B){ = A{ ∪B{(2.13)

PROOF:
1) First we prove that (A ∪B){ ⊆ A{ ∩B{:
Assume that x ∈ (A ∪B){. Then x /∈ A ∪B, which is the same as saying that x does not belong to
at least one of A and B. That in turn means that x belongs to all complements, i.e., to both A{ and
B{ and hence, also to the intersection A{ ∩B{.
2) Now we prove that (A ∪B){ ⊇ A{ ∩B{:
Let x ∈ A{ ∩B{. Then x belongs to each one of A{, B{, hence to none of A,B, hence x /∈ A ∪ B.
Therefore x belong to the complement of A ∪B. This completes the proof of formula a.
PROOF of b: The proof is very similar to that of formula a and left as an exercise. �

Definition 2.8 (Power set).

The power set
2Ω := {A : A ⊆ Ω}

of a set Ω is the set of all its subsets. Note that many older texts also use the notation P(Ω)
for the power set. �

Remark 2.6. Note that ∅ ∈ 2Ω for any set Ω, even if Ω = ∅: 2∅ = {∅}. It follows that the power set of
the empty set is not empty. �

Definition 2.9 (Partition). Let Ω be a set and A ⊆ 2Ω, i.e., the elements of A are subsets of Ω.

We call A a partition or a partitioning of Ω if
(a) If A,B ∈ A such that A 6= B then A ∩B = ∅. In other words, A consists of mutually

disjoint subsets of Ω.
(b) Each x ∈ Ω is an element of some A ∈ A. �

Remark 2.7. Let Ω be a set and A ⊆ 2Ω. Then A is a partition of Ω if and only if

For each x ∈ Ω, there exists a UNIQUE A ∈ A such that x ∈ A . �

Example 2.5.
a. For n ∈ Z let An := {n}. Then A := {An : n ∈ Z} is a partition of Z. A is not a partition

of N because not all its members are subsets of N and it is not a partition of Q or R. The
reason: 1

2 ∈ Q and hence 1
2 ∈ R, but 1

2 /∈ An for any n ∈ Z, hence condition b of def.2.9 is
not satisfied.

b. For n ∈ N let Bn := [ n2, (n+1)2[ = {x ∈ R : n2 ≤ x < (n+1)2}. Then B := {Bn : n ∈ N}
is a partition of [1,∞[. �
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Definition 2.10 (Size of a set).
a. Let X be a finite set, i.e., a set which only contains finitely many elements. We write

∣∣X∣∣
for the number of its elements, and we call

∣∣X∣∣ the size of the set X .
b. For infinite, i.e., not finite sets Y , we define |Y | :=∞. �

More will be said about sets later.

2.2 The Proper Use of Language in Mathematics: Any vs All, etc

Mathematics must be very precise in its formulations. Such precision is achieved not only by means
of symbols and formulas, but also by its use of the English language. We will list some important
points to consider early on in this document.

2.2.0.1 All vs. ANY
Assume for the following that X is a set of numbers. Do the following two statements mean the
same?

(1) It is true for ALL x ∈ X that x is an integer.
(2) It is true for ANY x ∈ X that x is an integer.

You will hopefully agree that there is no difference and that one could rewrite them as follows:
(3) ALL x ∈ X are integers.
(4) ANY x ∈ X is an integer.
(5) EVERY x ∈ X is an integer.
(6) EACH x ∈ X is an integer.
(7) IF x ∈ X THEN x is an integer.

Is it then always true that ALL and ANY means the same? Consider
(8a) It is NOT true for ALL x ∈ X that x is an integer.
(8b) It is NOT true for ANY x ∈ X that x is an integer.

Completely different things have been said: Statement (8) asserts that as few as one item and as
many as all items in X are not integers, whereas (9) states that no items, i.e., exactly zero items in
X , are integers.
My suggestion: Express formulations like (8b) differently. You could have written instead

(8c) There is no x ∈ X such that x is an integer.

2.2.0.2 AND vs. IF ... THEN
Some people abuse the connective AND to also mean IF ... THEN. However, mathematicians use
the phrase “p AND q” exclusively to mean that something applies to both p and q. Contrast the use
of AND in the following statements:

(9) “Jane is a student AND Joe likes baseball”. This phrase means that both are true: Jane is
indeed a student and Joe indeed likes baseball.

(10) “You hit me again AND you’ll be sorry”. Never, ever use the word AND in this con-
text! A mathematician would express the above as “IF you hit me again THEN you’ll be
sorry”.

2.2.0.3 OR vs. EITHER ... OR
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The last topic we address is the proper use of “OR”. In mathematics the phrase
(11) “p is true OR q is true”

is always to be understood as
(12) “p is true OR q is true OR BOTH are true”, i.e., at least one of p, q is true.

This is in contrast to everyday language where “p is true OR q is true” often means that exactly one
of p and q is true, but not not both.
When referring to a collection of items then the use of “OR” also is inclusive If the items a, b, c, . . .
belong to a collection C , e.g., if those items are elements of a set, then

(13) “a OR b OR c OR ...” means that we refer to at least one of a, b, c, . . . .

Note that “OR” in mathematics always is an inclusive or, i.e., “A OR B” means “A OR B
OR BOTH”. More generally, “A OR B OR ...” means “at least one of A, B, ...”.
To rule out that more than one of the choices is true you must use a phrase like “EXACTLY
ONE OF A, B, C, ...” or “EITHER A OR B OR C OR ...”. We refer to this as an exclusive or.

2.2.0.4 Some Convenient Shorthand Notation We have previously encountered the notation
“P ⇒ Q” for “if P thenQ”, i.e., if P is true, thenQ is true, and “P ⇔ Q” for “P iffQ”, i.e., “P is true
exactly when Q is true”. We list them here again wich some additional convenient abbreviations.

• ∀x . . . For all x...
• ∃x s.t. . . . There exists an x such that . . .
• ∃!x s.t. . . . There exists a UNIQUE x such that . . .
• P ⇒ Q If P then Q
• P ⇔ Q P iff Q, i.e., P if and only if Q

It is important that you are clear about the difference between ∃ and ∃!.
∃x: you can find at least one x but there might be more; potentially infinitely many!
∃!x: you can find one and only one x; not zero, not two, not 200, ... �

2.3 Numbers

We start with an informal classification of numbers.

Definition 2.11 (Types of numbers). Here is a definition of the various kinds of numbers in a nut-
shell.

N := {1, 2, 3, . . . } denotes the set of natural numbers.
Z := {0,±1,±2,±3, . . . } denotes the set of all integers.
Q := {n/d : n ∈ Z, d ∈ N} (fractions of integers) denotes the set of all rational numbers.
R := {all integers or decimal numbers with finitely or infinitely many decimal digits} de-
notes the set of all real numbers.
R \Q = {all real numbers which cannot be written as fractions of integers} denotes the set
of all irrational numbers. There is no special symbol for irrational numbers. Example:

√
2

and π are irrational. �
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Here are some customary abbreviations of some often referenced sets of numbers:

N0 := Z+ := Z≥0 := {0, 1, 2, 3, . . . } denotes the set of nonnegative integers,
R+ := R≥0 := {x ∈ R : x ≥ 0} denotes the set of all nonnegative real numbers,
R+ := R>0 := {x ∈ R : x > 0} denotes the set of all positive real numbers,
R 6=0 := {x ∈ R : x 6= 0}. �

Examples of rational numbers are

3
4 , −0.75, −1

3 , .3̄,
7
1 , 16, 13

4 , −5, 2.999̄, −372
7 .

Note that a mathematician does not care whether a rational number is written as a fraction

numerator
denominator

or as a decimal numeral. The following all are representations of one third:

(2.14) 0.3̄ = .3̄ = 0.33333333333 . . . = 1
3 = −1

−3 = 2
6 ,

and here are several equivalent ways of expressing the number minus four:

(2.15) − 4 = −4.000 = −3.9̄ = −12
3 = 4

−1 = −4
1 = 12

−3 = −400
100 .

Definition 2.12 (Intervals of Numbers). For a, b ∈ R we have the following intervals.

• [a, b] := {x ∈ R : a ≤ x ≤ b} is the closed interval with endpoints a and b.
• ]a, b[ := {x ∈ R : a < x < b} is the open interval with endpoints a and b.
• [a, b[ := {x ∈ R : a ≤ x < b} and ]a, b] := {x ∈ R : a < x ≤ b} are half-open intervals

with endpoints a and b.

The symbol “∞” stands for an object which itself is not a number but is larger than any (real)
number, and the symbol “−∞” stands for an object which itself is not a number but is smaller than
any number. We thus have −∞ < x < ∞ for any number x. This allows us to define the following
intervals of “infinite length”:

]−∞, a] :={x ∈ R : x ≤ a}, ]−∞, a[ := {x ∈ R : x < a},
]a,∞[ :={x ∈ R : x > a}, [a,∞[ := {x ∈ R : x ≥ a}, ]−∞,∞[ := R

(2.16)

You should always work with a < b. In case you don’t, you get

• [a, a] = {a}; [a, a[ = ]a, a[ = ]a, a] = ∅
• [a, b] = [a, b[ = ]a, b[ = ]a, b] = ∅ for a ≥ b �
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Notation 2.1 (Notation Alert for intervals of integers or rational numbers).

It is at times convenient to also use the notation [. . . ], ] . . . [, [. . . [, ] . . . ], for intervals of
integers or rational numbers. We will subscript them with Z or Q. For example,

[ 3, n ]Z = [ 3, n] ∩ Z = {k ∈ Z : 3 ≤ k ≤ n},
]−∞, 7 ]Z = ]−∞, 7 ] ∩ Z = {k ∈ Z : k ≤ 7} = Z≤7,

]a, b[Q = ]a, b[∩Q = {q ∈ Q : a < q < b}.

An interval which is not subscripted always means an interval of real numbers, but we
will occasionally write, e.g., [a, b]R rather than [a, b], if the focus is on integers or rational
numbers and an explicit subscript helps to avoid confusion. �

Definition 2.13 (Absolute value, positive and negative part). Let x, y ∈ R. We define the following.

absolute value: |x| =

{
x ifx ≥ 0,

−x ifx < 0.

maximum: max(x, y) =

{
x ifx ≥ y,
y ifx ≤ y.

minimum: min(x, y) =

{
y ifx ≥ y,
x ifx ≤ y. �

Assumption 2.1 (Square roots are always assumed nonnegative). Remember that for any number
a it is true that

a · a = (−a)(−a) = a2, e.g., 22 = (−2)2 = 4,

or that, expressed in form of square roots, for any number b ≥ 0

(+
√
b)(+
√
b) = (−

√
b)(−
√
b) = b.

We will always assume that “
√
b” is the positive value unless the opposite is explicitly

stated.

Example:
√

9 = +3, not −3. �

Remark 2.8. For any real number x we have
√
x2 = |x|. �(2.17)

Proposition 2.4 (The Triangle Inequality for real numbers). The following inequality is used all
the time in mathematical analysis to show that the size of a certain expression is limited from above:

Triangle Inequality : |a1 + a2 + · · ·+ an| ≤ |a1| + |a2| + · · ·+ |an|(2.18)

This inequality is true for any list of real numbers a1, a2, . . . , an.
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PROOF:
It is easy to prove this for n = 2: Just look separately at the three cases where both numbers are
nonnegative, both are negative, or one of each is positive and negative. �

2.4 Functions and Sequences

Introduction 2.2. You are familiar with functions from calculus. Examples are f1(x) =
√
x and

f2(x, y) = ln(x − y). Sometimes f1(x) means the entire graph, i.e., the entire collection of points(
x,
√
x
)

in the plane and sometimes it just refers to the function value
√
x for a “fixed but arbitrary”

number x. In case of the function f2(x): Sometimes f2(x, y) means the entire graph, i.e., the entire
collection of points

(
(x, y), ln(x− y)

)
in threedimensional space. At other times this expression just

refers to the function value ln(x− y) for a pair of “fixed but arbitrary” numbers (x, y).
To obtain a usable definition of a function there are several things to consider. In the following f1(x)
and f2(x, y) again denote the functions f1(x) =

√
x and f2(x, y) = ln(x− y).

a. The source of all allowable arguments (x–values in case of f1(x) and (x, y)–values in case
of f2(x, y)) will be called the domain of the function. The domain is explicitly specified
as part of a function definition and it may be chosen for whatever reason to be only a
subset of all arguments for which the function value is a valid expression. In case of the
function f1(x) this means that the domain must be a subset of the interval [0,∞[ because
the square root of a negative number cannot be taken. In case of the function f2(x, y) this
means that the domain must be a subset of

{ (x, y) : x, y ∈ R and x− y > 0 } ,

because logarithms are only defined for strictly positive numbers.
b. The set to which all possible function values belong will be called the codomain of the

function. As is the case for the domain, the codomain also is explicitly specified as part
of a function definition. It may be chosen as any superset of the set of all function values
for which the argument belongs to the domain of the function.
For the function f1(x) this means that we are OK if the codomain is a superset of the
interval [0,∞[. Such a set is big enough because square roots are never negative. It is OK
to specify the interval ]−3.5,∞[ or even the set R of all real numbers as the codomain. In
case of the function f2(x, y) this means that we are OK if the codomain contains R. Not
that it would make a lot of sense, but the set R ∪ { all inhabitants of Chicago } also is an
acceptable choice for the codomain.

c. A function y = f(x) is not necessarily something that maps (assigns) numbers or pairs
of numbers to numbers. Rather domain and codomain can be a very different kind of
animal. The following example will be very relevant for the remainder of the course:

At the end of Section 1.2 (A First Look at Probability) We informally defined the
probability associated with rolling a die as a function A 7→ P (A) which maps
subsets A of Ω = {1, 2, . . . , 6} to a real number 0 ≤ P (A) ≤ 1. Thus, the domain
here is 2Ω, the power set of Ω; the codomain is [0, 1] (or any superset of [0, 1]).
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d. Considering all that was said so far one can think of the graph of a function f(x) with
domain D and codomain C (see earlier in this note) as the set

Γf := {
(
x, f(x)

)
: x ∈ D}.

Alternatively one can characterize this function by the assignment rule which specifies
how f(x) depends on any given argument x ∈ D. We write “x 7→ f(x)” to indicate this.
You can also write instead f(x) = whatever the actual function value will be.
This is possible if one does not write about functions in general but about specific func-
tions such as f1(x) =

√
x and f2(x, y) = ln(x− y). We further write

f : D −→ C

as a short way of saying that the function f(x) has domain D and codomain C.
In case of the function f1(x) =

√
x for which we might choose the interval X := [ 2.5, 7 ]

as the domain (small enough because X ⊆ [0,∞[) and Y := ]1, 3[ as the codomain (big
enough because 1 <

√
x < 3 for any x ∈ X) we specify this function as

either f1 : [ 2.5, 7 ]→ ]1, 3[; x 7→
√
x or f1 : [ 2.5, 7 ]→ ]1, 3[; f(x) =

√
x.

Let us choose U := {(x, y) : x, y ∈ R and 1 ≤ x ≤ 10 and y < −2} as the domain
and V := [0,∞[ as the codomain for f2(x, y) = ln(x − y). These choices are OK because
x − y ≥ 1 for any (x, y) ∈ U and hence ln(x − y) ≥ 0, i.e., f2(x, y) ∈ V for all (x, y ∈ U .
We specify this function as

either f2 : U → V, (x, y) 7→ ln(x− y) or f2 : U → V, f(x, y) = ln(x− y). �

We incorporate what we noted above into this definition of a function.

Definition 2.14 (Function).

A function f consists of two nonempty sets X and Y and an assignment rule x 7→ f(x)
which assigns any x ∈ X uniquely to some y ∈ Y . We write f(x) for this assigned value
and call it the function value of the argument x. X is called the domain and Y is called
the codomain of f . We write

f :X → Y, x 7→ f(x).(2.19)

We read “a 7→ b” as “a is assigned to b” or “a maps to b” and refer to 7→ as the maps to
operator or assignment operator. The graph of such a function is the collection of pairs

Γf := {
(
x, f(x)

)
: x ∈ X},(2.20)

and the subset f(X) := {f(x) : x ∈ X} of Y is called the range of the function f . �

Note that the codomain) Y of f and its range f(X) can be vastly different. For example, if f : R→ R
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is given by the assignment f(x) = sin(x) then f(R) = [−1, 1] is a very small part of the codomain!

Remark 2.9. The name given to the argument variable is irrelevant. Let f1, f2, X, Y, U, V be as
defined in d of the introduction to ch.2.4 (A First Look at Functions and Sequences). The function

g1 : X → Y, p 7→ √p

is identical to the function f1. The function

g2 : U → V, (t, s) 7→ ln(t− s)

is identical to the function f2 and so is the function

g3 : U → V, (s, t) 7→ ln(s− t).

The last example illustrates the fact that you can swap function names as long as you do it consis-
tently in all places. �

We all know what it means that f : R→]0,∞]; x 7→ ex has f−1(x) = ln(x) as its inverse function:
• The arguments of f−1 will be the function values of f and the function values of f−1

will be the arguments of f : f(x) = ex = y ⇔ g(y) = ln(y) = x.
• f and f−1 cancel each other, i.e.,

f−1
(
f(y)

)
= y and f

(
f−1(x)

)
= x .

• Not so obvious but very useful: We want both codomains to be so small that
f−1

(
f(y)

)
= y is true for all y in the codomain of f and f

(
f−1(x)

)
= x is true for

all x in the codomain of f−1. One can show that this requires

domain of f = codomain of f−1 and domain of f−1 = codomain of f .

This leads to the following definition for the inverse of a function.

Definition 2.15 (Inverse function).

Given are two nonempty sets X and Y and a function f : X → Y with domain X and
codomain Y . We say that f has an inverse function if it satisfies all of the following condi-
tions which uniquely determine this inverse function, so that we are justified to give it the
symbol f−1:

(a) f−1 : Y → X , i.e., f−1 has domain Y and codomain X .
(b) f−1

(
f(x)

)
= x for all x ∈ X , and f

(
f−1(y)

)
= y for all y ∈ Y . �

Definition 2.16 (Surjective, injective and bijective functions).

Given are two nonempty sets X and Y and a function f : X → Y with domain X and
codomain Y . We say that

(a) f is “one–one” or injective, if for each y ∈ Y there is at most one x ∈ X such that
f(x) = y.

(b) f is “onto” or surjective, if for each y ∈ Y there is at least one x ∈ X such that f(x) = y.
(c) f is bijective, f is both injective and surjective. �
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Remark 2.10. that One can show that a function f has an inverse f−1 if and only if f is bijective. �

Remark 2.11. that If the inverse function f−1 exists and if x ∈ X and y ∈ Y , then we have the
relation

y = f(x) ⇔ x = f−1(y) .

Example 2.6. If h is a function, we write Domh and Codh for its domain and codomain. Be sure you
understand the following:

(a) f : R → R; x → ex does not have an inverse f−1(y) = ln(y) since its domain Domf−1

would have to be the codomain R of f and ln(y) is not defined for y ≤ 0.
(b) g : R→ ]0,∞[; x→ ex has the inverse g−1 : ]0,∞[→ R; g−1(y) = ln(y) since

Domg−1 = Codg = ]0,∞[, Codg−1 = Domg = R,

eln(y) = y for 0 < y <∞, ln(ex) = x for all x ∈ R. �

Definition 2.17 (Restriction/Extension of a function). ? Given are three nonempty sets A,X
and Y such that A ⊆ X , and a function f : X → Y with domain X . We define the restriction of f
to A as the function

f
∣∣
A

: A→ Y defined as f
∣∣
A

(x) := f(x) for all x ∈ A.(2.21)

Conversely let f : A → Y and ϕ : X → Y be functions such that f = ϕ |A. We then call ϕ an
extension of f to X . �

We now briefly address sequences and subsequences.

Definition 2.18. Let n? be an integer and assume that an item xj associated
• either with each integer j ≥ n?, In other words, we have an item xj assigned to each

j = n?, n? + 1, n? + 2, . . . .
• or with each integer j such that n? ≤ j ≤ n?. In this case an item xj is assigned to each

j = n?, n? + 1, . . . , n?.
Such items can be anything, but we usually deal with numbers or outcomes or sets of outcomes of
an experiment.

• In the first case we usually write xn? , xn?+1 , xn?+2 , . . . or (xn)n≥n? for such a collection
of items and we call it a sequence with start index n?.

• In the second case we speak of a finite sequence, which starts at n? and ends at n?.
We write (xn)n?≤n≤n? or xn? , xn?+1 , . . . , xn? for such a finite collection of items.

• If we refer to a sequence (xn)n without qualifying it as finite then we imply that we
deal with an infinite sequence, xn? , xn?+1 , xn?+2 , . . . . �
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Example 2.7.
(1) If uk = k2 for k ∈ Z, then (uk)k≥−2 is the sequence of integers 4, 1, 0, 1, 4, 9, 16, . . . .
(2) If Aj = [−1 − 1

j , 1 + 1
j ] = {x ∈ R : −1 − 1

j ≤ x ≤ 1 + 1
j }, then (Aj)j≥3 is the sequence of

intervals of real numbers [−4
3 ,

4
3 ], [−5

4 ,
5
4 ], [−6

5 ,
6
5 ], . . . . This is a sequence of sets! �

Remark 2.12 (Sequences are functions). that
• One can think of a sequence (xi)i≥n? in terms of the assignment i 7→ xi. This sequence can

then be interpreted as the function

x(·) : [n?,∞[Z −→ suitable codomain; i 7→ x(i) := xi ,

where that “suitable codomain” depends on the nature of the items xi.
• In Example 2.7(1), we could chose Z as that codomain. In Example 2.7(2) 2R, the power set

of R would be an appropriate choice. �

Definition 2.19.

• If (xn)n is a finite or infinite sequence and one pares down the full set of indices to a
subset {n1, n2, n3, . . . } such that n1 < n2 < n3 < . . . , then we call the corresponding
thinned out sequence (xnj )j∈N a subsequence of that sequence.

• If this subset of indices is finite, i.e., we have n1 < n2 < · · · < nK for some suitable
K ∈ N, then we call (xnj )j≤K a finite subsequence of the original sequence. �

Note that subsequences of finite sequences are necessarily finite whereas subsequences of infinite
sequences can be finite or infinite.

Remark 2.13. Does it matter whether we look at a sequence
(
xj
)
j∈J or at the corresponding set

{xj : j ∈ J}? The answer: THIS CAN MATTER GREATLY! Consider the sequence

x1 = −1, x2 = 1, x3 = −1, x1 = −1, . . . ; i.e., xn = (−1)n for n ∈ N

• The sequence is infinite, since the index set N is infinite
• Let A := {xj : j ∈ N}. Since sets have no duplicates, A = {−1, 1} has only two elements.
• The ordering of the indices j is lost when considering the set: There is no difference between
{−1, 1} and {1,−1}!

Considering the last point, do not confuse the ordering of the indices j with a possible ordering of
the xj ! The order may be reversed (e.g., xj = 5− j), neither increasing nor decreasing (xj = sin(j)),
or there is no ordering (xj = eye color of person j). �

Definition 2.20. We give some convenient definitions and notations for monotone sequences of
numbers, functions and sets.

(a) Let xn be a sequence of extended real–valued numbers.
• We call xn a nondecreasing or increasing sequence, if j < n ⇒ xj ≤ xn .
• We call xn a strictly increasing sequence, if j < n ⇒ xj < xn .
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• We call xn a nonincreasing or decreasing sequence, if j < n ⇒ xj ≥ xn .
• We call xn a strictly decreasing sequence, if j < n ⇒ xj > xn .

• We write xn ↑ for nondecreasing xn, and xn ↑ x to indicate that lim
n→∞

xn = x,

• We write xn ↓ for nonincreasing xn, xn ↓ x to indicate that lim
n→∞

xn = x. �

(b) Let An be a sequence of sets.
• We call An a nondecreasing or increasing sequence, if j < n ⇒ Aj ⊆ An .
• We call An a strictly increasing sequence, if j < n ⇒ Aj ( An .

• We call An a nonincreasing or decreasing sequence, if j < n ⇒ Aj ⊇ An .
• We call An a strictly decreasing sequence, if j < n ⇒ Aj ( An .

• We write An ↑ for nondecreasing An, and An ↑ A to indicate that
⋃
nAn = A,

• We write An ↓ for nonincreasing An, An ↓ A to indicate that
⋂
nAn = A. �

Example 2.8.
(a) The sequence xn = − 1

n is strictly increasing.
(b) The sequence yn = 1

n is strictly decreasing.
(c) The sequence a1 = 1, an+1 = an for even n and an+1 = − 1

n for odd n, is nonincreasing.
(c) The sequence b1 = 1, bn+1 = bn for even n and bn+1 = 1

n for odd n, is nondecreasing. �

There are different degrees of infinity for the size of a set. Finite sets and many inifinite sets are
“small enough” to list all their elements in a finite or infinite sequence. Other infinite sets are too
big for that.

Definition 2.21 (Countable and uncountable sets). Let X be a set.

(a) We call X countable if its elements can be written as a finite sequence (those are the
finite sets) X = {x1, x2, . . . , xn} or as an infinite sequences. X = {x1, x2, . . . }.

(b) We call a nonempty set uncountable if it is not countable, i.e., its elements cannot
be sequenced.

(c) By convention the empty set, ∅, is countable. �

Fact 2.1. One can prove the following important facts:

(a) The integers are countable. (Easy: Z = {0,−1, 1,−2, 2,−3, 3, . . . }) lists all elements of Z
in a sequence.

(b) Subsets of countable sets are countable. (Easy: If X = {x1, x2, . . . } and A ⊆ X , then
remove all xj that are not in A. That subsequence lists the elements of A.

(c) Countable unions of countable sets are countable: IfA1, A2, . . . is a finite or infinite sequence
of sets, then A1 ∪A2 ∪ · · · is countable.

(d) The rational numbers Q are countable. A proof is given below.
(e) The real numbers R are uncountable! �

? Here is a proof that Q is countable. For fixed d ∈ N, let Ad := {n/d : n ∈ Z} (“d” for
denominator). Then is countable since it can be sequenced as follows.

Ad = {0,−1

d
,

1

d
,−2

d
,

2

d
, . . . }
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The assertion follows from fact (c) and Q =
∞⋃
d=1

Ad (WHY?)

Example 2.9. ? For a, b, r ∈ R, let A(a,b,r) := {(x, y) ∈ R2} such that (x−a)2 + (y− b)2 = r2 ,

i.e., A(a,b,r) is the circle with radius |r| around the point (a, b) in the plane. It is not possible to write
the indexed collection (

A(a,b,r)

)
(a,b,r)∈R3

as a sequence, since R3 is bigger than the uncountable set R, hence cannot be sequenced. �

There is a name for those “generalized sequences”
(
xi
)
i∈I which have an index set that not neces-

sarily consists of integers n?, n? + 1, . . . , n? or n?, n? + 1, . . . or of a subset of such a set. The next
definition is marked as optional and you not need remember it for quizzes or exams. But you must
remember it well enough to understand problems and propositions which refer to families.

Definition 2.22 (Families). ?

Let I and X be nonempty sets such that each i ∈ I is associated with some xi ∈ X . Then
a.

(
xi
)
i∈I is called an indexed family or simply a family in X .

b. I is called the index set of the family.
c. For each i ∈ IJ , xi is called a member of the family (xi)i∈I . �

Remark 2.14 (Families are functions). that
We saw in example 2.12 on p.30 that sequences

(
xn
)
n

can be interpreted as functions with domain
= index set and codomain = a set that contains all members xn. This also holds true for families and
is particularly easily understood if the family

(
xi
)
i∈I in X is written in a way that each member

explicitly tracks the index that it is associated with, i.e., we write
(
i, xi

)
i∈I . The set

Γf := {
(
i, xi

)
: i ∈ I }

is the graph Γf of the function

f : I −→ X ; i 7→ f(i) := xi .

At the end of Definition 2.4 on p.17 we defined unions and intersections of any collection of sets
(Ai)i∈J which is indexed by integers, i.e., J ⊆ Z. We did so by saying that 14⋃

i∈J
Ai = {x : ∃ i0 ∈ J s.t. x ∈ Ai0} and

⋂
i∈J

Ai = {x : ∀ i ∈ J : x ∈ Ai} .

This allows us to generalize unions and intersections of finite and infinite sequences of sets to col-
lections of sets with an arbitrary index set. Note the following:
• The next definition is NOT marked as OPTIONAL
• It contains Definition 2.4 as a special case!

14See paragraph 2.2.0.4 (Some Convenient Shorthand Notation) on p.23 about ∀ and ∃.
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Definition 2.23 (Arbitrary unions and intersections). Let J be an arbitrary, nonempty set and(
Aj
)
j∈J a family of sets with index set J . We define

• The union
⋃
j∈J

Aj := {x : ∃ i0 ∈ J s.t. x ∈ Ai0}.

• The intersection
⋂
j∈J

Aj = {x : ∀ i ∈ J : x ∈ Ai}.

• If the sets Ai are disjoint, we often write
⊎
j∈J

Aj rather than
⋃
j∈J

Aj .

• Let
(
Bj
)
j∈J be a family of subsets of a set X . We call this family a partition or a

partitioning of X if the corresponding set of sets {Bi : i ∈ J} is a partition of X :
(a) i 6= j ⇒ Bi ∩Bj = ∅ (b) X =

⊎
j∈J

Bj . See Definition 2.9 on p.21. �

Remark 2.15. ? For typographical reasons I sometimes use the following notation.⋃[
Ai; i ∈ I

]
:=

⋃
i∈I

Ai .

Analogous notation exists for
⋂

,
⊎

and even summation. For example, assume that g : R → R is
some rel–valued function of real numbers, and that the indices of interest are

I := {x ∈ R : x > 5 and 0 ≤ g(x) < 5} .

Then
⋂
x∈I

Bx can also be expressed as follows:

⋂
x∈I

Bx =
⋂[

Bx : x > 5 and 0 ≤ g(x) < 5
]

=
⋂

x>5 and 0≤g(x)<5

Bx . =
⋂
x> 5

0≤g(x)<5

Bx . �

Be sure to understand the following example (draw a picture!)

Example 2.10. ? For a, b ∈ R, let Q(a,b) := {(x, y) ∈ R2 : |x − a| ≤ 3/2, |y − b| ≤ 3/2} .
Thus, Q(a,b) is the square in the plane with center (a, b) and side length 3. Compute

⋂
(a,b)∈K

Q(a,b)

and
⋃

(a,b)∈K
Q(a,b).

For K = {(a, b) ∈ R2 : −1 ≤ a, b ≤ 1} , compute
⋂

(a,b)∈K

Q(a,b) and
⋃

(a,b)∈K

Q(a,b) .

Solution:
Let U :=

⋂
(a,b)∈K

Q(a,b) and V :=
⋃

(a,b)∈K
Q(a,b).

Fix b0 ∈ [−1, 1] and consider the squares Q(a,b0) moving from the left (a = −1) all the way to the
right (a = +1). Even Q(−1,b0) as the leftmost square has x values as big as 1/2, and Q(1,b0) as the
rightmost square has x values as small as −(1/2), Thus,

(x, y) ∈
⋂

−1≤a≤1

Q(a,b0) ⇔
[
− 1

2
≤ x ≤ 1

2
and b0 −

3

2
≤ y ≤ b0 +

3

2

]
.
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Likewise, if we now also move the squares vertically from b = −1 to b = 1, then the y values of
points in the intersection are exactly those that satisfy −(1/2) ≤ y ≤ 1/2. Thus,

U = {(x, y) : |x| ≤ 1/2 and |y| ≤ 1/2} .

One sees in likewise faxhion that the points in the union V are exactly those with x values and y
values between −1− (3/2) = −5/2 and 1 + (3/2) = 5/2. Thus,

V = {(x, y) : ||x| ≤ 5/2 and |y| ≤ 5/2} . �

We finish this section with two very useful propositions. The first one (De Morgan) you already
have encountered for two sets (see Proposition 2.3 on p.2.3). 15

Proposition 2.5 (De Morgan’s Law for sequences of sets). Let (An)n be a finite or infinite sequence
of subsets of a set Ω. Then the complement of the union is the intersection of the complements, and the
complement of the intersection is the union of the complements:

(a)

(⋃
k

Ak

){
=
⋂
k

A{k ; (b)

(⋂
k

Ak

){
=
⋃
k

A{k ;(2.22)

PROOF:
Not very complicated, but we skip it �

Note that the order of the sequencing does not matter for De Morgan and the next proposition.

Proposition 2.6 (Distributivity of unions and intersections). Let (An)n be a finite or infinite sequence
of sets and let B be a set. Then

⋃
j

(B ∩Aj) = B ∩
⋃
j

Aj ,(2.23)

⋂
j∈I

(B ∪Aj) = B ∪
⋂
j

Aj .(2.24)

PROOF: �

2.5 Cartesian Products

We next define cartesian products of sets. Those mathematical objects generalize rectangles

[a1, b1]× [a2, b2] = {(x, y) : x, y ∈ R, a1 ≤ x ≤ b1 and a2 ≤ y ≤ b2}
15Matter of fact, both propositions extend to arbitrary families.
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and quads

[a1, b1]× [a2, b2]× [a3, b3] = {(x, y, z) : x, y, z ∈ R, a1 ≤ x ≤ b1, a2 ≤ y ≤ b2 and a3 ≤ z ≤ b3}.

which you certainly have encountered in multivariable calculus.

Definition 2.24 (Cartesian Product). Let X and Y be two sets The set

X × Y := {(x, y) : x ∈ X, y ∈ Y }(2.25)

is called the cartesian product of X and Y . We write X2 as an abbreviation forX ×X .

Note that the order is important: (x, y) and (y, x) are different unless x = y.

This definition generalizes to more than two sets as follows:

Let X1, X2, . . . , Xn be sets. The set

X1 ×X2 · · · ×Xn := {(x1, x2, . . . , xn) : xj ∈ Xj for each j = 1, 2, . . . n}(2.26)

is called the cartesian product of X1, X2, . . . , Xn.
We write Xn as an abbreviation forX ×X × · · · ×X .

Example 2.11. In your multivariable calculus course you have learned about twodimensional vec-
tors and threedimensional vectors. Convenient notations would often be

(x, y) ∈ R2 , (a, b) ∈ R2 , (x, y, z) ∈ R3 , (a, b, c) ∈ R3 .(2.27)

Note that those vectors are elements of the cartesian products R2 = R× R R3 = R× R× R.
In general, any finite list of real numbers

(
β1, β2, . . . , βm

)
is an element of Rm which we call an

m–dimensional vector of real numbers.

(8,−3, 0, 4,−7)

is a 5–dimensional vector of Integers. Since integers are special cases of rational numbers which
themselves are also real numbers, this vector is an element of each one of Z5,Q5,R5.
The notation used in (2.27) does not scale for higher dimensional vectors, in particular, if the di-
mension is arbitrary. On the other hand,

(
β1, β2, . . . , βm

)
is very suitable. But this is very lengthy

notation, so we use the symbol for the subscripted components (that’s β) and write an arrow on top
to indicate that we are dealing with a vector. 16

We will use as much as possible this arrow notation for vectors. Here are some examples.

~x = (x1, x2, . . . , xn) , ~b = (b1, b2, b3, b4) , ~Z = (Z1, Z2, . . . , Zd) .

Assuming that each subscripted item belongs to R we have ~x ∈ Rn,~b ∈ R4, ~Z ∈ Rd.

Notational conveniences for vectors: Unless something else is stated, we will always assume the
following. If X is a nonempty set (usually, X is a set of numbers),

16We borrow that notation from physics.
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~x ∈ Xn is shorthand for ~x =
(
x1, x2, . . . , xn

)
∈ Xn (i.e., xj ∈ X for j = 1, 2, . . . , n.)

We also extend this convention to the case X1 × · · · ×Xn with potentially different sets Xj . This is
best explained by example. Having pairs of numbers ai < bi for i = 1, 2, . . . , d,

~y ∈ ]a1, b1]× ·×]ad, bd] is shorthand for
~y =

(
y1, y2, . . . , yd

)
, where ai < yi ≤ bi for i = 1, . . . , d. �

Example 2.12. Cartesian products occur in a natural manner in probability theory when one models
the outcomes of repeated experiments.

(a) If the experiment is three rolls of a die, then the set

Ω =
(
[1, 6]Z

)3
= {1, 2, 3, 4, 5, 6}3

is a natural container for the outcomes of this experiment. For example, (4, 2, 6) ∈ Ω is the
outcome of having rolled a 4 followed by a 2 followed by a 6.

(b) n tosses of a coin (n ∈ N) are mopdeled as follows. Let H stand for Heads and T for Tails.
Then let

Ω = {H,T}n

For example, if n = 5, then (H,H, T,H, T ) ∈ Ω models the outcome of having tossed Heads
followed by Heads followed by Tails followed by Heads followed by Tails. This example
demonstrates that cartesian products are also defined for sets that do not necessarily consist
of numbers �

Here is an abstract example.

Example 2.13. The graph Γf of a function with domain X and codomain Y (see def.2.20) is a subset
of the cartesian product X × Y . �

Proposition 2.7. Let X1, X2, Xn be finite, nonempty sets. Then,

The size of the cartesian product is the product of the sizes of its factors, i.e.,∣∣X1 ×X2 × · · · ×Xn

∣∣ =
∣∣X1

∣∣ · ∣∣X2

∣∣ · ∣∣X3

∣∣ · · · ∣∣Xn

∣∣ .(2.28)

PROOF:
Case n = 2: This trivial for two sets, since the proposition simply states that a matrix (a rectangular
grid) of m rows and n columns possesses mn entries.
Case n = 3: For three setsX1, X2, X3, we arrange the |X1|·|X2| entries ofX1×X2 into a single row. In
other words, we consider the members (x

(1)
i , x

(2)
j , x

(3)
k ) ofX1×X2×X3 as members

(
(x

(1)
i , x

(2)
j ), x

(3)
k

)
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of
(
X1×X2

)
×X3. We apply the result for two sets to the cartesian product of X1×X2 and X3 and

obtain ∣∣X1 ×X2 ×X3

∣∣ =
∣∣(X1 ×X2)×X3

∣∣ =
∣∣X1 ×X2

∣∣ · ∣∣X3

∣∣ . =
∣∣X1

∣∣ · ∣∣X2

∣∣ · ∣∣X3

∣∣ .
We repeat this procedure for n = 3, 4, 5, . . . sets.
Case n: We arrange the elements of X1 ×X2 ××Xn−1 into a single row and

interpret each (x1, . . . , xn) ∈ X1 ×Xn as
(
(x1, . . . , xn−1), xn

)
∈ (X1 ×Xn−1)×Xn.

Thus, the sets X1 ×Xn and (X1 ×Xn−1)×Xn have the same size. We know from the prior step,
case n− 1, that

∣∣X1 × · · · ×Xn−1

∣∣ =
∣∣X1

∣∣ · · · ∣∣Xn−1

∣∣. Hence,∣∣X1 × · · · ×Xn

∣∣ =
∣∣ (X1 × · · ·Xn−1)×Xn

∣∣ =
(∣∣X1 × · · ·Xn−1

∣∣) · ∣∣Xn

∣∣
=
(∣∣X1

∣∣ · · · ∣∣Xn−1

∣∣)∣∣Xn

∣∣ =
∣∣X1

∣∣ · ∣∣X2

∣∣ · ∣∣X3

∣∣ · · · ∣∣Xn

∣∣ . �
2.6 A Few Things You May Not Have Learned in Calculus

Definition 2.25 (Absolute Convergence). ?

We say that an infinite series
∑
aj(aj ∈ R) is absolutely convergent), if

∞∑
j=1

|aj | = |a1|+ |a2|+ |a3|+ · · · < ∞ , �

Theorem 2.1.

If the series
∑
aj(aj ∈ R) is absolutely convergent, then the following holds true:

(a) The series
∑
aj itself converges, i.e., there is a ∈ R such that

∞∑
j=1

aj = a,

(b) ANY rearrangement
∞∑
j=1

anj = an1 + an2 + · · · converges to the same limit as
∑
aj .

Here, a rearrangement), of a sequence (aj)n∈N or series
∑
aj if its members are rearranged into a sequence

(bj)n∈N or series
∑
bj :

There are indices nj ∈ N such that

b1 = an1 , b2 = an2 , b3 = an3 , . . .

and those indices satisfy the following:
(1) They are distinct: i 6= j ⇒ ni 6= nj .
(2) They leave no gaps in the set N of all indices: For each k ∈ N there is j ∈ N such that k = nj .

17

17 ? We could have expressed (1) and(2) by stating that the assignment j 7→ nj is a bijection N→ N. (See Definition

2.16 (Surjective, injective and bijective functions) on p.28.)
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PROOF: See your calculus book. �

Remark 2.16. ? This remark might seem very strange to you. Assume that the series
∑
aj is

convergent, but not absolutely convergent: There is some a ∈ R such that
∞∑
j=1

aj = a, but
∞∑
j=1
|aj | =

∞. The following is known as Riemann’s rearrangement theorem:
Pick any−∞ ≤ b ≤ ∞. The terms aj can be rearranged in such a way that the rearranged sequence,
call it

∑∞
j=1 anj , converges to b. In other words, you can jumble the terms such that the limit is π.

Some other rearrangement yields 0 as the limit, for yet another, the series converges to −
√
e30, ...

�

We make the following blanket assumption.

2.7 Exercises for Ch.2

2.7.1 Exercises for Sets

Exercise 2.1. Prove (2.12) of prop.2.2 on p.20.

Exercise 2.2. Prove the set identities of prop.2.1.

Exercise 2.3. Prove that for any three sets A,B,C it is true that (A \B) \ C = A \ (B ∪ C).
Hint: use De Morgan’s formula (2.13.a). �

Exercise 2.4. Let X = {x, y, {x}, {x, y} }. True or false?
a. {x} ∈ X c. { {x} } ∈ X e. y ∈ X g. {y} ∈ X
b. {x} ⊆ X d. { {x} } ⊆ X f. y ⊆ X h. {y} ⊆ X �

For the subsequent exercises refer to Definition 2.10 on p.22 of the size
∣∣A∣∣ of a setA and to Definition

2.24 on p.35 of Cartesian products.

Exercise 2.5. Find the size of each of the following sets:
a. A = {x, y, {x}, {x, y} } c. C = {u, v, v, v, u} e. E = {sin(kπ/2) : k ∈ Z}
b. B = {1, {0}, {1} } d. D = {3z − 10 : z ∈ Z} f. F = {πx : x ∈ R} �

Exercise 2.6. Let X = {x, y, {x}, {x, y} } and Y = {x, {y} }. True or false?
a. x ∈ X ∩ Y c. x ∈ X ∪ Y e. x ∈ X \ Y g. x ∈ X∆Y
b. {y} ∈ X ∩ Y d. {y} ∈ X ∪ Y f. {y} ∈ X \ Y h. {y} ∈ X∆Y �

Exercise 2.7. Let X = {1, 2, 3, 4} and let Y = {x, y}.
a. What is X × Y ? c. What is

∣∣X × Y ∣∣? e. Is (x, 3) ∈ X × Y ? g. Is 3 · x ∈ X × Y ?
b. What is Y ×X? d. What is

∣∣X × Y ∣∣? f. Is (x, 3) ∈ Y ×X? h. Is 2 · y ∈ Y ×X? �

Exercise 2.8. Let X = {8}. What is 2(2X)?

Exercise 2.9. Let A = {1, {1, 2}, 2, 3, 4} and B = {{2, 3}, 3, {4}, 5}. Compute the following.
a. A ∩B b. A ∪B c. A \B d. B \A e. A4B �
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Exercise 2.10. Let A,X be sets such that A ⊆ X and let x ∈ X . Prove the following:
a. If a ∈ A then A = (A \ {a}) ] {a}.
b. If a /∈ A then A = (A ] {a}) \ {a}.
�

2.8 Addenda to Ch.2 – EMPTY

EMPTY – EMPTY – EMPTY – EMPTY – EMPTY
EMPTY – EMPTY – EMPTY – EMPTY – EMPTY
EMPTY – EMPTY – EMPTY – EMPTY – EMPTY
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2.9 Blank Page after Ch.2
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3 The Probability Model

3.1 Probability Spaces

In Section 1.2 (A First Look at Probability) we looked at several examples which motivated us to
give a preliminary definition of probability as a function (we called it a probability measure),

P : 2Ω −→ [0, 1]

which assigns to each element A of the power set 2Ω of a given set Ω 18 a number P (A), also written
as P [A], between zero and one, such that

(a) P∅) = 0 and P (Ω) = 1. Here ∅ denotes the empty set which contains no elements.
(b) If the subsets A,B of Ω are disjoint, then probability is additive:

P
(
A
⊎
B
)

= P (A) + P (B) .

Note that additivity holds for three disjoint sets A,B,C ∈ 2Ω since,

P
(
A
⊎
B
⊎
C
)

= P
[ (
A
⊎
B
)⊎

C
]

= P
(
A
⊎
B
)

+ P (C) = P (A) + P (B) + P (C) .(?)

From (?) you get additivity for four disjoint A,B,C,D ∈ 2Ω since,

P
(
A
⊎
B
⊎
C
⊎
D
)

= P
[ (
A
⊎
B
⊎
C
)⊎

D
]

= P
(
A
⊎
B
⊎
C
)

+ P (D) = P [A] + P [B] + P [C] + P [D] .

Now that you have additivity for four disjoint sets, you get it by the same method for five, and then
for six, ... and thus, for any finite number of disjoint subsets A1, . . . , An of Ω.
But we are not satisfied since it has proven extremely fruitful to replace (b) with the stronger con-
dition

(b’) If
(
An
)
n∈N is a (infinite!) sequence of disjoint subsets of Ω, then probability is “σ–additive”: 19

P

 ∞⊎
j=1

Aj

 =
∞∑
j=1

P (Aj) .

Unfortunately, this might come with a trade–off. Consider the following example.

Example 3.1. A point located somewhere at ]−∞, 0[ starts moving to the right at a constant velocity
and is stopped at random somewhere in the unit interval [0, 1] in the following sense: It is stopped
just as likely in the left half, [0, 1

2 ], as in the right half, [1
2 , 1]. More generally, for any n ∈ N, it is

stopped equally likely in each one of the intervals [k−1
n , kn ] (k = 1, 2, . . . , n).

• It should be obvious that the only reasonable probability measure on Ω := [0, 1] is

(3.1) P : [0, 1]→ [0, 1] ; [α, β] 7→ β − α , where 0 ≤ α ≤ β ≤ 1,

• since it is the only one that assigns probabilities proportionate to interval length (in-
cluding P

(
[α, α]) = 0 for intervals of length zero) and also satisfies P (Ω) = 1.

182Ω = { all subsets of Ω }. See Definition 2.8 (Power set) on p.21.
19σ (“sigma”) is a greek letter. See the appendices for a complete list.
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• Unfortunately, it has been proven 20 that no σ–additive function that satisfies those
properties exists on the entire power set of [0, 1].
• The only way out of this dilemma without sacrificing σ–additivity is to relax the condi-
tion that P (A) must exist for ALL A ⊆ Ω. �

Since we want to keep σ–additivity, we must define probability as a function

P : F −→ [0, 1] , where F is a suitable subset of 2Ω,

which satisfies P (∅) = 0 and P (Ω) = 1 and

P

( ∞⊎
k=1

Ak

)
=

∞∑
k=1

P (Ak) for disjoint A1, A2, · · · ∈ F.

Before we further explore this issue, we briefly remark on probability measures which are like the
one described by 3.1 of the last example.

To answer the question what conditions a useful domain F for a probability measure P should
satisfy, it helps to remember De Morgan’s Law for finite or infinite sequences of sets. See Proposition
2.5 on p.34. Also, the following proposition which shows how to rewrite any countable union (finite
or infinite) as a DISJOINT union will be relevant.

Proposition 3.1 (Rewrite unions as disjoint unions). Let (Aj)j∈N be a sequence of sets which all are
contained within the universal set Ω. Let

Bn :=
n⋃
j=1

Aj = A1 ∪A2 ∪ · · · ∪An (n ∈ N),

C1 := A1 = B1, Cn+1 := An+1 \Bn (n ∈ N).

Then

(a) The sequence (Bj)j is increasing: m < n⇒ Bm ⊆ Bn.

(b) For each n ∈ N,
n⋃
j=1

Aj =
n⋃
j=1

Bj .

(c) The sets Cj are mutually disjoint and
n⋃
j=1

Aj =
n⊎
j=1

Cj .

(d) The sets Cj (j ∈ N) form a partition of the set
∞⋃
j=1

Aj .

PROOF: ? (a) and (b) are trivial. For the proof of (c) and (d), convince yourself that

Cn = An \ (A1 ∪A2 ∪ · · · ∪An−1) .

Thus, Cn precisely contains those elements of An that have not previously been encountered! �

We return to the question what the domain F of a probability should satisfy.

20such a proof is outside the scope of these notes.

42 Version: 2024-05-06



Math 447 – MF Lecture Notes Student edition with proofs

If A has a probability P (A), then A{ should have probability 1− P (A). Since probabilities can only
be assigned to elements of F, we want

A ∈ F ⇒ A{ ∈ F .(A)

If An ∈ F are pairwise disjoint, then
∞⊎
j=1

Aj should have probability
∞∑
j=1

P (Aj). Since probabilities

can only be assigned to elements of F, we want

An ∈ F disjoint ⇒
∞⊎
j=1

Aj ∈ F .

Since we have seen that any union of a sequence of events can be written as a disjoint union, we
need more than the above. We really want

An ∈ F arbitrary ⇒
∞⋃
j=1

Aj ∈ F .(B)

Also, it is very reasonable to demand that P (∅) = 0 for the impossible event which contains no
potential outcomes, i.e., the empty set. it is just as reasonable to ask that P (Ω) = 1 for the sure
event, Ω, since it contains all potential outcomes. Thus, we ask that

∅ ∈ F and Ω ∈ F .(C)

All this leads to the definition of σ–algebras as suitable domains for probability measures.

Definition 3.1 (σ–algebra). Let Ω be a nonempty set and F ⊆ 2Ω a collection of subsets of Ω, such
that

(a) A ∈ F ⇒ A{ ∈ F .

(b) An ∈ F arbitrary ⇒
∞⋃
j=1

Aj ∈ F .

(c) ∅ ∈ F .

Then we call F a σ–algebra.

F is also called a σ–field, but this is considered old–fashioned terminology. �

Proposition 3.2. σ–algebras F satisfy the following.
(a) Ω ∈ F.
(b) A1, A2, . . . , An ∈ F ⇒ A1 ∪A2 ∪ · · · ∪An ∈ F.

(c) Let n ∈ N and A1, A2, · · · ∈ F. Let A =
n⋂
k=1

Ak and B =
∞⋂
k=1

Ak. Then A ∈ F and B ∈ F. �

PROOF: ?

PROOF of (a): True, since Ω = ∅{ and complements of elements of F belong to F and ∅ ∈ F.
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PROOF of (b): Since any finite list A1, . . . , An can be written as an infinite sequence

B1 = A1, B2 = A2, · · · , Bn = An, Bn+1 = Bn+2 = · = ∅

and since Bj ∈ F for each j ∈ N, it follows from Def.3.1(b) that
∞⋃
j=1

Bj ∈ F. Since

n⋃
j=1

Aj =
n⋃
j=1

Aj ∪ ∅ ∪ ∅ ∪ · ∪ ∅ =
∞⋃
j=1

Bj

it follows that
n⋃
j=1

Aj ∈ F. This proves (b).

PROOF of (c): According to De Morgan’s laws, any countable intersection can be written as the
union of its complements. Thus we automatically get from (A) and (B) that countable intersections
of a sequence in F will again belong to F.

Here is a detailed argument. For each j let Cj := A{j . Further, let C :=
n⋃
j=1

Cj and D :=
∞⋃
j=1

Cj .

Since each each Cj is the complement of a member of F, we have Cj ∈ F. Thus, D ∈ F by the
definition of F, and we have seen in part (b) of this proposition that C ∈ F

It follows from De Morgan’s laws that C{ = A and D{ = B.
Thus, both A,B belong to F as complements of elements of F. We have shown (c). �

Definition 3.2 (Probability measures and probability spaces).

Given are a nonempty set Ω with a σ–algebra F ⊆ 2Ω and a function

P : F −→ [0, 1] ; A 7→ P (A) as follows.

P (∅) = 0 ,(3.2) P (Ω) = 1 ,(3.3)

(An)n∈N ∈ Fdisjoint ⇒ P
(⊎
n∈N

An

)
=

∞∑
n=1

P (An) =
∑
n∈N

P (An). (σ–additivity)(3.4)

• We call P a probability measure or simply a probability
• The triplet (Ω,F, P ) is called a probability space.
• We often call disjoint events mutually exclusive events. �

Notation 3.1 (Sample spaces and sample points).

• We also call a probability space a sample space and an outcome a sample point.
• we will also call Ω by itself (as opposed to the triplet (Ω,F, P )) a probability space or

sample space, but sometimes we refer to Ω as the carrier set or carrier of (Ω,F, P ).
• We like to write Ω for the carrier set, F for the σ–algebra and P for the probability

measure of a probability space, but different notation may be used. For example,
there may be a probability space (S,SSS , Q) and outcomes s or x or ~y (vector notation).
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Remark 3.1. As I noted in Section 1.2 (A First Look at Probability), “sample space” is the statisti-
cian’s terminology for a probability space. I will mostly use the term “probability space”, since we
usually think of a sample as a list of items that that has been picked in some random fashion from
an underlying “population”. We will consider probability spaces in this lecture where it would
require a huge stretch of the imagination to consider their elements as such samples. Note though
that there are occasions where the term “sample space” seems to be superior terminology.

You, my students, may choose whatever notation you prefer.

And more good news: We have introduced σ–algebras to properly deal with the issue that was
raised in Example 3.1 on p.41 It won’t be long and we will on only few occasions deal with σ–
algebras and usually refer to probability spaces (Ω, P ) and (S, P ) �

Remark 3.2. How do we interpret P
( ⊎
n∈N

An

)
=

∞∑
n=1

P (An) =
∑
n∈N

P (An) (formula (3.4) for σ–

additivity in the definition of a probability measure)? There are two issues.

(a) What is the meaning of
⊎
n∈N

An as opposed to
∞⊎
n=1

An?

(b) What is the meaning of
∑
n∈N

P (An), as opposed to
∞∑
n=1

P (An)? Does it really not matter in which

order we add the terms of an inifinite series?

The answer to (a) is easy. Unions are defined without any reference to an order “first A1, then A2,
then A3, . . . ”, since the definition of a ∈

⊎
n∈N

An is the existence of at least one index i0 such that

a ∈ Ai0 . No reference to an ordering is made. The only justification for the notation
∞⊎
n=1

An is that it

looks more familiar. By the way, what was said here about disjoint unions also applies to arbitrary
unions and to intersections.

To answer (b), let us assume until this question is settled, that (3.4) has been replaced by

P
( ∞⊎
n=1

An

)
=

∞∑
n=1

P (An) .

That formula has none of the issues we are trying to resolve.

Note that the series
∑
P (An) is absolutely convergent. 21 To see this, let A :=

∞⊎
n=1

An. Clearly,

P (An) ≥ 0 for all n. Moreover, by (σ–)additivity applied to A
⊎
A{ = Ω,

P
( ∞⊎
n=1

An

)
≤ P (A) + P

( ∞⊎
n=1

An

)
= P (Ω) = 1 < ∞ .

Since
∑
P (An) is absolutely convergent, it does indeed not matter how the terms An are arranged.

See Theorem 2.1 on p.37. �

In Section 1.2 (A First Look at Probability) we used throws of a die to illustrate the concepts of ran-
dom actions and their potential outomes and let this motivate us to give a preliminary definition of

21See Definition 2.25 (Absolute Convergence) on p.37.
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a probability measure as a function. Now that we have the final definition of a probability measure,
we should study some more examples.

Example 3.2. We model k rolls of a fair die (k ∈ N) as follows. Let

Ω := {1, 2, 3, 4, 5, 6}k = {(a1, a2, . . . , ak) : aj = 1, 2, .., 6 for each j = 1, 2, . . . , k} .

For example, let k = 5. then ω1 = (2, 6, 2, 1, 4) ∈ Ω. On the other hand, ω2 = (2, 6, 2, 9, 4) /∈ Ω, since
aj = 1, 2, . . . , 6 is not true for j = 4 (because a4 = 9).
Ω is a finite set, and you will learn later that its size is 6k. Thus, Ω = {ω1, ω2, . . . , ω6k}where, e.g.,

ω1 = (1, 1, . . . , 1, 1), ω2 = (1, 1, . . . , 1, 2), . . . , ω6k−1 = (6, 6, . . . , 6, 5), ω6k = (6, 6, . . . , 6, 6).

Since the die is fair, each one of those 6k elements of Ω should have the same probability p := P ({ω})
for all ω ∈ Ω. Since P (Ω) = 1 and

Ω =
⊎[
{ω} : ω ∈ Ω

]
=

∞⊎
j=1

{ωj} .

is a union of a sequence of disjoint set, we obtain from the σ–additivity of P (·) the following:

1 = P (Ω) =
6k∑
j=1

P{ωj} = 6kp ⇒ p =
1

6k
.

• So then, how does one define a probability measure P : F→ [0, 1]?
• And what is that σ–algebra F going to be?

To answer those questions, we define the function P : 2Ω → R as follows.

P (A) :=
|A|
|Ω|

=
|A|
6k

.(3.5)

Observe the following.
(1) A ⊆ Ω ⇒ 0 ≤ |A| ≤ |Ω| = 6k ⇒ 0 ≤ P (A) ≤ 1.
(2) The empty set has size |∅| = 0 and |Ω| = 6k Thus, P (∅) = 0 and P (Ω) = 1.
(3) Assume that A1, A2, . . . are disjoint subsets of Ω. Since Ω is finite, only finitely many

Aj are not empty (THINK!),
(4) We rearrange the sequence such that the nonempty members will be A1, A2, . . . , Am

for some suitable m.
(5) Then, A = A1 ]A2 ] · · · ]Am is a finite union

and disjointness of the Aj ⇒ |A| = |A1|+ |A2|+ · · ·+ |Am|

(6) Thus, σ–additivity: P (A) = |A|/6k =
m∑
j=1

(|Aj |/6k) =
m∑
j=1

P (Aj) =
∑
all j

P (Aj)

Last equation: The omitted sets Am+1, Am+2, . . . were empty,
thus P (Aj) = 0/6k = 0 for those j.

We obtain from (1) – (6) that P (A) = |A|/6k is a probability measure on 2Ω. �
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Example 3.3. One easily sees the generalization of the last example to arbitrary finite sets:
Let Ω be a finite set of size N := |Ω| <∞. Let the function P : 2Ω → R be given as

P (A) :=
|A|
|Ω|

=
|A|
N

.(3.6)

Then everything stated in (1) – (6) of (a) remains valid if we replace 6k with N , and this shows that
P is a probability measure on 2Ω. �

Definition 3.3 (Equiprobability).

Let (Ω, P ) be a finite probability space, i.e., |Ω| < ∞. Let n := |Ω|. We say that P has
equiprobable outcomes and also, that P satisfies equiprobability, if

P
(
{ω}

)
=

1

|Ω|
(since then P{ω} is constant for all ω ∈ Ω). �(3.7)

Remark 3.3. The finiteness of Ω was crucial in the last two examples for the following reason.
If Ω is infinite and countable, then Ω = {ω1, ω2, . . . } can be written as an infinite sequence of
distinct(!) members. It is not possible to define a “uniform” probability measure on Ω as we did in
parts (a) and (b), i.e., a number p such that P (ωj) = p for all j ∈ N. How so?

(1) p would have to be strictly positive: Otherwise,
P (Ω) =

∑
j P (ωj) = p+ p+ · · · ≤ 0, but we require P (Ω) = 1.

(2) Thus, p > 0. Thus, P (Ω) =
∑

j P (ωj) = p+ p+ · · · =∞, but we require P (Ω) = 1. �

Remark 3.4. We will see that the most important probability measures on the uncountable set R 22

satisfy P (x) = 0 for all x ∈ R. That is no contradiction to σ–additivity and P (R) = 1, since one
cannot write the real numbers as a countable union R = {x1}

⊎
{x1}

⊎
{x2}

⊎
· · · . Obvously, it is no

more possible in those cases to determine a probability measure on R by only listing the probabilities

P (x) of the atomar events x ∈ R Rather, P often is characterized by integrals P ([a, b]) =
b∫
a
ϕ(t)dt.

(And if this is the case, we will indeed obtain P (x) =
x∫
x
ϕ(t)dt = 0 for all x.) �

Recall for the next theorem that we denote by An ↑ a nondecreasing sequence of events: i < J ⇒
Ai ⊆ Aj and by Bn ↓ a nondecreasing sequence of events: i < J ⇒ Bi ⊇ Bj . (See Definition 2.20
on p.30.)

Theorem 3.1 (Continuity property of probability measures). ?

22the so-called distributions of continuous random variables
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Let (Ω,F, P ) be a probability space. If An, Bn ∈ F, then the following is true:

An ↑ ⇒ P (An) ↑ P

(⋃
n∈N

An

)
,(3.8)

Bn ↓ ⇒ P (Bn) ↓ P

(⋂
n∈N

Bn

)
.(3.9)

PROOF: We prove (3.8) as follows: Let A :=
∞⋃
j=1

Aj and

C1 := A1 , Cn+1 := An+1 \An (n ∈ N).

Note that An ↑ ⇒ An =
n⋃
j=1

Aj and thus, Cn+1 := An+1 \

(
n⋃
j=1

Aj

)
.

According to Proposition 3.1 (Rewrite unions as disjoint unions) on p.42, the setsCj form a partition
of A and we have

An =

n⊎
j=1

Cj , A =

∞⊎
j=1

Cj ,

It follows from the σ–additivity of P that

P (A) = P

 ∞⊎
j=1

Cj

 =

∞∑
j=1

P (Cj) = lim
n→∞

n∑
j=1

P (Cj) = lim
n→∞

P

 n⊎
j=1

Cj

 = lim
n→∞

P (An) .

This proves (3.8). We use this result to prove (3.9) as follows.

Let B :=
∞⋂
j=1

Bj . For n ∈ N, let An := B{n. Further, let A :=
∞⋃
j=1

Aj . Then An ↑ and it follows from

De Morgan that

A{ =

 ∞⋃
j=1

Aj

{ =
∞⋂
j=1

A{j =
∞⋂
j=1

Bj = B .

We apply (3.8) and obtain

1 − P (Bn) = P (An) ↑ P

(⋃
n∈N

An

)
= 1 − P

(⋃
n∈N

An

){  = 1 − P (B) .

Thus, P (Bn) ↓ P (B) and this proves (3.9). �
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Definition 3.4 (Discrete probability space).

Assume that the probability space (Ω,F, P ) satisfies the following:
(a) P ({ω}) is defined for all ω ∈ Ω. In other words, we ask that {ω} ∈ F for all ω ∈ Ω.
(b) There exists a countable subset A∗ of Ω such that

∑
ω∈A∗

P{ω} = 1

Then we call (Ω,F, P ) a discrete probability space. �

We will later on talk about discrete and continuous random variables, but note that there is no such
thing as a “continuous probability space”.

Remark 3.5. For the interpretation of the summation
∑
ω∈A∗

P{ω}we note the following.

(a) Either A∗ is finite and can be written A∗ = {ω1, ω2, . . . , ωn} for some suitable n.

Then
∑
ω∈A∗

P{ω} =
n∑
j=1

P{ωj}.

(b) Or, A∗ is finite and can be written A∗ = {ωj : j ∈ N}. We reason as in Remark
3.2 on p.45 with {ωj} in place of Aj and see that the series

∑
P{ωj} is absolutely

convergent. Thus, the value of
n∑
j=1

P{ωj} does not depend on how the elements of

A∗ were sequenced and we can write
∑
ω∈A∗

P{ω} for that common value. �

Theorem 3.2.

Let (Ω,F, P ) be a discrete probability space and A∗ ∈ Ω a countable set such that
∑
ω∈A∗

P{ω} = 1.

Then
(a) A∗ ∈ F.
(b) P (A∗) = 1 and thus, P

(
(A∗){

)
= 0.

(c) P (A) = P (A ∩A∗) for all A ∈ F.
(d) P (A) =

∑
ω∈A∩A∗

P{ω} for all A ∈ F.

(e) ? The formula P̃ (B) := P (B ∩A∗) “extends” P to a probability measure P̃ on the
entire power set 2Ω.

PROOF: ?

PROOF of (a): This is true, because {ω} ∈ F for all ω and A∗ =
⊎

ω∈A∗
{ω} is a countable union of

elements of F.

PROOF of (b): By definition,
∑
ω∈A∗

P{ω} = 1. Since A∗ =
⊎

ω∈A∗
{ω}, we obtain P (A∗) = 1.

Further, Ω = A
⊎

(A∗){⇒ 1 = P (A∗) + P
(

(A∗){
)

= 1 + P
(

(A∗){
)

. Thus, P
(

(A∗){
)

= 0.

PROOF of (c): From 0 ≤ P
(
A ∩ (A∗){

)
≤ P

(
(A∗){

)
= 0, we obtain P

(
A ∩ (A∗){

)
= 0.

From A = [A ∩A∗]
⊎[

A ∩ (A∗){
]
, we obtain P (A) = P (A ∩A∗) + P

(
A ∩ (A∗){

)
= P (A ∩A∗).
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PROOF of (d): A ∩ A∗ is a subset of A∗, hence, countable. Thus, P (A ∩ A∗) =
∑

ω∈A∩A∗
P{ω}. We

obtain from (c) that P (A) =
∑

ω∈A∩A∗
P{ω}.

PROOF of (e): Tedious but easy, if one uses (c) and distributivity A∗ ∩
⊎
j
Aj =

⊎
j

(A∗ ∩Aj). �

Corollary 3.1.

(a) If (Ω,F, P ) be a discrete probability space, then P is characterized by the probabilities P{ω}
of the outcomes ω.

(b) Let Ω be some arbitrary, nonempty set. Assume that
(
pj
)
j

is a finite or infinite sequence of
real numbers that satisfies
• pj ≥ 0 for all j and

∑
j pj = 1

Further, assume that
(
ωj
)
j

is a corresponding sequence of distinct elements of Ω, then
(
pj
)
j

defines a discrete probability space (Ω, 2Ω, P ) as follows.
• P (∅) := 0, P (A) :=

∑
j : ωj∈A

pj , for A 6= ∅. �

PROOF: ? This follows from Theorem 3.2. The details are left to the reader. �

Remark 3.6. The probability spaces (Ω,F, P ) we will be faced with are in one of the following
categories:

(a) (Ω,F, P ) is a discrete probability space. According to Theorem 3.2(e) on p.49, we
may choose F = 2Ω).

(b) Ω = R and P (A) is known (at a minimum) for intervals such as [a, b] or ]a, b] or [a, b[
or ]a, b[.

(c) Ω = Rn and P (A) is known (at a minimum) for n–dimensional rectangles such as
[a1, b1]× [a2, b2]× · · · × [an, bn] (cartesian products of onedimensional intervals!)

It is important that we can assign probabilities to Intervals in (c) and n–dimensional rectangles in
(d), for the following reason.

(c’) the most important probabilities P defined for sets in R come with a so called prob-
ability density function f : R→ [0,∞[ which assigns to an interval ]a, b] the proba-
bility

P
(
]a, b]

)
=

∫ b

a
f(u) du .

This makes it plausible that the σ–algebra B for such P should contain all intervals
]a, b].
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(d’) Likewise, the most important probabilities P defined for sets in Rn come with a
probability density function f : Rn → [0,∞[ which assigns to an n–dimensional
rectangle ]a1, b1]×]a2, b2]× · · ·×]an, bn] the probability

P
(

]a1, b1]×]a2, b2]× · · ·×]an, bn]
)

=

∫ bn

an

∫ bn−1

an−1

· · ·
∫ b1

a1

f(~u) d~u

=

∫ bn

an

∫ bn−1

an−1

· · ·
∫ b1

a1

f(u1, . . . , un) du1 du2 · · · dun−1 dun .

Thus, the σ–algebra Bn for such P should contain all rectangles ]a1, b1]×]a2, b2] ×
· · ·×]an, bn]

You may have Nnticed that we could have worked with either of ]aj , bj [, [aj , bj [, [aj , bj ] instead of
]aj , bj ], since

∫ a
a ...da is always zero. Nevertheless, it is more convenient to work with intervals

that are open on the left and closed on the right. We will see that when we deal with the so-called
cumulative distribution functions on R and Rn. �

Theorem 3.3. ?

Let Ω be some arbitrary set and
(
Fi
)
i∈I a family of σ–algebras on Ω, i.e., Fi ⊆ 2Ω for each i ∈ I . No

assumption is made about the index set other than I 6= ∅. Thus, this family may consist of finitely many
σ–algebras or of entire sequence or even uncountably many σ–algebras.
• Let F :=

⋂
i∈I Fi, i.e., F = {A ⊆ Ω : A ∈ Fi for each index i}. Then F is a σ–algebra.

This can also be stated as follows.

Any intersection of σ–algebras results in a σ–algebra.

PROOF: Left to the interested reader. �

Theorem 3.4. ?

Let Ω be some arbitrary set and AAA ⊆ 2Ω. In other words, each element of AAA is a subset of Ω.

• Then there exists a minimal (i.e., smallest) σ–algebra that contains AAA .
• Further, this σ–algebra is uniquely determined by AAA . This allows us to name it σ{AAA }.

PROOF: We obtain σ{AAA } as the intersection of all σ–algebras that contain AAA . According to Theorem
3.3, this intersection is a σ–algebra. �

Since the minimal σ–algebra that contains AAA is uniquely determined by AAA , we can make the fol-
lowing definition.

Definition 3.5. ?

Let Ω be some arbitrary set and AAA ⊆ 2Ω.
We call σ{AAA } the σ–algebra generated by AAA . If AAA is of the form AAA = {...}, we also write
σ{...} for σ{{...}}. �

51 Version: 2024-05-06



Math 447 – MF Lecture Notes Student edition with proofs

The next definition is marked optional, but note that Borel sets will be mentioned frequently during
lecture.

Definition 3.6. ? We apply the above to the sets of onedimensional and n–dimensional inter-
vals.
• the smallest σ–algebra of subsets of R which contains all intervals of real numbers.

It is denoted B.
• the smallest σ–algebra of subsets of Rn which contains all n–dimensional rectangles.

It is denoted Bn.

We call B and Bn the Borel σ–algebras of R and of Rn Borel σ–algebra and we call their
members Borel sets.

It is sufficient for this course that you just remember that
• The Borel sets are the sufficiently well behaved sets of R and Rn

• The intervals and n–dimensional rectangles are amon those sets.
• Only completely weird and useless sets are not Borel. �

Remark 3.7. (A) Consider the following sets of intervals of real numbers.
I1 := {]a, b] : a < b}, I2 := {[a, b] : a < b},
I3 := {]a, b[ : a < b}, I4 := {[a, b[ : a < b}.

One can show that each one of those sets of intervals is big enough to generate the Borel sets of R:
B = σ(I1) = σ(I2) = σ(I3) = σ(I4).
(B) The above generalizes to n–dimensional space: Let

I5 := {]a1, b1]×]a2, b2]× · · ·×]an, bn] : a1 < b1, a2 < b2, . . . , an < bn} ,
I6 := {[a1, b1]× [a2, b2]× · · · × [an, bn] : a1 < b1, a2 < b2, . . . , an < bn} ,
I7 := {]a1, b1[×]a2, b2[× · · ·×]an, bn[: a1 < b1, a2 < b2, . . . , an < bn} ,
I8 := {[a1, b1[×[a2, b2[× · · · × [an, bn[: a1 < b1, a2 < b2, . . . , an < bn} ,

one can show that Bn = σ(I5) = σ(I6) = σ(I7) = σ(I8). �

Fact 3.1. ? For the following, note that the sets I1, . . . ,I8 were defined in Example 3.7 on p.52.

(a) Let I denote anyone of the collections of intervals I1, . . . ,I4. Let EEE := I
⊎

R. Then any
function P0 : EEE → [0, 1] which satisfies P0(∅ = 0), P0(R) = 1 and σ–additivity on EEE :
En ∈ EEE disjoint such that E :=

⊎
n∈N

∈ EEE ⇒ P (E) =
∑
n∈N

P (En), can be uniquely

extended to a probability measure on B, the Borel sets of R.

(b) Let I denote anyone of the collections of intervals I5, . . . ,I8. Let EEE := I
⊎

Rn. Then any
function P0 : EEE → [0, 1] which satisfies P0(∅ = 0), P0(Rn) = 1 and σ–additivity on EEE :
En ∈ EEE disjoint such that E :=

⊎
n∈N

∈ EEE ⇒ P (E) =
∑
n∈N

P (En), can be uniquely

extended to a probability measure on Bn, the Borel sets of Rn. �
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Remark 3.8. Consider this a continuation of Remark 3.6. We can summarize it as follows.
There are essentially only two kinds of probability spaces (Ω,F, P ) we are interested in.
• There is a countable subset A∗ of Ω such that

∑
ω∈A∗

P ({ω}) = 1 (discrete probability

spaces). Then F = 2Ω , since the above allows us to define P (A) for arbitrary A ⊆ Ω
as

P (A) =
∑

ω∈A∗∩A
P ({ω}) .

• Ω = R or Ω = Rn. Then F = the Borel sets.
Now that we understand the structure of the domain F of the probability measures P we will be
dealing with, there is no more need to keep carrying this baggage with us.
Henceforth, we will, with very few exceptions, do the following.

We will ignore that probability measures cannot always be given on the entire power set 2Ω

(true only we deal with (R,B, P ) or (Rn,Bn, P )) and that this necessitated us to introduce
a σ–algebra F as the domain of that probability measure. Accordingly, we will ignore the
σ–algebra and talk about

probability spaces (sample spaces) (Ω, P ), rather than (Ω,F, P ). �

Notational conveniences for probabilities:

If we have a set that is written as {. . . }, i.e., with curly braces as delimiters, then we may
write its probability as P{. . . } instead of P

(
{. . . }

)
. Specifically for singletons {ω}, it is OK

to write P{ω}.

The next theorem lists two important rules to determine probabilities.

Theorem 3.5 (WMS Ch.02.8, Theorem 2.6). If A and B are two events in a probability space (Ω, P ), then

Additive Law of Probability: P (A ∪B) = P (A) + P (B) − P (A ∩B) .(3.10)

Rule of the Complement: P
[
A{
]

= 1 − P [A] .(3.11)

PROOF of (3.10): We apply the σ–additivity of P as follows:
(1) A = (A \B)

⊎
(A ∩B) and B = (B \A)

⊎
(A ∩B)

⇒ P (A) + P (B) = P (A \B) + P (A ∩B) + P (B \A) + P (A ∩B)
(2) A ∪B = (A \B)

⊎
(A ∩B)

⊎
P (B \A)

⇒ P (A ∪B) = P (A \B) + P (A ∩B) + P (B \A)

Thus, from (1) and (2), P (A) + P (B) = P (A ∪B) + P (A ∩B).
It follows that P (A ∪B) = P (A) + P (B)− P (A ∩B).
PROOF of (3.11): Immediate from the σ–additivity of P and Ω = A

⊎
A{. �
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Remark 3.9. If the events A and B are mutually exclusive, i.e., A ∩ B = ∅, then P [A ∩ B] = 0 and
the additive law of probability simply is σ–additivity

P (A ∪B) = P (A) + P (B) . �(3.12)

Remark 3.10. The additive law of probability is very easy to apply, since all you need is P (A), P (B)
and P (A ∩B).

Nevertheless it might be fastest to draw a Venn diagram. As-
sume you know that P (A) = 0.5, P (B) = 0.3, P (A ∩B) = 0.1.
Clearly, P (A \B) = P (A)− P (A ∩B) = 0.4
and P (B \A) = P (B)− P (A ∩B) = 0.2.
It is now immediate that P (A ∪ B) = 0.7 and we get for free
that P (A ∪B{) = 0.3.

A B
0.4 0.20.1

0.3

The additive law of probability has generalizations for the probability of the union of three or more
events.

Theorem 3.6 (Exclusion–Inclusion formula for 3 events). ?

If A1, A2, A3 are events in a probability space (Ω, P ), then

P (A1∪A2 ∪A3) =
[
P (A1) + P (A2) + P (A3)

]
−
[
P (A1 ∩A2) + P (A1 ∩A3) + P (A2 ∩A3)

]
+ P (A1 ∩A2 ∩An) .

(3.13)

PROOF: We apply the additive law of probability to the sets A1 and A2 ∪A3 and obtain

P [A1 ∪A2 ∪A3] = P [A1] + P [A2 ∪A3] − P
[
A1 ∩ (A2 ∩A3)

]
.(A)

Next, we apply the additive law of probability to A2 and A3:

P [A2 ∪A3] = P [A2] + P [A3] − P [A2 ∩A3] .

We substitute that in (A) which then reads

P [A1 ∪A2 ∪A3] = P [A1] + P [A2] + P [A3] − P [A2 ∩A3] − P
[
A1 ∩ (A2 ∪A3)

]
.(B)

Since A1 ∩ (A2 ∪ A3) = (A1 ∩ A2) ∪ (A1 ∩ A3), (see (2.23) on p.34: distributivity of unions and
intersections), it follows from (B) that

P [A1 ∪A2 ∪A3] = P [A1] + P [A2] + P [A3] − P [A2 ∩A3] − P
[
(A1 ∩ (A2) ∪ (A1 ∩A3)

]
.(C)

Finally, we apply the additive law of probability to the sets A1 ∩A2 and A1 ∩A3:

P [A1 ∪A2 ∪A3] = P [A1] + P [A2] + P [A3] − P [A2 ∩A3]

−
(
P [A1 ∩A2] + P [A1 ∩A3] − P [A1 ∩A2 ∩A1 ∩A3]

)
= P [A1] + P [A2] + P [A3]

− P [A2 ∩A3] − P [A1 ∩A2] − P [A1 ∩A3] + P [A1 ∩A2 ∩A3] . �

Here is the general formula for any number of events.
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Theorem 3.7 (Exclusion–Inclusion formula). ?

If A1, A2, · · · , An are events in a probability space (Ω, P ), then

P (A1∪A2 · · · ∪An) =
∑
i

P (Ai) −
∑
i<j

P (Ai ∩Aj)

+
∑
i<j<k

P (Ai ∩Aj ∩Ak) − · · · + (−1)n+1 · P (A1 ∩A2 · · · ∩An) .
(3.14)

PROOF: Will not be given here. �

Remark 3.11. This remark is preliminary.
(A) Randomness specifically:

(1) Random number generator of a statistics package: Generate a random a number 0 ≤ x < 1
with a precision of k decimals (can have big k like k = 25. For such a high precision we can
model the potential outcomes Ω as the continuum [0, 1[.

(2) Roll a die: |Ω| = 6
(3) Roll a die 3 times: |Ω| = 63

(4) 20 coin tosses: |Ω| = 220 ≈ 106 since 210 = 1, 024 ≈ 103.

(5) 109 coin tosses: |Ω| = 2109
= 210·108

=
(
210
)108

≈
(
103
)108

= 103·108

(6) A selection of n items from a population is a sample of size n.

(B) A supreme being decides to pick “this” ω. This pick seems random to us since we do not know
what choice this being will make. �

3.2 Conditional Probability and Independent Events

Definition 3.7 (Conditional probability).

Given are a probability space (Ω,FFF , P ) and two events A,B ∈FFF . We call

(3.15) P (A | B) :=


P (A ∩B)

P (B)
, if P (B) > 0 ,

undefined , if P (B) = 0 ,

(read: “probability of A given B” or “probability of A conditioned on B”) the conditional
probability of the event A, given that the event B has occurred. �

Theorem 3.8.
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Given are a probability space (Ω,FFF , P ) and an event B ∈FFF such that P (B) > 0. Then

P (· | B) : F −→ [0, 1] ; A 7→ P (A | B)(3.16)

is another probability measure on (Ω,FFF ).

In other words, P (· | B) satisfies (3.2) – (3.4) of Definition 3.2 (Probability measures and probability spaces)
on p.44.

PROOF: First, it follows from ∅ ⊆ A ∩B ⊆ B that P (A ∩B)/P (B) ≥ 0 and P (A ∩B)/P (B) ≤ 1.
This shows that P (· | B) indeed takes values between 0 and 1.
PROOF of (3.2): Since P (∅ ∩B) = 0, P (∅ | B) = 0/P (B) = 0.
PROOF of (3.3): Since Ω ∩B = B, P (Ω | B) = P (Ω ∩B)/P (B) = P (B)/P (B) = 1.
PROOF of (3.4): Assume that (An)n∈N ∈ F is a sequence of disjoint events. Then, for i 6= j,

(Ai ∩B) ∩ (Aj ∩B) ⊆ Ai ∩Aj = ∅ .

Thus, the sequence (An ∩B)n∈N also is mutually disjoint. Further, by (2.23) on p.34,⊎
n∈N

(B ∩An) = B ∩
⊎
n∈N

An .

It follows from this and the σ–additivity of P that

P

(⊎
n∈N

An | B

)
=
P
(
B ∩

⊎
n∈NAn

)
P (B)

=
P
(⊎

n∈N (B ∩An)
)

P (B)

=

∑
n∈N P (B ∩An)

P (B)
=
∑
n∈N

P (B ∩An)

P (B)
=
∑
n∈N

P (An | B) .

We have shown that P (· | B) is σ–additive and this proves (3.4). �

It is immediate from the definition of P (A | B) that

P (A ∩B) = P (A | B) · P (B) .

This formula is referred to by WMS as the multiplicative law of probability. It can be extended to
three events as follows.

Proposition 3.3. If (Ω,F, P ) is a probability space and A,B,C ∈ F, then

(3.17) P (A ∩B ∩ C) = P (A | B ∩ C) · P (B | C) · P (C) .

PROOF:

P (A ∩B ∩ C) = P (A | B ∩ C) · P (B ∩ C) . = P (A | B ∩ C) · P (B | C) · P (C) . �

The multiplicative law of probability generalizes to arbitrarily many sets as follows.

56 Version: 2024-05-06



Math 447 – MF Lecture Notes Student edition with proofs

Proposition 3.4 (Multiplicative Law of Probability for n events).

If (Ω,F, P ) is a probability space, n ∈ N and A1, . . . , An ∈ F, then

P (A1 ∩A2 ∩ · · · ∩An) = P (A1 | A2 ∩ · · · ∩An) · P (A2 | A3 · · · ∩An) · · ·
· · ·P (An−2 | An−1 ∩An)P (An−1 | An)P (An).

(3.18)

PROOF:
It is easier to work with the reverse sequence An ∩ An−1 ∩ · · · ∩ A1 instead of A1 ∩ A2 ∩ · · · ∩ An.
Repeated use of P (U ∩ V ) = P (U | V )P (V ) with U = Aj and V = Aj−1 ∩ · · · ∩A1 yields

P (An ∩An−1 ∩ · · · ∩A1)

= P (An | An−1 ∩ · · · ∩A1)P (An−1 ∩ · · · ∩A1)

= P (An | An−1 ∩ · · · ∩A1)P (An−1 | An−2 · · · ∩A1)P (An−2 · · · ∩A1)

= .......................

= P (An | An−1 ∩ · · · ∩A1)P (An−1 | An−2 · · · ∩A1) · · ·P (A3 | A2 ∩A1)P (A2 | A1)P (A1). �

Definition 3.8 (Two independent events).

Given are a probability space (Ω,FFF , P ) and two events A,B ∈FFF . We say that A and B are
independent if

(3.19) P (A ∩B) = P (A) · P (B) . �

Independence of three events is not defined as you may have guessed from that last definition.

Definition 3.9 (Three independent events). Given are a probability space (Ω,FFF , P ) and three events
A,B,C ∈FFF . We say that A,B and C are independent if

P (A ∩B ∩ C) = P (A) · P (B) · P (C) ,

P (A ∩B) = P (A) · P (B) ,

P (A ∩ C) = P (A) · P (C) ,

P (B ∩ C) = P (B) · P (C) . �

(3.20)

We can state (3.20) as follows. It must be true for any subsequence of events that the probability of
the intersection equals the product of the probabilities of the individual events.

Remark 3.12. It is possible to construct a probability measure P and events A,B,C such that
P (A ∩B ∩ C) = P (A) · P (B) · P (C) and P (A ∩B) 6= P (A) · P (B) �

Definition 3.9 shows us how to generalize independence to any number of events.
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Definition 3.10 (Finitely many independent events).

Given are a probability space (Ω,FFF , P ), n ∈ N and events A1, A2, . . . , An ∈FFF . We say that
A1, A2, . . . , An are independent if, for ANY subselection of indices

1 ≤ j1 < j2 < · · · < jk ≤ n ,

it is true that

(3.21) P (Aj1 ∩Aj1 ∩Ajk) = P (Aj1) · P (Aj2) · P (Ajk) . �

Finally, we define independence for infinitely many events.

Definition 3.11 (Independent events – the general case).

Given are a probability space (Ω,FFF , P ) and a sequence of events A1, A2, · · · ∈ FFF We say
that this sequence is independent if, for ANY FINITE subselection of distinct indices
j1, j2, . . . , jk ∈ N, it is true that

(3.22) P (Aj1 ∩Aj2 ∩Ajk) = P (Aj1) · P (Aj2) · P (Ajk) . �

Remark 3.13. Note that the number k in Definition 3.10 and Definition 3.11 is not fixed. �

We did not really define independence for any collection of infinitely many events, only for a se-
quence, i.e., a countable collection of events. The truly general case deals with families (see Defini-
tion 2.22 on p.32) of events

Definition 3.12 (Independence of uncountably many events). ?

Given are a probability space (Ω,FFF , P ) and a family
(
Ai
)
i∈I of events Ai ∈ FFF . Here I

denotes an arbitrary set of indices. We say that this family is independent if, for ANY
FINITE subselection of distinct indices i1, i2, . . . , ik ∈ I , it is true that

(3.23) P (Ai1 ∩Ai1 ∩Aik) = P (Ai1) · P (Ai2) · P (Aik) . �

The next theorem is marked optional, but it is just as easy to remember as the corollary that follows
it.

Theorem 3.9. ?

Given are a probability space (Ω,FFF , P ) and a family
(
Ai
)
i∈I of independent events Ai ∈FFF . Here

I denotes an arbitrary set of indices. Then we have the following:

If some or all of the Ai are replaced by their complement A{i , then the resulting family of events also
is independent.
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In other words, for each i ∈ I , let Bi be either Ai or A{i . Then independence of
(
Ai
)
i∈I

implies that of
(
Bi
)
i∈I .

PROOF: Utilizes advanced probabilistic methods that are outside the scope of this course �

Note that the following corollary is NOT marked as optional!

Corollary 3.2.

Given are a (Ω,F, P ) is a probability space, n ∈ N and independent events A1, . . . , An ∈ F.
If some or all of the Ai are replaced by their complement A{i , then the resulting list of events also is
independent.

In other words, for each i = 1, 2, . . . , n, let Bi be either Ai or A{i . Then independence of A1, . . . , An

implies that of B1, . . . , Bn.

PROOF: ?

(A): The case n = 2 shows the essence of the proof: For convenience, let B := A{2. First, we show
that A1 and B are independent.

A1 = (A1 ∩A2)
⊎

(A1 ∩B) ⇒ P (A1) = P (A1 ∩A2) + P (A1 ∩B)

= P (A1) · P (A2) + P (A1 ∩B)

⇒ P (A1 ∩B) = P (A1) ·
(
1− P (A2)

)
= P (A1) · P (B) .

Thus, A1 and A{2 are independent. Since intersection is commutative (E ∩ E′ = E′ ∩ E), it follows
that A{1 and A2 also are independent.

Knowing that A{1 and A2 are independent, we can apply the proof above to those two independent
events and obtain that A{1 and A{2 are independent. This finishes the proof for n = 2

(B): For general n, let A1, . . . , An be independent. For convenience, let B := A1 ∩ · · · ∩An−1.
Since P (B ∩ An) = P (A1 ∩ · · · ∩ An) = P (A1) · · ·P (An) = P (B) · P (An), B and An are
independent. We have shown in (A) that B and A{n are independent, too.
We argue as in (A) and conclude from the commutativity of “∩” that replacing any Aj with its com-
plement, i.e., fixing an index j1 and defining Bj := Aj for j 6= j1 and Bj1 := A{j1 , that B1, . . . , Bn are
independent In other words, replacing just one event with it complement maintains independence.

We apply this to the events Cj := Bj for j 6= j2 and Cj2 := B{j2 , where we assume that j2 6= j1. The
result is that C1, . . . , Cn also are independent
At this point we know that replacing k = 1 or k = 2 events with their complements maintains
independence. We apply this to the events Dj := Cj for j 6= j3 and Dj3 := B{j3 , where we assume
that j2 /∈ {j1, j2. The result is that D1, . . . , Dn also are independent.
At this point we know that replacing k ≤ 3 events with their complements maintains independence.
We repeat the above with k = 4, then with k = 5, ....., then with k = n. This completes the proof. �

Next, we examine connections between conditional probabilities and independence.
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Theorem 3.10.

Given are a probability space (Ω,FFF , P ) and two events A,B ∈FFF such that P (B) > 0. Then

A and B are independent ⇔ P (A | B) = P (A) .(3.24)

PROOF of “⇒”:
Since A and B are independent and P (B) > 0,

P (A | B) =
P (A ∩B)

P (B)
=

P (A) · P (B)

P (B)
= P (A) .

PROOF of “⇐”:
Since P (A | B) = P (A) and P (B) > 0,

P (A) · P (B) = P (A | B) · P (B) =
P (A ∩B)

P (B)
· P (B) = P (A ∩B) . �

Corollary 3.3.

If (Ω,FFF , P ) is a probability space and A,B ∈FFF such that P (A) > 0 and P (B) > 0. Then

A and B are independent ⇔ P (A | B) = P (A) ⇔ P (B | A) = P (B) .(3.25)

PROOF: Obious �

3.3 Preimages and Indicator Functions

Introduction 3.1. The major part of this course will be about functions ω 7→ f(ω) which assign the
outcomes (= elements) ω of a probability space to items f(ω) which are usually numbers or vectors
of numbers. In other words, the codomain will usually be (a subset of) R or Rn. We illustrate this
with the following example.
Let the probability space (Ω, P ) 23 represent the outcomes of two rolls of a fair die:
• Ω = {1, 2, . . . , 6}2. Interpret ω = (ω1, ω2) as die1 yields ω1, die2 yields ω2. 24

� Thus, ω = (5, 2) represents the outcome of die1 giving a 5 and die2 giving a 2.
• Probability measure P is determined by P (ω1, ω2) = 1/|Ω| = 1/36. See Example 3.1 on p.50.

Consider the function which associates with each outcome (ω1, ω2) the sum of the throws, i.e.,
• Y : Ω → {2, 3, 4, . . . , 11, 12}; (ω1, ω2) 7→ Y

(
(ω1, ω2)

)
:= ω1 + ω2.

Get used to the notation! WMS loves to use the letters (X,Y, Z) for function names.
We will create a probability measure P ′ on Ω′ := {2, 3, 4, . . . , 11, 12}, the codomain of the function
Y .

23As promised, no more σ–algebra unless absolutely necessary!
24We often prefer to write ω rather than ~ω if the the symbol Ω is involved, even if the elements are vectors.
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• Since Ω′ is countable, it suffices to specify P ′({2}), P ′({3}), . . . , P ′({12}). (Again, Example
3.1.)

• Define P ′({10}) := P
(
{(ω1, ω2) ∈ Ω : Y (ω1, ω2) = 10}

)
= P

(
{(4, 6), (5, 5), (6, 4)}

)
=

1/12. This is the probability that the sum of the throws is 10!
• In general, for ω′ ∈ Ω′, define P ′({(ω′)}) := P

(
{(ω1, ω2) ∈ Ω : Y (ω1, ω2) = ω′}

)
. This is the

probability that the sum of the throws is ω′!
• One can show quite easily 25 that, if B ⊆ Ω′, then

(3.26) B ⊆ Ω′ ⇒ P ′(B) = P
(
{ω ∈ Ω : Y (ω) ∈ B}

)
. (We wrote ω for (ω1, ω2).)

This is the probability that the sum of the throws is in B!

• We have created a probability measure P ′(B) on the codomain of Y by assigning P , the
original probability on the domain Ω, to the set

{ω ∈ Ω : Y (ω) ∈ B }

of all those arguments ω ∈ Ω which are mapped by Y into B.
That makes those sets so important that they warrant their own definition. �

Since the following definition is of interest not only for probabilistic topics, we will switch from the
function notation Y : Ω→ Ω′ to the more familiar f : X → Y .

Definition 3.13.

Let X,Y be two nonempty sets. Let f : X → Y and B ⊆ Y . Then

f−1(B) := {x ∈ X : f(x) ∈ B}(3.27)

is a subset of X which we call the preimage of B under f . �

Remark 3.14. ?

• If we vary B ⊆ Y , i.e., B ∈ 2Y , we can think of the preimage as a function 2Y → 2X (since
f−1(B) ∈ 2X ).

• The symbol f−1 is the same as that for the ordinary inverse function f−1(y) = x, if this
inverse function exists!

• f−1(B) exists for any choice of X,Y, f : X → Y , and B ⊆ Y , even if the inverse function
does not exist!

As an example, let
f : R → [−1,∞[ ; f(x) = x2 .

If there was an inverse function, then it would have to assign to EACH y ∈ [−1,∞[ a UNIQUE
x ∈ R (that x would be f−1(y)) such that f(x) = y. But such is not the case:

25with the help of Proposition 3.6 (f−1 is compatible with all basic set ops) further down, on p.63
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• If y = −0.5, then there is no x ∈ R such that x2 = y
• If y = 10, then there are too many x ∈ R such that x2 = y.

Both x =
√

10 and x = −
√

10 satisfy x2 = 10.
• Note that, for the preimages we obtain f−1

(
{−0.5}

)
= ∅

and f−1
(
{10}

)
= {−

√
10,
√

10}. Coincidence?
For a more extreme example, consider

g : [0,∞[→ R ; g(x) = sin(x) .

If B1 = [5, 10], B2 = {0}, what are g−1(B1) and g−1(B2)? So, does each y ∈ R have a unique
x ∈ [0,∞[ such that g(x) = y?
For an even more extreme example, consider

h : R → R ; h(x) = 2π .

If B1 = [5, 10], B2 = {2π}, B3 = [−500, 5], what are h−1(Bj)(j = 1, 2, 3) ? Again, does each y ∈ R
have a unique x ∈ [0,∞[ such that h(x) = y? �

Notational conveniences I:

If we have a set that is written as {. . . } then we may write f−1{. . . } instead of f−1({. . . }).
Specifically for singletons {y} such that y ∈ Y , it is OK to write f−1{y}.
You also are allowed to write f−1(y) instead of f−1{y}, even though this author thinks that
it is not a good idea to confound elements y and subsets {y} of Y .

VERY IMPORTANT: Work the following examples closed book and then check that your solutions
are correct!

Example 3.4 (Preimages). Let f : R→ R; f(x) = x2. Determine
a. f−1(]− 4,−2[), b. f−1([1, 2]), c. f−1([5, 6]), d. {−4 < f < −2 or 1 ≤ f ≤ 2 or 5 ≤ f < 6]}.

Solution:
a. f−1(]− 4,−2[) = { x ∈ R : x2 ∈]− 4,−2[ } = { −4 < f < −2 } = ∅.
b. f−1([1, 2]) = { x ∈ R : x2 ∈ [1, 2] } = { 1 ≤ f ≤ 2 } = [−

√
2,−1] ∪ [1,

√
2].

c. f−1([5, 6]) = { x ∈ R : x2 ∈ [5, 6] } = { 5 ≤ f ≤ 6 } = [−
√

6,−
√

5] ∪ [
√

5,
√

6].
d. {−4 < f < −2 or 1 ≤ f ≤ 2 or 5 ≤ f < 6]} = f−1(]− 4,−2[ ∪ [1, 2] ∪ [5, 6])

= { x ∈ R : x2 ∈ ]− 4,−2[ or x2 ∈ [1, 2] or x2 ∈ [5, 6] }
= [−

√
2,−1] ∪ [1,

√
2] ∪ [−

√
6,−
√

5] ∪ [
√

5,
√

6]. �

Example 3.5 (Preimages). Let f : R→ R; f(x) = x2. Determine
a. f−1(]− 4, 2[), b. f−1([1, 3]), c. {−4 < f < −2 and 1 ≤ f ≤ 3}.

Solution:
a. f−1(]− 4, 2[) = { x ∈ R : x2 ∈ ]− 4, 2[ } = { x ∈ R : −4 < x2 < 2 } = ]− 2, 2[.
b. f−1([1, 3]) = { x ∈ R : x2 ∈ [1, 3] } = { x ∈ R : 1 ≤ x2 ≤ 3 } = [−

√
3, 1] ∪ [1,

√
3].

c. {−4 < f < −2 and 1 ≤ f ≤ 3} = f−1(]− 4, 2[ ∩ [1, 3])
= { x ∈ R : x2 ∈ ]− 4, 2[ and x2 ∈ [1, 3] }
= { x ∈ R : 1 ≤ x2 < 2 } = ]−

√
2,−1] ∪ [1,

√
2[ . �
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Proposition 3.5. Some simple properties:

f−1(∅) = ∅(3.28)

B1 ⊆ B2 ⊆ Y ⇒ f−1(B1) ⊆ f−1(B2) (monotonicity of f−1{. . . } )(3.29)

f−1(Y ) = X always!(3.30)

PROOF of 3.29:
We show that x ∈ f−1(B1) ⇒ f−1(B1) as follows.

x ∈ f−1(B1)
(a)⇒ f(x) ∈ B1

(b)⇒ f(x) ∈ B2
(c)⇒ x ∈ f−1(B2)

In the above, (a) and (c) state the definition of a preimage and (b) follows from B1 ⊆ B2

The proof of of 3.28 and 3.29 is left as an exercise. �

Remark 3.15 (Notational conveniences II:).

In probability theory the following notation is also very common:
{f ∈ B} := f−1(B), {f = y} := f−1{y}.
Let R be either of Z,Q,R. Assume that the codomain of f is considered a subset of R. Let
a, b ∈ R such that a < b. We write {a ≤ f ≤ b} := f−1([a, b]R), {a < f < b} := f−1(]a, b[R),
{a ≤ f < b} := f−1([a, b[R), {a < f ≤ b} := f−1(]a, b]R), {f ≤ b} := f−1(] −∞, b]R), etc.
�

Example 3.6. In the introduction we were examining
• P ′({10}) = P

(
{(ω1, ω2) ∈ Ω : Y (ω1, ω2) = 10}

)
.

This can be written as P ′({10}) = P
(
Y −1{10}

)
= P{Y = 10}

• P ′({(ω′)}) = P
(
{(ω1, ω2) ∈ Ω : Y (ω1, ω2) = ω′}

)
.

This can be written as P ′({ω′}) = P
(
Y −1{ω′}

)
= P{Y = ω′}.

• P ′(B) = P
(
{ω ∈ Ω : Y (ω) ∈ B}

)
.

This can be written as P ′(B) = P
(
Y −1(B)

)
= P{Y ∈ B}.

It is very important that you remember the first three of the five formulas of the next proposition.

Proposition 3.6 (f−1 is compatible with all basic set ops). Assume that X,Y be nonempty, f : X → Y ,
J is an arbitrary index set. 26 Further assume that B ⊆ Y and that Bj ⊆ Y for all j. Then

26If you have problems with the concept of a family, think of J as a set of integers which are bounded below, i.e., that
J is the index set of a finite or infinite sequence or subsequence of sets
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f−1(
⋂
j∈J

Bj) =
⋂
j∈J

f−1(Bj)(3.31)

f−1(
⋃
j∈J

Bj) =
⋃
j∈J

f−1(Bj)(3.32)

f−1(B{) =
(
f−1(B)

){(3.33)

B1 ∩B2 = ∅ ⇒ f−1(B1) ∩ f−1(B2) = ∅.(3.34)

f−1(B1 \B2) = f−1(B1) \ f−1(B2)(3.35)

f−1(B1∆B2) = f−1(B1)∆f−1(B2)(3.36)

Note that (3.34) implies that the preimages of a disjoint family form a disjoint family.

PROOF: ? MF330 notes, ch.8 �

Proposition 3.7 (Preimages of function composition). Let X,Y, Z be arbitrary, nonempty sets. Let
f : X → Y and g : Y → Z and h : X → Z the composition

h(x) = g ◦ f(x) = g
(
f(x)

)
.

Let U ⊆ X and W ⊆ Z. Then

(g ◦ f)−1 = f−1 ◦ g−1, i.e., (g ◦ f)−1(W ) = f−1
(
g−1(W )

)
for all W ⊆ Z.(3.37)

PROOF: ? MF330 notes, ch.8 �

Try to understand the sbove with a simple example, such as X = Y = R,
f(x) = 3x− 1, g(y) = y2, and W = [0, 1], W = {−10}W = {10} (three different choices for W ).
Indicator functions often are a great notational convenience, for example, when dealing with func-
tions that are defined differently in two or more parts of the domain.

Definition 3.14 (indicator function for a set). Let Ω be a nonempty set and A ⊆ Ω. Let 1A : Ω →
{0, 1} be the function defined as

(3.38) 1A(ω) :=

{
1 if ω ∈ A,
0 if ω /∈ A.

1A is called the indicator function of the set A. 27 �

27In abstract algebra this is often called the characteristic function of A. Some authors write χA or 1A instead of 1A.
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Example 3.7. The so-called density function for the exponential distribution with parameter β > 0
is

f(y) =

{
1
β e
−y/β , 0 ≤ y <∞ ,

0 , elsewhere .

This can also be written as f(y) = 1
β e
−y/β 1[0,∞[(y).

Proposition 3.8. Let A,B,C be subsets of Ω. Then

A ⊆ B ⇒ 1A ≤ 1B,(3.39)
1A∪B = max(1A, 1B),(3.40)
1A∩B = min(1A, 1B),(3.41)

1A{ = 1− 1A,(3.42)
1A
⊎
B = 1A + 1B (A,B disjoint)(3.43)

PROOF: The proof is an easy exercise.

3.4 Random Variables and their Probability Distributions

Introduction 3.2. We continue with an observation we made in the introduction 3.1 to Section 3.3
(Preimages, p.60). There,
• Ω = {1, 2, . . . , 6}2 and ~ω = (ω1, ω2) represents a potential (two–number) outcome of two

rolls of a fair die, i.e., P ({~ω}) = 1/|Ω| = 1/36.
• We defined the function Y : Ω → Ω′ := {2, 3, 4, . . . , 11, 12}; ~ω 7→ Y

(
~ω
)

:= ω1 + ω2, which
associates with ~ω = (ω1, ω2) the sum of the two rolls.

• This function lead to a probability measure P ′ on Ω′ by means of formula (3.26):

B ⊆ Ω′ ⇒ P ′(B) = P{~ω ∈ Ω : Y
(
~ω
)
∈ B} .

Observe that the set Ω′ has been transformed into a probability space, (Ω′, P ′)).
• With preimage notation and the notational shortcuts of Remark 3.15 on p.63, this can also

be written as
P ′(B) = P

(
Y −1(B)

)
= P{Y ∈ B} .

These formulas can be written for an arbitrary probability space (Ω, P ), an arbitrary nonempty set
Ω′, and an arbitrary function Y : Ω→ Ω′. Actually, that is not entirely true, but it will be true for the
situations we will deal with in this class. If you are curious, read this optional footnote. 28 �

The next theorem and the subsequent definitions are very important.

28 ? We have to recall that there really is a σ–algebra F on Ω and that P (A) only exists if A ∈ F. What if B ⊆ Ω′

does not have a nice preimage, i.e., {Y ∈ B} /∈ F? The only way out is not to allow arbitrary B ∈ 2Ω′
, but (a) to also

require a σ–algebra F′ on the codomain Ω′, which (b) is so “small” that B ∈ F′ ⇒ Y −1(B) ∈ F; or, if you prefer, F must
be so “big” that B ∈ F′ ⇒ Y −1(B) ∈ F. There is a name for triplets [Y,F,F′] which satisfy this relationship. The function
Y is called measurable with respect to F and F′ or (F,F′)–measurable None of this will be an issue in this course!
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Theorem 3.11.

Let (Ω, P ) be a probability space, Ω′ a nonempty set, and Y : Ω→ Ω′ a function. Then the formula

PY (B) := P{Y ∈ B} (B ⊆ Ω′)(3.44)

defines a probability measure on Ω′.

PROOF: ? It follows from {Y ∈ ∅} = ∅ and {Y ∈ Ω′} = Ω, that

PY (∅) = P (∅) = 0 and PY (Ω′) = P (Ω) = 1 .

Let B ⊆ Ω′. From (3.33) on p.64, we obtain

PY (B{) = P{Y ∈ B{} = P
(
Y −1(B{)

)
= P

(
[Y −1(B)]{

)
= 1 − P

(
Y −1(B)

)
= 1 − PY (B) .

To prove σ–additivity of PY , we apply (3.32) to the index set N of a sequence of disjoint subsets
B1, B2, . . . of Ω′. Let B := B1

⊎
B2
⊎
B3
⊎
·. Then

PY (B) = P
(
Y −1

⊎
j∈N

Bj

) = P

⋃
j∈N

Y −1(Bj)


By (3.34), the sets Y −1(Bj) are disjoint. Thus,

PY (B) = P

⊎
j∈N

Y −1(Bj)

 =
∑
j∈N

P
(
Y −1(Bj)

)
=
∑
j∈N

PY (Bj) .

This proves σ–additivity. �

Definition 3.15 (Probability Distribution).

Let (Ω, P ) be a probability space, Ω′ a nonempty set, and Y : Ω → Ω′ a function. Then the
probability measure PY on Ω′ which is given by

PY (B) := P{Y ∈ B} (B ⊆ Ω′)(3.45)

is called the probability distribution or just the distribution of Y with respect to P . Very
often the probability space (Ω, P ) is fixed for a long stretch. We then simply talk about the
probability distribution of Y , without referring to P . �

Definition 3.16 (Random Variables and Random Vectors). Let (Ω, P ) be a probability space and let
n ∈ N.
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Let B ⊆ R. A function
Y : Ω −→ B ; ω 7→ Y (ω)

is called a random variable (in short, r.v. or rv,) on (Ω,F, P ). Let B′ ⊆ Rn. A function

~X =
(
X1, X2, . . . , Xn

)
: Ω −→ B′ ; ω 7→ ~X(ω) =

(
X1ω), . . . , Xn(ω

)
is called a random vector on (Ω,F, P ).
If there is a countable subset B∗ = {y1, y2, . . . } of B such that

∑
j PY {yj} = 1 (i.e., P{Y /∈

B∗} = 0 ), we call Y a discrete random variable. Likewise, if there is a countable subset
B′∗ of V such that P{ ~X /∈ B′∗} = 0, we call ~X a discrete random vector. �

Note that random variables and vectors which have a countable range are discrete. Also, if you
found the footnote at the end of the introduction interesting, have a look at this (optional) one, 29

Remark 3.16. In many instances the exact nature of the codomain B of a random variable Y is
unimportant. Of course it must be a set of numbers, i.e., B ⊆ R, and it must be big enough to
accommodate all function values Y (ω), i.e., Y (ω) ⊆ B. 30 Thus, here is some good news.

We often will just say something like “Let Y be a random variable on Ω” or, “Let Y be a
discrete random vector on Ω” and not even mention the codomain of Y . �

Not all interesting functions on a probability space take values in R or Rn. Here is an example.

Example 3.8. The following describes a (unnecessarily complicated) way to simulate n tosses of a
fair coin. Le Let Ω := [0, 1[, where we represent the real number ω ∈ Ω as a decimal 0.d1d2d3 with
inifinitely many decimal digits. If necessary, we append infinitely many zeroes to the right. For
example, we write 0.25000 . . . for the number 1/4. We write H for Heads and T for Tails and define
the following function on (Ω, P ).

~X : Ω→ {H,T}n

• X1(ω) = H if d1 is even, T else.
• X2(ω) = H if d2 is even, T else.
• · · · · · · · · · · · · · · · · · · · · · · · ·
• Xn(ω) = H if dn is even, T else.

Since P ~X(~x) = 1/2n for each ~x ∈ {H,T}n, each combination of a total of n Heads and Tails has the
same chance to occur. That is our understanding of a fair coin. �

Considering that last example, it seems awkward not to call a function Ω→ Ω′ from a probability
space (Ω, P ) to a set Ω′ a random variable only because its function values are not numbers. We
give a name to such functions of randomness.

29 ? Technically speaking, Y must be (F,B)–measurable and ~X must be (F,Bn)–measurable. In other words,

one must be able to assign probabilities to all preimages of Borel sets. Again, none of this will be an issue in this course!
30It only matters when we need the inverse function ω = Y −1(y) of y = Y (ω). (Do not confuse inverse function and

preimage, just because they use the same symbol Y −1!) Then Y −1(y) must make sense for all y ∈ B and that requires
that B is minimal: B = Y (Ω). The same thought also applies to random vectors.
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Definition 3.17 (Random element). Let (Ω,F, P ) be a probability space and Ω′ a nonempty set. We
call a function X : Ω→ Ω′ a random element, also: a random item, on Ω. �

Remark 3.17. We can phrase Theorem 3.11 and the subsequent Definition 3.15 as follows.
All random elements X on a probability space (Ω,F, P ) have a distribution

PX(B) = P{X ∈ B} = P
(
X−1(B)

)
(B ⊆ Ω′). �

Since an element x of the domain of a function f (an argument) is assigned to only one function
value y = f(x), one should expect that a function of a discrete random element should again be
discrete. This is the assertion of the next proposition and the corollary that follows it.

Proposition 3.9. ? Let X : (Ω, P ) → Ω′ be a random element and g : Ω′ → R. Let Z be the random
variable ω 7→ Z(ω) := g

(
X(ω)

)
. Let B∗ ∈ Ω′ such that PX(B∗) = 1 and let C∗ := {g(x) : x ∈ B∗}.

Then PZ(C∗) = 1.

PROOF: Let

A1 := {ω ∈ Ω : Z(ω) /∈ C∗} = {ω ∈ Ω : g
(
X(ω)

)
/∈ C∗} .(A)

Then ω̃ ∈ X−1(B∗) ⇔ X(ω̃) ∈ B∗ ⇒ Z(ω̃) = g
(
X(ω̃)

)
∈ g(B∗) = C∗(B)

Here, “⇔” follows from the definition of X−1. From (A) + (B) we see that A1 ∩X−1(B∗) = ∅.

(C) Thus, A1 ⊆
[
X−1(B∗)

]{.
Since P

[
X−1(B∗)

]
= PX(B∗) = 1 (by definition of B∗) ,(D)

we obtain from (C) that P (A1) = 0 and then, from (A), that

PZ(C∗) = P{ω ∈ Ω : Z(ω) ∈ C∗} = P (A{1) = 1 . �(E)

Corollary 3.4. Let X : (Ω, P ) → Ω′ be a random element and g : Ω′ → R. Further, let Z be the random
variable g ◦X : ω 7→ Z(ω) = g

(
X(ω)

)
. In other words, Z is the composition of g with X . Then

(a) If ω 7→ X(ω) only assumes finitely many (distinct) values x1, . . . , xn, then ω 7→ Z(ω) only
assumes finitely many values z1, . . . , zm (and m ≤ n).

(b) If ω 7→ X(ω) only assumes an infinite sequence of (distinct) values (xj), then ω 7→ Z(ω)
assumes a countable set of function values. (This set forms a finite or infinite sequence. (See
Definition 2.21 (Countable and uncountable sets) on p.31).

(c) If X is a discrete random element, then Z = g(X) is a discrete random variable.

PROOF of (a): ? The potential function values of Z are

z′1 := g(x1), z′2 := g(x2), . . . , z′n := g(xn)
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If g is not injective, there may be duplicate z′j which must be removed. Thus, Z assumes at m
distinct values for some suitable m ≤ n. We rename them z1, . . . , zm.

PROOF of (b): ? The potential function values of Z the members of the sequence z′j = g(xj),
where j ∈ N. Removing the duplicates leaves us with a finite or infinite subsequence of distinct
items zj and those form the countable set of all function values of Z.

PROOF of (c): ? Since X is discrete, there is a countable set B∗ ⊆ Ω′ such that PX(B∗) = 1.

We have seen in the proof of (b) that a function g transports countably many arguments b∗ into
countably many function values c∗ = g(b∗). Thus, the set C∗ := {g(b∗) : b∗ ∈ B∗} is countable.
It folows from Proposition3.9 on p.68 that PZ(C∗) = 1. Since C∗ is countable, Z is discrete. �

Remark 3.18. Consider the following of a philosophical rather than mathematical nature. Not all
mathematicians agree with it.
I like to think of a probability space (Ω, P ) as a seat of randomness in the following sense. Some
all–powerful supreme being or supreme force of nature, let’s call it S BS BS B , decides to pick “this”
particular ω0 ∈ Ω. As a result, all random elements X,Y, Z, . . . are invoked with ω0 as argument,
resulting in the outcomes X(ω0), Y (ω0), Z(ω0), . . . . With this interpretation it makes a lot of sense
to talk about functions on (Ω, P ) as random elements since, when we interpret ω ∈ Ω as “random-
ness”,

x = X(ω) simply means that x is a function of randomness.

Only S BS BS B knows what ω0 will be picked. But if we know, say, the distribution PX of a random
variable X , then we can at least quantify the likelihood that S BS BS B chose an ω such that 17.8 ≤
X(ω) ≤ 21.3 It will be PX([17.8, 21.3]) = P{17.8 ≤ X ≤ 21.3}. �

Often it only is the distribution of a random element with values in a set Ω′ that matters and there
may be many different choices of probability space plus random element which result in that same
probability measure on Ω′. We illustrate that with two more settings for the modeling of the dis-
tribution of n tosses of a fair coin on the space {H,T}n. See Example 3.8. We fix n = 3 since this
example illustrates all essential points.

Example 3.9. (a) Let Ω1 := {0, 1}3 with the probability measure P{(a, b, c)} = 1/|Ω1| = 1/8.
Let Y1 : Ω1 → {H,T}3 the random element that changes each H into a 1 and each T into a 0. For
example, Y1(1, 0, 1) = (H,T,H) and Y1(0, 0, 1) = (T, T,H).
Then PY1 is the same probability measure as P ~X of Example 3.8, since both assign the number 1/8
to each element of {H,T}3.
(b) Let Ω2 := {H,T}3 with the probability measure P{(a, b, c)} = 1/|Ω2| = 1/8. (Same as in (a),
except that now a, b, c represent either of H or T rather than 0 or 1.)
Let Y2 : Ω2 → {H,T}3 be the identity (also, identity function) on Ω2. That is the “do nothing”
function which assigns each element of a set to itself, i.e., Y2(ω) = ω for all ω ∈ Ω2.
Clearly, PY2 also assigns probability PY2({ω}) = 1/8 to each element of {H,T}3.
(c) Let Ω3 := {H,T}3 × {1, 2, 3, 4} with the probability measure P{(a, b, c, d)} = 1/|Ω3| = 1/32.
(Same as in (a), except that now a, b, c represent either of H or T rather than 0 or 1.)
Let Y3 : Ω3 → {H,T}3 be the function defined as Y3(a, b, c, d) := (a, b, c). We compute the distribu-
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tion PY3 for the outcomes (a, b, c) of the probability space ({H,T}3, PY3).

(a, b, c) ∈ Y3 ⇒ PY4{(a, b, c, d)} = P{Y4 = (a, b, c, d)}
= P{(a, b, c, 1), (a, b, c, 2), (a, b, c, 3), (a, b, c, 4)} = 4(1/32) = 1/8 .

We have have obtained in this example and Example 3.9 the probability P ′ which models three
tosses of a fair coin, i.e., P ′{(a, b, c)} = 1/8 for each (a, b, c) ∈ {H,T}3, as the distribution of four
different random elements ~X, Y1, Y2, Y3 which were defined on four different probability spaces.
Thus, you have multiple choices of probability spaces and random itens to model a distribution.
you will hopefully agree that Y1 and Y2 are much better choices than ~X and Y3. �
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4 Combinatorial Analysis

In many important cases we find ourselves in the situation of Example 3.2 on p.46, where we have
a finite probability space (Ω, P ), in which each outcome ω ∈ Ω as equal probability

P{ω} =
1∣∣Ω∣∣

and thus, for each event A ⊂ Ω,

P (A) =

∣∣A∣∣∣∣Ω∣∣ .
Hence, all we need to determine P (A), is the knowledge of how to count the elements of Ω and of
A. Combinatorial analysis, also called combinatorics, , is a branch of mathematics that provides us
with tools to accomplish that task.

4.1 The Multiplication Rule

The first result is known under names such as the basic principle of counting ([8] Ross, Sheldon M.:
A First Course in Probability, 3rd edition) and the mn rule (WMS text).

Theorem 4.1 (Multiplication rule).

(A) Assume that two actions A and B are performed such that
• the first one has m outcomes, {a1, a2, . . . , am},
• the second one has n outcomes {b1, b2, . . . , bn} for each outcome of the first one.

• Then the number of combined outcomes (ai, bj) is mn.

(B) Generalization. Assume that k actions A1, . . . , Ak are performed such that
··· action A1 has n1 outcomes, {a(1)

1 , a
(1)
2 , . . . , a

(1)
n1 },

··· action A2 has n2 outcomes, {a(2)
1 , a

(2)
2 , . . . , a

(2)
n2 } for each outcome of A1,

··· action A3 has n3 outcomes, {a(3)
1 , a

(3)
2 , . . . , a

(3)
n3 } for each combined outcome (x1, x2), where

x1 is one of the A1–outcomes and x2 is one of the A2–outcomes,
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

··· action Ak has nk outcomes, {a(k)
1 , a

(k)
2 , . . . , a

(k)
nk } for each combined outcome (x1, x2, xk−1),

where each xj is one of the Aj–outcomes, i.e., xj is one of a(j)
1 , . . . , a

(j)
nj .

• Then there are n1 · n2 · · ·nk combined outcomes (x1, x2, . . . , xk).
Here, each xj is one of the nj outcomes a(j)

1 , . . . , a
(j)
nj of Aj .

PROOF: We identify the actions with their outcomes, i.e., we define

Aj = {a(j)
1 , . . . , a(j)

nj }, for j = 1, 2, . . . , k.

Now, the multiplication rule merely states that
∣∣A1×A2× · · ·×An

∣∣ =
∣∣A1

∣∣ · ∣∣A2

∣∣ · · · ∣∣An∣∣, and this
is true according to (2.28) on p.36. �
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Example 4.1 (Ross-prob-thy-3ed Example 2c). How many 7–digit license plates can be created if the
first three are letters (CAPS) and the lst four are digits?
Answer: 263 · 104 = 175, 760, 000 �

Example 4.2 (Ross-prob-thy-3ed Example 2e). How many different 7–digit license plates can be
created if the first three are letters (CAPS) and the last four are digits and none of those symbols can
be repeated?
Answer: 26 · 25 · 24 · 10 · 9 · 8 · 7 = 78, 624, 000 �

Example 4.3. How many 7–digit license plates can be created if the first three are letters (CAPS) and
the lst four are digits and none of the letters can be repeated?
Answer: 26 · 25 · 24 · 104 = 26 · 600 · 104 = 15, 600 · 104 = 15, 600, 000. �

Example 4.4 (Ross-prob-thy-3ed Example 2d). If
∣∣Ω∣∣ = n, how many different functions ψ : Ω →

{0, 1}, i.e., how many functions on Ω that can only take the values 0 and 1, do exist?
Answer: If Ω = {ω1, ω2, . . . , ωn}, then
• we have 2 choices for the ψ(ω1) selection.
• For each of those there are 2 choices for the ψ(ω2) selection.
• For each of those ψ(ω1), ψ(ω2) selections there are 2 choices for the ψ(ω3) selection.
• - - - - - - - - - - - - - - - - - - - - - - -
• For each of those ψ(ω1), . . . , ψ(ωn−1) selections there are 2 choices for the ψ(ωn) selection.

So we have 2 · 2 · · · 2 = 2n selections. �

Example 4.5. If
∣∣Ω∣∣ = n, how many subsets of Ω, including ∅ and Ω, do exist?

Answer: If Ω = {ω1, ω2, . . . , ωn}, any subset A ⊆ Ω can be uniquely represented by an element
~d = ~d(A) = (d1, d2, . . . , dn) of {0, 1}n as follows:
• dj = 1 ⇔ ωj ∈ A and dj = 0 ⇔ ωj /∈ A.

The assignment F : A 7→ ~d(A) between the subsets of Ω and {0, 1}n is injective:

• If A′ ⊆ Ω such that ~d(A) = ~d(A′), then ω ∈ A⇔ ω ∈ A′, i.e., A = A′.

F also is surjective: if ~d(d1, d2, . . . , dn) ∈ {0, 1}n, then

• B := {ωj : dj = 1} (a subset of Ω) which satisfies F (A) = ~d.
Thus, F is a bijection. We illustrate this with the following example. Let Ω := {ω1, ω2, ω3, ω4}.
• A1 = {ω2, ω3} ⇒ F (A1) = (0, 1, 1, 0). Also, F−1(0, 1, 1, 0) = {ωj : dj = 1} = {ω2, ω3} = A1.

• A2 = {ω4} ⇒ F (A2) = (0, 0, 0, 1). Also, F−1(0, 0, 0, 1) = {ωj : dj = 1} = {ω4} = A2

Since F is a bijection, there are as many subsets of Ω as there are vectors
~d(A) = (d1, d2, . . . , dn) of zeros and ones of length n. And how many are those?
• we have 2 choices for d1: either d1 = 0 or d1 = 1.
• For each of those choices: either d2 = 0 or d2 = 1.
• - - - - - - - - - - - - - - - - - - - - - - -
• For each of those 2n−1 choices

[
dj = 0 or dj = 1 (j = 1, 2, . . . , n − 1)

]
: either dn = 0 or

dn = 1.
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Thus, we have 2 · 2 · · · 2 = 2n choices. �

4.2 Permutations

Definition 4.1 (WMS Ch.02.6, Definition 2.7 - Permutation).

An ordered arrangement of r distinct objects is called a permutation of size r. The number
of ways of ordering n distinct objects taken r at a time will be designated by the symbol Pnr .
�

Theorem 4.2 (WMS Ch.02.6, Theorem 2.2).

Pnr = n(n− 1)(n− 2) · (n− r + 1) =
n!

(n− r)!
.(4.1)

Here, n! (“n factorial”) is defined as follows.

n! =

{
n(n− 1) · · · 2 · 1 , if n ∈ N ,

1 , if n = 0 .
(4.2)

PROOF: We can consider each permutation as the result of the following actions A1, . . . , Ar.
• A1 is the selection of the first item. Since all n items are available for selection, A1 has n

outcomes.
• A2 is the selection of the second item. Since one item was already selected and duplicates

are not allowed, only n− 1 items are available for selection. Thus, A2 has n− 1 outcomes.
• - - - - - - - - - - - - - - - - - - - - - - -
• Ar is the selection of item r. Since r − 1 items have been previously selected and duplicates

are not allowed, only n− (r − 1) = n− r + 1 items are available for selection. Thus, Ar has
n− r + 1 outcomes.

It follows from the multiplication rule that there are n(n− 1) · · · (n− r + 1) different ways to select
r items without repeating a selection, i.e., of obtaining a permutation of size r of those n items. �

Example 4.6 (WMS Ch.02.8, Example 2.8). The names of 3 employees are to be randomly drawn,
without replacement, from a bowl containing the names of 30 employees of a small company. The
person whose name is drawn first receives $100, and the individuals whose names are drawn sec-
ond and third receive $50 and $25, respectively. How many sample points are associated with this
experiment?

Solution: Because the prizes awarded are different, the number of sample points is the number of
ordered arrangements of r = 3 out of the possible n = 30 names. Thus, the number of sample
points in S is

P 30
3 =

30!

27!
= (30)(29)(28) = 24, 360 . �
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Example 4.7. Jenny has collected 20 post cards, all of them different: 4 from France, 2 from Peru,
8 from Japan, 6 from Kenia. She wants to place them into 4 numbered boxes according to their
country of origin.

(A) Jenny consider two arrangements different if, say, Esteban’s card takes a different spot in the
Peru box, but she does not care whether the Peru cards end up in box #1 or #2 or #3 or #4. How
many different arrangements are possible?
Answer:
• 4 choices for France card #1,
• 3 choices for France card #2 (into the same box),
• 2 choices for France card #3 (into the same box),
• 1 choice for France card #4 (into the same box).

• Thus, there are 4! choices for the France cards.
• For each one of those 4! choices we obtain in a similar manner that there are 2! choices for

Peru.
• For each one of those 4! · 2! choices we obtain in a similar manner that there are 8! choices

for Japan.
• For each one of those 4! · 2! · 8! choices we obtain in a similar manner that there are 6! choices

for Kenia.
Thus, 4! · 2! · 8! · 6! different arrangements are possible.

(B) As before, Jenny considers two arrangements different if, say, Esteban’s card takes a different
spot in the Peru box. But this time it also matters in which box a country’s cards are placed.. How
many different arrangements are possible now?
Answer: There are 4! permutations of the 4 boxes. This amounts to 4! rearrangements of each choice
made in (A). Thus, 4! · 2! · 8! · 6! · 4! arrangements are possible. �

4.3 Combinations, Binomial and Multinomial Coefficients

In Example 4.5 on p.72, a simple application of the multiplication rule showed the following:
If Ω is a set of finite size, then its powerset 2Ω (i.e., the set of all subsets of Ω), has size

∣∣2Ω
∣∣ = 2|Ω|.

A related question would be the following:
• How many subsets of Ω have size k?

Examining how many permutations of size k can be obtained from the elements ω1, ω2, . . . , ωn might
not be a bad idea, since permutations of distinct items remain free of duplicates, just as we require
for (sub–)sets. But rearrangements of the order in which the elements ωn1 , ωn2 , . . . , ωnk of such a
subset lead to different permutations although the subset remains the same, since the order of the
elements of a set is disregarded.
Thus, we must divide Pnk , the number of permutations of size k of the elements of Ω, by the number
of rearrangements that one can obtain from a given set of its members. Since that number is P kk , we
have obtained the following result.

Theorem 4.3.
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Let 0 ≤ k ≤ n. A set of size n has
n!

k!(n− k)!
.

subsets of size k.

PROOF: There are Pnk = n(n − 1) · · · , (n − k + 1) permutations of size k that can be obtained from
the n (distinct!) elements ω1, ω2, . . . , ωn of Ω. Let A := {ωn1 , ωn2 , . . . , ωnk} be such a permutation.
There are P kk = k! rearrangements of ωn1 , ωn2 , . . . , ωnk . Since order does not matter in sets (and their
subsets), each one of those k! permutations forms one and the same set A.
To say this differently, the number Pnk was obtained by counting each size k subset k! times.
Thus, we must divide Pnk by P kk to obtain the number of subsets of size k. We obtain

Pnk
P kk

=
n(n− 1) · · · (n+ k − 1)

k!
=

n(n− 1) · · ·
(
n− (k − 1)

)
k!

· (n− k)!

(n− k)!
=

n!

k!(n− k)!
.

This proves the theorem. �

Selections of size k from a collection of n distinct objects disregarding the order in which those k
items were selected (as is the case when selecting a subset of size k from a set of size n ≥ k,) are so
important when counting is involved that they deserve a name of their own. For the following see
also WMS Ch.02.6, Definition 2.8.

Definition 4.2 (Number of combinations).

We call the number of selections of size k from a collection of n distinct items when the
order in which those k items were selected is ignored, the number of combinations of n
objects taken k at a time. We write

(
n
r

)
for this number. �

Remark 4.1.
(a) Some texts also use the symbol Cnk instead of

(
n
k

)
. This is considered outdated terminology.

(b) We emphasize that both are true:
(
n
k

)
= number of selections of size k from n distinct items when disregarding order
= number of subsets of size k of a set of size n. �

Theorem 4.4.

Given are n items of which n1 are alike, n2 are alike, . . . , nr are alike (n1 + · · ·+ nr = n).
Then the number of distinguishable arrangements of those n items is(

n

n1, n2, . . . nr

)
=

n!

n1!n2! · · · nr!
.

PROOF:
• We tag the group 1 items as x(1)

1 , x
(1)
2 , . . . , x

(1)
n1 ,

• the group 2 items as x(2)
1 , x

(2)
2 , . . . , x

(2)
n2 ,

• - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
• the group r items as x(r)

1 , x
(r)
2 , . . . , x

(r)
nr ,
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to make all n items artificially distinguishable. We have learned that there are n! permutations.
When we only keep the superscripts that indicate the group but we remove the subscripts, since in
truth items belonging the same group cannot be distinguished, there will be a lot less arrangements
that are distinct.
To fix the ideas, assume that group 2 has 4 members and we have an arrangement

Arr #1: ? ? ? x
(2)
3 ? ? ? ? ? x

(2)
2 x

(2)
4 ? ? ? ? x

(2)
1 ? ?

and that we have another arrangement

Arr #2: ? ? ? x
(2)
1 ? ? ? ? ? x

(2)
4 x

(2)
2 ? ? ? ? x

(2)
3 ? ?

where all items that do not belong to group 2 (the ones marked “?”) occupy the same column in
both arrangements. To put it differently, we obtained Arr #2 from Arr #1 by permuting the items in
group 2 and leaving all other items in place.
In total there are n2! = 4! = 24 such permutations. Let us consider one of them as special. For
example, this one,

Arr #5: ? ? ? x
(2)
1 ? ? ? ? ? x

(2)
2 x

(2)
3 ? ? ? ? x

(2)
4 ? ?

where the group 2 items are arranged, left to right, in increasing order of their subscripts.
We go through all n! permutations and discard all those where the group 2 items are ordered dif-
ferently from x

(2)
1 , x

(2)
2 , x

(2)
3 , x

(2)
4 .

Then only
n!

n2!
arrangements remain,

but for those the artificial distinction which was introduced by the subscipts is gone in group 2.
We repeat the above procedure to those survivors, but for group 1. We discard all those where the
group 1 items are not ordered x(1)

1 , x
(1)
2 , . . . , x

(1)
n1 .

Then only
n!

n2!n1!
arrangements remain,

but for those the artificial distinction which was introduced by the subscipts is gone in groups 1 and
2.
We keep going with the remaining groups.

Then only
n!

n1!n2! · · ·nr!
arrangements remain,

but for those the artificial distinction which was introduced by the subscipts is gone in all r groups.
It follows that there are n! /(n1!n2! · · ·nr!) different arrangements if we cannot distinguish the items
belonging to the same group. �

Example 4.8. How many distinct permutations are there of the word SHANANANANA
Answer: We designate Groups 1–4 according to the letters S, H, A, N.
Then n1 = n2 = 1, n3 = 5, n4 = 4. Further, n = 1 + 1 + 5 + 4 = 11. Thus, there are

11!

5! · 4! · 1! · 1!
=

11 · 10 · 9 · 8 · 7 · 6
4 · 3 · 2

=
11 · 10 · 9 · 8 · 7 · 6

3 (4 · 2)
= 11 · 10 · 9 · 7 · 2 = 13, 860

distinguishable arrangements of the word SHANANANANA. �
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Definition 4.3 (Multinomial coefficients).

The numbers (
n

n1 n2 · · ·nr

)
=

n!

n1!n2! · · ·nr!
.(4.3)

that appear in Theorem 4.4 are called multinomial coefficients. If r = 2, then there is some
integer 0 ≤ k ≤ n such that n1 = k and n2 = n− k. We write(

n

k

)
:=

n!

k!(n− k)!
for

(
n

k, n− k

)
(4.4)

and speak of binomial coefficients. Convention: We define
(
n
k

)
:= 0 for k > n. �

The next theorem explains the appropriateness of the previous definition.

Theorem 4.5.

Let r, n ∈ N such r ≤ n and x1, x2, . . . xr ∈ R. Then

(
x1 + x2 + · · ·+ xr

)n
=

∑
n1,...,nr≥0
n1+···+nr=n

(
n

n1, n2, . . . nr

)
xn1

1 xn2
2 · · ·x

nr
r .(4.5)

In particular, if r = 2, we obtain the binomial theorem:

(
x1 + x2

)n
=

n∑
j=0

(
n

j

)
xj1 x

n−j
2 .

PROOF:
First, we show that the case n = 2 follows from 4.5.
Since n1, n2 ≥ 0 and n1 +n2 = n ⇒ 0 ≤ n1 ≤ n and n2 = n−n1, writing j for n1 yields the binomial
theorem formula.

To prove the first formula, We start by "multiplying out" the product(
x1 + x2 + · · ·+ xr

)n
=
(
x1 + x2 + · · ·+ xr

)(
x1 + x2 + · · ·+ xr

)
· · ·
(
x1 + x2 + · · ·+ xr

)
and obtain in the resulting expansion terms of the form

a1 · a2 · · · an such that each factor aj is either x1 or x2 ... or xr.

In the following we consider the sizes n1, n2, . . . , nr as fixed
Note that it is not possible to obtain two selections

~a =
(
a1, a2, . . . , an

)
and ~b =

(
b1, b2, . . . , bn

)
such that aj = bj for all j.

The reason: We multiply out the n factors
(
x1 + · · ·xr

)
in such a way that for no two of the resulting

products we picked the same variable xi in each one of those n factors
(
x1 + · · ·xr

)
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But then the following is true if we consider such a selection as a word a1a2 . . . an where each lettter
is one of x1 or x2 ... or xr. Any two of those words are distinguishable even though some or all of
the letters xi can occur multiple times.

For example, if n = 7, n1 = 2, n2 = 3, n3 = 2 and we write X for x1, Y for x2, Z for x3, we
have this situation.
The word Y XZZY Y X is formed only once. But of course, we obtain other words with the
same sizes nj , e.g. the rearrangement ZY XZY XY which is distinguishable from the first
word.

Thus, in the general case, there are as many terms in the expansion of
(
x1+x2+· · ·+xr

)n containing
each symbol xj exactly nj times as there are distinguishable “words” that contain each xj exactly
nj times. According to Theorem 4.4, there are(

n

n1, n2, . . . nr

)
=

n!

n1!n2! · · · nr!
.

such terms. Since this is the number of times the product xn1
1 xn2

2 · · ·xnrr occurs in the expansion of(
x1 + x2 + · · ·+ xr

)n, it follows that

(
x1 + x2 + · · ·+ xr

)n
=

∑
n1,...,nr≥0
n1+···+nr=n

(
n

n1, n2, . . . nr

)
xn1

1 xn2
2 · · ·x

nr
r . �

Theorem 4.6.

Given are n distinct items and r distinct bins of fixed sizes n1, n2, . . . , nr such that n1+· · ·+nr = n.
Then the number of distinguishable placements of the n items into those r bins, when disregarding
the order in which the items were placed into any one of those bins, is(

n

n1, n2, . . . nr

)
=

n!

n1!n2! · · · nr!
.

The proof is given after the following example which will help clarify how to interpret Theorem 4.6.

Example 4.9. Given are a list of n = 7 items and r = 3 bins as follows.
• The 7 items are a, b, c, d, e, f, g.
• Bin 1 has size 2, bin 2 has size 3, bin 3 has size 2 (thus n = 2 + 3 + 3 = 7).
• Arr #1: bin 1 has b, c, bin 2 has e, a, g, bin 3 has f, d
• Arr #2: bin 1 has c, b, bin 2 has a, g, e, bin 3 has d, f
• Arr #3: bin 1 has b, d, bin 2 has a, g, e, bin 3 has c, f
• Then Arr #1 and Arr #2 are considered the same since each bin contains the same items.

Only their order is different.
• On the other hand, both Arr #1 and Arr #2 both are considered different from Arr #3 since,

e.g., bin 1 contains item d for #3, but bin 1 does not contain item d for the other two arrange-
ments. �

PROOF of Theorem 4.6:
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The proof is very similar to that of Theorem 4.4, so we keep the discussion brief.
• For each one of the n! permutations of all n items, there are n1! − 1 others which possess

the same n1 elements in bin 1, only differently ordered, but have exactly the same item at
each other of the remaining n − n1 spots. Removing those duplicates leaves us with n!/n1!
arrangements.

• Of those n!/n1! arrangements, there are n2!−1 others which possess the same n2 elements in
bin 2, only differently ordered, but have exactly the same item at each other of the remaining
n− n1 − n2 spots. Removing those duplicates leaves us with n!/(n1!n2!) arrangements.

• - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
• Having removed the duplicates from bins 1 through k−1, we are left with n!

n1!···nk−1
arrange-

ments. For each one of those there are nk!− 1 others which possess the same nk elements in
bin k, only differently ordered. Removing those duplicates leaves us with n!

n1!···nk arrange-
ments.

• For any two surviving arrangements the following is true: There is at least one bin that does
not contain the same elements (possibly rearranged) for both those arrangements.

to make all n items artificially distinguishable. We have learned that there are n! permutations.
When we only keep the superscripts that indicate the group but we remove the subscripts, since in
truth items belonging the same group cannot be distinguished, there will be a lot less arrangements
that are distinct.
To fix the ideas, assume that group 2 has 4 members and we have an arrangement

Arr #1: ? ? ? x
(2)
3 ? ? ? ? ? x

(2)
2 x

(2)
4 ? ? ? ? x

(2)
1 ? ?

and that we have another arrangement

Arr #2: ? ? ? x
(2)
1 ? ? ? ? ? x

(2)
4 x

(2)
2 ? ? ? ? x

(2)
3 ? ?

where all items that do not belong to group 2 (the ones marked “?”) occupy the same column in
both arrangements. To put it differently, we obtained Arr #2 from Arr #1 by permuting the items in
group 2 and leaving all other items in place.
In total there are n2! = 4! = 24 such permutations. Let us consider one of them as special. For
example, this one,

Arr #5: ? ? ? x
(2)
1 ? ? ? ? ? x

(2)
2 x

(2)
3 ? ? ? ? x

(2)
4 ? ?

where the group 2 items are arranged, left to right, in increasing order of their subscripts.
We go through all n! permutations and discard all those where the group 2 items are ordered dif-
ferently from x

(2)
1 , x

(2)
2 , x

(2)
3 , x

(2)
4 .

Then only
n!

n2!
arrangements remain,

but for those the artificial distinction which was introduced by the subscipts is gone in group 2.
We repeat the above procedure to those survivors, but for group 1. We discard all those where the
group 1 items are not ordered x(1)

1 , x
(1)
2 , . . . , x

(1)
n1 .

Then only
n!

n2!n1!
arrangements remain,
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but for those the artificial distinction coming from the subscipts is gone in groups 1 and 2.
We keep going with the remaining groups....

In the end only
n!

n1!n2! · · ·nr!
arrangements remain,

but for those the artificial distinction which was introduced by the subscipts is gone in all r groups.
It follows that there are n! /(n1!n2! · · ·nr!) different arrangements if we cannot distinguish the items
belonging to the same group. �

Proposition 4.1.

(A) There are
(
n− 1

r − 1

)
distinct integer–valued vectors ~x =

(
x1, x2, . . . , xr

)
such that

x1 + x2 + · · ·+ xr = n and xi > 0, i = 1, . . . , r .

(B) There are
(
n+ r − 1

r − 1

)
distinct integer–valued vectors ~y =

(
y1, y2, . . . , yr

)
such that

y1 + y2 + · · ·+ yr = n and yi ≥ 0, i = 1, . . . , r .

PROOF of (A):
Each such equation corresponds to an arrangement of n symbols ⊗ which denote the numbers
1, 2, . . . , n in sequence, and r − 1 bars | which are places in-between those symbols, in such a way,
that no two bars are adjacent. For example, the arrangement

• • | • • • • | • • •

expresses the equation 2 + 4 + 3 = 7. In the general case, one or zero bars can be placed in the n− 1
gaps between the n bullets:

• ⊗ • ⊗ • ⊗ • ⊗ • ⊗ • ⊗ • · · · ⊗ • ⊗ •(A)

Thus, there are as many different integer equations as there are ways to select r − 1 of those n − 1
gaps for the r − 1 bars. This number is

(
n−1
r−1

)
.

FIRST PROOF of (B):

An equation
r∑
j=1

yj = n; yj ≥ 0 of part (B) becomes an equation
r∑
j=1

xj = n+ r;xj > 0 of part (A), by

setting xj := yj + 1.

In reverse, equation
r∑
j=1

xj = n+ r;xj > 0 of part (A) becomes an equation
r∑
j=1

yj = n; yj ≥ 0 of part

(B), by setting yj := xj − 1.

We have shown in (A) that there are
(
n+r−1
r−1

)
different equations of the form

r∑
j=1

xj = n + r;xj > 0.

Thus, there also that many of the form
r∑
j=1

yj = n; yj ≥ 0. This proves (B).
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ALTERNATE PROOF of (B): We add two more placeholders ⊗ for the separating bars. One to the
left of the leftmost bullet and another to the right of the rightmost bullet. The condition yj ≥ 0
instead of xj > 0 implies that each one of those placeholders can be occupied by as few as zero bars
and as many as all r−1 bars. To put it differently, any combination of bullets and bars is admissible.
We create a tagged list of n + r − 1 distinct placeholders for both bullets and bars and select r − 1
of them for the bars. Obviously, the order of the bars does not matter. Thus there are

(
n+r−1
r−1

)
such

selections. �

Consider the issue of distributing n distinct items into r distinct bins where binj contains 0 ≤ nj ≤ n
items and the nj are allowed to vary for different selections. (But of course, n1 + · · ·+ nr = n.)
Then each such selection corresponds to an integer vector ~n = (n1, . . . , nr) which is a solution of the

equation
r∑
j=1

nj = n;nj ≥ 0.

If we demand in addition that each bin contains at least one item, then each such selection corre-

sponds to an integer vector ~n = (n1, . . . , nr) which is a solution of the equation
r∑
j=1

nj = n;nj > 0.

We obtain from Proposition 4.1 the following.

Proposition 4.2.

(A) There are
(
n− 1

r − 1

)
ways to select n indistinguishable items into r distinct bins such that each

bin contains at least one item.

(B) There are
(
n+ r − 1

r − 1

)
ways to select n indistinguishable items into r distinct bins.

PROOF: This follows from from Proposition 4.1. �

Example 4.10. Mother Jones’ cookies and the stars & bars examples:
• How many ways are there to give 10 cookies to 4 kids if each one gets at least one cookie?

A: There are
(

10−1
4−1

)
= (9 · 8 · 7)/(3 · 2 · 1) = 84 ways.

• How many ways are there to separate 6 stars by two bars into three parts, if one or more of
those parts may contain zero stars? A: There are

(
6+3−1

3−1

)
= (8 · 7)/(2 · 1) = 28 ways. �

Here is another example that employs binomial coefficients.

Example 4.11 (Ross-prob-thy-3ed Example 4c). Given are n antennas of which d are defective. They
will be arranged in a linear order and will relay signals. This chain will not function if two or more
defective items are placed next to each other.
How many ways are there to arrange the antennas so that we obtain a functioning arrangement?
Answer: We denote the n − d working antennas by the ⊗ symbol, separate them by bullets • and
add one • each to the left of the leftmost and to the right of the rightmost.

• ⊗ • ⊗ • ⊗ • ⊗ • ⊗ • ⊗ • · · · ⊗ • ⊗ •

Then the functioning relays are precisely those where one or zero defective antennas are placed at
each one of those • spots. Each such placement corresponds to a selection of size d of those n−d+1
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bullets: The selected spots will get a defective antenna and nothing will happen to the others.

Thus, there are
(
n− d+ 1

d

)
functioning arrangements. �

Example 4.12. A lottery is held among N participants. There are K drawings in which a prize is
given away. (K < N). In each drawing, each participant has an equal chance of obtaining the prize.
(Thus, it is possible, though unlikely, that one single person walks away with allK prizes.) Amanda
is one of the participants. What is the probability that she will walk away with exactly k prizes? Of
course, (k ≤ K).

Solution:
(a) There are N different selections for drawing #1.
(b) Each one of those hasN selections for drawing #2. Thus, there areN2 different ways

to distribute the first two prizes
(c) Each one of those N2 has N selections for drawing #3. Thus, there are N3 different

ways to distribute the first 3 prizes .....
(d) ..... Thus, there are NK different ways to distribute all K prizes .....

It follows that the sample space Ω has sizeNK . Since all drawings are done at random, all outcomes
ω ∈ Ω are equally likely. Thus, P{ω} = 1/(NK) for all ω. Note that an outcome ω ∈ Ω is of the form

ω = (i1, i2, . . . , iK) : prize 1 goes to person i1, . . . prize K goes to person iK(???)

• Let A := { Jane gets exactly k prizes }.
Assume that the outcomes ω and ω′ are as follows:
• ω: participant i1 gets prize j1 and i2 gets prize j2
• ω′: participant i1 gets prize j2 and i2 gets prize j1
• There is no difference how other K − 2 prizes were awarded.

Even though order matters, we only are able to distinguish the outcomes ω and ω′ if j1 and j2 are
given to different persons. Otherwise all K slots of both ω and ω′ are identical, i.e., ω = ω′.
Thus, there are (only) as many different ways to give k of the K prizes to Jane as there are ways to
select k of K items DISREGARDING ORDER. That number is

(
K
k

)
.

Next, consider that each one of those
(
K
k

)
ways of designing k of theK slots of an outcome ω to Jane

must be complemented by filling each one of the remaining K − k slots with one of the other N − 1
participants. This time we CANNOT DISREGARD ORDER. See the discussion above concerning
the outcomes ω and ω′.
• We repeat the reasoning of (a) – (d) to N − 1 instead of N choices for those K − k

instead of k drawings and see that there are (N − 1)K−k possible selections.
• The eventA consists all outcomes obtained by matching any one of those (N−1)K−k

selections wih any one of the
(
K
k

)
ways of allocating k prizes to Jane.

• By the multiplication rule, |A| =

(
K

k

)
(N − 1)K−k.

• Since all outcomes are equally likely, P (A) =
|A|
|Ω|

=

(
K

k

)
(N − 1)K−k

NK
. �

We summarize the results of Theorem 4.4, Theorem 4.6, Proposition 4.1, and Proposition 4.2.
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Remark 4.2. The multinomial coefficients(
n

n1 n2 · · ·nk

)
=

n!

n1!n2! · · ·nk!
.

of Definition 4.3 appear in the following settings:

• Distinct selections of n items of which n1 are alike, n2 are alike, ..., nk are alike.
Example: different rearrangements of the word “BANANA”.

• They are coefficients in the expansion of
(
x1 + x2 + · · ·xk

)n.
• Distinct selections of n items into k distinct bins of fixed sizes n1, . . . , nk. That is the

WMS definition in their Theorem 2.3 of Ch.02.6.
• Subdividing n indistinguishable items into k partitions, where the sizes n1, . . . , nk of

those partitions are allowed to vary for different subdivisions. Example: number of
integer valued vectors (n1, . . . , nk) such that n1, . . . , nk ≥ 0 and

∑
j
nj = n. �
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5 More on Probability

This chapter corresponds to material found in WMS ch.2

5.1 Total Probability and Bayes Formula

Theorem 5.1 (Total Probability and Bayes Formula 31 ).

Assume that {B1, B2, . . . } is a partition of Ω and that A ⊆ Ω. such that P (Bj) > 0 for all j. Then

P (A) =
∞∑
j=1

P (A | Bj)P (Bj) .(5.1)

P (Bj | A) =
P (A | Bj)P (Bj)
∞∑
i=1

P (A | Bi)P (Bi)

. (Bayes formula)(5.2)

Note that the above also covers finite partitions {B1, B2, . . . , Bk} of Ω: apply the formulas with

Bk+1 := Bk+2 := · · · := 0 .

PROOF: Since (Bj)j partitions Ω (A ∩Bj)j partitions A. Thus, A =
⊎
j(A ∩Bj) . Thus,

P (A) =

∞∑
j=1

P (A ∩Bj) . =

∞∑
j=1

P (A | Bj)P (Bj) .

This proves (5.1). To prove (5.2), we apply to its right–hand side the already proven (5.1). We obtain

P (A | Bj)P (Bj)
∞∑
i=1

P (A | Bi)P (Bi)

=
P (A | Bj)P (Bj)

P (A)
=

P (A ∩Bj)
P (A)

= P (Bj | A) . �

When working with conditional probabilities, in particular when one wants to apply the Bayes for-
mula, it often is convenient to work with tree diagrams. This is demonstrated in the next example.

Example 5.1. It has been established that 40% of all jobs for college graduates are in the technology
sector. Of those college graduates who work in technology, one quarter enjoys listening to classical
music. Of those college graduates who hold other kinds of jobs, one out of three enjoys listening to
classical music.

(a) What is the probability that Pedro neither works in technology, nor listens to classical music?
(b) Harry does not listen to classical music. How likely is it that he works in technology?
(c) Jane says that she likes classical music. What is the probability that she works in technology?

Solution: We use the following abbreviations:
T: Works in technology O: “Other”: does not work in technology
L: Listens to classical music N: Does not listen to classical music

31Thomas Bayes (1702 - 1761) was an English clergyman and mathematician.
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The information available to us is sufficient to draw the following tree diagram:

ΩΩΩ

TTT

OOO

P (T ) = 4/10P (T ) = 4/10P (T ) = 4/10

P (O) = 6/10P (O) = 6/10P (O) = 6/10

LLL P (L ∩ T ) = 1/10P (L ∩ T ) = 1/10P (L ∩ T ) = 1/10

NNN P (N ∩ T ) = 3/10P (N ∩ T ) = 3/10P (N ∩ T ) = 3/10

LLL P (L ∩O) = 2/10P (L ∩O) = 2/10P (L ∩O) = 2/10

NNN P (N ∩O) = 4/10P (N ∩O) = 4/10P (N ∩O) = 4/10

P (L | T ) = 1/4P (L | T ) = 1/4P (L | T ) = 1/4

P (N | T ) = 3/4P (N | T ) = 3/4P (N | T ) = 3/4

P (L | O) = 1/3P (L | O) = 1/3P (L | O) = 1/3

P (N | O) = 2/3P (N | O) = 2/3P (N | O) = 2/3

A line segment that connects two nodes indicates conditioning of the right side on the left side. For
example, the node that connects T and N signifies that the event N is conditioned on the event
T . P (L | T ), the corresponding conditional probability, is attached to the line segment. Note
that this is also true for the two line segments that emanate from Ω, since P (T ) = P (T | Ω) and
P (O) = P (O | Ω) Note that T and O partition Ω and the same is true for L and N .
Tree diagrams can be very convenient because the probability of an intersection is obtained by
multiplying the two probabilities to the left. For example, P (T ∩N) = (4/10)(3/4) = 3/10.

Not all the notation is necessary to work with such a diagram. Here is a pared down version:

T: 4/10

O: 6/10

1/10

3/10

2/10

4/10

L: 1/4

N: 3/4

L: 1/3

N: 2/3

Let us now discuss the answers to the three problems posed above
(a) What is the probability that Pedro neither works in technology, nor listens to classical music?

• This is the ordinary (no conditioning) probability P (O ∩N) = 4/10.
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(b) Harry works in technology. How likely is it that he does not listen to classical music?
•We are conditioning on the event T and want to compute P (N | T . The diagram shows that
P (N | T = 3/4.

(c) Jane says that she likes classical music. What is the probability that she works in technology?
•We are asking for the conditional probability P (T | L).

This is a reverse conditioning (Bayes formula problem. The tree diagram makes it easy to find all
the probabilities involved:
• P (T | L) = P (T ∩ L)/P (L).
• P (T ∩ L) = 1/10 and P (L) = P (O ∩ L) + P (T ∩ L) = (2 + 1)/10 = 3/10.
• Thus, P (T | L) = (1/10)/(3/10) = 1/3.

We continue with some general remarks concerning tree diagrams.

It should be clear how to generalize such diagrams.
One can condition at each stage on more than just two
events. For example, Let us assume the following.
In stage 1, we “condition” Ω on Ω = A1

⊎
A2
⊎
A3,

In stage 2, we condition A2 on Ω = B1
⊎
B2
⊎
B3
⊎
B4.

If
P (A2) = 0.4 ,

then the resulting tree fragment is to the right.

0.08

0.20

0.12

B1 : 0.2

B2 : 0.5

B3 : 0.3

Because Ω =
⊎
j Bj , it is always true that

∑
j

P (Bj | Ak) =

∑
j P (Bj ∩Ak)
P (Ak)

=
P (Ak)

P (Ak)
= 1

Thus, the sum of the conditional probabilities over all line segment that emanate from a given node
is 1. In the tree excerpt above: that node is Ak = A2 and the sum of the conditional probabilities is

P (B1 | A2) + P (B2 | A2) + P (B3 | A2) = 0.2 + 0.5 + 0.3 = 1 . �

5.2 Random Sampling and Urn Models With and Without Replacement

The following definition is PRELIMINARY and will be amended in Definition 5.2 (Sampling as a
Random element) below (see p.88).

Definition 5.1.
(a) We call the action of picking n items x1, x2, . . . , xn from a collection of N items a

sampling action of size n. Aternatively, we also use the phrases sampling process
and sampling procedure. Here, n ∈ N and N ∈ N or N =∞.

(b) We call the specific outcome of such a sampling action (the list x1, x2, . . . , xn) a real-
ization of that sampling action. �

(c) In yet another instance of notational abuse, both the sampling action and an outcome
of this action (a realization) will be referred to as a sample of size n if this does not
lead to any confusion. �
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Example 5.2. Each of the following can be considered sampling actions.
(a) Drawing blindfolded a ball from an urn that containsN balls n = 5 times in a row recording

each time the outcome and then replacing the ball (putting it back).
(b) Drawing blindfolded n = 5 balls from an urn that contains N balls in one fell swoop, i.e.,

not replacing any of the balls
(c) Rolling a die twice in a row and recording the outcome.
(d) Selecting in a random fashion n = 2, 000 persons from all persons eligible to vote without

replacement, i.e., we want a sample of n distinct voters. Note thatN is huge when compared
to n.

(e) Same as (d), but we only record their voting preference, their annual income and their age
and discard all other data.

(f) Same as (e), but we only record their annual income.
(g) The random numbers generator of a computer creates a sample of n numbers such that they

are uniformly distributed on the interval [0, 1]. 32 (Computers can do that!)
Since there are infinitely many such numbers and the computer can generate any one of
them, 33 N =∞.

(h) A factory mass–produces an item, e.g., screws, at a huge rate per hour. Quality control
randomly picks n = 50 every hour and checks for defective items. Since the number N of
screws from which the sample is obtained is so huge, one can, for all practical purposes, act
as if N =∞. (This will considerably simplify the mathematics involved in computing, e.g.,
the probability that such a sample contains 5 or more defective items) if the rate of defectives
is supposed to be 3.5%.

(i) We write down the numbers 1, 2, ,̇10. This deterministic sampling action. is very boring
for a course called “Probability Theory”, because no randomness is involved. Nevertheless,
Definition 5.1 encompasses determininistic sampling. �

Remark 5.1.
(a) We only are interested in sampling actions that involve randomness. In other words, if there

is a set U such that xj ∈ U for all j, our sampling action can be modeled, for fixed n, as a
random element ~X : (Ω, P ) → Un. Since deterministic actions also are (constant) random
elements, deterministic sampling actions are also covered by Definition 5.1.

(b) Since the “population” from which each item xj = Xj(ω) is sampled is the set U from (a), it
is possible to implement Ω := UN as the carrier set of the probability space (Ω, P ). In other
words, we could narrow things down to ~X : (UN , P ) → Un. Matter of fact, you will be as
specific as you can when trying to find the formula or just the particular number that solves
a given problem.

(c) But there are advantages to refer to an unspecified probability space (Ω, P ) when dealing
with the general theory. A good example are the theorems and definitions about expectation
and variance in MF Chapter 6 (Discrete Random Variables and Random Elements) where
going into specific settings would hinder rather than help the understanding. �

Here is the promised amended version of Definition 5.1.
32“uniformly distributed” means that the proportion of numbers xj that fall within the interval 0 ≤ a < b ≤ 1 is

(approximately) b− a.
33in theory, since there is no such thing as “infinitely many”) in our physical reality
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Definition 5.2 (Sampling as a Random element). Let (Ω, P ) be a probability space. Let U 6= ∅ be a
collection of N items (N ∈ N or N =∞), which we can think of as the “population of interest”. Let
n ∈ N (so n <∞), such that n ≤ N .

(a) Let ~X : (Ω, P ) −→ Un be a random element with codomain Un. If we interpret ~X
as the action of picking n items

~x = x1, x2, . . . , xn = ~X(ω) = X1(ω), X2(ω), . . . , Xn(ω)

from U , then we call ~X a sampling action of size n. Aternatively, we also use the
phrases sampling process and sampling procedure.

(b) We call a specific outcome (the list ~x = (x1, x2, . . . , xn)) a realization of that sam-
pling action. See Example 1.5 on p.11.

(c) Both the sampling action and an outcome of this action (a realization) are called a
sample of size n if the context makes it clear what is being discussed.

(d) If there is a specific ~x∗ ∈ Un such that P{ ~X = ~x∗} = 1, (this certainly is the case if
~X(ω) = ~x∗ for all ω ∈ Ω), then we call both the sampling action ~X and the realization
~x∗ a deterministic sample. �

Remark 5.2.
(a) You may wonder about the difference between a Un–valued random element and a sample

of n items which are picked from a population U . The answer: Mathematically speaking,
there is no difference whatsoever. It is the interpretation that matters!

(b) Going back to using the terms probability space and sample space interchangeably, this
author likes to think not of (Ω, P ), but only of (Un, P ~X) as a sample space. The reason is that
the latter hosts the potential outcomes of the sampling action ~X . (And yes, the probability
measure P ~X on that sample space is the distribution of ~X).

(c) Do those individual sample picks Xj happen with or without replacement? In other words,
can the same x ∈ U be picked more than once or are for a fixed ω all outcomes distinct? The
answer: The definition does not say. This must always be explicitly stated or known from
the context.

(d) Consider items (d) and (h) of Example 5.2. If N � n, then the computational differences
between selecting the sample with or without replacement are so small that we can assume
sampling with replacement even if the sampled items are not returned to the population
after each pick. This often simplifies the computational effort involved. �

Remark 5.3. We switch focus to the role of proper randomization when picking a sample.
(a) Picking a small size sample that allows us to make inferences to the population from which

it was drawn, can require a lot of thought. The budget available for collecting that sample is
often limited and will limit the methods available. Of course, a smaller sample will cost less
than a bigger one if the procedure to collect the data is the same in both cases.

We fix n ∈ N. What will make the sample representative of the population, i.e.
•what guarantees that the composition of the sample mirrors that of the population?
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It certainly will not help if the sample has, e.g., 90% students if the population of interest only
has 20%. So, we can fix that by establishing quota and restrict the proportion of students to
20%. Of course, there is also the ethnic composition of the population that we want mirrored
in the sample. And there is income distribution, gender and 5, 000 or more attributes for
which we want to maintain close to identical proportions reasonably well.

(b) Clearly, a practical limit to the number of ways a (hopefully small) can be partitioned into
“strata” is reached quickly, so we must look for an alternative way to obtain a sample that is
not biased in favor of value a, say “is male” of attribute B (here: gender), when compared
to the proportion in the population. And we need this for all important a and B.
The solution is to make the sample selection as random as possible. If we pick the first item
at random, i.e., with the same chance 1

N , then pick #2 at random from the remaining N − 1,
then pick #3 at random from the remaining N − 2, .... and finally pick #n at random from
the remaining N − n+ 1 items, then this degree of randomness should prevent any kind of
gross distortion (bias) in the sample.

(c) So then, that means that every item has equal chance of being selected, doesn’t it? The
answer is NO. Rather, any collection ~x = x1, . . . , xn should have the same chance of being
selected as any other collection ~x′ = x′1, . . . , x

′
n. By the way, we know that probability:

• If we do not worry about the order in which the n distinct items were selected, then there
are

(
N
n

)
different selections and that probability must be 1/

(
N
n

)
.

• If order does matter and we deal with permutations, then the answer is 1/PNn .
(d) Would the above requirement be the same as simply asking that each item in the population

has the same probability, 1/N , of being selected? Next comes a counterexample. �

Example 5.3. We have a population of N = 600 students. 100 of them are freshmen, 100 of them
are sophomores, 100 of them are juniors, 100 of them are seniors, 100 of them are first year graduate
students, the others are second year graduate students.
A sample of n = 100 will be selected as follows. A fair die is rolled. If the outcome is 1, all freshmen
will be selected, On a 2, all sophomores will be selected, ..... On a 6, all second year graduate
students will be selected.
• In the resulting sample each student has the same probability 1/6 of being selected.
• But only 6 of the possible

(
600
100

)
possible outcomes have a non–zero chance (of 1/6 each) of

being selected: Those where each student belongs to the same group as all the others! �

There is a special name for the ideal kind of samples (with respect to randomness of the selection).
Note that the following definition is tied to sampling without replacement!

Definition 5.3 (Simple Random Sample).

(a) We call a sampling action of size n (n ∈ N) from a population of sizeN <∞ a simple
random sampling action, in brief, an SRS action, if there are no duplicates allowed
(i.e., we sample without replacement) and each of the potential outcomes has equal
chance of being selected.

(b) As in Definition 5.2 (Sampling as a Random element), we call both an SRS action and
a realization of this action a simple random sample of size n. (Briefly, an SRS.) �
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Definition 5.4 (Urn models). SRS requires that a single item is selected with equal probability
|U | = 1/N. When abstracting from the specifics, this boils down to being blindfolded and selecting,
without replacement, nwell shuffled balls from an urn containingN numbered balls. Some authors
also use the scenario of tickets in a box rather than balls in an urn.

(a) An urn model without replacement describes a mechanism by which a blindfolded
person selects a fixed number of balls from an urn in which the balls have been well
mixed. Note that the resulting realizations will contain no duplicates.

(b) An urn model with replacement describes a mechanism by which a blindfolded
person selects a fixed number of balls from an urn as follows.
(1) The balls are well mixed.
(2) A ball is picked and the outcome is recorded.
(3) The ball is put back into the urn.
(4) Steps (1) through (3) are repeated until all n balls have been selected. �

More material may be added to this section at a later time.
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6 Discrete Random Variables and Random Elements

This chapter corresponds to material found in WMS ch.3

6.1 Probability Mass Function and Expectation

We start with a trivial observation.

Proposition 6.1. A real–valued function of a random element is a random variable.

PROOF: Let X : (Ω, P ) → Ω′ be a random element on a probability space (Ω, P ) and g : Ω′ → R
be a real–valued function. Then ω 7→ g

(
X(ω)

)
is a real–valued function of ω, hence it is a random

variable. �

Definition 6.1 (Probability mass function).

For a discrete random element X on (Ω, P ), define

p(x) := pX(x) := PX{x} = P{X = x} .(6.1)

We call pX the probability mass function (WMS: probability function ) for X . We also
write PMF for probability mass function. �

Theorem 6.1.

If pX is the probability mass function of a discrete random element X , then

0 ≤ pX(x) ≤ 1; for all x(6.2) ∑
x s.t. pX(x)>0

pX(x) = 1(6.3)

Proof: See WMS ch.3. �
Next, we elaborate on the meaning of

∑
x s.t. pX(x)>0

. . . .

We make the following blanket assumption.

Assumption 6.1 (All series are absolutely convergent).

Unless explicitly stated otherwise, all sequences are either known to be absolutely conver-
gent or assumed to be absolutely convergent. In particular, if pX(x) is the probability mass
function of a discrete random element X which takes values in a set Ω′, g : Ω′ → R is a
real–valued function and xn is a sequence in Ω′, then the series

∑
g(xj)pX(xj) is absolutely

convergent. �
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Remark 6.1. Assume that pX(x) is the probability mass function of a discrete random element X
with values in a set Ω′. Then there exists a countable set Ω∗ ⊆ Ω′ such that PX(Ω∗) = 1. Thus, the
probability mass function pX(·) of X satisfies

pX(x) = 0 for all x ∈ (Ω∗){.

Let g : Ω′ → R be a real–valued function. Clearly,

g(x) · pX(x) = 0 for all x ∈ (Ω∗){.

Ω∗ being countable means that Ω∗ = {x1, x2, . . . } for some finite or infinite sequence xj . All that
follows is trivial in the finite case, so let us confine ourselves to the infinite case Ω∗ = {xj : j ∈ N}.
For j ∈ N, let aj := g(xj)pX(xj). By Assumption 6.1 on p.91, the series

∑
aj is absolutely conver-

gent. Hence, its value does not depend on the ordering of the elements of Ω∗. Thus, we are justified
to write ∑

x∈Ω∗

g(x)pX(x) rather than
∞∑
j=1

g(xj)pX(xj) .

We go a step further. Since g(x)pX(x) = 0 for x /∈ Ω∗, we can omit “x ∈ Ω∗” and write either of the
following: ∑

x

g(x)pX(x) =
∑
x∈Ω′

g(x)pX(x) =
∑
x∈Ω∗

g(x)pX(x)

=
∑

pX(x)>0

g(x)pX(x) =
∞∑
j=1

g(xj)pX(xj) .
(6.4)

Choosing g(x) = 1, we can express probabilities involving X as follows. If B ⊆ Ω′, then

P{X ∈ B} = PX(B) =
∑
x∈B

pX(x) =
∑

x∈Ω∗∩B
pX(x) =

∑
x∈B,pX(x)>0

pX(x) . �(6.5)

Example 6.1. Johnny may choose 2 cookies from a plate with 4 chocolate cookies and 3 oatmeal
cookies We write CC for chocolate cookies and OC for oatmeal cookies. Johnny has no preference
and picks two cookies at random.
Let Y := number of CC chosen by Johnny. Find the PMF pY (y) for Y .

Solution:
Note that you were not given the domain (sample space) (S, P ) of the random variable Y . There is
no need to specify it completely. It suffices to know that, since Johnny can choose 2 of the 7 cookies
in
(

7
2

)
ways,

(1) |S| =

(
7

2

)
=

7 · 6
2!

= 21. Since selection was at random, P{s} =
1

21
for all s ∈ S.

The codomain can be any set of numbers that contains 0, 1, 2, because pY (y) = P{Y = y} = 0 for all
other numbers y. Thus, our task is to compute pY (0), pY (1), pY (2).

(2) Each selection of y CCs comes with a selection of 2− y OCs

Thus, there are
(

4

y

)
·
(

3

2− y

)
ways to select y CCs and 2− y OCs. (y = 0, 1, 2.)
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(3) pY (0) =

(
4
0

)
·
(

3
2

)
21

=
3

3 · 7
=

1

7
,

pY (1) =

(
4
1

)
·
(

3
1

)
21

=
4 · 3
3 · 7

=
4

7
,

pY (2) =

(
4
2

)
·
(

3
0

)
21

=
(4 · 3)/2

3 · 7
=

2

7
. �

Whereas a PMF is defined for any discrete random element Y , the next definition needs that the
values of Y are numbers.

Definition 6.2 (WMS Ch.03.2, Definition 3.4).

Let Y be a discrete random variable with probability mass function pY (y). Then

E[Y ] :=
∑
y

y pY (y) =
∑
y

y P{Y = y} ,

is called the expected value, also expectation or mean of Y . �

Remark 6.2.

A strict definition of E[Y ] would explicitly require that the sum
∑
y
y · pY (y) is absolutely

convergent, i.e., ∑
y

|y|pY (y) < ∞ .

The reason: Only absolute convergence of a series guarantees that its value does not depend
on the order in which the terms are added. As in WMS and according to Assumption 6.1 on
p.91, we will quietly asssume that absolute convergence is satisfied for all random variables
for which the expected value is used. �

Proposition 6.2. ? Let A1, A2, . . . , An a list of mutually disjoint events in a probability space (Ω, P ).
Let y1, y2, . . . , yn ∈ R. Then

E

 n∑
j=1

yj1Aj

 =

n∑
j=1

yjP (Aj) .(6.6)

PROOF: Let Y :=
n∑
j=1

yj1Aj ; let A :=
n⊎
j=1

. We may assume that A = Ω, since we can add the zero

term 0 · 1A{ to Y if A{ 6= ∅.
We further may assume that all numbers y1, . . . , yn are distinct for the following reason. Assume for
example, that yn1 = yn2 = ynk = y′ and that this is the complete list of indices nj such that ynj = y′.
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We define A′ := An1

⊎
An2

⊎
·
⊎
Ank . Since

k∑
j=1

ynj1Anj =
k∑
j=1

y′ · 1Anj = y′
k∑
j=1

1Anj = y′ · 1Anj
⊎
···
⊎
Ank

= y′ · 1A′ ,

we can replace those terms with duplicate y′–values with the single term y′ · 1A′ .
We repeat this procedure with all y–values, even if they occur even once. This way we can write

Y =

m∑
j=1

y′i1A′i , where Ω =

m⊎
i=1

A′i and all y′i are distinct.(6.7)

In such a representation of Y , the distinctness of the y′i implies that

Y (ω) = y′i ⇔ ω ∈ A′i ⇔ {Y = y′i} = A′i .

In particular, P{Y = y′i} = P (A′i). Thus,

E[Y ] = E

[
m∑
i=1

y′i1A′i

]
=
∑
y

y′P{Y = y′} =
m∑
i=1

y′iP{Y = y′i} =
m∑
i=1

y′iP (A′i) .(6.8)

In the last step of the proof we bring back the duplicate y–values. As above, we assume that
yn1 = yn2 = ynk = y′i and A′i := An1

⊎
An2

⊎
·
⊎
Ank . Then

y′iP (A′i) = y′i P

 k⊎
j=1

Anj

 = y′i

k∑
j=1

P (Anj ) =

k∑
j=1

ynjP (Anj ) .

We substitute this result in (6.8) and obtain E[Y ] =
m∑
i=1

k∑
j=1

ynjP (Anj ) .

Since
m∑
i=1

is the summation over all complete groups of equal y–values and each
k∑
j=1

sums over all

items in that group, that double sum equals
n∑
j=1

yjP (Anj ). Thus, E[Y ] =
n∑
j=1

yjP (Anj ) .

This proves the proposition. �

Theorem 6.2.

Let Y be a discrete random variable and g : R → R; y 7→ g(y) be a real-valued function. Then the
random variable g ◦ Y : ω 7→ g

(
Y (ω)

)
has the following expected value:

E[g(Y )] =
∑
all y

g(y) pY (y) =
∑
all y

g(y)P{Y = y} .(6.9)

PROOF: We give the proof asuming that Y takes only finitely many distinct values y1, y2, . . . , yn. 34

34As an aside, note that y 7→ g(y) need not be defined for all y ∈ R. It suffices that the domain of g contains
Y (Ω) = {Y (ω) : ω ∈ Y (Ω)}. (The range of the function Y ; see Definition 2.14 on p.27.)

94 Version: 2024-05-06



Math 447 – MF Lecture Notes Student edition with proofs

Let {z1, z2, . . . , zm} denote the set of all distinct function values g(yi), i = 1, . . . , n. In general, m ≤ n
rather thanm = n, because is possible for one or more of the arguments y to have the same function
value g(y).
For j = 1, . . . ,m, let

Ij := { i ∈ [1, n] : g(yi) = zj }

denote the set of all those indices i such that g assigns yi to the same function value zj . Note that
(1) each Ij contains at least one index.
(2) The index sets Ij form a partition of the indices i for the arguments yi of g:

[1, n] = I1

⊎
I2

⊎
· · ·
⊎

Im .(A)

For i = 1, . . . , n and j = 1, . . . ,m, let

Bi := {Y = yi} = {ω ∈ Ω : Y (ω) = yi} ; Cj := {Z = zj} = {ω ∈ Ω : Z(ω) = zj} .(B)

Since ω ∈ Cj ⇔ Z(ω) = zj
(B)⇔ Y (ω) = yi for some i ∈ Ij ⇔ ω ∈

⊎
i∈Ij

Bi, it follows that

Cj =
⊎
i∈Ij

Bi .(C)

We have for Y and Z the representations

Z(ω) =

m∑
j=1

zj1{Z=zj}(ω) =

m∑
j=1

zj1Cj (ω)
(C)
=

m∑
j=1

zj1⊎
i∈Ij

Bi(ω) =

m∑
j=1

zj
∑
i∈Ij

1Bi(ω) .(D)

Here the last equation holds because the indicator function of a disjoint union is the sum of the
indicator functions. That is a triviality which has been noted in (3.43) on p.65.
Since g(yi) = const = zj for all i ∈ Ij , we can rewrite that last sum as

Z(ω) =

m∑
j=1

∑
i∈Ij

g(yi)1Bi(ω)
(A)
=

n∑
i=1

g(yi)1Bi(ω) .(E)

We conclude from (D) and (E) that E[Y ] = E

[
n∑
i=1

g(yi)1Bi

]
.

Finally, we apply Proposition 6.2 on p.93 and obtain, since Bi = {Y = yi},

E[Y ] =
n∑
i=1

g(yi)P (Bi) =
n∑
i=1

g(yi)P{Y = yi} . �

The following corresponds to WMS Theorems 3.4 and 3.5.
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Theorem 6.3.

Let c ∈ R, Y be a discrete random variable and g1, g2, gn : R→ R be a list of n real-valued functions.
Then

E[c] = c and E[cY ] = cE[Y ] ,(6.10)
E[cgj(Y )] = cE[gj(Y )] .(6.11)

Further, the random variable

n∑
j=1

gj ◦ Y : Ω −→ R; ω 7→
n∑
j=1

gj
(
Y (ω)

)
has the following expected value:

E

 n∑
j=1

gj ◦ Y

 =

n∑
j=1

E[gj ◦ Y ] .(6.12)

PROOF: Let Z denote the random variable Z = c : ω 7→ c, then

P{Z = z} =

{
1, if y = c,

0, if y 6= c.

Thus, E[Z] =
∑

z:PZ{z}>0

z · PZ{z} = c · 1 = c . This proves the first half of (6.10).

For the proof of the second half, note that c = 0 implies cY = 0. Thus, E[cY ] = cE[Y ] becomes
E[0] = 0, and we covered that case already. So we may assume that c 6= 0.

Let Y ′ := cY and y′ := cy. Then Y (ω) = y ⇔ Y ′(ω) = y′. Thus, P{Y ′ = y′} = P{Y = y′

c }. Thus,

E[cY ] = E[Y ′] =
∑
y′

y′ · P{Y ′ = y′} =
∑
y′

y′ · P{Y =
y′

c
}

=
∑
y

c · y
′

c
· P{Y =

y′

c
} = c

∑
y

·y · P{Y = y} = c · E[Y ] .

This proves the second half of (6.10). We apply this formula with gj(Y ) in place of Y and (6.11)
follows.
Finally, we apply Theorem 6.4 with Yj in place of gj ◦ Y . 35 This results in (6.12). �

The following cannot be found in the WMS text.

35The proof of that theorem does not make use of this current one.
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Theorem 6.4.

Let Y1, Y2, . . . , Yn : Ω→ R be discrete random variables which all are defined on the same probability
space (Ω, P ) (n ∈ N). Then the random variable

n∑
j=1

Yj : Ω −→ R; ω 7→
n∑
j=1

Yj(ω)

has the following expected value:

E

 n∑
j=1

Yj

 =

n∑
j=1

E[Yj ] .(6.13)

In other words, the expectation of the sum is the sum of the expectations.

PROOF: ? There are finite or infinite sequences xi, yj ∈ R as follows. Let Ai := {X = xi} and

Bj := {Y = yj}. Then the Ai are disjoint, the Bj are disjoint, and A∗ := (
⊎
iAi)

{, , B∗ :=
(⊎

j Bj

){
have probability zero. We may assume that X(ω) = 0 for ω ∈ A∗ and Y (ω) = 0 for ω ∈ B∗, since
that does not change any assertions that are based on probabilities, such as the taking of expected
values: Being able to discard the expressions

⊎
iAi and

⊎
j Bj considerably simplifies the proof.

For example, this assumption allows us to write, without having to exclude any ω ∈ Ω,

X(ω) =
∑
i

xi1{X=xi}(ω) , Y (ω) =
∑
j

yj1{Y=yj}(ω) .(A)

If P{X = 0} > 0, then we include 0 as one of the xi and if P{Y = 0} > 0, then we include 0 as one
of the yj . We do so even though 0 · 1{X=0} = 0 · 1{Y=0} = 0 contributes nothing to those sums, since
then

Ai := {X = xi} , Bj := {Y = yj}j , Ci,j := Ai ∩Bj

form partititions
⊎
iAi =

⊎
j Bj =

⊎
i,j Ci,j = Ω of Ω. Moreover, for each i, j,

Ai =
⊎
k

Ci,k and Bj =
⊎
k

Ck,j ,

which implies 1Ai =
∑
k

1Ci,k and 1Bj =
∑
k

1Ck,j .
(B)

Since X
(A)
=
∑
i

xi1Ai
(B)
=
∑
i,j

xi1Ci,j Y
(A)
=
∑
j

yj1Bj
(B)
=
∑
i,j

yj1Ci,j

and thus, X + Y =
∑
i,j

xi1Ci,j +
∑
i,j

yj1Ci,j =
∑
i,j

(xi + yj)1Ci,j ,

tt follows from Prop.6.2 on p.93, that

E[X] =
∑
i,j

xiP (Ci,j) , E[Y ] =
∑
i,j

yjP (Ci,j) , E[X + Y ] =
∑
i,j

(xi + yj)P (Ci,j) .(C)
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We conclude the proof as follows:

E[X + Y ]
(C)
=
∑
i,j

(xi + yj)P (Ci,j) =
∑
i,j

xiP (Ci,j) +
∑
i,j

yjP (Ci,j)
(C)
= E[X] + E[Y ] . �

Remark 6.3.
(1) The last theorem encompasses all variants of Theorem 6.3. For example, (6.12) fol-

lows with Yj = gj ◦ Y .
(2) The reason that many texts on an undergraduate probability theory do not list this

theorem is that the proof, though elementary, is very tedious and requires working
with the PMF of the random element ~Y = (Y1, . . . , Yn), given by

p~Y (~y) = P{Y1 = y1, . . . , Yn = yn} �

Variance and standard deviation of a random variable indicate how strongly its distribution is con-
centrated around its expected value.

Definition 6.3 (Variance and standard deviation of a random variable).

Y be a random variable. The variance of Y is defined as the expected value of (Y −E[Y ])2.
In other words,

V ar[Y ] := σ2
Y := E

[
(Y − E[Y ])2

]
.(6.14)

We call SD(Y ) := σY :=
√
V ar[Y ] The standard deviation of Y . �

Theorem 6.5.

If Y is a discrete random variable, then

V ar[Y ] = E
[
Y 2
]
−
(
E[Y ]

)2
.

PROOF:

V ar[Y ] = E[(Y − E[Y ])2] = E(Y 2 − (2E[Y ])Y + (E[Y ])2

= E(Y 2) − 2E[Y ]E[Y ] + (E[Y ])2 = E(Y 2) − (E[Y ])2 . �

Theorem 6.6.

Let Y be a discrete random variable and a, b ∈ R. Then

V ar [aY + b] = a2V ar[Y ] .(6.15)

In other words, shifting a random variable by b, leaves its variance unchanged and multiplying it by
a constant multiplies its variance by the square of that constant.
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PROOF: We prove this by first showing that, for random variables Y and Y ′,

V ar[aY ] = a2V ar[Y ] and V ar[Y ′ + b] = V ar[Y ′]

The assertion then follows from replacing Y ′ with aY .
We obtain from (6.10) that

V ar[aY ] = E[a2Y 2]−
(
E[aY ]

)2
= a2E[Y 2]−

(
aE[Y ]

)2
= a2

(
E[Y 2]− (E[Y ])2

)
= a2V ar[Y ] .

To prove that V ar[Y ′ + b] = V ar[Y ′], we observe that for any random variable Z and constant c,
E[Z + a] = E[Z] + E[a] = E[Z]. Thus,

V ar[Y ′ + b] = E
[(

(Y ′ + b)− E[Y ′ + b]
)2]

= E
[(

(Y ′ + b)− (E[Y ′] + b)
)2]

= E
[(
Y ′ − E[Y ′]

)2]
= V ar[Y ′] . �

Remark 6.4. Since
√
a2 = −a for negative numbers a,

σ(aY ) = |a|σ(Y ) . �(6.16)

The following cannot be found in the WMS text.

Theorem 6.7 (Bienaymé formula).

Let Y1, Y2, . . . , Yn : Ω → R be independent discrete random variables which all are defined on the
same probability space (Ω, P ) (n ∈ N). Here we take the naive definition of independence: The
outcomes of any Yk are not influenced by the outcomes of the other Yj . We will give a formulation of
independence in terms of probabilities in a later chapter. Then

V ar

 n∑
j=1

Yj

 =

n∑
j=1

V ar[Yj ] .(6.17)

In other words, for independent random variables, the variance of the sum is the sum of the variances.

PROOF: Not given here. �

Remark 6.5. The independence is necessary, otherwise there are counterexamples:
If Y1 = Y2 = Y for some random variable Y , then

V ar[Y + Y ] = V ar[2Y ] = 4V ar[Y ] 6= V ar[Y ] + V ar[Y ] . �
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6.2 Bernoulli Variables and the Binomial Distribution

Definition 6.4 (iid sequences).

LetX1, X2, . . . (Ω, P )→ Ω′ be a sequence of random elements. We speak of an independent
and identically distributed sequence, in short, an We speak of an iid sequence of random
elements, if

(1) the Xj are independent. Here we take the naive definition of independence: The
outcomes of any Xk are not influenced by the outcomes of the other Xj . We will
give a formulation of independence in terms of probabilities in a later chapter.

(2) All random elements have the same distribution:
PX1(B) = PX2(B) = PX3(B) = · · · for all j and all B ⊆ Ω′.

• Note that this can also be written
P{X1 ∈ B} = P{X2 ∈ B} = P{X3 ∈ B} = · · · for all j and all B ⊆ Ω′.

• If the Xj are discrete random elements, identical distribution translates to identical
PMFs pX1(x) = pX2(x) = pX3(x) = · · · for all j and all x ∈ Ω′. �

Definition 6.5 (Bernoulli items and variables).

Let X be a binary random element on a probability space (Ω, P ), i.e., a random element
which only assumes two outcomes, such as
• S (success) or F (failure) • T (true) or F (false) • Y (Yes) or N (No) • 1 or 0

We call X a Bernoulli random element. or a Bernoulli trial.

• We call p := P{X = success } the success probability and q := 1−p, i.e., q = P{X =
failure }, the failure probability of the Bernoulli trial.

• If a Bernoulli trial X has outcomes 1 and 0, then we call X a Bernoulli variable or a
0–1 encoded Bernoulli trial.

• We call an iid sequence of Benoulli trials a Bernoulli sequence. �

Remark 6.6.
(a) The entire distribution of a Bernoulli trial is determined by the value of its success probability.
(b) Note that the definition of a Bernoulli sequence (Xj)j implies that

(1) the Xj are independent
(2) each Xj has the same success and failure probabilities. We write p and q for those numbers.

(c) Unless stated otherwise, we interpret the value 0 of a 0–1 encoded Bernoulli trial as failure and
the value 1 as success. �

Theorem 6.8 (Expected value and variance of a 0–1 encoded Bernoulli trial).

Let X be a 0–1 encoded Bernoulli trial with p := P{X = 1}. Then

E[X] = p and V ar[X] = pq .(6.18)
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PROOF:
E[X] = 0q + 1 · p = p.
For the variance, V ar[X] = E[X2] − (E[X])2 = E[X2] − p2. Further,

E[X2] = 02 · q + 12 · p = p.

Hence, V ar[X] = p− p2 = p(1− p) = pq. �

Definition 6.6 (Binomial Distribution).

Let n ∈ N and 0 ≤ p ≤ 1. Let Y be a random variable with probability mass function

pY (y) =

(
n

y

)
py qn−y .(6.19)

Then we say that Y has a binomial distribution. with parameters n and p or, in short, a
binom(n, p) distribution. We also say that Y is binom(n, p). �

Remark 6.7. How does one see that pY of (6.19) satisfies pY (y) ≥ 0 for all y and
∑

y pY (y) = 1, i.e.,
it really is a probability mass function?
• pY (y) ≥ 0 is true, since p, q,

(
n
y

)
≥ 0.

• We apply the binomial theorem (see Theorem 4.5) to (p+ q)n and obtain

1 = 1n = (p+ q)n =
n∑
j=0

(
n

j

)
pjqn−j . �

Theorem 6.9.

Let X1, X2, Xn be a Bernoulli sequence of size n with success probability p. Let Y be the number of
successes in that sequence, i.e., Y (ω) = number of indices j such that Xj(ω) = S.
• Then Y is binom(n, p).

PROOF: Clearly,

Y (ω) = y ⇔

{
Xj(ω) = S for y indices j,
Xj(ω) = F for n− y indices j.

Let ~x :=
(
x1, . . . , xn

)
a vector that consists of y components S and n− y components F . For such an

arrangement ~x of y successes and n− y failures, let n1, n2, ny denote the indices for which Xnj = S
and m1,m2,mn−y those indices for which Xmj = F . Further, let A(~x) denote the event

A(~x) := {X1 = x1 , X2 = x2, . . . , Xn = xn} .

Then independence of the Bernoulli trials Xj and thus, of the events {Xj = xj}, yields

P
(
A(~x)

)
= P

(
{X1 = x1} ∩ · · · ∩ {Xn = xn}

)
= P{X1 = x1} · P{X2 = x2} · · ·P{Xn = xn}

= P{Xn1 = S} · · ·P{Xny = S} · P{Xm1 = F} · · ·P{Xmn−y = F} = py · qn−y .(A)
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There are as many different vectors ~x with y successes and n− y failures as there are ways to form
different lists of size n consisting of y items S and n− y items F . That number is

(
n
y

)
.

We observe that the events A(~x) and A(~x′) are disjoint for different ~x and ~x′, since this means that
there is at least one index jsuch that either xj = S and x′j = F or the other way around.
Let us assume that xj = S and x′j = F . If ω ∈ A(~x), then Xj(ω) = S But then ω /∈ A(~x′), since then
Xj(ω) would have to be F . Thus, A(~x) ∩ A(~x′) = ∅. The case that xj = F and x′j = S is handled in
the same fashion. Since

{Y = y} =
⊎
~x

A(~x)

where ~x assumes all
(
n
y

)
arrangements of y successes and n− y failures, it follows that

P{Y = y} =
∑
~x

A(~x)P
(
A(~x)

(A)
=

(
n

y

)
pyqn−y .

This last expression equals the PMF of a binom(n, p) distribution and this concludes the proof. �

Theorem 6.10 (Expected value and variance of a binom(n, p) variable).

Let Y be a binom(n, p) variable. Then

E[Y ] = n p and V ar[Y ] = n pq .(6.20)

PROOF: Let X1, . . . , Xn be an iid list of 0–1 encoded Bernoulli trials with p := P{X = 1}. Let

Y ′ :=
n∑
j=1

Xj . according to Theorem 6.8, Theorem 6.4 on p.96, and, since the Xj are independent,

Theorem 6.7 (Bienaymé formula) on p.99,

E[Y ′] =
n∑
j=1

E[Xj ] = n p and V ar[Y ′] =
n∑
j=1

V ar[Xj ] = n p q.

Further, Y ′ = y ⇔ exactly y of the Xj have outcome y. Thus, Y ′ denotes the number of successes
of those Bernoulli trials. Acccording to Theorem 6.9 on p.101, Y ′ has a binom(n, p) distribution.
Since expected value and variance of a discrete random variable are determined by its PMF,
E[Y ] = E[Y ′] = n p and V ar[Y ] = V ar[Y ] = n p q. �

6.3 Geometric + Negative Binomial + Hypergeometric Distributions

Definition 6.7 (Geometric distribution).

A random variable Y is said to have a geometric distribution with parameter 0 ≤ p ≤ 1 or,
in short, a geom(p) distribution, if its probability mass functions is as follows:

pY (y) = qy−1 p , for y = 1, 2, 3, . . . . �(6.21)
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Theorem 6.11. LetX1, X2, · · · : (Ω, P )→ {S, F} be an infinite Bernoulli sequence with success probability
0 ≤ p ≤ 1.

Let T (Ω, P )→ N be the random variable

T (ω) :=

{
smallest integer k > 0 such that Xk(ω) = S if such a k exists,
∞ , else.

• Then T is geom(p).

PROOF: Since T (ω) = n ⇔ X1(ω) = X2(ω) = Xn−1(ω) = F and Xn(ω) = S and the
independence of the Xi implies that the events {X1 = F}, {X2 = F}, {Xn−1 = F}, {Xn = S}, are
independent, we obtain

P{X1 = F, X2 =F,Xn−1 = F,Xn = S} = P{X1 = F} ∩ · · · {Xn−1 = F} ∩ {Xn = S}
= P{X1 = F} · P{X2 = F} · · ·P{Xn−1 = F} · P{Xn = S} = qn−1 p . �

6.1 (Figure). PMF for geom(0.5).
6.2 (Figure). CDF for geom(0.5).

Remark 6.8. In Theorem ?? we wrote T (ω) rather than the usual Y (ω) for the following reason. If
we interpret the index j of the Bernoulli trial Xj as the point in time when the jth trial takes place,
then ω 7→ T (ω) represents a random time, the time at which the first success happens. �

Theorem 6.12 (WMS Ch.03.5, Theorem 3.8).

If Y is a geom(p) random variable, then

E[Y ] =
1

p
, and V ar[Y ] =

q

p2
.

PROOF:
A: Expectation E[Y ]:
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One can obtain the derivative of the series
∞∑
y=1

qy by differentiating it term–by==term. Since

d

dq
qy = yqy−1 ,

it follows that

d

dq

 ∞∑
y=1

qy

 =
∞∑
y=1

yqy−1 .(A)

We use (A) as follows.

E(Y ) =

∞∑
y=1

ypY () =

∞∑
y=1

yqy−1p = p

∞∑
y=1

yqy−1 (A)
= p

d

dq

 ∞∑
y=1

qy


= p

d

dq

(
q

1− q

)
= p

1 · (1− q) − q(−1)

(1− q)2
= p

1

p2
=

1

p
.

B: Variance V ar[Y ]: 36

[6] Kargin, Vladislav: BU Lecture Notes for the Introduction to Probability Course
We compute the variance by again interchanging differentiation and summation. It follows from

d2

dq2
qy = y(y − 1)qy−2 ,

that

d2

dq2

 ∞∑
y=1

qy

 =
∞∑
y=2

y(y − 1)qy−2 =
1

pq

∞∑
y=2

y(y − 1)qy−1 · p .(B)

We use (B) as follows.

E[Y (Y − 1)] =
∞∑
y=1

y(y − 1)pY () =
∞∑
y=2

y(y − 1)qy−1p = pq
∞∑
y=2

y(y − 1)qy−2

(B)
= pq

d2

dq2

 ∞∑
y=2

qy

 = pq · d
2

dq2

 ∞∑
y=0

qy

 = pq · d
2

dq2

(
1

1− q

)

= pq · d
dq

(
−1

(1− q)2

)
= pq · 2

p3
=

2q

p2
. �

Since V ar[Y ] = E[Y 2]−
(
E[Y ]

)2
= E[Y 2]− (1/p)2, we conclude that

V ar[Y ] =
(
E[Y 2] − E[Y ]

)
−
(

1

p

)2

+ E[Y ] = E[Y (Y − 1)] −
(

1

p

)2

+
1

p

=
2q

p2
− 1

p2
+

p

p2
=

2q − (1− p)
p2

=
q

p2
�

36Source: [6] Kargin, Vladislav: BU Lecture Notes for the Introduction to Probability Course
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Definition 6.8 (Negative binomial distribution). ?

A random variable Y has a negative binomial distribution with parameters p and r if

(6.22) pY (y) =

(
y − 1

r − 1

)
prqy−r , where r ∈ N, y = r, r + 1, r + 2, . . . , 0 ≤ p ≤ 1 . �

This last definition has been marked as ? , so you are not expected to recall pY from memory.
In contrast, the next theorem is NOT optional.

Theorem 6.13. LetX1, X2, · · · : (Ω, P )→ {S, F} be an infinite Bernoulli sequence with success probability
0 ≤ p ≤ 1.
Let t1 < t2 < · · · be the subsequence of those indices at which a success happens. In other words,

Xn(ω) =

{
S = success if n is one of t1, t2, . . . ,
F = failure , else.

Two points to note:
• There will be different subsequences t1, t2, . . . for different arguments ω ∈ Ω. In other words, we

are dealing with a sequence of random variables(!)

t1 = T1(Ω), t2 = T2(Ω), t3 = T3(Ω), . . .

• It is possible that we are dealing with an ω for which there are only 18 successes in the entire
(infinite) sequence X1(ω), X2(ω), . . . . In this case, we define T19(ω) = T20(ω) = · · · =∞.
More generally, if r ∈ N and the sequence X1(ω), X2(ω), . . . has less than r successes, we define

Tr(ω) := ∞ .

Now that we have defined Tr = Tr(ω), we are ready to state the theorem.

• The random variable Tr has a negative binomial distribution with parameters p and r.

PROOF: See the introductory remarks of WMS Chapter 3.6 before Definition 3.9. �

Remark 6.9. If we think of the indices n of the sequence Xn as points in time, we can interpret the
random variables T1, T2, . . . as follows.

• Tr is the time of the rth success in the underlying Bernoulli sequence Xn. �

Theorem 6.14. ?
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If the random variable Y is negative binomial with parameters p and r,

E[Y ] =
r

p
and V ar[Y ] =

r(1− p)
p2

.

PROOF: Not given here. �

Definition 6.9 (Hypergeometric distribution).

A random variable Y has a hypergeometric distribution with parameters N , R and n if its
PMF is

(6.23) pY (y) =

(
R
y

)(
N−R
n−y

)(
N
n

) ,

where the nonnegative integers N,R, n and y are subject to the following conditions:
• y ≤ n • y ≤ R • n− y ≤ N −R �

Remark 6.10. For the following you should review Section 5.2 (Random Sampling and Urn Models
With and Without Replacement).
The hypergeometric distribution provides the mathematical model for drawing SRS samples of size
n from a population of size N where each item in that population is classified as either S (success)
or F (failure).
In contrast to the scenarios involving the binomial, geometric and negative binomial distributions,
those n picks X1, X2, . . . , Xn do NOT constitute a Bernoulli sequence since SRS sampling is sam-
pling without replacement and the Xj will neither be independent nor have the same success prob-
ability across all j.
Rather, we must model this kind of sampling with an urn model without replacement. See Defini-
tion 5.4 (Urn models) on p.90. It simplifies matters greatly that we are only interested in success or
failure of each sample pick, since this means that we can model our population as N well–mixed
balls in an urn, of which R are labeled S and the remaining N − R are labeled F . Picking the
SRS sample of size n from the population then is modeled by picking a sample of size n without
replacement from that urn. �

Theorem 6.15.
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• Given is an urn wich contains N well–mixed balls of two colors, Red and Black. We assume
that R are Red and thus, the remaining N −R are Black.

• A sample of size n is drawn without replacement from that urn, according to Definition
5.4(a).

Let the random variable Y denote the number of Red balls in that sample. Then Y is hypergeometric
with parameters N , R and n. In other words, its PMF is

pY (y) =

(
R
y

)(
N−R
n−y

)(
N
n

) .

PROOF: We give here a very skeletal proof. For more detail consult WMS Chapter 3.7.
We are not interested in the order in which those Red balls were picked, so our probability space Ω
will be that of all combinations of size n that can be selected from N balls. Thus,

|Ω| =

(
N

n

)
.

pY (y) is the probability of selecting exactly y Red balls in the sample of size n Such a selection is
obtained by partitioning theN balls into the heap of allR red balls, the heap of allN−R Black balls
and then proceding as follows.
Conceptually we pick one of the

(
R
y

)
possible selections of y items from the R red balls and then

complementing it with one of the
(
N−R
n−y

)
possible selections of the remaining n − y items from the

N −R black balls. By Theorem 4.1 (multiplication rule of combinatorial analysis) on p.71, there are(
R
y

)
·
(
N−R
n−y

)
such selections. It follows that

pY (y) = P{Y = y} =

(
R
y

)
·
(
N−R
n−y

)(
N
n

) .

It follows that Y is hypergeometric with parameters N , R and n. �

Theorem 6.16 (WMS Ch.03.7, Theorem 3.10). ?

Let Y be a hypergeometric random variable with parameters N , R and n. Then

(6.24) E[Y ] =
nR

N
and V ar[Y ] = n

(
R

N

)(
N −R
N

)(
N − n
N − 1

)
.

PROOF: We reproduce here the plausibility argument given by WMS in their “proof” of WMS
Theorem 3.10.
Since we consider picking an R–item as a success, the above formulas read with p := R

N and q =
1− p = N−R

N as follows:

E[Y ] = n · p and V ar[Y ] = n · p · q
(
N − n
N − 1

)
.
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Except for the factor (N − n)/(N − 1)

those are expectation and variance of the binom(n,R/n) distribution. Note for the

correction factor
N − n
N − 1

, that lim
N→∞

N − n
N − 1

= 1 .

This reflects the fact that, if N is huge in comparison to n, drawing from an urn with or without
replacement yields, up to a rounding error, the same probabilities. �

6.4 The Poisson Distribution

We start out with the simple observation that ex =
∞∑
j=0

xj

j! for any x ∈ R.

Proposition 6.3. Let λ > 0. Then the function p(y) := e−λ λy

y! defines a probability mass function on
[0,∞[Z= {0, 1, 2, . . . }.

PROOF: Obviously, p(y) ≥ 0 for all y.

To show that
∑

y p(y) = 1, we apply the formula ex =
∞∑
j=0

xj

j! , which is true for any x ∈ R, with

x = λ and j = y. �

This simple proposition enables us to make the following definition.

Definition 6.10 (Poisson variable).

Let Y be a random variable and λ > 0. We say that Y has a Poisson probability distribution
with parameter λ, in short, Y is poisson(λ), if its probability mass function is

pY (y) =
λy

y!
e−λ , for y = 0, 1, 2, . . . , �

We follow WMS Chapter 3.8 to show what phenomena can be modeled by a Poisson variables

Proposition 6.4. Given is some event of interest, E.
(1) We define a random variable Y which counts how often E happen in a “unit”. We leave it open

whether this unit is a time interval (maybe a minute or a year) or a subset of d–dimensional space
(d = 1, 2, 3). Let us write A for that unit.

• Example: Y is the number of car accidents that happen in Binghamton during a day (unit of time),
• Example: Y is the number of typos on a randomly picked page of these lecture notes (“page” is a

twodimensional unit – square inches).
(2) Given n ∈ N, we subdivide the unit (A) into n parts of equal size. Let

~X(n) := X
(n)
1 , X

(n)
2 , X(n)

n ,

where X(n)
j = the number of times that E happens in subunit j.
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• Assume that for all big enough, FIXED n,
� the X(n)

j are independent
� for each j, P{X(n)

j = 0 or 1} = 1: E (i.e., the event of interest) happens at most once in such
a small subunit
� pn := P{X(n)

j = 1} is constant in j (j = 1, 2, . . . , n)
� λ := n ·pn is constant in n: For large enough k, kpk = (k+1)pk+1 = (k+2)pk+2 = · · · = λ.

Given these assumptions, the following is true:

(a) The random variable Y (n) := X
(n)
1 +X

(n)
2 + · · · ,+X(n)

n is binom(n, pn) for large n.
(b) The binom(n, pn) probability mass functions pY (n) converge to that of a poisson(λ) variable:

(6.25) lim
n→∞

pY (n)(y) = lim
n→∞

(
n

p

)
py(1− p)n−y = e−λ · λ

y

y!
, for y = 0, 1, 2, . . . ,

PROOF: We follow WMS:
Recall that λ = np. Thus,

(
n

p

)
py(1− p)n−y =

n(n− 1) · · · (n− y + 1)

y!

(
λ

n

)y (
1 − λ

n

)n−y
=
λy

y!

(
1 − λ

n

)n n(n− 1) · · · (n− y + 1)

ny

(
1 − λ

n

)−y
=

(
λy

y!

)(
1 − λ

n

)n(
1 − λ

n

)−y (
1 − 1

n

)(
1 − 2

n

)
· · ·
(

1 − y − 1

n

)
.

(?)

From calculus we obtain lim
n→∞

(
1 − λ

n

)n
= e−λ. Further,

lim
n→∞

(
1 − λ

n

)−y
= lim

n→∞

(
1 − 1

n

)
= lim

n→∞

(
1 − 2

n

)
= · · · = lim

n→∞

(
1 − y − 1

n

)
= 1 .

We take limits in (?) and obtain

lim
n→∞

(
n

p

)
py(1− p)n−y =

(
λy

y!

)
e−λ . �

Theorem 6.17 (WMS Ch.03.8, Theorem 3.11).

A poisson(λ) random variable has expectation and variance λ. In other words,

(6.26) E[Y ] = V ar[Y ] = λ .

A. PROOF of E[Y ] = λ:

E(Y ) =
∑
y

ypY (y) =
∞∑
y=0

y
λye−λ

y!
. =

∞∑
y=1

y
λye−λ

y!
= λ

∞∑
y=1

λy−1e−λ

(y − 1)!
.
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In the last equation we used y!/y = (y − 1)!. We write k = y − 1 for the index variable and obtain

E(Y ) = λ
∞∑
k=0

λke−λ

k!
= λ

∞∑
k=0

p(k) ,

where p(k) = λke−λ

k! is the PMF of a poisson(λ) random variable. Thus,
∞∑
k=0

p(k) = 1 and it follows

that E[Y ] = λ.

B. PROOF of V ar[Y ] = λ:

Observe that y2e−λ
λy

y!
= e−λ · y

2λλy−1

y!
= (λe−λ)

yλy−1

(y − 1)!
= (λe−λ)

1

(y − 1)!

d

dλ
(λy)

Since we can interchange summation and differentiation, this yields

E[Y 2] =
∞∑
y=0

y2e−λ
λy

y!
=

∞∑
y=1

y2e−λ
λy

y!
= (λe−λ)

∞∑
y=1

d

dλ

(
λ · λy−1

(y − 1)!

)

= (λe−λ)
d

dλ

λ ∞∑
y=1

λy−1

(y − 1)!

 = (λe−λ)
d

dλ

λ ∞∑
y=0

λy

y!

 .

Since
∞∑
y=0

λy

y! = eλ, this implies E[Y 2] = (λe−λ) d
dλ

(
λeλ
)

= λe−λ(eλ + λeλ) = λ + λ2.

By part A, E[Y ] = λ. Thus, E[Y 2] = λ+ (E[Y ])2. We finally obtain

V ar[Y ] = E[Y 2] − (E[Y ])2 =
(
λ+ (E[Y ])2

)
− (E[Y ])2 = λ . �

We refer to the WMS text for examples of random variables with a Poisson distribution.

6.5 Moments, Central Moments and Moment Generating Functions

Unless something different is stated, Y is a random variable Y : (Ω, P ) → R on some probability
space (Ω, P ).

µ = E[Y ], σ2 = V ar[Y ], σ =
√
V ar[Y ] ,

denote expectation, variance and standard deviation of Y .

Definition 6.11 (kth Moment).

If Y is a random variable and k ∈ N,

µ′k := E[Y k](6.27)

is called the kth moment of Y . µ′k also is referred to as the kth moment of Y about the
origin. �
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Note in particular that the first moment of Y is the expectation of Y and that

µ′2 = V ar[Y ] + E[Y ]2.

Another useful moment of a random variable is one taken about its mean.

Definition 6.12 (kth Central Moment).

If Y is a random variable and k ∈ N,

µk := E[(Y − E[Y ])k] = E[(Y − µ)k](6.28)

is called the kth central moment of Y . µk also is referred to as the kth moment of Y about
its mean. �

Proposition 6.5 (The moments determine the distribution). ? Under fairly slight assumptions the
following is true for two random variables Y1 and Y2.

If E[Y k
1 ] = E[Y k

2 ] for k = 1, 2, 3, . . . , then PY1 = PY2 .

In other words, the distribution of a random variable is uniquely determined by its moments.

PROOF: Beyond the scope of these lecture notes. �

Next we associate with a random variable Y which is a function ω 7→ Y (ω) a function t 7→ mY (t)
of a real variable t. It allows us to generate all moments µ′k of Y by computing its kth derivative at
t = 0. Since mY (t) determines in this way all moments of Y and since those in turn determine PY ,
37 mY (t) uniquely determines the entire distribution of Y .

Definition 6.13 (Moment–generating function).

Let Y be a random variable for which one can find δ > 0 (no matter how small), such that

m(t) := mY (t) := E
[
etY
]

is finite for |t| < δ .(6.29)

Then we say that Y has moment–generating function, in short, MGF, mY (t). �

Theorem 6.18. The following is WMS Ch.03.9, Theorem 3.12.

Let Y be a random variable with MGF mY (t) and k ∈ N. Then its kth moment is obtained as the
kth derivative of mY (·), evaluated at t = 0:

µ′k = m(k)(0) =
dkm(t)

dtk

∣∣∣
t=0

.(6.30)

37See Proposition 6.5
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PROOF: We write m(t) for mY (t). From the series expansion ex =
∞∑
k=0

xk

k! , we obtain

m(t) = E
[
etY
]

= E

[ ∞∑
k=0

tkY k

k!

]
=

∞∑
k=0

tk

k!
E
[
Y k
]

=
∞∑
k=0

tk

k!
µ′k

= 1 + tµ′1 +
t2

2!
µ′2 +

t3

3!
µ′3 + · · · .

Taking derivatives repeatedly,

m(1)(t) = µ′1 +
2t

2!
µ′2 +

3t2

3!
µ′3 + · · · ⇒ m(1)(0) = µ′1 + 0 + 0 + · · · ,

m(2)(t) = µ′2 +
2t

2!
µ′3 +

3t2

3!
µ′4 + · · · ⇒ m(2)(0) = µ′2 + 0 + 0 + · · · ,

.................................................................

m(k)(t) = µ′k +
2t

2!
µ′k+1 +

3t2

3!
µ′k+2 + · · · ⇒ m(k)(0) = µ′k + 0 + 0 + · · ·

In summary,
m(1)(0) = µ′1 , m(2)(0) = µ′2 , . . . , m(k)(0) = µ′k . �

Technical note: The existence of the MGF of Y allowed us to compute the derivative of a series as
the sum of the derivatives.

You find the next proposition as Example 3.23 in WMS Ch.3.9.

Proposition 6.6. ? If Y is a poisson(λ) random variable (λ > 0), its MGF is

mY (t) = eλ(et−1) .(6.31)

PROOF: For this proof, we abbreviate (A) λ̃ := λet.

Note that the Taylor expansion ex =
∞∑
j=0

xj

j!
yields, with x and j replaced by λ̃ and y,

(B) eλ̃ =
∞∑
y=0

λ̃y

y!
.

Then, mY (t) = E
(
etY
)

=

∞∑
y=0

etyp(y) =

∞∑
y=0

ety
λye(−λ)

y!

=

∞∑
y=0

(et)yλy
e−λ

y!
=

∞∑
y=0

(
λet
)y
e−λ

y!

(A)
= e−λ

∞∑
y=0

λ̃y

y!

(B)
= e−λeλ̃

(A)
= e(−1)λeλe

t
= eλ(−1+et) = eλ(et−1) . �

• The subsection titled “The Tchebysheff Inequality” which was at this location has
been integrated into subsection 7.8 (Inequalities for Probabililities)
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6.6 Exercises for Ch.6

Exercise 6.1. If the random variable Y has expectation E[Y ] = −2 and standard deviation σY = 2,
what is E

[
(Y + 3)2

]
?

Answer: Since E[Y 2] = V ar[Y ] + (E[Y ])2 = (σY )2 + (−2)2 = 8,

E
[
(Y + 3)2

]
= E[Y 2] + 6E[Y ] + 9 = 8 − 12 + 9 = 5 �

Exercise 6.2. If the random variable Y has the PMF

pY (−2) = 0.13, pY (0) = 0.24, pY (1) = 0.18, pY (2) = 0.45 ,

(a) compute E[Y ]
(b) compute V ar[Y ]
(c) compute σY

Answer (the numeric computations might have errors):
(a) E[Y ] =

∑
y y · pY (y) = (−2)(0.13) + 0(0.24) + 1(0.18) + 2(0.45) = 0.82

(b) V ar[Y ] =
∑

y(y − E[Y ])2 · pY (y)

= (−2− 0.82)2(0.13) + (0− 0.82)2(0.24) + (1− 0.82)2(0.18) + (2− 0.82)2(0.45) = 1.8276

(c) σY =
√
V ar[Y ] =

√
1.8276 ≈ 1.3513888

Exercise 6.3. Let Y be a 0–1 encoded Bernoulli variable with P{Y = 1} = p.
(a) Compute its MGF
(b) Use the MGF method to compute the nth moment

about the origin, E[Xn]

Answer:

MY (t) = E
[
etY
]

= e0t · q + e1t · p = q + pet(a)

(b) The derivatives of MY (t) are

M ′Y (t) = (q + pet)′ = pet ,M ′Y (t) = (pet)′ = pet, . . . , M
(n)
Y (t) = pet, . . . ,

Thus, E[Y n] = µ′n = M
(n)
Y (0) = pe0 = p for all n.

(c) We use the results of (b) to compute the variance:

V ar[Y ] = E[Y 2] − (E[Y ])2 = µ′2 − (µ′1)2 = p − p2 = (1− p)p = pq �

Exercise 6.4. Let Y be a binom(n, p) variable. Use the MGF method to verify that E[Y ] = np and
V ar[Y ] = npq.
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Answer: Since the PMF of Y is pY (y) =
(
n
y

)
pyqn−y,

MY (t) = E
[
etY
]

=

n∑
y=0

ety
(
n

y

)
pyqn−y =

n∑
y=0

(
n

y

)(
et
)y
pyqn−y

=

n∑
y=0

(
n

y

)(
pet
)y
qn−y =

(
pet + q

)n
Here we obtained the last equation by applying the binomial theorem,

(a+ b)n =
n∑
j=0

(
n

j

)
ajqn−j ,

with a = pet and b = q.

MY (t)′ = npet(pet + q)n−1 ,

MY (t)′′ = npet(pet + q)n−1 + n(n− 1)(pet)2(pet + q)n−2 .

Thus,

E[Y ] = MY (0)′ = np ,

E[Y 2] = MY (0)′′ = np+ n(n− 1)p2 .

It follows that

V ar[Y ] = E[Y 2] − (E[Y ])2 =

E[Y 2] = MY (0)′′ = np+ n(n− 1)p2 − n2p2 = npq . �
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7 Continuous Random Variables

7.1 Cumulative Distribution Function of a Random Variable

The material found in this section does not make any references to continuous random variables.

Definition 7.1 (Cumulative Distribution Function).

Let Y denote any random variable (it need not be discrete). The distribution function
of Y , also called its cumulative distribution function or CDF (cumulative distribution
function), is defined as follows.

F (y) := FY (y) := P{Y ≤ y} for y ∈ R . �(7.1)

Example 7.1. Let Y be a binom(2, 1/4) random variable, i.e., n = 2 and p = 1/4. Compute FY (y).
Solution: The probability mass function for Y is

pY (y) =

(
2

y

)(
1

4

)y (3

4

)2−y
.

Thus,

pY (0) =
1

16
, pY (1) = 2

(
1

4

)(
3

4

)
=

6

16
. pY (2) =

9

16
.

It follows that
• y < 0 ⇒ FY (y) = PY (∅) = 0.
• 0 ≤ y < 1 ⇒ FY (y) = pY (0) = 1/16.
• 1 ≤ y < 2 ⇒ FY (y) = pY (0) + pY (1) = 7/16.
• y ≥ 2 ⇒ FY (y) = pY (0) + pY (1) + pY (2) = 1.

Note that FY is constant on intervals A of R if pY (a) = 0 for all a ∈ A. �

Theorem 7.1 (Properties of a Cumulative Distribution Function).

If FY (y) is the cumulative distribution function of a random variable Y , then
(1) FY (−∞) = lim

y→−∞
P (Y ≤ y) = 0.

(2) FY (∞) = lim
y→∞

P (Y ≤ y) = 1.

(3) FY (y) s a nondecreasing function of y. In other words, if y1 < y2, then FY (y1) ≤ FY (y2)
See Definition 2.20 on p.30.

PROOF:
The proof of (1) and (2) follows from
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It follows from −∞ < Y (ω) <∞ that⋂
y∈R

{Y ≤ y} =
⋂
n∈N

{Y ≤ −n} = ∅

⋃
y∈R

{Y ≤ y} =
⋃
n∈N

{Y ≤ n} = Ω

We apply Theorem 3.1 (Continuity property of probability measures) on p.47 and obtain

FY (−∞) = lim
n→∞

P

⋂
y∈R

{Y ≤ y}

 = P (∅) = 0 ,

FY (∞) = lim
n→∞

P

⋃
y∈R

{Y ≤ y}

 = P (Ω) = 1 .

Obvious from P ≥ 0 and y1 < y2 ⇒ {Y ≤ y2} = {Y ≤ y2}
⊎
{y1 < Y ≤ y2}, since this implies

F (y2) = P{Y ≤ y2} = P{Y ≤ y1} + P{y1 < Y ≤ y2} ≥ P{Y ≤ y1} = F (y1) . �

Remark 7.1. ? There is a fourth property that is satisfied by all CDFs:

y 7→ FY (y) is right continuous at all arguments y.
This means the following. if y is approached from the right by a sequence yn such as yn = y + 1

n or
yn = y(1 + e−n), then

lim
n→∞

F (yn) = F (y) . �

7.2 Continuous Random Variables and Probability Density Functions

Definition 7.2 (Continuous random variable).

We call a random variable Y with distribution function FY (y) continuous, if FY (y) is con-
tinuous, for all arguments y. �

Proposition 7.1. Let Y be a continuous random variable with CDF FY (y). Then its distribution gives zero
probability to all singletons {a}(a ∈ R). Also, it gives the same probability to an interval with endpoints
−∞ < a < b <∞, regardless whether a and/or b do or do not belong to that interval. In other words,

a ∈ R ⇒ P{Y = a} = PY {a} = 0 ,(7.2)

−∞ < a < b <∞ ⇒ P{a < Y < b} = P{a ≤ Y < b}
= P{a < Y ≤ b} = P{a ≤ Y ≤ b} .

(7.3)
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PROOF: Since {a} ⊆ ]a− 1
n , a] and ]a− 1

n , a] = ]−∞, a] \ ]−∞, a− 1
n ] (set difference),

P{Y = a} ≤ P{a− 1

n
< Y ≤ a} = P{Y ≤ a} − P{Y ≤ a− 1

n
} = FY (a) − FY

(
a− 1

n

)
.

FY is continuous at a, in particular, FY is continuous from the left at a. Thus,

lim
n→∞

FY

(
a− 1

n

)
= FY (a) .

It follows that P{Y = a} = FY (a)− FY (a) = 0. This proves (7.2).
This result, plus additivity of probability measures, plus

[a, b] = ]a, b[
⊎
{a}

⊎
{b} , [a, b] = [a, b[

⊎
{b} , [a, b] = ]a, b]

⊎
{a} ,

show that (7.3) holds. �

A lot more can be done with a CDF that is not only continuous but has a continous derivative. We
make the following blanket assumption.

Assumption 7.1 (All continuous random variables have a differentiable CDF). Unless explicitly
stated otherwise, all continuous random variables are assumed to satisfy the following:

The first derivative dFY
dy of FY exists and is continuous except for, at most, a finite number

of points in any finite interval.

All cumulative distribution functions for continuous random variables that we deal with in this
course satisfy this assumtion. �

This last assumption allows us to make the following definition.

Definition 7.3 (Probability density function).

Let Y be a continuous random variable with CDF FY (y). For all arguments y where the
derivative F ′Y (y) = dFY (y)

dy exists, we define

f(y) := fY (y) :=
dFY (y)

dy
.

We call fY the probability density function or, in short, the PDF of the continuous random
variable Y . �

Theorem 7.2.

Let Y be a continuous random variable with CDF FY (y) and PDF fY (y).

(1) If a, b ∈ R and a < b, then

(7.4) P{a < Y ≤ b} = FY (b)− FY (a) =

∫ b

a
f(y)dy .

(2) fY (y) ≥ 0 for −∞ < y <∞.

(3)
∞∫
∞
fY (y)dy = 1.
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PROOF: (1) is the fundamental theorem of calculus. Of course, we interpret
b∫
a
f(y)dy as follows.

Assume that some of the points y at which f ′Y (y) does not exist fall within the interval [a, b]. Our
assumption guarantee that there are only finitely many such y, say,

a ≤ y1 < y2 < · · · yk ≤ b .

Then, by the definition of integrals,

b∫
a

f(y)dy =

y1∫
a

f(y)dy +

y2∫
y1

f(y)dy + · · ·+
b∫

yk

f(y)dy .

(2) and (3) are obvious. �

The following is the reverse of Theorem 7.2.

Theorem 7.3. Let ψ : R→ R satisfy the following:

(1) ψ is integrable:
b∫
a
ψ(x)dx exists for a < b.

(2) ψ(x) ≥ 0 for −∞ < x <∞.

(3)
∞∫
∞
ψ(x)dx = 1.

• Then, Q{a < Y ≤ b} :=
∫ b
a ψ(x)dx defines a probability measure Q on Ω.

PROOF:
Out of scope for this course: Some advanced tools are needed to show is the σ–additivity of Q. �

Remark 7.2. We combine (7.3) and (7.4) and obtain the following for a continuous random variable
Y with PDF fY (y): If a, b ∈ R and a < b, then

P{a < Y < b} = P{a ≤ Y ≤ b} = P{a ≤ Y < b}

= P{a < Y ≤ b} =

∫ b

a
f(y)dy . �

(7.5)

The next definition applies to any random variable, be it continuous or discrete or neither. It is
based on the following elementary observation.

Remark 7.3. ? Assume that Y is a random variable with CDF FY (y). For 0 < p < 1, let

Ap := {α ∈ R : FY (α) ≥ p} .

Note that the function y 7→ FY (y) is nondecreasing.
• It is obvious that

[
α < α′ and FY (α) ≥ p

]
⇒ FY (α′) ≥ p.

• In other words,
[
α < α′ and α ∈ Ap

]
⇒ α′ ∈ Ap.

• In other words, Ap is an interval that stretches all the way to +∞: There must be some real
number β such that Ap = ]β,∞[ or Ap = [β,∞[.
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We see that β ∈ Ap and thus, Ap = [β,∞[, as follows. Let βn := β + 1
n .

• Since βn ∈ Ap, FY (βn) ≥ p. Since FY is right continuous, 38 FY (β) = lim
n→∞

FY (βn).

• Thus, FY (β) ≥ p. Thus, β ∈ Ap Thus, Ap = [β,∞[.
• Since Ap = {α ∈ R : FY (α) ≥ p} and Ap = [β,∞[, β is the smallest element of Ap, i.e.,

β = min{α ∈ R : FY (α) ≥ p} .
The number β is uniquely determined by p. This allows us to denote it by the symbol φp. �

Definition 7.4 (pth quantile).

Let Y denote any random variable and 0 < p < 1. Let φp be the number derived in the
previous remark, i.e.,

φp = min{α ∈ R : FY (α) ≥ p}(7.6)

We call φp the pth quantile and also the 100pth percentile of Y .
Moreover, we call φ0.25 the first quartile, φ0.5 the median, and φ0.75 the third quartile, of
the random variable Y . �

Remark 7.4. Remark: How does the definition of the 100pth percentile given above correspond to
the one experienced in everyday life: the number yp that divides a list of numeric observations into
100p% of the data being ≤ yp and the remaining data being above yp? The connection is as follows.
• Assume that ~y = (y1, y2, . . . , yK) is the list of observations. It may contain duplicates.
• We remove the duplicates and N ≤ K distinct values ω1, ω2, . . . , ωN remain.
• We define Ω := {ω1, ω2, . . . , ωN} and P{ωj} :=

nj
K

(we divide by K, not by N !), where

nj = number of times that ωj occurs in the original list, ~y.
• σ–additivity extends P from the simple events {ωj} to all events of Ω.
• Since φp is defined in terms of the CDF FY of a random variable Y , we define the following

“dummy” random variable on (Ω, P ): ω 7→ Y (ω) := ω 39

For example, if the list of observations is ~y = (0, 2, 2, 2, 3, 4, 4, 6, 6, 6, 6, 7, 8, 8, 8), then
• K = 15, Ω = {0, 2, 3, 4, 6, 7, 8}, N = 7,
• P{0} = 1

15 , P{2} = 3
15 , P{3} = 1

15 , P{4} = 2
15 , P{6} = 4

15 , P{7} = 1
15 , P{8} = 3

15 .
• Then FY (6) = (1 + 3 + 1 + 2)/15 = 7/15. Thus, φ7/15 = 6.
• Also, the percentage of observations with a score of 6 or less is 700/15 ≈ 46.667%.

Hence, a score of 6 corresponds to the 46.667th percentile of ~y. �

38See Remark 7.1 on p.116.
39This method is more frequently employed in reverse: Given is a function y 7→ F (y) on the real numbers which

satisfies the assumptions of Theorem 7.1 (Properties of a Cumulative Distribution Function) on p.115 and the subsequent
Remark 7.1: F is nondecreasing, right–continuous, F (−∞) = 0, F (∞) = 1. We then define Ω := R and, for ]a, b] ⊆ Ω,
P (]a, b]) := F (b) − F (a). σ–additivity extends this to a probability measure on all Borel sets of Ω (i.e., of R). Now we
define the random variable Y on (Ω, P ) via Y (y) := y. Its CDF FY matches F , since,

FY (y) = P{Y ≤ y} = P (]−∞, y]) = F (y) − F (−∞) = F (y) .

In other words, Any function F that conforms to Theorem 7.1 and Remark 7.1 can be represented as the CDF FY of an
appropriate random variable Y .
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Example 7.2. Given the toss of a fair coin, let Y (ω) = 1 if Heads and Y (ω) = 0 if Tails come up.
Then Y has PMF pY (0) = pY (1) = 1/2

and CDF FY (y) = 0 for y < 0, FY (y) = 0.5 for 0 ≤ y < 1, FY (y) = 1 for y ≥ 1.
We now easily compute φp for any 0 < p < 1 by separately considering the cases

0 < p < 1
2 : FY (α) ≥ p ⇔ α ≥ 0. Thus, φp = 0.

p = 1
2 : FY (α) ≥ 1

2 ⇔ α ≥ 0. Thus, φ1/2 = 0.
1
2 < p < 1: FY (α) ≥ p ⇔ α ≥ 1. Thus, φp = 1.

Note that there are only two different φp values across all 0 < p < 1: Either φp = 0 or φp = 1

This example also demonstrates that

min{α ∈ R : FY (α) ≥ p}
cannot be replaced with the simpler expression

min{α ∈ R : FY (α) = p} :
The set {α ∈ R : FY (α) = p} is empty for 0 < p < 1 unless p = 0.5, meaning that the minimum does
not even exist! �

The issues encountered in that last example do not occur if FY (y) is a continuous function of y.

Proposition 7.2.

Let Y be a continuous random variable with CDF FY (y). Then

φp = min{α ∈ R : FY (α) = p} .(7.7)

PROOF: The continuity of FY ensures that the sets

Bp := {α ∈ R : FY (α) = p}

are not empty. The result follows from the fact that the function FY is nondecreasing. Further details
are omitted. �

Remark 7.5. For a continuous random variable Y with PMF pY (y), quantiles have the following
geometric meaning:
• The pth quantile is that value on the horizontal(!) axis which splits the area under the PMF

into 100 · p% to the left and 100(1− p)% to the right. In particular,
• the median splits the area under the PMF into two halves.
• the first quartile splits the area under the PMF into 25% to the left and 75% to the right.
• the third quartile splits the area under the PMF into 75% to the left and 25% to the right. �

We also use functional notation φ(p) for φp, since this makes what follows easier to understand.

Proposition 7.3.

Let Y be a random variable with an injective CDF FY (y). (Note that it is not assumed that FY is
continuous.) Then

φ
(
FY (y)

)
= y for all y ∈ R(7.8)
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PROOF:
Let p := FY (y). Since FY is nondecreasing, its injectivity means that

y1 < y < y2 ⇒ FY (y1) < FY (y) < FY (y2)(7.9)

We infer that α < y does not satisfy FY (α) ≥ FY (y) = p. Since (see 7.6 on p.119)

φ
(
FY (y)

)
= min{α ∈ R : FY (α) ≥ φ

(
FY (y)

)
} ,(7.10)

it follows from (7.10) that φ
(
FY (y)

)
< y is not possible. Thus, φ

(
FY (y)

)
≥ y.

On the other hand, α = y does satisfy FY (α) ≥ FY (y) = p and we just have seen that y is the
smallest possible of those α. We apply (7.10) once more and conclude that φ

(
FY (y)

)
= y. �

Proposition 7.4.

Let Y be a random variable with a bijective CDF FY : R
∼−→]0, 1[. Then FY (y) and φ(p) are inverse

to each other, i.e.,

φ
(
FY (y)

)
= y for all y ∈ R and FY

(
φ(p)

)
= p for all 0 < p < 1 .(7.11)

PROOF:
The equation φ

(
FY (y)

)
= y was shown in Proposition 7.3. Thus, it only remains to be shown that

FY
(
φ(p)

)
= p for all 0 < p < 1 .(7.12)

We observe that the bijective and nondecreasing function FY is strictly increasing and continuous.
It is easy to see that FY is strictly increasing: Note that y1 < y2 ⇒ FY (y1) ≤ FY (y2) because FY is
nondecreasing. Injectivity prohibits FY (y1) = FY (y2). Thus, FY is strictly increasing.
It is harder to see that FY is continuous:
• If there was a point of discontinuity y0 ∈ R for FY , then FY being nondecreasing and right–

continuous would mean that FY (y0−) = lim
y<y0,y→y0

FY (y) < FY (y0).

• Also, FY nondecreasing ⇒ FY (y) ≤ FY (y0−) for y < y0 and FY (y) ≥ FY (y0) for y ≥ y0.
• Thus, no y ∈ R and p ∈ ]FY (y0−), FY (y0)[ satisfies FY (y) = p, contradicting surjectivity of FY .

Since FY is continuous, we obtain from Proposition 7.2 on p.120 that

φ(p) = min{α ∈ R : FY (α) = p} .(7.13)

In particular, φ(p) is an element of the set {α ∈ R : FY (α) = p}. Thus, φ(p) satisfies FY
(
φ(p)

)
= p.

We have shown (7.12). We noted previously that the proposition follows. �

7.3 Expected Value, Variance and MGF of a Continuous Random Variable

Assumption 7.2 (All continuous random variables have Expectations). A. Unless explicitly stated
otherwise, all continuous random variables are assumed to to possess a probability density function
fY (y) that satisfies
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∫ ∞
−∞
|y|f(y) dy| < ∞ .

This technical condition guarantees the existence of
∞∫
−∞

yf(y)dy which is needed to define the ex-

pected value of Y .
B. We further assume that, unless specifically stated otherwise, there is a common probability space
(Ω, P ) for all random variables. In other words, all random variables Y , be they discrete, continuous
or neither, are of the form Y : (Ω, P )→ R. �

Definition 7.5 (Expected value of a continuous random variable).

Let Y be a continuous random variable with PDF fY (y). We call

E(Y ) :=

∫ ∞
−∞

yfY (y) dy(7.14)

the expected value, also expectation or mean of Y . �

We will use the next theorem in the proof of Theorem 7.5 on p.123. The presentation given here
follows [4] Ghahramani, Saeed.

Theorem 7.4. ?

Let Y be a continuous random variable with CDF FY and PDF fY .
Then

E[Y ] =

∫ ∞
0

(
1− FY (y)

)
dy −

∫ ∞
0

FY (−y)dy(7.15)

=

∫ ∞
0

P{Y > y}dy −
∫ ∞

0
P{Y ≤ −y}dy .(7.16)

PROOF: We only need to prove (7.15), since (7.16) follwos from the definition of a CDF.

Let A1 := {(u′, y′) : y′ < 0, 0 < u′ < −y′} , B1 := {(u′, y′) : u′ > 0, y′ < −u′} .

Then u′ < −y′ ⇔ y′ < −u′ implies A1 = B1 = {(u′, y′) : u′ > 0, y′ < 0, u′ < −y′}. Thus,∫ 0

−∞

(∫ −y
0

du

)
f(y) dy =

∫∫
A1

fY (y) d(u, y)

=

∫∫
B1

fY (y) d(u, y) =

∫ ∞
0

(∫ −u
−∞

fY (y) dy

)
du .(a)

Let A2 := {(u′, y′) : y′ > 0, 0 < u′ < y′} , B2 := {(u′, y′) : u′ > 0, y′ > u′} .
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Then A2 = B2, because both denote the set {(u′, y′) : u′ > 0, y′ > 0, u′ < y′}. It follows that∫ ∞
0

(∫ y

0
du

)
f(y) dy =

∫∫
A2

fY (y) d(u, y)

=

∫∫
B2

fY (y) d(u, y) =

∫ ∞
0

(∫ ∞
u

fY (y) dy

)
du .(b)

We use (a) and (b) in the following chain of equations:

E[Y ] =

∫ ∞
−∞

yfY (y) dy =

∫ 0

−∞
yfY (y) dy +

∫ ∞
0

yfY (y) dy

= −
∫ 0

−∞

(∫ −y
0

du

)
fY (y) dy +

∫ ∞
0

(∫ y

0
du

)
fY (y) dy

(a),(b)
= −

∫ ∞
0

(∫ −u
−∞

fY (y) dy

)
du +

∫ ∞
0

(∫ ∞
u

fY (y) dy

)
du .

= −
∫ ∞

0
FY (−u)du +

∫ ∞
0

(
1− FY (u)

)
du .

The last equation follows from
β∫
α
fY (y)dy = FY (β)− FY (α). �

Corollary 7.1. ?

Let Y be a nonnegative, continuous random variable with CDF FY and PDF fY . Then

E[Y ] =

∫ ∞
0

(
1− FY (y)

)
dy =

∫ ∞
0

P{Y > y}dy .(7.17)

PROOF: Y ≥ 0 implies P{Y ≤ −y} = 0 for 0 ≤ y < ∞. Thus, (7.17) follows from (7.15) and (7.16).
�

Quite a few theorems about discrete random variables have continuous counterparts when one re-
places probability mass function p(y) with probability density function f(y) and summation over
the countably many y for which p(y) > 0 with integration over all y. The following theorem cor-
responds to Theorem 6.2 on p.94. Note that the continuous random variable ω 7→ g

(
Y (ω)

)
of that

theorem is covered by Assumption 7.2 on p.121, i.e., E
[
g ◦ Y

]
exists.

Theorem 7.5.

Let Y be a discrete or continuous random variable with PDF fY and g : R → R; y 7→ g(y) be a
real-valued function. Then the random variable g ◦ Y : ω 7→ g

(
Y (ω)

)
has expectation

E[g(Y )] =

∫ ∞
∞

g(y)fY (y) dy .(7.18)

PROOF: ? The proof of Theorem 6.2 on p.94 handles the discrete case. So we may assume that
Y is a continuous random variable.
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According to Proposition 3.7 (Preimages of function composition) on p.64,

{g ◦ Y > u} = (g ◦ Y )−1(]u,∞[) = Y −1
(
g−1(]u,∞[)

)
= {Y ∈ g−1(]u,∞[)} .

{g ◦ Y ≤ −u} = (g ◦ Y )−1(]−∞,−u[) = Y −1
(
g−1(]−∞,−u[)

)
= {Y ∈ g−1(]−∞,−u[)} .

Thus,

P{g ◦ Y > u} = P{Y ∈ g−1(]u,∞[)} = PY {g−1(]u,∞[)} = PY {y : g(y) > u}
P{g ◦ Y ≤ −u} = P{Y ∈ g−1(]−∞,−u[)} . = PY {g−1(]−∞,−u[)} = PY {y : g(y) ≤ −u} .

(a)

Next, we show that A1 = B1. Here, we define A1 and B1 as follows:

A1 := {(u′, y′) : 0 < u′ <∞, g(y′) > u′} , B1 := {(u′, y′) : g(y′) > 0, 0 < u′ < g(y′)} ,(b1)

To show A1 ⊆ B1, let (u, y) ∈ A1, i.e., (u, y) ∈ {(u′, y′) : 0 < u′ <∞, g(y′) > u′}.
• 0 < u and u < g(y) yields g(y) > 0 and 0 < u < g(y). Thus, (u, y) ∈ B1.

To see that B1 ⊆ A1, let (u, y) ∈ B1, i.e., (u, y) ∈ {(u′, y′) : g(y′) > 0, 0 < u′ < g(y′)}.
• Since 0 < u < g(y), it follows that 0 < u <∞ and u < g(y). Thus, (u, y) ∈ A1.

We proved that A1 = B1. It follows that
∫∫

A1

fY (y) d(t, y) =

∫∫
B1

fY (y) d(t, y) .(c1)

On a parallel track, we show that A2 = B2, where we define A2 and B2 as follows:

A2 := {(u′, y′) : 0 < u′ <∞, g(y′) ≤ −u′} B2 := {(u′, y′) : g(y′) < 0, 0 < u′ ≤ −g(y′)} .(b2)

To show A2 ⊆ B2, let (u, y) ∈ A2, i.e., (u, y) ∈ {(u′, y′) : 0 < u′ <∞, g(y′) ≤ −u′}.
• Since g(y) ≤ −u ⇔ u ≤ −g(y) and we also have 0 < u <∞,

(u, y) ∈ A2 implies 0 < u ≤ −g(y).
• To show that also g(y) < 0 we observe that g(y) ≤ −u < −0 = 0.

Finally, to show B2 ⊆ A2, let (u, y) ∈ B2 = {(u′, y′) : g(y′) < 0, 0 < u′ ≤ −g(y′)}.
• 0 < u <∞ is immediate from 0 < u ≤ −g(y).

We still must show that g(y′) ≤ −u.
• To show that also g(y) < 0 we observe that g(y) ≤ −u < −0 = 0. But this is

immediate from 0 < u ≤ −g(y).

We proved that A2 = B2. It follows that
∫∫

A2

fY (y) d(t, y) =

∫∫
B2

fY (y) d(t, y) .(c2)

We apply (c1) and (c2) to the integrals
∞∫
0

P{g ◦ Y > u}du and
∞∫
0

P{g ◦ Y ≤ −u}du as follows.

∫ ∞
0

P{g ◦ Y > u}du (a)
=

∫ ∞
0

P{Y ∈ g−1(]u,∞[)}du =

∫ ∞
0

PY {g−1(]u,∞[)}du

=

∫ ∞
0

PY {y : u < g(y) <∞}du =

∫ ∞
0

(∫
{y:u<g(y)<∞}

fY (y) dy

)
du

(b1)
=

∫∫
A1

fY (y) d(t, y)
(c1)
=

∫∫
B1

fY (y) d(t, y)
(b1)
=

∫
{y:g(y)>0}

(∫ g(y)

0
du

)
fY (y) dy
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Hence, since
g(y)∫
0

du = g(y),

∫ ∞
0

P{g ◦ Y > u}du =

∫
{y:g(y)>0}

g(y) fY (y) dy(d1)

∫ ∞
0

P{g ◦ Y ≤ −u}du (a)
=

∫ ∞
0

P{Y ∈ g−1(]−∞,−u[)}du =

∫ ∞
0

PY {g−1(]−∞,−u[)}du

=

∫ ∞
0

PY {y : −∞ < g(y) < −u}du =

∫ ∞
0

(∫
{y:−∞<g(y)<−u}

fY (y) dy

)
du

(b2)
=

∫∫
A2

fY (y) d(t, y)
(c2)
=

∫∫
B2

fY (y) d(t, y)
(b2)
=

∫
{y:g(y)<0}

(∫ −g(y)

0
du

)
fY (y) dy

Hence, since
−g(y)∫

0

du = −g(y),

∫ ∞
0

P{g ◦ Y ≤ −u}du = −
∫
{y:g(y)<0}

g(y) fY (y) dy(d2)

It follows from (d1) and (d2) and Theorem 7.4 on p.122 and∫
{y:g(y)=0}

g(y)fY (y) dy =

∫
{y:g(y)=0}

0f(y)dy = 0 ,

that

E[g ◦ Y ] =

∫ ∞
0

P{g ◦ Y > u}du −
∫ ∞

0
P{g ◦ Y ≤ −u}du

=

∫
{y:g(y)>0}

g(y) fY (y) dy +

∫
{y:g(y)<0}

g(y) fY (y) dy

=

∫
{y:g(y)>0}

g(y) fY (y) dy +

∫
{y:g(y)<0}

g(y) fY (y) dy +

∫
{y:g(y)=0}

g(y)fY (y) dy

=

∫
R
g(y) fY (y) dy =

∫ ∞
−∞

g(y) fY (y) dy �

The following corresponds to WMS Theorem 4.5.

Theorem 7.6.

Let c ∈ R, Y be a discrete or continuous random variable and g1, g2, gn : R→ R; y 7→ g(y) be a list
of n real-valued functions. Then

E[c] = c ,(7.19)
E[cgj(Y )] = cE[gj(Y )] .(7.20)
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Further, the random variable

n∑
j=1

gj ◦ Y : Ω −→ R; ω 7→
n∑
j=1

gj
(
Y (ω)

)
has the following expected value:

E

 n∑
j=1

gj ◦ Y

 =

n∑
j=1

E[gj ◦ Y ] .(7.21)

PROOF: �

We will not deal in this course with the sums of continuous and discrete random variables, so the
next definition is only included for completeness’ sake and to allow the formulation of theorems 7.7
and 7.8 below.

Definition 7.6. ?

If Y1, Y2, . . . , Ym is a list of discrete random variables and Y ′1 , Y
′

2 , . . . , Y
′
n is a list of continuous random

variables, all of which are defined on the same probability space (Ω, P ), then we define

E

 m∑
i=1

Yi +
n∑
j=1

Y ′j

 :=
m∑
i=1

E[Yi] +
n∑
j=1

E[Y ′j ] p . �(7.22)

The following is the continuous random variables version of Theorem 6.4 on p.96.

Theorem 7.7.

Let Y1, Y2, . . . , Yn : Ω→ R be random variables. (which all are defined on the same probability space
(Ω, P ) (n ∈ N by Assumption 7.2.B). Some may be continuous, others may be discrete. Then the
random variable n∑

j=1

Yj : Ω −→ R; ω 7→
n∑
j=1

Yj(ω)

has the following expected value:

E

 n∑
j=1

Yj

 =
n∑
j=1

E[Yj ] .(7.23)

In other words, the expectation of the sum is the sum of the expectations.

PROOF: Not given here. �

We extend Definition 6.3 on p.98 of the variance and standard deviation of a discrete random vari-
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able to the continuous case without modification, i.e.,

V ar[Y ] := σ2
Y := E

[
(Y − E[Y ])2

]
,(7.24)

σY :=
√
V ar[Y ] .(7.25)

Theorems 6.5, 6.6 6.7 about the variances of discrete random variables have the following counter-
part.

Theorem 7.8. Let Y be a discrete or continuous random variable. Let Y1, Y2, . . . , Yn : Ω→ R be independent
random variables (which all are defined on the same probability space (Ω, P ) (n ∈ N by Assumption 7.2.B).
Some may be continuous, others may be discrete. Further, let a, b ∈ R. Then

V ar[Y ] = E
[
Y 2
]
−
(
E[Y ]

)2
,(7.26)

V ar [aY + b] = a2V ar[Y ] ,(7.27)

V ar

 n∑
j=1

Yj

 =

n∑
j=1

V ar[Yj ] .(7.28)

PROOF: The proof of (7.26) is the same as for Theorem 6.5 on p.98. The proof of the other formulas
is not given here. �

Remark 7.6. Note that independence of Y1, . . . , Yn is required for the validity of (7.28)! �

The moments about the origin µ′k, the moments about the mean µk and the MGF mY (t) of a discrete
random variable Y , all were defined as expected values. This allows us to use those same definitions
for continuous random variables.
Unless something different is stated, Y is a random variable Y : (Ω, P ) → R on some probability
space (Ω, P ). Further, µ = E[Y ], σ2 = V ar[Y ] and σ =

√
V ar[Y ] denote expectation, variance and

standard deviation of Y .

Definition 7.7. For k ∈ N, we define

µ′k := E[Y k] (kth moment of Y about the origin)(7.29)

µk := E[(Y − E[Y ])k] = E[(Y − µ)k] (kth central moment of Y )(7.30)

m(t) := mY (t) := E
[
etY
]

(moment–generating function of Y )(7.31)

As in the discrete case we assume that the expectations defining µ′k and µk exist and that there is
some δ > 0 such that mY (t) is defined (i.e., finite) for |t| < δ. �

Theorem 6.18 on p.111 remains valid for continuous random variables:
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Theorem 7.9.

Let Y be a random variable with MGF mY (t) and k ∈ N. Then its kth moment is obtained as the
kth derivative of mY (·), evaluated at t = 0:

µ′k = m(k)(0) =
dkm(t)

dtk

∣∣∣
t=0

.(7.32)

PROOF: The proof of Theorem 6.18 can be used without any alterations. �

Proposition 7.5.

Let Y be a random variable with MGF mY (t). Let a, b ∈ R, Y ′ := Y + a, Y ′′ := bY . Then

mY ′(t) = etamY (t) ,(7.33)
mY ′′(t) = mY (bt) .(7.34)

PROOF: To prove (7.33), we note that eta is constant in ω. Thus, E[etaW ] = etaE[W ] for any random
variable W . Thus,

mY ′(t) = E[et(Y+a)] = E[etY eta] = etaE[etY ] = etamY (t) .

Formula (7.34) follows from

mY ′′(t) = E[et(bY )] = E[e(tb)Y ] = mY (tb) . �

7.4 The Uniform Probability Distribution

Given two real numbers θ1 < θ2, we consider a random variable Y (ω) that “lives” in the interval
[θ1, θ2], i.e., P{θ1 ≤ Y ≤ θ2} = 1 and has the same likelyhood of occurring in any subinterval of
same length:

Definition 7.8 (Continuous, uniform random variable).

Let Y be a random variable and −∞ < θ1 < θ2 < ∞. We say that Y has a continuous
uniform probability distribution with parameters θ1 and θ2 — also, that Y is uniform on
[θ1, θ2] or Y ∼ uniform(θ1, θ2) — if Y has probability density function

fY (y) =


1

θ2 − θ1
, if θ1 ≤ y ≤ θ2,

0 , else. �
(7.35)

Remark 7.7 (uniform and equiprobable probability measures). Uniform distributions are the equiv-
alent of the distribution of discrete rancom variables Y that satisfy equiprobability, i.e., their PMF
pY (y) = P{Y = y} is strictly positive only for finitely many numbers y1, y2, . . . , yn and pY (yj) = 1/n
for all j ∈ [1, n]Z. See Definition 3.3 on p.47. �
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Theorem 7.10 (WMS Ch.04.4, Theorem 4.6).

If θ1 < θ2 and Y is a uniform random variable with parameters θ1, θ2, then

E[Y ] =
θ1 + θ2

2
and V ar[Y ] =

(θ2 − θ1)2

12
.

PROOF: A simple exercise in integrating
θ2∫
θ1

y dy and
θ2∫
θ1

y2 dy. �

Theorem 7.11.

Assume that Y is a continuous random variable with CDF FY (y). Let U := FY (Y ). Then U ∼
uniform(0, 1).

SIMPLIFIED PROOF under the assumption that the CDF FY is a bijection FY : R
∼−→]0, 1[.

The inverse F−1
Y of FY satisfies F−1

Y

(
FY (y)

)
= y for all y ∈ R. Thus, for 0 < u < 1,

FU (u) = P{U ≤ u} = P{FY ◦ Y ≤ u} = P{F−1
Y ◦ FY ◦ Y ≤ F−1

Y (u)}
= P{Y ≤ F−1

Y (u)} = FY
(
F−1
Y (u)

)
= u .

We still must handle the cases u ≤ 0 and u ≥ 1. We assumed that the codomain of FY is ]0, 1[.

• Thus, y ∈ R ⇒ 0 < FY (y) < 1.
• Thus, ω ∈ Ω ⇒ 0 < U(ω) = FY

(
Y (ω)

)
< 1

⇒
[
P{U ≤ 0} = 0 and P{U ≤ 1} = 1

]
⇒
[
FU (0) = 0 and FU (1) = 1

]
.

• Thus,
[
u ≤ 0 ⇒ FU (u) ≤ FU (0) = 0

]
and

[
u ≥ 1 ⇒ FU (u) ≥ FU (1) = 1

]
.

It follows that FU is the CDF of a uniform(0, 1) random variable. Thus, U ∼ uniform(0, 1). �

GENERAL PROOF ? (We drop the assumption that FY is a bijection R
∼−→]0, 1[.):

This proof follows the one of Theorem 2.1.10 in Casella, Berger [3], but it gives additional detail.
Let 0 < p < 1 and let

G(p) := min{y ∈ R : FY (y) ≥ p} .(A)

In other words, G(p) is the pth quantile φp for the random variable Y . Since G is nondecreasing,

FU (p) = P{U ≤ p} = P{FY (Y ) ≤ p} = P{G
(
FY (Y )

)
≤ G(p)} .(B)

The most difficult part of the proof is to show that

P{G
(
FY (Y )

)
≤ G(p)} = P{Y ≤ G(p)} .(C)
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We consider two different cases.
• Case 1: There is a unique y such that G(p) = y. In

the picture, that would be y0 for p0 and y5 for p5

(a) Observe that G(p) = y ⇔ p = FY (y).
(b) G(p′) < G(p) < G(p′′) ⇔ p′ < p < p′′.
• Case 2: There are y∗ < y∗, determined by

G(p) = y ⇔ y∗ < y < y∗. In the picture,
that would be y∗ = y1 and y∗ = y4 for F (y) = p.

7.1 (Figure). non–injective, continuous CDF.

We now show that (C) is true for Case 1.
We deduce from (a) and (b) that

ω ∈ {G
(
FY (Y )

)
≤ G(p)} ⇔ FY

(
Y (ω)

)
≤ G(p)

(
= FY (y)

)
⇔ Y (ω) ≤ y

(
= G(p)

)
⇔ ω ∈ {Y ≤ G(p)} .

Taking probabilities shows that (C) is valid, since we obtain

P{G
(
FY (Y )

)
≤ G(p) = P{Y ≤ G(p)} .

Next, we show that (C) is true for Case 2.
The picture shows that, if FY (y′) = p′ and FY (y) = p ⇔ y∗ ≤ y ≤ y∗, then

(c) G(p′) < G(p) ⇔ y′ < y∗; G(p′) = G(p) ⇔; y∗ ≤ y′ ≤ y∗;
(d) Thus, G(p′) ≤ G(p) ⇔ y′ ≤ y∗ ⇔;

[
y′ ≤ y∗ or y∗ < y′ ≤ y∗.

Clearly,

ω ∈ {G
(
FY (Y )

)
≤ G(p)} ⇔ G

(
FY (Y (ω))

)
≤ G(p)(= y∗)} .

We apply (d) with y′ = Y (ω) and p′ = FY
(
Y (ω)

)
and obtain

G
(
FY (Y (ω))

)
≤ G(p) ⇔

[
Y (ω) ≤ y∗ or y∗ < Y (ω) ≤ y∗

]
.

Thus, {G
(
FY (Y )

)
≤ G(p)} = {Y ≤ y∗}

⊎
{y∗ < Y ≤ y∗}. Taking probabilities,

P{G
(
FY (Y )

)
≤ G(p)} = P{Y ≤ y∗} + P{y∗ < Y ≤ y∗}

= FY (y∗) +
(
FY (y∗) − FY (y∗)

)
= FY

(
G(p)

)
= P{Y ≤ G(p)} .

Here, the equation next to the last follows from G(p) = y∗ and FY (y∗) = G(p) = FY (y∗).
We have shown that (C) also is true for Case 2.
We combine (B) and (C) and obtain

FU (p) = P{FY (Y ) ≤ p} = P{Y ≤ G(p)} = FY
(
G(p)

)
.(D)

Our next goal is to show that FY
(
G(p)

)
= p. We break this down into the following steps.
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(1) By (A), FY
(
G(p)

)
≥ p. We now show that also FY

(
G(p)

)
≤ p.

(2) Let yn := G(p)− 1/n. Then G(p) = lim
n→∞

yn.

(3) G(p) being the smallest y such that FY (y) ≥ p implies that FY (yn) < p.
(4) Since Y is continuous, F (y) is continuous. Thus, FY

(
G(p)

)
= lim

n→∞
FY (yn).

(5) Since FY (yn) < p by (3), lim
n→∞

FY (yn) ≤ p, i.e., FY
(
G(p)

)
≤ p. (See (4).)

(6) We have shown (1) and it follows that FY
(
G(p)

)
= p.

It now follows from (D) that P{U ≤ p} = p for any 0 < p < 1.
The boundary cases p = 0 and p = 1 are taken into account by extending the definition of G(p)
given in (A), which is G(p) = min{y ∈ R : FY (y) ≥ p}, as follows.
• Since FY (y) ≥ 0 for all y, it is natural to define G(0) := −∞.
• If there is some y∗ such that FY (y∗) = 1, then (A) remains in force for G(1).
• Otherwise, (if FY (y) < 1 for all y), we define G(1) :=∞. �

Theorem 7.12.

Given are a uniform(0, 1) random variable U and a continuous function F : R→ [0, 1] that satisfies
the conditions of Theorem 7.1 (Properties of a Cumulative Distribution Function) on p.115:
• F is nondecreasing • F (−∞) := lim

y→−∞
F (y) = 0 • F (∞) := lim

y→∞
F (y) = 1

Let G : [0, 1]→ R; p 7→ G(p) := min{y ∈ R : F (y) ≥ p} .(7.36)

Let Z := G(U) be the random variable ω 7→ Z(ω) := G
(
U(ω)

)
.

Then its CDF matches F . In other words, FZ(y) = F (y) for all y ∈ R.

SIMPLIFIED PROOF under the assumption that the F is a bijection F : R
∼−→]0, 1[.

We first show that G is the inverse of F .
• Since F is both nondecreasing and injective, F is strictly increasing.
• Let 0 < p0 < 1 and y0 := F−1(p0) or, equivalently, p0 = F (y0).
• Let A := {y ∈ R : F (y) ≥ p0}. Since F (y0) = p0 ≥ p0, it follows that y0 ∈ A.
• Since F is strictly increasing, y < y0 ⇒ F (y) < F (y0) = p0 ⇒ y /∈ A
• Since y0 ∈ A and y < y0 ⇒ y /∈ A, we conclude that y0 = min(A).
• By (7.36), G(p0) = min(A). We have shown G(p0) = y0 = F−1(p0) for each 0 < p0 < 1.

Let y ∈ R. Since G = F−1, we obtain

FZ(y) = P{Z ≤ y} = P{G ◦ U ≤ y} = P{F−1 ◦ U ≤ y} = P{U ≤ F (y)} = F (y) .

The last equation follows from 0 < F (y) < 1 and U ∼ uniform(0, 1). It follows that FZ(y) = F (y)
for all y, i.e., FY = F �

GENERAL PROOF ? (We drop the assumption that FY is a bijection R
∼−→]0, 1[.):

Let I := FY (R) = {FY (y) : y ∈ R} be the range of FY .
• Note that G(p) equals the pth quantile φp of a random variable with CDF F (y). (See Defini-

tion 7.4 on p.119.)
• Further, the continuity of F guarantees that for each 0 < p < 1 one can find y ∈ R such that

F (y) = p (and thus, p 7→ G(p) is injective).
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• Thus, I is one of the following intervals: � If 0 < F (y) < 1 for all y, then I = ]0, 1[
� If 0 ≤ F (y) < 1 for all y, then I = [0, 1[ � If 0 < F (y) ≤ 1 for all y, then I = ]0, 1]
� If 0 ≤ F (y) ≤ 1 for all y, then I = [0, 1]

• We will refer in this proof to Figure 7.1 on p.130 (non–injective, continuous CDF) in the proof
of Theorem 7.11.

We fix y ∈ R. Let p := F (y). Then

(a) Since F is continuous and nondecreasing, there are numbers y∗ ≤ y∗ such that
F (ỹ) = p ⇔ y∗ ≤ ỹ ≤ y∗.

(b) Either F is strictly increasing at y and then y∗ = y = y∗, or F is “flat around y” and y∗ < y∗.
(c) For p′ ∈ I , choose y′ such that F (y′) = p′. Then, since F (y∗) = p,

p′ < p ⇔ F (y′) < p ⇔ y′ < y∗ and p′ ≤ p ⇔ F (y′) ≤ p ⇔ y′ ≤ y∗ ⇔ G(p′) ≤ y∗.
(d) Further, since F is nondecreasing, G also is nondecreasing. Thus, p′ ≤ p ⇔ G(p′) ≤ G(p).

It follows from (c) that p′ ≤ p ⇔ G(p′) ≤ G(p) ⇔ y′ ≤ y∗ ⇔ G(p′) ≤ y∗.

Let ω ∈ Ω and p′ := U(ω). Recall that p = F (y). Then

G
(
U(ω)

)
≤ y ⇔

[
G(p′) ≤ G(p)

] (d)⇔
[
p′ ≤ p

]
⇔
[
U(ω) ≤ F (y)

]
.

We take probabilities and obtain, since U ∼ uniform(0, 1) implies P{U ≤ p̃} = p̃ for 0 ≤ p̃ ≤ 1,

FZ(y) = P{G(U) ≤ y} = P{U ≤ F (y)} = F (y) .

To summarize, we have shown that FZ(y) = F (y) for all y ∈ R. �

Remark 7.8. A special case of Theorem 7.12 can be found in WMS Ch.06.3, Example 6.5, which
shows how to solve the following problem: Let U be a uniform random variable on the interval
(0, 1). Find a transformation G(U) such that G(U) possesses an exponential distribution with mean
β. �

7.5 The Normal Probability Distribution

Many numerical random phenomena yield his-
tograms which are approximately unimodal (a
single highest value) and symmetric around the
mean µ, like the picture to the right, and they
adhere to the empirical rule: Approximately
• 68% of the data fall between µ± 1 · σ
• 95% of the data fall between µ± 2 · σ
• 99.7% of the data fall between µ± 3 · σ

Such data are adequately modeled by the nor-
mal distribution. Source: WMS Ch.4.5

The empirical rule is also known as the 68%–95%–99.7% rule.

Definition 7.9 (Normal random variable).
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Let σ > 0 and −∞ < µ < ∞. We say that a random variable Y has a normal probability
distribution with mean µ and variance σ2 if its probability density function is

fY (y) =
1

σ
√

2π
e−(y−µ)2/(2σ2), (y ∈ R) . �(7.37)

We also express that by saying that Y is NNN (µ, σ2). Moreover, we call Y standard normal if
Y is NNN (0, 1).

We will see that E[Y ] = µ and V ar[Y ] = σ2. This justifies calling the parameters µ and σ2 the mean
and variance of the distribution.

Lemma 7.1.

(y − µ)2 − 2ytσ2 =
[
y − (µ+ tσ2)

]2 − 2µtσ2 − t2σ4 .(7.38)

PROOF: We multiply out the right–hand expression and obtain

R.S. =
[
y − (µ+ tσ2)

]2 − 2µtσ2 − t2σ4

= y2 − 2y(µ+ tσ2) + (µ2 + 2µtσ2 + t2σ4) − 2µtσ2 − t2σ4

= y2 − 2µy − 2ytσ2 + µ2

= (y − µ)2 − 2ytσ2 = L.S. �

Proposition 7.6.

Let the random variable Y be NNN (µ, σ2). Then

mY (t) = eµt+ (σ2t2)/2 .(7.39)

PROOF:

mY (t) =

∫ ∞
−∞

eyt
1

σ
√

2π
e−

(y−µ)2

2σ2 dy

=
1

σ
√

2π

∫ ∞
−∞

e
(yt)(2σ2)

2σ2 e−
(y−µ)2

2σ2 dy

=
1

σ
√

2π

∫ ∞
−∞

e−
1

2σ2

[
(y−µ)2− 2ytσ2

]
dy .

We apply Lemma 7.1 and obtain for the exponent the following.

− 1

2σ2

[
(y − µ)2 − 2ytσ2

]
= − 1

2σ2

{[
y − (µ+ tσ2)

]2 − 2µtσ2 − t2σ4
}

= −
[
y − (µ+ tσ2)

]2
2σ2

+
1

2σ2

[
2µtσ2 + t2σ4

]
= µt +

t2σ2

2
− 1

2

[
y − (µ+ tσ2)

σ

]2
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It follows that

mY (t) =
1

σ
√

2π

∫ ∞
−∞

eµt+ t2σ2

2 e
− 1

2

[
y− (µ+tσ2)

σ

]2

dy

= eµt+ t2σ2

2

 1

σ
√

2π

∫ ∞
−∞

e
− 1

2

(
y− (µ+tσ2)

σ

)2

dy

 .
The expression in square brackets is the integral

∞∫
−∞

ϕ(y)dy, where ϕ(y) is the PDF of a normal

variable with mean µ+ tσ2 and variance σ2. Thus, this integral evaluates to 1 and it follows that

mY (t) = eµt+ t2σ2

2 . �

Theorem 7.13 (WMS Ch.04.5, Theorem 4.7).

If Y is a normally distributed random variable with parameters µ and σ, then

E[Y ] = µ and V ar[Y ] = σ2 .

PROOF: We differentiate mY (t) = exp{µt + t2σ2

2 } twice and obtain

m′Y (t) =
(
µ+ tσ2

)
exp

{
µt +

t2σ2

2

}
,

m′′Y (t) =
(
µ+ tσ2

)2
exp

{
µt +

t2σ2

2

}
+ σ2 exp

{
µt +

t2σ2

2

}
.

Thus,the first and second moment about the origin are

E[Y ] = µ′1 = m′Y (0) = (µ+ 0)e0 = µ ,

E[Y 2] = µ′2 = m′′Y (0) = (µ+ 0)2e0 + σ2e0 = µ2 + σ2 .

Finally,
V ar[Y ] = E[Y 2] −

(
E[Y ]

)2
= µ2 + σ2 − µ2 = σ2 . �

Remark 7.9. The importance of the normal distribution stems from the so called Central Limit
Theorem (Theorem 10.13 on p.231), which we will discuss in Chapter 10 (Limit Theorems). It states
the following.
• Given is an iid sequence of random variables Y1, Y2, . . . with common expectation µ := E[Yj ]

and finite standard deviation σ :=
√
V ar[Yj ] <∞ and a standard normal variable Z.

• For n ∈ N, we define Ȳn := 1
n

n∑
j=1

Yj =
Y1 + · · ·+ Yn

n
and Zn :=

Ȳn − µ
σ/
√
n

.

• An aside: One easily sees from Theorems 7.7 (p.126) and 7.8 that E[Ȳn] = µ, σȲn = σ/
√
n

and thus, E[Zn] = 0, V ar[Zn] = 1.
• The Central Limit Theorem states that for each fixed z ∈ R, FZn(z) converges to FZ(z).

• In other words, lim
n→∞

P{Zn ≤ z} = lim
n→∞

FZn(z) = FZ(z) =

∫ z

−∞

1√
2π

e−t
2/2 dt for all z .

�
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7.6 The Gamma Distribution

Whereas the normal distribution is a good fit for histograms which are symmetric, many random
phenomena yield left skewed (also referred to as left tailed) or right skewed (also referred to as
right tailed) histograms which are more appropriately modeled by distributions which themselves
also are left or right skewed.

Left skewed distribution Right skewed distribution

The gamma distribution which we discuss here can be used to generate all kinds of right skewed
distributions.

Definition 7.10 (Gamma random variable).

Let σ > 0 and −∞ < µ < ∞. We say that a random variable Y has a gamma distribution
with shape parameter α > 0 and scale parameter β > 0 if its probability density function is

fY (y) =


yα−1e−y/β

βαΓ(α)
, if 0 ≤ y <∞ ,

0 , else ,
(7.40)

where Γ(α) is the gamma function

Γ(α) =

∫ ∞
0

yα−1e−y dy .(7.41)

We also express that by saying that Y is gamma(α, β). �

Proposition 7.7. The gamma function satisfies the following:

Γ(1) = 1 ,(7.42)
Γ(α) = (α− 1)Γ(α− 1) for all α > 1 ,(7.43)
Γ(n) = (n− 1)! for all n ∈ N .(7.44)

PROOF: (7.42) is immediate from
∞∫
0

e−ydy = −e−y
∣∣∣∞
0

= 0− (−1) = 1.
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We obtain (7.43) from integration by parts of Γ(α):

Γ(α) = yα−1
(
− e−y

)∣∣∣∞
0

+

∫ ∞
0

(α− 1)yα−2e−y dy

= 0 + (α− 1)

∫ ∞
0

y(α−1)−1e−y dy

= (α− 1)Γ(α− 1) .

To show (7.44) we observe that repeated application of (7.43) yields

Γ(n) = (n− 1)Γ(n− 1)

= (n− 1)(n− 2)Γ(n− 2)

= (n− 1)(n− 2)(n− 3) · · · 2Γ(2)

= (n− 1)(n− 2)(n− 3) · · · 2 · 1Γ(1) .

Since Γ(1) = 1 by (7.42), it follows that

Γ(n) = (n− 1)(n− 2)(n− 3) · · · 2 · 1 = (n− 1)! .

Proposition 7.8.

If the random variable Y is gamma(α, β) it has MGF

mY (t) =
1

(1− βt)α
for t <

1

β
.(7.45)

PROOF: ? We define

β̃ :=
β

1− tβ
(A)

and observe that β̃ > 0 for 1− tβ > 0, i.e., for t < 1/β. Further,

ty − y

β
=

(−y + tyβ)

β
=
−y(1− tβ)

β
= −y

/ β

(1− tβ)
=
−y
β̃
.(B)

Thus,

mY (t) = E(etY ) =

∫ ∞
0

ety

[
yα−1e−y/β

βαΓ(α)

]
dy

=
1

βα

∫ ∞
0

yα−1

Γ(α)
exp

[
ty − y

β

]
dy

(B)
=

1

βα

∫ ∞
0

yα−1 e−y/β̃

Γ(α)
dy

Part of (B) is
−y(1− tβ)

β
=
−y
β̃

. Thus, (1− tβ) β̃ = β; thus, βα = (1− tβ)α · β̃α; thus,

mY (t) =
1

(1− tβ)α
·
∫ ∞

0

yα−1 e−y/β̃

β̃αΓ(α)
dy =

1

(1− tβ)α
·
∫ ∞

0
ϕ(y) dy .
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Here, the function ϕ(y) is the PDF of a gamma(α, β̃) random variable. It follows that
∞∫
0

ϕ(y) dy = 1

and we conclude that mY (t) = 1/(1− tβ)α. �

Theorem 7.14 (WMS Ch.04.6, Theorem 4.8).

Let the random variable Y be gamma(α, β) with α, β > 0. Then

E[Y ] = αβ and V ar[Y ] = αβ2 .

PROOF: We obtain those results by differentiating the MGF of Y .

mY (t) = (1− βt)−α ⇒ m′Y (t) = (−α)(1− βt)−α−1(−β)

⇒ m′′Y (t) = (−α)(−β)(−β)(−α− 1)(1− βt)−α−2 .

Thus,

m′Y (0) = (−α)(1− 0)−α−1(−β) = αβ ,

m′′Y (0) = (−α)β2(−α− 1)(1− 0)−α−2 = (−α)2β2 − (−α)β2 = α2β2 + αβ2 .

In other words, E[Y ] = αβ and E[Y 2] = αβ2 From this,

V ar[Y ] = E[Y 2] −
(
E[Y ]

)2
= (α2β2 + αβ2) − α2β2 = αβ2 . �

Definition 7.11 (Chi–square distribution).

Let ν ∈ N. We say that a random variable Y has a chi–square distribution with ν degrees
of freedom, in short, Y is chi–square with ν df or Y is chi–square(ν), or Y is χ2(ν), if Y is
gamma(ν/2, 2). In other words, Y must have a gamma distribution with shape parameter
ν/2 and scale parameter 2. �

Theorem 7.15 (WMS Ch.04.6, Theorem 4.9).

A chi–square random variable Y with ν degrees of freedom has expectation and variance

E[Y ] = ν and V ar[Y ] = 2ν.

PROOF: This follows from Theorem 7.14 with α = ν/2 and β = 2. �

Definition 7.12 (Exponential distribution).

We say that a random variable Y has an exponential distribution with parameter β > 0, in
short, Y is expon(β), if it has density function

(7.46) fY (y) =


1

β
e−y/β , for 0 ≤ y <∞ ,

0 , else . �
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Remark 7.10. In many textbooks exponential random variables are expressed in terms of λ = 1/β.
Then its PDF is

(7.47) fY (y) =

{
λ e−λy , for 0 ≤ y <∞ ,

0 , else . �

Theorem 7.16.

An exponential random variable Y with parameter β has expectation and variance

E[Y ] = β and V ar[Y ] = β2.

PROOF: This follows from Theorem 7.14 with α = 1. �

Proposition 7.9 (Memorylessness of the exponential distribution). Let Y be an exponential random
variable. Let t > 0 and h > 0. Then

(7.48) P{Y > t+ h | Y > t} = P{Y > h} .

PROOF: From the definition of conditional probability and

{Y > t+ h} ∩ {Y > t} = {Y > t+ h} ,

it follows that

P{Y > t+ h | Y > t} =
P{Y > t+ h}
P{Y > t}

.

We obtain

P{Y > t+ h} =

∫ ∞
t+h

1

β
e−y/βdy = − 1

1/β
· 1

β
· e−y/β

∣∣∣∞
t+h

= −e−y/β
∣∣∣∞
t+h

= e−(t+h)/β

and
P{Y > t} =

∫ ∞
t

1

β
e−y/βdy = −e−y/β

∣∣∣∞
t

= e−t/β .

Thus,

P{Y > t+ h | Y > t} =
e−(t+h)/β

e−t/β
= e−h/β = P{Y > h} . �

Remark 7.11. The property (7.48) of an exponential distribution is referred to as the memoryless
property of the exponential distribution. It also occurs in the geometric distribution. �

7.7 The Beta Distribution

This chapter is merely a summary of the most impportant material of WMS Chapter 4.7 (The Beta
Probability Distribution).
Like the gamma PDF, the beta density function is a two–parameter PDF defined over the closed
interval 0 ≤ y ≤ 1. y often plays the role of a proportion, such as the proportion of impurities in a
chemical product or the proportion of time that a machine is under repair.
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Definition 7.13 (Beta distribution). ?

A random variable Y has a beta probability distribution with parameters α > 0 and β > 0
if it has density function

fY (y) =


yα−1(1− y)β−1

B(α, β)
, if 0 ≤ y ≤ 1 ,

0 , else ,
(7.49)

where

B(α, β) =

∫ 1

0
yα−1(1− y)β−1 dy =

Γ(α) Γ(β)

Γ(α+ β)
.(7.50)

We also express that by saying that Y is beta(α, β). �

Beta density functions come in a large variety of
shapes for different values of α and β. Some of
these are shown in the figure to the right.
Note that 0 ≤ y ≤ 1 does not restrict the use of
the beta distribution. It can be applied to a ran-
dom variable defined on the interval c ≤ y ≤ d by
means of the transformation ỹ = (y − c)/(d − c)
which defines a new variable 0 ≤ ỹ ≤ 1 which has
the correct domain for the beta density.

Beta density functions. Source: WMS

Theorem 7.17. ?

If Y is a beta–distributed random variable with parameters α > 0 and β > 0, then

E[Y ] =
α

α+ β
and V ar[Y ] =

αβ

(α+ β)2(α+ β + 1)
.

PROOF: See the WMS text �

7.8 Inequalities for Probabililities

This chapter lists some very useful estimates for probabilities which involve the moments of a ran-
dom variable. Among them is the Tchebysheff inequality.

Theorem 7.18. ?
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Let Y, Z be continuous or discrete random variables and a > 0. Assume further that Y ≥ 0. Then

P{Y ≥ a}) ≤ E[Y ]

a
,(7.51)

P{|Z| ≥ a}) ≤ E[ |Z|n]

an
.(7.52)

(7.51) is known as the Markov inequality

PROOF of (7.51): 40 We give the proof for continuous random variables. The discrete case is even
simpler since it involves summation instead of integration.
Let fY (y) be the PDF of Y . We observe the following:

(a) Y ≥ 0 implies y fY (y) = 0 for −∞ < y < 0.
(b) y fY (y) ≥ 0 for 0 ≤ y <∞.
(c) y fY (y) ≥ a fY (y) for a ≤ y <∞.

Thus,

E[Y ] =

∫ ∞
−∞

y fY (y)dy
(a)
=

∫ ∞
0

y fY (y)dy =

∫ a

0
y fY (y)dy +

∫ ∞
a

y fY (y)dy

(b)
≥
∫ ∞
a

y fY (y)dy
(c)
≥
∫ ∞
a

a fY (y)dy = a

∫ ∞
a

fY (y)dy = aP{Y ≥ a} .

We divide by a > 0 and obtain (7.51).
PROOF of (7.52): Since |Z|n ≥ 0 and an > 0, we can apply (7.51) with |Z|n in place of Y and an in
place of a:

P{|Z|n ≥ an} ≤ E[|Z|n]

an
.(A)

Since the function x 7→ xn is (strictly) increasing, |Z(ω)|n ≥ an ⇔ |Z(ω)| ≥ a.
Thus, (A) yields P{|Z| ≥ a} ≤ E[|Z|n]/an and this proves (7.52). �

The work we have done here allows us to quickly prove the Tchebysheff inequalities in the form
listed in WMS Chapter 4.10 (Tchebysheff’s Theorem).

Theorem 7.19 (Tchebysheff Inequalities).

Let Y be a random variable with mean µ = E[Y ] and standard deviation σ =
√
V ar[Y ]. Let k > 0.

Then

P{|Y − µ| ≥ kσ} ≤ 1

k2
,(7.53)

P{|Y − µ| < kσ} ≥ 1 − 1

k2
.(7.54)

Both (7.53) and (7.54) are known as the Tchebysheff inequalities
40Source: https://en.wikipedia.org/wiki/Markov%27s_inequality
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PROOF: We apply (7.52) with n = 2, Y − µ in place of Z, and kσ in place of a. We obtain

P{|Y − µ| ≥ kσ}) ≤ E[ |Y − µ|2]

(kσ)2
=

E[ (Y − µ)2]

(kσ)2
=

σ2

k2σ2
=

1

k2
.

This proves (7.53). Since the event {|Y −µ| < kσ} is the complement of the event {|Y −µ| ≥ kσ} ,
(7.54) follows. �

Remark 7.12. Some comments about the Tchebysheff inequalities:
(a) Both inequalities state the same, since the events {|Y − µ| < cσ} and {|Y − µ| ≥ cσ} are

complements of each other. We had noted this in the proof of Theorem 7.19.
(b) The inequalities are not particularly powerful, but consider that they are universally valid,

regardless of any particulars concerning Y !
(c) If we write a := kσ and thus, k = a/σ, we obtain

P{|Y − µ| < a} ≥ 1 − V ar[Y ]

a2
and P{|Y − µ| ≥ a} ≤ V ar[Y ]

a2
. �

Example 7.3. The screws produced by ACME Co. follow a distribution with a mean of µ = 18.40
mm and a variance of σ2 = 0.64 mm2. In other words, the length Y of a randomly picked screw (a
sample of size 1) has E[Y ] = 18.40 and V ar[Y ] = 0.64.
A screw can only be sold if its length is within 17.20 and 19.60 mm. How likely is it that a screw is
produced that cannot be sold?

Solution: We observe that E[Y ] = 18.40 is the midpoint of the interval [17.20, 19.60] and that

• a screw cannot be sold ⇔ Y (ω) /∈ [17.20, 19.60] ⇔ |Y (ω)− E[Y ]| > (17.20, 19.60)/2 = 1.2.

We solve
kσ = |Y − E[Y ]| = 1.2 , i.e.,

√
0.64k = 0.8k = 1.2 ,

for k and obtain k = 1.2/0.8 = 3/2. Thus, k2 = 9/4.
Tchebysheff’s inequality (7.54) then yields the following upper bound for the probability of obtain-
ing a sample with a difference Ȳ (ω)− µ as large as or even larger than the one we have sampled:

P{|Y − µ| > kσ} ≤ 1

k2
= 4/9 .

This example demonstrates the low quality of the bounds that we obtain from Tchebysheff’s in-
equalities. For example, let us assume we know that Y follows a normal distribution, i.e.,

Y ∼ NNN (µ = 18.40, σ2 = 0.64) ,

then we can deduce from the empirical rule (the 68%–95%–99.7% rule) 41 that

0.32 = 1− 0.68 ≈ P{|Y − µ| > 1 · σ}
≥ P{|Y − µ| > 1.5σ}
≥ P{|Y − µ| > 2σ} ≈ 1− 0.95 = 0.05 .

41see the introcduction to subch.7.5: The Normal Probability Distribution
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Thus, higher precision calculations show that the more likely event of Y (ω) not being within one
standard deviation of 18.40 mm only has a probability of 0.32, substantially less than our overly
generous estimate of 4/9 = 0.444̄ for the less likely event of being within 1.5 standard deviations.
By the way, the exact figure (in the case of Y ∼NNN (18.40, 0.64)) is P{|Y − µ| > 1.5σ} ≈ 0.1336.
This is less than one third of the Tchebysheff estimate. �

Example 7.4. It has been established some time ago that the data in the population of interest follow
a distribution with a mean of µ = 18.40. In other words, a random pick Y (a sample of size 1)
from that population has E[Y ] = 18.40. There have been concerns that the composition of the
population has changed significantly and µ with it. An SRS (simple random sample) is drawn from
that population and mean and variance are estimated from the realization of this sample as

Ȳ (ω) = 17.60 and S2(ω) = 6.25 .42

Is the deviation of Ȳ (ω) from µ big enough to discard µ = 18.40 and go through the process of
establishing a new population mean?

Solution: We use S2 = 6.25 for σ2 = V ar[Y ]. Then σ =
√

6.25 = 2.5. We solve

kσ = |Ȳ − E[Y ]| , i.e., 0.25k = |17.60− 18.40| = 0.8 ,

for k and obtain k = 3.2. Thus, k2 = 10.24. Since E[Ȳ ] = E[Y ] it follows from Tchebysheff’s
inequality (7.54) that the probability of obtaining a sample with a difference Ȳ (ω) − E[Y ] as large
as or even larger than the one of the sample we have drawn, is

P{|Y − µ| < kσ} ≥ 1 − 1

k2
= 1 − 1

10.24
= 0.902344 .

This probability is very large and shows that our sample mean Ȳ = 17.60 does not contradict the
assumption that the population mean 18.40 �

42Ȳ = 17.60 is the so called sample mean (see Example 8.5: Variance of the sample mean on p.163) and

S2 = S2(ω) =
1

n− 1

(
n∑
j=1

(
Yj(ω)− Ȳ (ω)

)2) is the so called sample variance which will be introduced in subchapter

10.3 (Sampling Distributions) of Chapter 10(Limit Theorems). See Definition 10.4: Sample variance on p.225.
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8 Multivariate Probability Distributions

Like the previous chapter, this one is extremely skeletal in nature. It contains very few examples.
You are reminded again that you must work through the corresponding chapters in the WMS text.
In this case, that would be WMS Chapter 5 (Multivariate Probability Distributions).

8.1 Multivariate CDFs, PMFs and PDFs

Assumption 8.1 (Comma separation denotes intersection). We will follow the following convention
for the notation of events that are generated by random variables or random elements X,Y, Z . . .

Separating commas are to be interpreted as “and” and not as “or”. Thus, for example,

{X ∈ B, Y = α, 5 ≤ Z < 8} = {X ∈ B and Y = α and 5 ≤ Z < 8}
= {X ∈ B} ∩ {Y = α} ∩ {5 ≤ Z < 8} . �

Definition 8.1 (Joint cumulative distribution function).

Given are two random variables Y1 and Y2. No assumption is made whether they are dis-
crete or continuous. We call

F (y1, y2) := FY1,Y2(y1, y2) := P (Y1 ≤ y1, Y2 ≤ y2) , where y1, y2 ∈ R ,(8.1)

the joint cumulative distribution function or bivariate cumulative distribution function
or joint CDF or joint distribution function of Y1 and Y2. �

Theorem 8.1.

Let Y1 and Y2 be random variables with joint CDF FY1,Y2(y1, y2). Further, assume that ~a :=

(a1, a2) ∈ R2 and~b := (b1, b2) ∈ R2 satisfy a1 < b1 and a2 < b2. Then,

(8.2) FY1,Y2(−∞,−∞) = FY1,Y2(−∞, y2) = FY1,Y2(y1,−∞) = 0 .

(8.3) FY1,Y2(∞,∞) = 1 ,

P{a1 < Y1 ≤ b1, a2 < Y2 ≤ b2} = FY1,Y2(b1, b2) − FY1,Y2(a1, b2)

− FY1,Y2(b1, a2) + FY1,Y2(a1, 22) ,
(8.4)

(8.5) FY1,Y2(b1, b2) − FY1,Y2(a1, b2) − FY1,Y2(b1, a2) + FY1,Y2(a1, 22) ≥ 0 ,

PROOF:
(8.2) follows from

P{Y1 < −∞} = P{Y2 < −∞} = 0 .
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(8.3) follows from
P{Y1 <∞, Y2 <∞} = P (Ω) = 1 .

(8.5) is immediate from (8.4).
Finally, for the proof of (8.4), we see from the three pictures below the following:

• P{a1 < Y1 ≤ b1, a2 < Y2 ≤ b2} =̂ black rectangle in the upper right corner
• FY1,Y2(b1, b2) =̂ shaded area in the right drawing
• FY1,Y2(b1, a2) =̂ shaded area (below black rectangle) in the left drawing
• FY1,Y2(b1, a2) =̂ shaded area (to left of black rectangle) in the middle drawing
• FY1,Y2(a1, a2) =̂ area marked with a red C

The expression FY1,Y2(b1, b2) − FY1,Y2(a1, b2) − FY1,Y2(b1, a2) would correspond to the black
rectangle, except that we subtracted the red C area twice. We add FY1,Y2(a1, a2) to compensate. �

Definition 8.2 (Joint probability mass function).

Let Y1 and Y2 be discrete random variables. We call

p(y1, y2) := pY1,Y2(y1, y2) := P{Y1 = y1, Y2 = y2} , where y1, y2 ∈ R ,(8.6)

the joint probability mass function or bivariate probability mass function or joint PMF
of Y1 and Y2. �

Just as in the univariate case, pY1,Y2(y1, y2) assigns nonzero probabilities to only finitely or countably
many pairs of values (y1, y2). As in the univariate case, by definition,∑

(y1,y2)∈B

pY1,Y2(y1, y2) =
∑

(y1,y2)∈B,
pY1,Y2

(y1,y2)> 0

pY1,Y2(y1, y2) .

Proposition 8.1 (WMS Ch.05.2, Theorem 5.1).

If Y1 and Y2 are discrete random variables with joint PMF pY1,Y2(y1, y2), then
(1) pY1,Y2(y1, y2) ≥ 0 for all y1, y2 ∈ R,
(2)

∑
y1,y2

pY1,Y2(y1, y2) = 1.

(3) FY1,Y2(y1, y2) =
∑

u1≤y1, u2≤y2

pY1,Y2(u1, u2) =
∑
u1≤y1

∑
u2≤y2

pY1,Y2(u1, u2) .
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PROOF: Obvious. �

Definition 8.3 (Jointly continuous random variables).

Let Y1 and Y2 be random variables with joint CDF F (y1, y2). We call Y1 and Y2 jointly
continuous if F (y1, y2) is a continuous function of both arguments. �

Assumption 8.2 (Jointly continuous random variables have PDFs). We will follow the following
convention for the notation of events that are generated by random variables or random elements
X,Y, Z . . .

We assume for all jointly continuous random variables Y1 and Y2 that
∂2FY1,Y2

∂y1∂y2
exists and is

continuous except for (y1, y2) ∈ B∗, where the set B∗ ⊆ R2 satisfies that
B∗∩B is finite for any bounded subset B ∈ R2 (bounded sets are those contained in a circle
with sufficiently large radius).

This assumption guarantees for all y1, y2 ∈ R, when we write fY1,Y2 for
∂2FY1,Y2

∂y1∂y2
, that

FY1,Y2(y1, y2) =

∫ y1

−∞

∫ y2

−∞
fY1,Y2(u1, u2) du2 du1

=

∫ y2

−∞

∫ y1

−∞
fY1,Y2(u1, u2) du1 du2 .

=

∫∫
]−∞,y1×]−∞,y2]

fY1,Y2(u1, u2) du1 du2 . �

(8.7)

Definition 8.4 (WMS Ch.05.2, Definition 5.3).

Let Y1 and Y2 be continuous random variables with joint distribution function F (y1, y2) and

second derivative fY1,Y2(y1, y2) =
∂2FY1,Y2

∂y1∂y2
(y1, y2). We call fY1,Y2(y1, y2) the joint probabil-

ity density function or joint PDF of Y1 and Y2. �

Theorem 8.2.

Let Y1 and Y2 be jointly continuous random variables with joint PDF fY1,Y2(y1, y2), then
(1) fY1,Y2(y1, y2) ≥ 0 for all y1, y2.

(2)
∞∫
−∞

∞∫
−∞

fY1,Y2(y1, y2)dy1dy2 = 1.

PROOF: An easy consequence of Theorem 8.1 on p.143. �
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8.2 Marginal and Conditional Probability Distributions

Definition 8.5 (Marginal distribution of two random variables).

Let ~Y = (Y1, Y2) be a vector of two random variables with joint distribution

(B1, B2) 7→ PY1,Y2(B1, B2) = P{Y1 ∈ B1, Y2 ∈ B2} , where B1, B2 ⊆ R.

We call the probability measures

(8.8) Q1 : B1 7→ PY1,Y2(B1,R) and Q2 : B2 7→ PY1,Y2(R, B2)

the marginal distributions of ~Y = (Y1, Y2). �

Proposition 8.2.

The marginal distributions of ~Y = (Y1, Y2) are the distributions PY1 and PY2 of the coordinates
Y1 and Y2. In other words, Q1 = PY1 and Q2 = PY2

PROOF: Since, Y1(ω) ∈ B ⇔ Y1(ω) ∈ B and Y2(ω) ∈ R holds for all B ⊆ R, we obtain

Q1(B) = PY1,Y2(B,R) = P{Y1 ∈ B, Y2 ∈ R} = P{Y1 ∈ B} = PY1(B) , whenever B ⊆ R.

Thus, Q1 = PY1 . We obtain in a similar fashion from Y2(ω) ∈ B ⇔ Y1(ω) ∈ R and Y2(ω) ∈ B, that

Q2(B) = PY2(B) , for all B ⊆ R. �

Henceforth, we will retire the symbols Q1, Q2 and denote the marginal distributions of ~Y = (Y1, Y2)
by PY1 and PY2 .
Definition 8.5 translates for discrete random variables, whose distribution is determined by their
joint PMF and for continuous random variables, whose distribution is determined by their joint
PDF, to the following.

Definition 8.6 (Marginal PMF and PDF).

(a) Let Y1 and Y2 be discrete random variables with joint PMF pY1,Y2(y1, y2). We call

(8.9) pY1(y1) =
∑
all y2

pY1,Y2(y1, y2) and pY2(y2) =
∑
all y1

pY1,Y2(y1, y2)

the marginal probability mass functions or marginal PMFs of Y1 and Y2.

(b) Let Y1 and Y2 be continuous random variables with joint PDF fY1,Y2(y1, y2). We call

(8.10) fY1(y1) =

∫ ∞
−∞

fY1,Y2(y1, y2) dy2 and fY2(y2) =

∫ ∞
−∞

fY1,Y2(y1, y2) dy1 .

the marginal density functions or marginal PDFs of Y1 and Y2. �

Remark 8.1. We recall Definition 3.7 of P (A | B), the probability of the event A conditioned on the
event B, which is defined for P (B) > 0 as

P (A | B) =
P (A ∩B)

P (B)
.
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We also recall that, if P (B) > 0, the set function A 7→ P (A | B) is a probability measure on Ω. See
Theorem 3.8 on p.55. We replace the general events A and B with events {Y1 = y1} and {Y2 = y2}
and obtain, if P{Y2 = y2} > 0,

P{Y1 = y1 | Y2 = y2} =
P{Y1 = y1, Y2 = y2}

P{Y2 = y2}
.(8.11)

As we always do for conditional probabilities, we interpret (8.11) as the probability that the random
variable Y1 equals y1, given that Y2 equals y2.
Not much can be done with formula (8.11) for continuous random variables Y1 and Y2, because
P{Y2 = y2} = 0 for all y2 ∈ R; but it shows us how to define conditional PMFs for discrete random
variables. �

Definition 8.7 (Conditional probability mass function).

Let Y1 and Y2 be discrete random variables with joint PMF pY1,Y2(y1, y2) and marginal PMFs
pY1(y1) and pY2(y2). Then we call

(8.12) pY1|Y2
(y1 | y2) :=

{
P{Y1 = y1 | Y2 = y2} , if P{Y2 = y2} > 0 ,

undefined , if P{Y2 = y2} = 0 ,

the conditional probability mass function or the conditional PMF of Y1 given Y2.

Likewise, we call

(8.13) pY2|Y1
(y2 | y1) :=

{
P{Y2 = y2 | Y1 = y1} , if P{Y1 = y1} > 0 ,

undefined , if P{Y1 = y1} = 0 ,

the conditional PMF of Y2 given Y1. �

Remark 8.2. Note that conditional PMFs can be expressed in terms of joint PMF and marginal
PMFs:

pY1|Y2
(y1 | y2) =

pY1,Y2(y1, y2)

pY2(y2)
if pY2(y2) > 0 ,(8.14)

pY2|Y1
(y2 | y1) =

pY1,Y2(y1, y2)

pY1(y1)
if pY1(y1) > 0 . �(8.15)

The author does not think that there is much use for the next definition (WMS Ch.05.3, Definition
5.6) because all jointly continuous random variables come with PDF

fY1,Y2(y1, y2) =
∂2FY1,Y2

∂y1∂y2
(y1, y2) .

It is included only for the sake of completeness.

Definition 8.8. ? Let Y1 and Y2 be two jointly continuous random variables. Then,

(8.16) FY1|Y2
(y1 | y2) := P (Y1 ≤ y1 | Y2 = y2) :=

∫ y1

−∞

fY1,Y2(u1, y2)

fY2(y2)
du1

defines the conditional distribution function or conditional CDF of Y1 given Y2 = y2. �
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Definition 8.9 (Conditional probability density function).

Let Y1 and Y2 be continuous random variables with joint PDF fY1|Y2
(y1, y2) and marginal

densities fY1(y1) and fY2(y2). Then we call

(8.17) fY1|Y2
(y1 | y2) :=


fY1,Y2(y1, y2)

fY2(y2)
, if fY2(y2) > 0 ,

undefined , if fY2(y2) = 0 ,

the conditional probability density function or the conditional PDF of Y1 given Y2.

Likewise, we call

(8.18) fY2|Y1
(y2 | y1) :=


fY1,Y2(y1, y2)

fY1(y1)
, if fY1(y1) > 0 ,

undefined , if fY1(y1) = 0 ,

the conditional PDF of Y2 given Y1. �

8.3 Independence of Random Variables and Discrete Random Elements

Introduction 8.1. Let X1, X2 : (Ω, P ) → Ω′ be two random elements (recall that they are random
variables if Ω′ = R). Not all events A ⊆ Ω are meaningful for X1 and X2. Rather, only events
generated by X1 and byX2, i.e., events of the form {X1 ∈ B1} and {X2 ∈ B2} for suitable B1, B2 ⊆
Ω′ will matter.
Since independence of two events A1 and A2 is defined by P (A1 ∩ A2) = P (A1)P (A2), the proper
way to define independence of X1 and X2 seems to be

P{X1 ∈ B1, X2 ∈ B2, } = P{X1 ∈ B1} · P{X2 ∈ B2, } for all relevant B1, B2 ⊆ Ω′.(8.19)

What are the relevant sets Bj? We answer that question for discrete random elements (hence, also
for discrete random variables) and for continuous random variables.

(a) Assume that X : (Ω, P ) → Ω′ is a discrete random element with PMF pX(x). In other words,
there is a countable Ω∗ ⊆ Ω′ such that, for any B ⊆ Ω′,

P{X ∈ B} = PX(B) =
∑

x∈Ω∗∩B
pX(x) =

∑
x∈B

pX(x) =
∑
x∈B

P{X = x} .

These equations show that the distribution of X is determined by the events {X = x}. Thus, the
relevant sets for X are of the form B = {x}.
(b) Assume that Y is a continuous random variable on (Ω, P ) with PDF fY (y). Then the probabili-
ties for the events that matter, the events {a < Y ≤ b}where a < b, are

P{a < Y ≤ b} =

∫ b

a
fY (y)dy .

(See (7.4) in heorem 7.2 on p.117.) This equation shows that the distribution of Y is determined by
the probability density function fY (y). Thus, the relevant sets for Y are the intervals B = ]a, b]. 43

43Since P{X = a} = 0 for all a ∈ R, it does not matter whether we do or do not include the end points. See Proposition
7.1 on p.116.
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In summary, we could define independence of discrete random elements X1 and X2 as

P{X1 = x1, X2 = x2, } = P{X1 = x1} · P{X2 = x2, } for all x1, x2 ∈ Ω′.

Equivalently, this can be expressed as

pX1,X2(x1, x2) = pX1(x1) · pX2(x2) for all x1, x2 ∈ Ω′.(8.20)

Moreover, independence of continuous random variables Y1 and Y2 could be defined as

P{a < X1 ≤ b, c < X2 ≤ d} = P{a < X1 ≤ b} · P{c < X2 ≤ d} for all a < b and c < d.

Equivalently, this can be expressed as∫ b

a

∫ d

c
fY1,Y2(y1, y2)dy2 dy1 =

∫ b

a
fY1(y1)dy1 ·

∫ d

c
fY2(y2)dy2 for all a < b and c < d.(8.21)

The CDF (cumulative distribution function) FY (y) gives us for both discrete and continuous ran-
dom variables (but we must exclude discrete random elements) a unified way to express what was
stated in (a) and (b) as follows.
In the discrete case (a) we have

P{Y = y} = P{Y ≤ y} − P{Y < y} = FY (y)− FY (y−) .

Here FY (y−) = lim
a<y,a→y

FY (a) is the left–hand limit of the (monotone) function FY (·) at y.

In the continuous case (b) we have

P{a < Y ≤ b} = P{Y ≤ b} − P{Y ≤ a} = FY (b)− FY (a) .

In both cases, independence of Y1 and Y2 can now be defined as

FY1,Y2(y1, y2) = FY1(y1) · FY2(y2) for all y1, y2 ∈ R. �(8.22)

We make (8.22) the basis for the definition of independence of random variables.

Definition 8.10 (Independent random variables).

Let Y1 and Y2 be random variables with CDFs FY1(y1) and FY2(y2) and with joint CDF
FY1,Y2(y1, y2). We call Y1 and Y2 independent if

FY1,Y2(y1, y2) = FY1(y1) · FY2(y2) for all y1, y2 ∈ R.(8.23)

If Y1 and Y2 are not independent, we call them dependent.

We must treat discrete random elements separately since there are no CDFs.

Let X1 and X2 be discrete random elements with PMFs pX1(x1) and pX2(x2) and with joint
PMF pX1,X2(x1, x2). We call X1 and X2 independent if

pX1,X2(x1, x2) = pX1(x1) · pX2(x2) for all x1, x2 ∈ R.(8.24)

If X1 and X2 are not independent, we call them dependent. �
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Theorem 8.3 (Functions of independent random variables are independent).

Let ~Y = (Y1, . . . , Yk) : (Ω, P )→ R be a vector of k independent random variables and hj : R→ R.
• Then the random variables h1 ◦ Y1, . . . , hk ◦ Yk also are independent.

PROOF: We recall (3.37) of Proposition 3.7 (Preimages of function composition) on p.64: Let f :
X → Y and g : Y → Z and W ⊆ Z. Then

(g ◦ f)−1 = f−1 ◦ g−1, i.e., (g ◦ f)−1(W ) = f−1
(
g−1(W )

)
.(A)

We use this twice in the following calculations.

P{hj ◦ Yj ∈ Bj , (j = 1, . . . , n)} = P{(hj ◦ Yj)−1(Bj), (j = 1, . . . , n)}
(A)
= P{Y −1

j ◦ h−1
j (Bj), (j = 1, . . . , n)} = P{Yj ∈ h−1

j (Bj), (j = 1, . . . , n)} .

Since the Yj are independent, the product rule holds. We obtain

P{hj ◦ Yj ∈ Bj , (j = 1, . . . , n)} =
∏
j

P{Yj ∈ h−1
j (Bj)} =

∏
j

P{Y −1
j ◦ h−1

j (Bj)}

(A)
=
∏
j

P{
∏
j

P{(hj ◦ Yj)−1(Bj)} =
∏
j

P{hj ◦ Yj ∈ Bj} . �

Theorem 8.4 (WMS Ch.05.4, Theorem 5.4).

If Y1 and Y2 are discrete random variables with joint PMF pY1,Y2(y1, y2) and marginal PMFs pY1(y1)
and pY2(y2), then

Y1, Y2 are independent ⇔ pY1,Y2(y1, y2) = pY1(y1) · pY2(y2) for all y1, y2 ∈ R.(8.25)

If Y1 and Y2 are continuous random variables with joint PDF fY1,Y2(y1, y2) and marginal PDFs
fY1(y1) and fY2(y2), then

Y1, Y2 are independent ⇔ fY1,Y2(y1, y2) = fY1(y1) · fY2(y2) for all y1, y2 ∈ R.(8.26)

PROOF: We only prove here the⇒⇒⇒ directions of (8.25) (8.26). The proof of the opposite direction is
left as an excercise to the reader.
We apply (??) of Theorem ?? on p.?? and (8.23) of Definition 8.10 (Independent random variables)
on p.149 as follows.

P{a1 <Y1 ≤ y1, a2 < Y2 ≤ y2}
(9.18)
= FY1,Y2(y1, y2) − FY1,Y2(a1, y2) − FY1,Y2(y1, a2) + FY1,Y2(a1, 22)

(8.23)
= FY1(y1)FY2(y2) − FY1(a1)FY2(y2) − FY1(y1)FY2(a2) + FY1(a1)FY2(a2)

=
(
FY1(y1) − FY1(a1)

) (
FY2(y2) − FY2(a2)

)
= P{a1 < Y1 ≤ y1} · P{a2 < Y2 ≤ y2}(A)
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For discrete Y1 and Y2, we obtain with a1 = y1− and a2 = y2−,

pY1,Y2(y1, y2) = P{y1− < Y1 ≤ y1, y2− < Y2 ≤ y2}
(A)
= P{y1− < Y1 ≤ y1} · P{y2− < Y2 ≤ y2} = pY1(y1) · pY2(y2) .

For continuous Y1 and Y2, we obtain,∫ y1

a1

∫ y2

a2

fY1,Y2(u1, u2) du1du2 = P{a1 < Y1 ≤ y1, a2 < Y2 ≤ y2}

(A)
= P{a1 < Y1 ≤ y1} · P{a2 < Y2 ≤ y2} =

∫ y1

a1

fY1(u1) du1 ·
∫ y2

a2

fY2(u2) du2

We differentiate with respect to y1 and y2 and obtain fY1,Y2(y1, y2) = fY1(y1) fY2(y2). �

The next theorem will be generalized in Theorem 8.10 on p.157. There Y1 and Y2 will be replaced
with functions g(Y1) and (Y2).

Theorem 8.5.

If Y1 and Y2 are independent random variables, then

E[Y1 · Y2] = E[Y1] · E[Y2] .(8.27)

PROOF: We show the proof for continuous Y1 and Y2. Since fY1,Y2(y1, y2) = fY1(y1) · fY2(y2),

E[Y1Y2] =

∫ ∞
−∞

∫ ∞
−∞

y1y2fY1,Y2(y1, y2) dy1 dy2 =

∫ ∞
−∞

∫ ∞
−∞

y1y2fY1(y1) fY2(y2) dy1 dy2

=

∫ ∞
−∞

y2

[∫ ∞
−∞

y1fY1(y1) dy1

]
fY2(y2) dy2 =

∫ ∞
−∞

y2E[Y1]fY2(y2) dy2

= E[Y1]

∫ ∞
−∞

y2fY2(y2) dy2 = E[Y1]E[Y2] .

The proof for discrete random variables is obtained by employing pY1,Y2(y1, y2) = pY1(y1) · pY2(y2)
and replacing integration with summation. �

Theorem 8.6 (WMS Ch.05.4, Theorem 5.5).

Let the continuous random variables Y1 and Y2 have a joint PDF fY1,Y2(y1, y2) that is strictly
positive if and only if there are constants a < b and c < d such that

fY1,Y2(y1, y2) > 0 ⇔ a ≤ y1 ≤ b and c ≤ y2 ≤ d .

Then Y1, Y2 are independent ⇔ fY1,Y2(y1, y2) = g1(y1) · g2(y2)(8.28)

for suitable nonnegative functions g1, g2 : R → R such that the only argument of g1 is y1 and the
only argument of g2 is y2.

PROOF:
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The⇒⇒⇒ direction is trivially true: Choose the marginal densities fY1 and fY1 for g1 and g2.
PROOF of⇐⇐⇐: From f(y1, y2) = g1(y1) g2(y2), we obtain for the marginal densities,

fY1(y1) =

∫ ∞
−∞

f(y1, y2) dy2 =

∫ ∞
−∞

g1(y1) g2(y2) dy2 = g1(y1)

∫ ∞
−∞

g2(y2) dy2 = αg1(y1) ,

fY2(y2) =

∫ ∞
−∞

f(y1, y2) dy1 =

∫ ∞
−∞

g1(y1) g2(y2) dy1 = g2(y2)

∫ ∞
−∞

g1(y1) dy1 = βg2(y2) ,

(A)

Here, the constants α =
∞∫
−∞

g2(y2) dy2 and β =
∞∫
−∞

g1(y1) dy1 satisfy

αβ =

∫ ∞
−∞

g2(y2) dy2 ·
∫ ∞
−∞

g1(y1) dy1

=

∫ ∞
−∞

∫ ∞
−∞

g1(y1)g2(y2) dy1dy2 =

∫ ∞
−∞

∫ ∞
−∞

fY1,Y2(y1, y2) dy1dy2 = 1 .

(B)

We conclude that

fY1,Y2(y1, y2)
(B)
= αβ fY1,Y2(y1, y2) = αβ g1(y1)g2(y2) =

(
αg1(y1)

)(
βg2(y2)

) (A)
= fY1(y1)fY2(y2) .

We have proved independence. �

Example 8.1 (Buffon’s needle). The plane is segmented by paralled lines into strips of width d > 0.
A needle of length λ < d is dropped at random onto the plane. What is the probability that the line
will intersect one of those parallel lines?
Solution: A needle that is dropped on the plane uniquely determines a right–angled triangle as
follows:
• Leg #1 is perpendicular to the parallels. It extends from the midpoint of the needle to the

nearest parallel line. Its length is denoted a.
• Its hypothenuse of length c is on the same line as the needle. Thus, it extends from the

midpoint of the needle to the point of intersection with that parallel line.
• Leg #2 is located on that parallel line. Its length is denoted b.

We denote the angle formed by the hypothenuse and leg #2 by θ. Thus,

sin(θ) =
a

c
, thus, c =

a

sin(θ)
.(A)

The needle intersects the (nearest) parallel ⇔ c < λ/2
(A)⇐⇒ a

sin(θ)
< λ/2 .(B)
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8.1 (Figure).
Buffon’s needle

In Figure 8.1, the triangle on the left satisfies (B):
• c1 < λ/2 means that theNE part of the needle extends past the nearest parallel.

On the other hand, the one on the right does not satisfy (B):
• c2 > λ/2 means that the SW end of the needle does not reach the nearest parallel.

Note that the triangle created by the random position of the needle is uniquely determined by the
two random variables

ω 7→ A(ω) := length of leg #2 ,
ω 7→ Θ(ω) := angle between leg #1 and the hypothenuse.

Let Γ ⊆ Ω be the event that the needle intersects with a parallel line. We have seen that

ω ∈ Γ
(B)⇐⇒ A(ω)

sin
(
Θ(ω)

) <
λ

2
. ⇔

(
A(ω),Θ(ω)

)
∈ B ,

where

B =

{
(a, θ) ∈]0, d/2[× ]0, π[ :

a

sin(θ)
<

λ

2

}
=

{
(a, θ) ∈]0, d/2[× ]0, π[ : a <

λ

2
· sin(θ)

}
.

Here, the constraint 0 < a < d/2 results from the fact that the midpoint of the needle has a distance
of at most d/2 from the nearest parallel. Thus, the length A(ω) of leg #2 cannot exceed d/2.
The randomness of the needle toss ensures that
• A ∼ uniform(0, λ/2) • Θ ∼ uniform(0, π) • A and Θ are independent.

It follows that the joint PDF of (A,Θ) is

fA,Θ(a, θ) = fA(a) · fΘ(θ) =


2

dπ
, if 0 < a <

d

2
, 0 ≤ θ ≤ π ,

0 , elsewhere .

We obtain the probability that a randomly tossed needle intersects one of the parallel lines as

P (Γ) = P{(A,Θ) ∈ B} =

∫∫
B
fA,Θ(a, θ) da dθ

=

∫ π

0

∫ (λ/2) sin(θ)

0

2

dπ
da dθ =

λ

dπ

∫ π

0
sin(θ) dθ =

λ

dπ
(− cos θ)

∣∣∣π
0

=
2λ

dπ
. �
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8.4 The Mulitivariate Uniform Distribution

In this section we extend uniform distribution of Chapter 7.4 (The Uniform Probability Distribution)
to regions in two– and threedimensional space.

Definition 8.11 (Continuous, uniform random variable).

(A) Let ~Y = (Y1, Y2) be a twodimensional random vector of continuous random variables
with a joint PDF f~Y (y1, y2) that satisfies the following:

• There is a constant c > 0 such that either f~Y (y1, y2) = c or f~Y (y1, y2) = 0.

Let C := {(y1, y2) ∈ R2 : f~Y (y1, y2) > 0}. Then we say that ~Y has a continuous uniform
probability distribution on C. �

(B) Let ~Y = (Y1, Y2, Y3) be a threedimensional random vector of continuous random vari-
ables with a joint PDF f~Y (y1, y2, y3) that satisfies the following:

• There is a constant d > 0 such that either f~Y (y1, y2, y3) = d or f~Y (y1, y2, y3) = 0.

Let D := {(y1, y2, y2, y3) ∈ R3 : f~Y (y1, y2, y3) > 0}. Then we say that ~Y has a continuous
uniform probability distribution on D. �

Remark 8.3. The constants c and d of the previous definition are uniquely determined as follows:
(A) In the twodimensional case,∫∫

R2

f~Y (y1, y2) dy1 dy2 = 1 ⇒ c = 1
/ ∫∫

C
dy1 dy2 .

In other words, c is the reciprocal of the area of C.

(B) In the threedimensional case,∫∫∫
R3

f~Y (y1, y2, y3) dy1 dy2 dy3 = 1 ⇒ d = 1
/ ∫∫∫

D
dy1 dy2 dy3 .

Thus, d is the reciprocal of the volume of D.

(C) It should be obvious how to generalize uniform distribution to n–dimensional random vectors:

Let ~Y = (Y1, . . . , Yn) be an n–dimensional random vector of continuous random variables with a
joint PDF f~Y (~y) that satisfies the following:

• There is a constant e > 0 such that either f~Y (~y) = e or f~Y (~y) = 0.

Let E := {~y ∈ Rn : f~Y (~y) > 0}. Then we say that ~Y has a continuous uniform probability
distribution on E.
Similarly to the cases n = 2 and n = 3, we obtain that e is the reciprocal of the (n–dimensional)
volume of E: e = 1/e′, where

e′ :=

∫
· · ·
∫

~y ∈ E

d~y �
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Example 8.2. (a) What is the uniform density on C := C1
⊎
C2, where

C1 := {~y ∈ R2 : y1 < 0, 0 ≤ y2 ≤ ey1} , C2 := {~y ∈ R2 : 0 ≤ y1 ≤ 2, 0 ≤ y2 ≤ 1} ?

Note that C1 has area
0∫
−∞

ey1 dy1 = 1 and C2, a rectangle of with 2 and height 1, has area 2. Thus, C

has area 3 and thus, c = 1/3. It follows that

f~Y (~y) =


1

3
, if y1 < 0, 0 ≤ y2 ≤ ey1 , or 0 ≤ y1 ≤ 2, 0 ≤ y2 ≤ 1 ,

0 , else .

(b) Determine the uniform density on

D := {~y ∈ R3 : y1 > 0, y2 > 0, y3 > 0, y2
1 + y2

2 + y2
3 ≤ 1} .

Since Vol(D), the volume of D, is one eighth of (4/3)π, the volume of the unit sphere, we obtain

d =
1

Vol(D)
=

8

(4/3)π
=

6

π
.

Thus,

f~Y (~y) =


6

π
, if y1 > 0, y2 > 0, y3 > 0, y2

1 + y2
2 + y2

3 ≤ 1 ,

0 , else . �

8.5 The Expected Value of a Function of Several Random Variables

In this section we must work with vectors (x1, x2, . . . , xk) of fixed,but arbitrary dimension k, where
each component xj is a real number and thus, (x1, x2, . . . , xk) ∈ Rk. Since it is extremely space
consuming to repeatedly write such lengthy objects, we remind you of the “arrow notation” that
was introduced in Example 2.11 on p.35.

Notation 8.1 (Arrow notation for vectors).

• We write ~x as an abbreviation for a vector
(
x1, x2, . . . , xn

)
. The dimension n is either

explicitly stated or known from the context.
• If f : Rn → R is a function of n real numbers and U = [a1, b1] × · × [an, bn] is an

n–dimensional rectangle, we write∫
A
f(~x) d~x =

∫ b1

a1

· · ·
∫ b2

a2

∫ b1

a1

f(x1, x2, . . . , xn) dy1dy2 · · · dyn

Note that all integrands that occur in this course are so well behaved that the order in
which those n integrations take place can be switched around, just as you remember
it in the cases n = 2 and n = 3 from multidimensional calculus.

• Let a1 < b1, a2 < b2, . . . , an < bn for some n ∈ N. Then ~y ∈ ]a1, b1] × ·×]ad, bd]
denotes the following: ~y =

(
y1, y2, . . . , yd

)
and ai < yi ≤ bi for i = 1, . . . , d.

Here are some examples.

155 Version: 2024-05-06



Math 447 – MF Lecture Notes Student edition with proofs

(a) ~z ∈ Rm means: ~z =
(
z1, z2, . . . , zm

)
and zj ∈ R for all j.

(b) If f : Rk → R, then g(~y) means: f
(
y1, . . . , yk

)
.

(c) If g : Rd → R, then g(~Y ) means: g
(
Y1, . . . , Yd

)
; g
(
~Y (ω)

)
means: g

(
Y1(ω), . . . , Yd(ω)

)
.

(d) If ψ : Rn → R, then E
[
ψ(~Y )

]
means: E

[
ψ
(
Y1, . . . , Yn

)]
.

Definition 8.12 (Expected value of g(~Y )).

(a) Let k ∈ N and let ~Y =
(
Y1, Y2, . . . , Yk

)
be a vector of discrete random variables on a

probability space (Ω, P ) with PMF p~Y (~y). Further, let g : Rk → R be a function of k real
numbers y1, y2, . . . , yk. Then

E
[
g(~Y )

]
= E

[
g(Y1, Y2, . . . , Yk)

]
:=

∑
· · ·
∑

y1, y2, ..., yk

g(~y) p~Y (~y)(8.29)

is called the expected value or mean of the random variable g(~Y ). As usual, the sum on the
right is countable summation over those ~y =

(
y1, y2, . . . , yk

)
for which p~Y (~y) 6= 0.

(b) Let k ∈ N and let ~Y =
(
Y1, Y2, . . . , Yk

)
be a vector of continuous random variables on

a probability space (Ω, P ) with PDF f~Y (~y). Further, let h : Rk → R be a function of k real
numbers y1, y2, . . . , yk. Then

E
[
h(~Y )

]
= E

[
h(Y1, Y2, . . . , Yk)

]
:=

∫ ∞
−∞
· · ·
∫ ∞
−∞

h(~y) f~Y (~y)d~y(8.30)

is called the expected value or mean of the random variable g(~Y ).

See Notations 8.1 (Arrow notation for vectors) for an explanation of
∫
· · · d~y.

As in the onedimensional case, we only are allowed to say that E
[
g(~Y )

]
exists

if
∑
· · ·
∑
|g(y1, . . . , yk)| p(y1, . . . , yk) is finite and that E

[
h(~Y )

]
exists

if
∫
· · ·
∫
|g(y1, . . . , yk)| f(y1, . . . , yk) dy1 . . . dyk is finite. The functions g and h we deal with

in this course will always satisfy that assumption. �

Example 8.3. As an example of the power of that definition, we give here the proof that

E[Y1 + · · ·+ Yn] = E[Y1] + · · ·+ E[Yn] .

Let h(~y) := y1 + · · ·+ yn. Then, by definition 8.12,

E[h(~Y )] =

∫
Rn

(y1 + · · ·+ yn)f~Y (~y)d~y =

n∑
j=1

∫
Rn
yjf~Y (~y)d~y.

Let ~̃y :=
(
y1, . . . , yj−1, yj+1, . . . , yn

)
. Then

∫
(· · · )d~y =

∫
(· · · )d~̃ydyj) because the order of integration

can be switched. Since yj is constant with respect to ~̃y,∫
Rn
yjf~Y (~y) d~y =

∫
R

(∫
Rn−1

yjf~Y (~y) d~̃y

)
dyj =

∫ ∞
−∞

yj

(∫
Rn−1

f~Y (~y) d~̃y

)
dyj .
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The inner integral “integrates out” all variables except yj from the PDF of ~Y . Thus, it is the marginal

PDF fYj of Yj . It follows from E[Yj ] =
∞∫
−∞

yjfYjdyj that

E[h(~Y )] = =
n∑
j=1

∫
Rn
yjf~Y (~y)d~y. =

n∑
j=1

∫ ∞
−∞

yjfYj dyj . =

n∑
j=1

E[Yj ] . �

We list here the theorems of WMS Chapter 5.6 (Special Theorems) that detail the rules for evaluating
expectations. For the remainder of this section we assume that Y1, Y2, . . . are random variables on a
common probability space (Ω, P )

Theorem 8.7 (WMS Ch.05.6, Theorem 5.6).

c ∈ R ⇒ E[c] = c .(8.31)

PROOF: Trivial. �

Theorem 8.8 (WMS Ch.05.6, Theorem 5.7).

Let c ∈ R and g : R2 → R Then the random variable g(Y1, Y2) satisfies

E[cg(Y1, Y2)] = cE[g(Y1, Y2)] .(8.32)

PROOF: Trivial. �

Theorem 8.9 (WMS Ch.05.6, Theorem 5.8).

Let g1, g2, . . . , gk : Rn → R and ~Y := (Y1, . . . , Yn). Then the random variables gj(~Y ) (j =
1, . . . , k) satisfy

E[g1(~Y ) + g2(~Y ) + · · ·+ gk(~Y )]

= E[g1(~Y )] + E[g2(~Y )] + · · ·+ E[gk(~Y )] .
(8.33)

PROOF: We proved in Example 8.3 on p.156 that E
[∑

j Uj

]
=
∑

j E[Uj ] for discrete or continuous

random variables U1, . . . , Uk. We apply this formula to Uj := gj(~Y ) and the theorem follows. �

The next theorem generalizes Theorem 8.5 on p.151. That one stated that, for independent random
variables, the expectation of the product is the product of the expectations.

Theorem 8.10.

Let g, h : R → R be functions of a single variable and assume that the random variables Y1 and Y2

are independent. Then the random variables g(Y1) and h(Y2) also are independent and they satisfy

(8.34) E[g(Y1)h(Y2)] = E[g(Y1)]E[h(Y2)] .
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PROOF: We give the proof for the continuous case only. It is the WMS proof without any alterations.
The proof for the discrete case is similar.
Let fY1,Y2(y1, y2) denote the joint PDF of Y1 and Y2. Independence of Y1 and Y2 yields

fY1,Y2(y1, y2) = fY1(y1) fY2(y2) .

The product g(Y1)h(Y2) is a function ϕ(Y1, Y2) of Y1 and Y2. Hence, by Definition 8.12 (Expected
value of g(~Y )) on p.156,

E[g(Y1)h(Y2)] =

∫ ∞
−∞

∫ ∞
−∞

g(y1)h(y2)fY1,Y2(y1, y2) dy2 dy1

=

∫ ∞
−∞

∫ ∞
−∞

g(y1)h(y2)fY1(y1) fY2(y2) dy2 dy1

=

∫ ∞
−∞

g(y1)fY1(y1)

[∫ ∞
−∞

h(y2)fY2(y2) dy2

]
dy1

=

∫ ∞
−∞

g(y1)fY1(y1)E[h(Y2)] dy1

= E[h(Y2)]

∫ ∞
−∞

g(y1)fY1(y1) dy1 = E[g(y1)]E[h(Y2)] .

The proof of the independence of g◦Y1 and h◦Y2 is based on a characterization of the independence
if random elementsXi which involves σ{Xi}, the sigma algebras generated by eachXi. it is omitted
here. �

8.6 The Covariance of Two Random Variables

Introduction 8.2. If we examine how two random variables Y1 and Y2 relate to each other, we can
consider among other issues the following:

(a) If the values of Y1 increase, will the values of Y2, on average, also tend to increase? One says
in this case that Y1 and Y2 have positive correlation.

(b) Or will the values of Y2, on average, tend to decrease as the values of Y1 increase? One says
in this case that Y1 and Y2 have negative correlation.

(c) Or will the values of Y2, on average, have neither increasing nor falling tendency as the
values of Y1 increase? One says in this case that Y1 and Y2 have zero correlation or that they
are uncorrelated.

(d) What if Y1 and Y2 are independent? We should expect in that case that Y1 and Y2 are uncor-
related.
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One can associate with Y1 and Y2 a number ρ, their which measures the strength of their correlation.
More precsisely, it measures the strength of the linear association between Y1 and Y2 and whether
that association is of an increasing or decreasing nature. ρ is defined in terms of the covariance of
Y1 and Y2 and this will be the topic of the current section. �

In this entire section, we consider two random variables Y1 and Y2 on a probability space
(Ω, P ). As usual, we denote mean and standard deviation

µj := E[Yj ] , σj :=
√
V ar[Yj ] , for j = 1, 2.

Definition 8.13 (Covariance).

The covariance of Y1 and Y2 is

Cov[Y1, Y2] = E
[
(Y1 − E[Y1]) (Y2 − E[Y2])] = E

[
(Y1 − µ1) (Y2 − µ2)] . �(8.35)

Remark 8.4. Cov[Y1, Y2] has the following properties:
(a) The larger the absolute value of the covariance of Y1 and Y2, the greater the linear depen-

dence between Y1 and Y2.
(b) Cov[Y1, Y2] > 0 indicates that, on average, Y1 increases as Y2 increases.
(c) Cov[Y1, Y2] < 0 indicates that, on average, Y1 decreases as Y2 increases.
(d) Cov[Y1, Y2] = 0 indicates that, on average, Y1 remains constant as Y2 increases. It is a pecu-

liarity of the statistician’s lingo that this kind of linear relationship, even if it is very strong,
is defined to be as NO linear relationship between Y1 and Y2.

(e) If we consider 10Y1 instead of Y1 and 10Y2 instead of Y2 the correlation changes by a factor
of 102 = 100: Cov[10Y1, 10Y2] = 100Cov[Y1, Y2]. This is not convenient in many situations
and one defines a standardized correlation by relating Y1 and Y2 to their variances. This will
be done in the next definition. �
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Definition 8.14 (Correlation coefficient).

The correlation coefficient, of Y1 and Y2 is

ρ =
Cov(Y1, Y2)

σ1σ2
�(8.36)

We say that Y1 and Y2 have positive correlation if ρ > 0, (i.e., if Cov(Y1, Y2) > 0), they have
negative correlation if ρ < 0, (i.e., if Cov(Y1, Y2) < 0), and that they have zero correlation
or that they are uncorrelated if ρ = 0, (i.e., if Cov(Y1, Y2) = 0).

Proposition 8.3. The correlation coefficient satisfies the inequality

−1 ≤ ρ ≤ 1 �(8.37)

PROOF: Omitted �

The next formula often makes it easier to compute the covariance.

Theorem 8.11.

Cov[Y1, Y2] = E[(Y1 − µ1) (Y2 − µ2)] = E[Y1Y2] − E[Y1]E[Y2] .(8.38)

PROOF: Since E[U + V ] = E[U ] + E[V ] and E[cU ] = cE[U ] and E[c] = c for all random variables
U, V and numbers c,

Cov[Y1, Y2] = E[(Y1 − µ1) (Y2 − µ2)]

= E(Y1Y2 − µ1Y2 − µ2Y1 + µ1µ2)

= E[Y1Y2] − µ1E[Y2] − µ2E[Y1] + µ1µ2

= E[Y1Y2] − µ1µ2 − µ2µ1 + µ1µ2 = E[Y1Y2] − µ1µ2 . �

Theorem 8.12.

Independent random variables are uncorrelated.

PROOF: By Theorem 8.5 on p.151, independent random variables Y1 and Y2 satisfy E[Y1Y2] =
E[Y1]E[Y2]. Together with (8.38), we obtain

Cov[Y1, Y2] = E[Y1Y2] − E[Y1]E[Y2] = 0 . �

Example 8.4 (Uncorrelated,but not independent). The following simple examle shows two discrete
random variables Y1 and Y2 which are uncorrelated, but they are not independent.
We obtain from the joint PMF p(y1, y2) of Y1 and Y2,
shown at the right, that
E[Y1] = (−1)1

4 + 0 · 1
2 + 1 · 1

4 = 0,
E[Y2] = (−1)1

2 + 1 · 1
2 = 0,

E[Y1Y2] = (−1)(−1)0 + 0(−1)1
2 + (1)(−1)0

+(−1)(1)1
4 + 0 · 1 · 0 + 1 · 1 · 1

4 = 0.

Y2

Y1 −1 1

−1 0 1/4

0 1/2 0

1 0 1/4
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Thus, E[Y1Y2] = E[Y1]E[Y2] = 0 and Y1 and Y2 are uncorrelated. On the other hand, p(−1,−1) = 0,
whereas pY1(−1) · pY2(−1) = 1

4 ·
1
2 6= 0. Thus, Y1 and Y2 are not independent. �

Definition 8.15 (Linear function). ?

Let n ∈ N. We call a function ϕ : Rn → R; ~x = (x1, . . . , xn) 7→ ϕ(~x), a linear function, of
x1, . . . , xn, if there are constants a1, . . . , an ∈ R such that

ϕ(~x) = a1x1 + a2x2 + · · ·+ anxn =
n∑
j=1

ajxj . �(8.39)

Remark 8.5. Note that if ~Y = (Y1, . . . , Yn) is a vector of random variables, then the function ϕ of

(8.39) defines a random variable V = ϕ(~Y ) =
n∑
j=1

ajYj . �

Theorem 8.13 (WMS Ch.05.8, Theorem 5.12). Let ~X = X1, . . . , Xm and ~Y = Y1, . . . , Yn be random
variables on a probability space (Ω, P ). For i = 1, . . . ,m and j = 1, . . . , n, let ξi := E(Xi) and ηj := E(Yj).
Further, let

U :=
m∑
i=1

aiXi and V :=
n∑
j=1

bjYj ,

where ~a = (a1, a2, . . . , am) and~b = (b1, b2, . . . , bn) are two constant vectors. Then

E[U ] =
m∑
i=1

aiξi ,(8.40)

V ar[U ] =
m∑
i=1

a2
iV ar[Xi] + 2

∑∑
1≤i<j≤m

aiajCov[Xi, Xj ] .(8.41)

Cov[U, V ] =
m∑
i=1

n∑
j=1

aibjCov[Xi, Yj ] .(8.42)

In (8.41),
∑∑

1≤i<j≤m
· · · refers to summation over all pairs (i, j) satisfying i < j.

PROOF: The theorem consists of three parts, of which (8.40) follows directly from Theorems 8.8 and
8.9.
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Proof of (8.41): From the definition of variance we obtain

V ar[U ] = E[U − E[U ]]2 = E

[
n∑
i=1

aiXi −
n∑
i=1

aiξi

]2

= E

[
n∑
i=1

ai(Xi − ξi)

]2

= E

 n∑
i=1

a2
i (Xi − ξi)2 +

n∑
i=1

n∑
j=1

i 6=j

aiaj(Xi − ξi)(Xj − ξj)


=

n∑
i=1

a2
iE[Xi − ξi]2 +

n∑
i=1

n∑
j=1

i 6=j

aiajE[(Xi − ξi)(Xj − ξj)] .

By the definitions of variance and covariance, we have

E[(Xi − ξi)2] = V ar[Xi] and E[(Xi − ξi)(Xj − ξj)] = Cov[Xi, Xj ] .

Thus,

V ar[U ] =
n∑
i=1

a2
iV ar[Xi] +

n∑
i=1

n∑
j=1

i 6=j

aiajCov[Xi, Xj ] .

We apply symmetry Cov[Xi, Xj ] = Cov[Xj , Xi] to the double summation and obtain

V ar[U ] =

n∑
i=1

a2
iV ar[Xi] + 2

∑∑
1≤i<j≤n

aiajCov[Xi, Xj ] .

We have shown (8.41). To prove (8.42), we proceed in a similar fashion: We have

Cov[U, V ] = E
[

(U − E[U ])(V − E[V ])
]

= E

( m∑
i=1

aiXi −
m∑
i=1

aiξi

) n∑
j=1

bjXj −
n∑
j=1

bjηj


= E

( m∑
i=1

ai(Xi − ξi)

) n∑
j=1

bj(Yj − ηj)



Thus, Cov[U, V ] = E

 m∑
i=1

n∑
j=1

aibj(Xi − ξi)(Yj − ηj)


=

m∑
i=1

n∑
j=1

aibjE[(Xi − ξi)(Yj − ηj)]

=
n∑
i=1

m∑
j=1

aibjCov[Xi, Yj) . �
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Remark 8.6. Note the following about Theorem 8.13:
(a) Neither CDFs, PMFs or PDFs were needed to prove the theorem. Thus, the proof

applies to both discrete and continuous random variables.
(b) Since Cov[Yi, Yi) = V ar[Yi), (8.41) is a particular version of (8.42). �

We are now in a position to prove (7.28) of Theorem 7.8 on p.127 (and thus, also (6.16) of Theo-
rem 6.4 on p.99) Those formulas state that, for independent random variables, the variance of the
sum equals the sum of the variances. Even better, independence can be replaced with the weaker
assumption of correlation zero. (See Theorem 8.12.)

Corollary 8.1 (Bienaymé formula for uncorrelated variables). ?

Let Y1, Y2, . . . , Yn : Ω → R be uncorrelated random variables (which all are defined on the same
probability space (Ω, P ) (n ∈ N. Then

V ar

 n∑
j=1

Yj

 =
n∑
j=1

V ar[Yj ] .(8.43)

PROOF: Since Y1, . . . , Yn are uncorrelated, Cov[Yi, Yj ] = 0 for 1 ≤ i, j ≤ n and i 6= j. We employ
(8.41) on p.161 with a1 = a2 = · · · = an = 1 and obtain

V ar

[
n∑
i=1

Yi

]
=

n∑
i=1

V ar[Yi] + 2
∑∑
1≤i<j≤n

Cov[Yi, Yj ] =
n∑
i=1

V ar[Yi] + 0 . �

Example 8.5 (Variance of the sample mean 44 ). This example belongs thematically to Section 5.2
(Random Sampling and Urn Models With and Without Replacement). We model SRS sampling
from a population to infer statistical knowledge about it as follows.
• The population is represented by a probability space (Ω, P ) and the statistical knowledge

we are interested in is part of the distribution of a random variable Y on (Ω, P ).
• Picking at random an item from the population is modeled as the outcome Y (ω) of an invo-

cation of Y .
• Picking an SRS sample of size n from the population is modeled as the n outcomes ~Y (ω) =(

Y1(ω), . . . , Yn(ω) of n independent random variables Y1, . . . Yn which have the same distri-
bution as Y . In other words, the Yj are a (finite) iid sequence in the sense of Definition 6.4
on p.100.

• Of course, that last point is an idealization, since independent sample picks correspond to
sampling with replacement, whereas SRS models to sampling without replacement. See
Definitions 5.3 on p.89 and 5.4 about SRS and urn models. On the other hand, the computa-
tional differences between results based on sampling with and without replacement are of
practical insignificance if the sample size is small when compared to the population size. 45

In this example we specifically consider the mean of the population data.

44This is a modified version of WMS, Example 5.27.
45See parts (c) and (d) of Remark 5.2 on p.88.
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• It seems natural to model this mean it by the mean of Y , i.e., the expectation µ = E[Y ] of Y .
• So that’s it then. E[Y ] is the answer we are looking for. Well, it would be if we only knew

the distribution of Y or, at least, E[Y ].
• But we don’t! We “defined” Y as the action of taking a single random pick from the popu-

lation, and that is the extent of our knowledge of Y .
• This is why we introduced the vector ~Y of n iid sample picks. The randomness and in-

dependence of Y1, . . . Yn should make the specific sample ~y that consists of the outcomes
yj = Yj(ω) representative of the population. Thus, its sample mean ȳ = Ȳ (ω) which is
obtained by averaging the sample data, i.e.,

Ȳ (ω) =
Y1(ω) + Y2(ω) + · · ·+ Yn(ω)

n
,

should result in a good estimate of the population mean.
All of the above serves as motivation for the following setup. Let Y1, Y2, . . . , Yn be independent
random variables with common expectation E[Yj ] = µ and variance V ar[Yj ] = σ2 (j = 1, . . . , n).
Let

Ȳ :=
1

n

n∑
j=1

Yj .(8.44)

It follows from (8.40) on p.161 and Corollary 8.1 on p.163 that

E[Ȳ ] = E

 1

n

n∑
j=1

Yj

 =
1

n
E

 n∑
j=1

Yj

 =
1

n

n∑
j=1

E[Yj ] =
1

n
(nµ) = µ ,

V ar[Ȳ ] = V ar

 1

n

n∑
j=1

Yj

 =
1

n2
V ar

 n∑
j=1

Yj

 =
1

n2

n∑
j=1

V ar[Yj ] =
1

n2
(nσ2) =

σ2

n
.

We infer from those two formulas the following.
Recall that the purpose of Ȳ is to serve as an estimator for the following population parameter: The
population mean, which is the mean of anyone of the sample picks µ = E[Yj ].
The significance of the formula E[Ȳ ] = µ is as follows
• The expected value of this estimator equals the parameter it is meant to estimate.

An estimator with that property is referred to as an unbiased estimator.
Now to the formula V ar[Ȳ ] = σ2/n. We use it to compare the standard deviations

σYj =
√
V ar[Yj ] and σY =

√
V ar[Ȳ ]

of a single pick Yj and the average Ȳ of n such independent picks. Note that the standard deviation
of a random variable U is a measure for its concentration about its expected value. (And the same
is true for its variance.) A small σU signifies that most outcomes U(ω) are in close vicinity of E[U ].
Thus, σY is a measure for the lack of precision with which Ȳ estimates E[Ȳ ] = µ.
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• In the extreme case of a sample of size 1, i.e., n = 1, that lack of precision is σ.
• For n = 100, that lack of precision goes down to

σ

10
. Thus, precision has improved by a

factor of 10.
• Generally speaking, increasing the sample size by the factor K (and spending all that time

and money doing so) does not reward us with a proportionate improvement of the precision
of the estimate Ȳ . It only increases by the factor

√
K. �

8.7 Conditional Expectations and Conditional Variance

8.7.1 The Conditional Expectation With Respect to an Event ?

We will start with a definition of the conditional expectationE[Y | B] of a random variable Y where
conditioning happens with respect to an event B ⊆ Ω. This definition is usually not taught in an
undergraduate level course on probability theory for the following reason: It cannot be extended,
in the case of continuous random variables Y and Ỹ , to E[Y | Ỹ = ỹ], i.e., conditioning on Ỹ having
a fixed outcome ỹ.
All that follows in this subsection is based on Theorem 3.8 on p.55 which states the following: If
(Ω, P ) is a probability space and B ⊆ Ω is an event that satisfies P (B) > 0, then the function Q(·),
defined as Q(A) := P (A | B) for A ⊆ Ω, is a probability measure on Ω. 46

Assumption 8.3.

In all of this subsection we deal with a fixed probability space (Ω, P ) and a fixed event
B ⊆ Ω that satisfies P (B) > 0. We further assume that Q(·) is the probability measure

A 7→ Q(A) := P (A | B), where A ⊆ Ω.(8.45)

The symbols X,X1, X2, . . . denote random elements and X,X1, X2, . . . denote random
variables on Ω. We need not be specific about whether we mean (Ω, P ) or (Ω, Q), because
the definition of random element and random variable does not involve the probability
measure, only the carrier space Ω. �

Remark 8.7. The following mathematical triviality allows us to translate much that we have done
with random variables in connection with P to their analogues with respect to Q = P (· | B).
• All definitions, propositions and theorems in which an unspecified probability measure P

is involved can be reformulated by replacing P with Q.
Here is a list (certainly not complete) of many such concepts.
• cumulative distribution function, • probability mass function
• probability density function • joint CDF • joint PMF • joint PDF
• expectation • variance •moments •moment generating function

46To be exact, there also was a σ–algebra FFF and we had to assume that B ∈ FFF and that P (A) is defined only for
A ∈ FFF . This in turn implies that Q(A) = P (A | B) only is defined for arguments A ∈ FFF . We do not mention FFF since
we decided to avoid dealing with σ–algebras whenever possible.
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BEWARE: The above does not apply to cases where a specific probability measure is considered.
An example for this would be, e.g., Proposition 7.9 on p.138 (memorylessness of the exponential
distribution). Here the probability measure is an exponential distribution PY .
We will elaborate on some of the items in that bulleted list in the next remark. �

Remark 8.8. In the following, the phrase “Q–.....” serves as an abbreviation for the lengthier “.....
with respect to Q”.

(a) The Q–CDF of a random variable Y is FQY (y) = Q{Y ≤ y} = P{Y ≤ y | B}.
(b) The Q–PMF of a discrete random element 47 X is pQX(x) = Q{X = x} = P{X = x | B}.

(c) Assume that the derivative fQY (y) =
dFQY (y)
dy of the Q–CDF of a random variable Y exists

and is continuous except for at most finitely many y in any finite interval. Then Y is a Q–
continuous random variable with Q–PDF fQY (y). 48

(d) We skip joint Q–CDFs and joint Q–PDFs and only elaborate on the joint Q–PMF. of two
random elements X1 and X2. It is, as one should expect, defined as
pQX1,X2

(x1, x2) = Q{X1 = x1, X2 = x2} = P{X1 = x1, X2 = x2 | B}.
(e) The Q–expected value of a discrete random variable Y is

EQ[Y ] =
∑

y y · p
Q
Y (y) =

∑
y y · P{Y = y | B}. (

∑
y is over all y where pQY (y) > 0.)

(f) The Q–expectation of a continuous random variable Y is EQ[Y ] =
∞∫
−∞

y · fQY (y)dy.

(g) The Q–variance of a random variable Y is V arQ[Y ] = EQ
[
(Y − EQ[Y ])2

]
.

(h) The Q–MGF of a random variable Y is mQ
Y (t) = EQ

[
etY
]
.

For expectations of functions of random variables we skip the case of one or two random variables
and proceed directly to the case of a vector ~Y =

(
Y1, Y2, . . . , Yk

)
of random variables. (See Definition

8.12 on p.156.)

(i) If the Yj are discrete and g : Rk → R, then EQ
[
g(~Y )

]
=

∑
· · ·
∑

y1, y2, ..., yk

g(~y) pQ~Y
(~y).

(j) If the Yj are continuous and h : Rk → R, then EQ
[
h(~Y )

]
=
∫∞
−∞ · · ·

∫∞
−∞ h(~y) fQ~Y

(~y)d~y. �

Here are some of the theorems we get for free because we have shown them for any probability
measure. Again, BEWARE: We made the assumption P (B) > 0!

Theorem 8.14.

If ~Y =
(
Y1, Y2, . . . , Yk

)
is a vector of k discrete or Q–continuous random variables, then

EQ

 n∑
j=1

Yj

 =

n∑
j=1

EQ[Yj ] .(8.46)

47Since P{X = x} ∩ B ≤ P{X = x}, P{X = x} = 0 implies Q{X = x} = 0. Thus, any P–discrete random element
also is Q–discrete.

48There may be some reasonably general and simple conditions that guarantee Y being Q–continuous from being P–
continuous, but this author is not aware of them.
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PROOF: This follows from Theorem 8.14 on p.166. �

Theorem 8.15. If Y is a discrete or Q–continuous random variable and ~Y =
(
Y1, Y2, . . . , Yk

)
is a vector of

k Q–independent discrete or Q–continuous random variables, then

V arQ[Y ] = EQ
[
Y 2
]
−
(
EQ[Y ]

)2
,(8.47)

V arQ [aY + b] = a2V arQ[Y ] ,(8.48)

V arQ

 n∑
j=1

Yj

 =

n∑
j=1

V arQ[Yj ] .(8.49)

PROOF: This follows from Theorem 7.8 on p.127. �

There is an issue with that last theorem. Not just with the proof, but with the assumptions that were
made. How is Q–independence defined for random variables, or even for events A1, A2, Ak? The
answer is, of course, that we apply all previously made definitions of independence of two or more
events or random variables, replacing the original probability measure P with Q.
The following theorem about the Q–independence of two events is worthwhile mentioning.

Theorem 8.16.

Let A1, A2, B ⊆ Ω be three events such that P (A1 > 0, P (A2 > 0 and P (B > 0. Then

(a) P (A1 ∩A2 | B) = P (A1 | B) · P (A2 | B)

⇔ (b) P (A1 | A2 ∩B) = P (A1 | B)

⇔ (c) P (A2 | A1 ∩B) = P (A2 | B) .

(8.50)

In other words, if Ai and Aj are independent with respect to “just” conditioning on B, then “further”
conditioning of Ai on both Aj and B has no effect. Here, either i = 1, j = 2 or i = 2, j = 1.

PROOF: Since (a) is aymmetrical in A1 and A2 and (c) is obtained from (b) by switching the roles of
A1 and A2, it suffices to prove (a) ⇔ (b).
PROOF that (a) ⇒ (b):

P (A1 | A2 ∩B) =
P (A1 ∩A2 ∩B)

P (A2 ∩B)
=

P (A1 ∩A2 ∩B)

P (B)
· P (B)

P (A2 ∩B)

= P (A1 ∩A2 | B) · 1

P (A2 | B)

(a)
= P (A1 | B) · P (A2 | B) · 1

P (A2 | B)

= P (A1 | B) .

PROOF that (b) ⇒ (a):

P (A1 ∩A2 | B) =
P (A1 ∩A2 ∩B)

P (B)
=

P (A1 ∩A2 ∩B)

P (A2 ∩B)
· P (A2 ∩B)

P (B)

= P (A1 | A2 ∩B) · P (A2 | B)
(b)
= P (A1 | B) · P (A2 | B) . �
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8.7.2 The Conditional Expectation w.r.t a Random Variable or Random Element

Remark 8.9. ? We mentioned at the beginning of the previous subsection 8.7.1 (The Conditional
Expectation With Respect to an Event), that conditioning with respect to an event B constitutes a
dead end street. This is the reason why the material has been marked as ? (optional). Now
let us give the reason.
As far as modeling reality by means of probability theoretical concepts is concerned, the primary
interest of conditioning is being able to assume during certain calculations of the probability in-
volving a random element X1, that another random element X2 has as its outcome a fixed value x2.
Thus, we typically are interested in
• P{X1 ∈ B1 | X2 = x2} , where x2 is some fixed outcome that can be attained by X2.

Having stated the issue in the most general terms, we will restrict ourselves for the remainder of
this remark to random variables Y1 and Y2 rather than working with random elements. This will
allow us to contrast discrete and continuous random variables.
The method of subsection 8.7.1 (using the probability measure Q(A) = P{A | Ỹ = ỹ) will actually
work if we condition on specific values of a discrete random variable Y2. This is so because we only
are interested in those outcomes y2 for which

pY2(y2) = P{Y2 = y2} > 0

and the conditional probability P{A | Y2 = y2} exist for such outcomes y2.
On the other hand, we have nothing at all to work with if Y2 is continuous, since P{Y2 = y2} = 0
for all numbers y2 (see Proposition 7.1 on p.116), since this results in P{Y1 ∈ B1 | Y2 = y2 being
UNDEFINED for all numbers y2!
To overcome this hurdle we will work with the conditional PMFs and PDFs

• pY1|Y2
(y1 | y2) =

pY1,Y2(y1, y2)

pY2(y2)
, if Y1 and Y2 are discrete random variables,

• fY1|Y2
(y1 | y2) =

fY1,Y2(y1, y2)

fY2(y2)
, if Y1 and Y2 are continuous random variables.

We close this remark by noticing that, in the case of discrete random variables, working withQ{Y1 ∈
B1} = P{Y1 ∈ B | Y2 = y2} or with pY1|Y2

(y1 | y2) amounts to the same, because Q and pY1|Y2
satisfy

Q{Y1 ∈ B1} =
∑
y1∈B1

P{Y1 = y1 | Y2 = y2} =
∑
y1∈B1

pY1|Y2
(y1 | y2) . �

Compare the following remark to Remark 8.7 on p.165 for discrete random variables.

Remark 8.10. The following allows us to translate much that we have done with continuous ran-
dom variables in connection with P to their analogues where we replace the (marginal) PDF fY1(y1)
with the conditional PDF fY1|Y2

(y1 | y2):

• Assume that y2 ∈ R satisfies fY2(y2) > 0. Then the integrable function

fY1|Y2
(· | y2) : y1 7→ fY1|Y2

(y1 | y2)

satisfies ��� fY1|Y2
(y1 | y2) ≥ 0 for −∞ < y1 <∞ ���

∞∫
∞
fY1|Y2

(y1 | y2)dy1 = 1.

168 Version: 2024-05-06



Math 447 – MF Lecture Notes Student edition with proofs

• According to Theorem 7.3 on p.118, fY1|Y2
(· | y2) is the PDF of the probability measure Py2

on Ω, defined by

Py2{a < Y2 ≤ b} =

∫ b

a
fY1|Y2

(y1 | y2) dy1 .

• Thus, all definitions, propositions and theorems in which an unspecified probability mea-
sure P is involved can be reformulated by replacing P with Py2 .

This applies, among others, to the following concepts which were listed in Remark 8.7 on p.165 for
discrete random variables:
• cumulative distribution function, • probability mass function
• probability density function • joint CDF • joint PMF • joint PDF
• expectation • variance •moments •moment generating function

• All that was said above extends to a random vector ~U = (U1, . . . , Uk) in place of Y1. We only
must replace fY1,Y2(y1, y2) with f~U,Y2

(u1, . . . , uk, y2), etc. �

Definition 8.16 (Conditional expectation).

Let Y1 and Y2 be two random variables which are either jointly discrete or jointly continuous
and g : R→ R. Let

E[g(Y1) | Y2 = y2] :=
∑
y1

g(y1) p(y1 | y2) (discrete case),(8.51)

E[g(Y1) | Y2 = y2] :=

∫ ∞
−∞

g(y1) f(y1 | y2) dy1 (continuous case).(8.52)

We call E[g(Y1) | Y2 = y2] the conditional expectation of g(Y1), given that Y2 = y2. �

Remark 8.11. Note for the following that the function

ω 7→ E[g(Y1 | Y2 = Y2(ω)] = E[g(Y1 | Y2 = y2]
∣∣∣
y2=Y2(ω)

defines a random variable on (Ω, P ). It is customary in many situations to suppress the argument
ω and write

E[g(Y1 | Y2](8.53)

for this random variable. Clearly, if we write Z(ω) for E[g(Y1 | Y2 = Y2(ω)], we can take its
(unconditional) expectation

E[Z] = E
[
E[g(Y1 | Y2]

]
.(8.54)

In particular, if g(y) = y, we can take the expectation E
[
E[Y1 | Y2]

]
of E[Y1 | Y2]. We will do so in

the next theorem. �
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Theorem 8.17 (WMS Ch.05.11, Theorem 5.14).

Let Y1 and Y2 be either jointly continuous or jointly discrete random variables. Then

E[Y1] = E
[
E[Y1 | Y2]

]
.(8.55)

See Remark 8.11 concerning the interpretation of the right–hand side.

PROOF: We give the proof for jointly continuous Y1 and Y2. With the usual notation for joint PDF,
marginal densities and conditional PDF we obtain

E[Y1] =

∫ ∞
−∞

∫ ∞
−∞

y1 fY1,Y2(y1, y2) dy1 dy2

=

∫ ∞
−∞

∫ ∞
−∞

y1 fY1|Y2
(y1 | y2)fY2(y2) dy1 dy2

=

∫ ∞
−∞

(∫ ∞
−∞

y1 fY1|Y2
(y1 | y2) dy1

)
f2(y2) dy2

=

∫ ∞
−∞

E[Y1 | Y2 = y2] fY2(y2) dy2 = E
[
E[Y1 | Y2]

]
.

The proof for the discrete case is done by doing summation instead of integration and replacing
joint, marginal and conditional PDFs with the corresponding PMFs. �

We define the conditional variance of Y1 given Y2 = y2 by applying Definition 8.16 to the functions
g(y1) = y1 and g(y1) = y2

1 .

Definition 8.17 (Conditional variance).

Let Y1 and Y2 be two random variables which are either jointly discrete or jointly continu-
ous. Let

V ar[Y1 | Y2 = y2] := E[Y 2
1 | Y2 = y2] −

(
E[Y1 | Y2 = y2]

)2
.(8.56)

We call V ar[Y1 | Y2 = y2] the conditional variance of g(Y1), given that Y2 = y2. �

Theorem 8.18.

Let Y1 and Y2 be jointly discrete or jointly continuous random variables. Then

V ar[Y1 | Y2] = E
[

(Y1 − E[Y1 | Y2])2 | Y2

]
,(8.57)

V ar[Y1] = E
[
V ar[Y1 | Y2]

]
+ V ar

[
E[Y1 | Y2]

]
.(8.58)

PROOF: We only give the proof of (8.58). Note that

V ar[Y1 | Y2] = E[Y 2
1 | Y2] −

(
E[Y1 | Y2]

)2
,(A)

E
[
V ar[Y1 | Y2]

]
= E

[
E[Y 2

1 | Y2]
]
− E

[ (
E[Y1 | Y2]

)2]
.(B)
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By the definition of (unconditional) variance,

V ar
[
E[Y1 | Y2]

]
= E

[(
E[Y1 | Y2]

)2] − (E[E[Y1 | Y2]
])2

.(C)

Further,

V ar[Y1] = E
[
Y 2

1

]
−
(
E[Y1]

)2
= E

[
E[Y 2

1 | Y2]
]
−
(
E
[
E[Y1 | Y2]

])2
= E

[
E[Y 2

1 | Y2]
]
− E

[ (
E[Y1 | Y2]

)2]
+ E

[ (
E[Y1 | Y2]

)2] − (E[E[Y1 | Y2]
])2

= E
[
E[Y 2

1 | Y2] −
(
E[Y1 | Y2]

)2]
+
{
E
[ (
E[Y1 | Y2]

)2 − (E[E[Y1 | Y2]
])2}

= E
[
V ar[Y1 | Y2]

]
+ V ar

[
E[Y1 | Y2]

]
. �

8.7.3 Conditional Expectations as Optimal Mean Squared Distance Approximations

The presentation of the material presented here follows [1] Bickel and Doksum: Mathematical
Statistics.

Introduction 8.3. One can measure the distance between two real–valued functions in several ways.

For example, one can define for ϕ,ψ : A→ R,

dist1(ϕ, g) := max{|ϕ(a)− ψ(a)| : a ∈ A} .

In other words, one takes the maximum displacement over
all arguments of ϕ and ψ. This “worst case scenario” as the
advantage that it works for any kind of domain A, since all
that is needed is that the function values are numeric.

However, it often makes more sense to consider the area
between the curves defined by ϕ and ψ.

dist2(ϕ,ψ) :=

∫ b

a
|ϕ(x)− ψ(x)| dx .

Doing so averages out all individual displacements |ϕ(x)−
ψ(x)| over all arguments and one obtains a measure of dis-
tance which is not distorted just one potential outlier.

There are mathematical reasons why one would rather work with the squared difference and con-
sider

dist3(ϕ,ψ) :=

∫ b

a
|ϕ(x)− ψ(x)|2 dx =

∫ b

a

(
ϕ(x)− ψ(x)

)2
dx .

Moreover, one can replace the ordinary integral
∫
· · · dxwith a weighted integral

∫
· · ·w(x)dxwhere

w(x) ≥ 0 for all x and define

dist4(ϕ,ψ) :=

∫ b

a

(
ϕ(x)− ψ(x)

)2
w(x) dx .
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Here, bigger values w(x) of the weight function w lead to a stronger contribution of ϕ(x)− ψ(x) to
the distance between ϕ and ψ
That last example shows us how the expectation of the difference of two functions of two continuous
random variables can be viewed as a distance

dist
(
ϕ(Y1), ψ(Y2)

)
= E[

(
ϕ(Y1)− ψ(Y2)

)2
] =

∫ ∞
−∞

∫ ∞
−∞

(
ϕ(y1)− ψ(y2)

)2
fY1,Y2(y1, y2) dy1 dy2 .

Since E[
(
ϕ(Y1)−ψ(Y2)

)2
] also is defined for discrete random variables, we obtain for those a corre-

sponding definition by replacing the joint PDF with the joint PMF and integration with summation:

dist
(
ϕ(Y1), ψ(Y2)

)
= E[

(
ϕ(Y1)− ψ(Y2)

)2
] =

∑
y1,y2

(
ϕ(y1)− ψ(y2)

)2
pY1,Y2(y1, y2) .

In either discrete or continuous case, we are particularly interested in the case ϕ(y1) = y1 and
examine the distance

dist
(
Y1, ψ(Y2)

)
= E[

(
Y1 − ψ(Y2)

)2
]

for all possible functions y2 7→ ψ(y2). It turns out that the minimum

min{ dist
(
Y1, ψ(Y2)

)
: all suitable functions ψ}

is attained by selecting ψ : y2 7→ E[Y1 | Y2 = y2]. �

Lemma 8.1. Let Y be a random variable on (Ω, P ) that satisfies E[Y 2] <∞. Then, E[|Y |] <∞.

PROOF:

Let A := |Y | < 1 and Z := 1A + |Y 2|, i.e., Z(ω) =

{
1 + |Y 2| , if |Y ω| < 1 ,

|Y 2| , if |Y ω| ≥ 1 .

Since |Y (ω)| < 1 for ω ∈ A and Y (ω)2 ≥ 1 for ω ∈ A{, we obtain |Y (ω)| ≤ Z(ω) for all ω. Thus,

E[|Y |] ≤ E[|Z|] ≤ E[1] + E[Y 2] .

The assertion follows. �

Lemma 8.2. Let Y be a random variable on (Ω, P ) and h : R→ [0,∞] defined by a 7→ E[(Y − a)2]. Then,
(a) either h(a) = ∞ for all a ∈ R,
(b) or h attains a unique minimum at a = E[Y ].

PROOF of (a): For fixed a ∈ R,we define F : R→ R by F (y) := (y − a)2 −
(
(1/2)y2 − a2

)
. Then,

F ′(y) = 2(y − a)− y = y − 2a and F ′′(y) = 1.

It follows that F attains a (unique) minimum at y = 2a. From F (2a) = a2 − (2a2 − a2) = 0, we
obtain that F (y) ≥ 0 for all y. Thus, (y − a)2 ≥ (1/2)y2 − a2. This yields

1

2
y2 − a2 ≤ (y − a)2 = y2 − 2ay + a2 .(A)
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Next, we obtain from (y − a)2 ≤ (y − a)2 + (y + a)2 that

y2 − 2ay + a2 ≤ (y2 − 2ay + 2a2) + (y2 = 2ay + 2a2) = 2y2 + 2a2 .(B)

Let ω ∈ Ω and y := Y (ω). We combine (A) and (B) and obtain 1
2 y

2 − a2 ≤ (y − a)2 ≤ 2y2 + 2a2 .
Since ω is an arbitrary elment of Ω, we have the following inequality of random variables:

1

2
Y 2 − a2 ≤ (Y − a)2 ≤ 2Y 2 + 2a2 .(C)

Taking expectations maintains inequalities. Since E[(Y − a)2] = h(a) and E[Y ]2 = h(0),

1

2
h(0) − a2 ≤ h(a) ≤ 2h(0) + 2a2 .(D)

From this we see that either
[
h(0) =∞ and in this case, h(a) =∞ for all a

]
,

or
[
h(0) <∞ and in this case, h(a) <∞ for all a

]
.

PROOF of (b): We assume for this part of the proof that h(0) < ∞, i.e., E[(Y 2] < ∞. According to
Lemma 8.1 we then also have |E[Y ]| <∞. Thus, we can write

h(a) = E[(Y − a)2] = E[(Y 2] − 2aE[Y ] + a2

= E[(Y 2] − (E[Y ])2 +
(
a2 − 2aE[Y ] + (E[Y ])2

)
= V ar[Y ] + (a− E[Y ])2(E)

It follows that h attains a unique minimum in height of V ar[Y ] at a = E[Y ] and this concludes the
proof of the lemma. �

Theorem 8.19.

Assume that Y is a random variable and ~X = (X1, . . . , Xk) is a random vector on (Ω, P ). Then,
either E

[
(Y − g ◦ ~X)

]
= ∞ for all real–valued functions g : Rk → R of k real arguments, or

E
[(
Y − E[Y | ~X]

)2] ≤ E
[
(Y − g ◦ ~X)2

]
,

for all such functions g. Further, this is a strict inequality if E[Y | ~X] 6= g ◦ ~X .

Note that, as always, we consider equations and inequalities involving random variables to be true as long as
they are satisfied on a set of probability 1.

PROOF: Let us fix ~x ∈ Rk for which E[Y | ~X = ~x] is defined.

(a) In the case of discrete Y and ~X this means that p ~X(~x) > 0
and then B 7→

∑
y∈B py| ~X(y | ~x) is a probability measure P~x on Ω for which we denote

expectations by E~x[. . . ]. Further, for ψ : R→ R, E[ψ(Y ) | ~X = ~x] = E~x[ψ(Y )]

(b) For continuous Y and ~X this means that f ~X(~x) > 0. We have seen in Remark 8.10 on p.168
thatB 7→

∫
B fy| ~X(y | ~x)dy is a probability measure P~x on Ω for which we denote expectations

by E~x[. . . ]. Further, for ψ : R→ R, E[ψ(Y ) | ~X = ~x] = E~x[ψ(Y )]

(c) Thus, in both cases, all we have learned about ordinary expectations can be applied, for
fixed ~x, to the conditional expectations E[· · · | ~X = ~x].
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(d) When we condition an expression on ~X = ~x, we can replace in that expression all occur-
rences of ~X with ~x.

It follows from (d) that

E
[(
Y − g( ~X)

)2 | ~X = ~x
]

= E
[(
Y − g(~x)

)2 | ~X = ~x
]
.(A)

We can apply Lemma 8.2 with E~x(. . . ) instead of E(. . . ) and the constant g(~x) instead of a and
conclude that

E
[(
Y − g(~x)

)2 | ~X = ~x
]
≥ E

[(
Y − E[Y | ~X]

)2 | ~X = ~x
]
.(B)

We apply both (A) and (B) and evaluate both sides of the resulting inequality for ~x = ~X(ω):

E
[(
Y − g( ~X)

)2 | ~X = ~X(ω)
]
≥ E

[(
Y − E[Y | ~X]

)2 | ~X = ~X(ω)
]
.

As we have done before, we streamline this expression by replacing ~X = ~X(ω) with X :

E
[(
Y − g( ~X)

)2 | ~X)
]
≥ E

[(
Y − E[Y | ~X]

)2 | ~X] .
Taking expectations on both sides, we obtain

E
[(
Y − g( ~X)

)2] ≥ E [(Y − E[Y | ~X]
)2]

.

We have shown the inequality that was asserted in the theorem.

We still must prove that this inequality is strict if E[Y | ~X] 6= g ◦ ~X . To do so we apply the reasoning
above to formula (E) of Lemma 8.2 and obtain

E
[(
Y − g( ~X)

)2]
= V ar[Y ] + E

[(
g( ~X)− E[Y | ~X]

)2]
.

Since E
[(
g( ~X)− E[Y | ~X]

)2]
> 0 unless P{g( ~X) 6= E[Y | ~X]} = 0, the assertion at the end of the

theorem follows. �

The last theorem can be phrased as follows:

We interpret all functions φ( ~X) as all possible ways of creating random variables that only
use the information available to ~X where the quality of the approximation is measured by
the mean squared distance (MS Distance) E

[
(Y − g ◦ ~X)2

]
. Then

• the best MS Distance approximation of Y based on information provided by ~X is E[Y | ~X]

8.8 The Multinomial Probability Distribution

Introduction 8.4. In Definition 4.3 (p.77) of Chapter 4 (Combinatorial Analysis) we discussed multi-
nomial coefficients (

n

n1 n2 · · ·nk

)
=

n!

n1!n2! · · ·nk!
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when counting the ways of classifying n items into k classes in such a way that n1 items belong to
class 1, n2 items belong to class 2, ... nk items belong to class k (n1 + · · ·+ nk = n). The multinomial
probability distribution is based on those coefficients and generalizes the binomial distribution of
Section 6.2 (Bernoulli Variables and the Binomial Distribution).
The binomial distribution is that of a random variable Y which counts the number of successes in n
Bernoulli trials. (See Definition 6.5 on p.100 about Bernoulli trials.) To say this differently, Y counts
the number of those Bernoulli trials which result in an outcome that falls into the “success class”.
The multinomial distribution will not be about a single random variable Y , but about a random
vector ~Y =

(
Y1, . . . , Yk

)
of k random variables Yj , which count the number of the n trials resulting

in an outcome that falls into class j. What kind of trials are we talking about? We should expect
those n random elements, let us call them X1, . . . , Xn, to show some similarities to Bernoulli trials.
Of course, there must be some significant differences. For example, each Xi will not have two
outcomes (success or failure), but k outcomes corresponding to the k classes. �

Definition 8.18 (Multinomial Sequence).

Let X1, X2, . . . be a finite or infinite sequence of random elements on a probability space
(Ω, P ) which take values in a set Ω′. We call this sequence a multinomial sequence, if the
following are satisfied:

(1) The sequence is iid.
(2) There is some k ∈ N such that the outcome of each Xj is one of k distinct values

ω′1, ω
′
2, . . . , ω

′
k ∈ Ω′.

Since the Xj have identical distribution, there are probabilities p1, p2, . . . , pk such that
(3) pi := P{Xj = ω′i} is the same for all j and p1 + · · ·+ pk = 1.

If we consider a finite multinomial sequenceX1, X2, . . . , Xn, we adopt the WMS notation and speak
of a multinomial experiment of size n wich consists of the trials Xj �

Definition 8.19 (Multinomial distribution).

Assume that ~Y =
(
Y1, Y2, . . . , Yk

)
is a vector of random variables which possesses the joint

probability mass function

p~Y (y1, y2, . . . , yk) =

(
n

y1, · · · , yk

)
py1

1 p
y2
2 · · · p

yk
k ,(8.59)

subject to the following conditions:

• pj ≥ 0 for j = 1, 2, . . . , k and
k∑
j=1

pj = 1.

• yi = 0, 1, 2, . . . , n for i = 1, 2, . . . , k and
k∑
i=1

yi = n.

Then we say that the random variables Yi have a multinomial distribution with parame-
ters n and ~p = (p1, p2, . . . , pk). �
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Theorem 8.20.

Let n ∈ N and X1, . . . , Xn be a multinomial sequence of size n. Let pj := P{Xi = ω′j}. (That
probability is the same for all i, since the Xi have identical distribution.)
Let ~Y =

(
Y1, . . . , Yk

)
be a vector of k random variables, such that each Yj equals the number of the

n trials resulting in an outcome that falls into class j. In other words,
(A) Yi(ω) = yi ⇔ Xj(ω) = ω′i for exactly yi of the multinomial items Xj .

Then ~Y has a multinomial distribution with parameters n and p~Y (y1, y2, . . . , yk).

PROOF: For fixed ~y =
(
y1, . . . , yk

)
, the event A := {~Y = ~y} corresponds to all different ways that

{1, 2, . . . , n} can be partitioned into k subsets

{1, 2, . . . , n} = J1

⊎
J2

⊎
· · ·
⊎
Jk(A)

such that each Ji contains yi of those n indices. It follows from Theorem 4.6 on p.78 that

there are
(

n

y1, y2, . . . yk

)
different ways of creating such a partition.(B)

Thus, if we write

A(J1, . . . , Jk) := {Xim,1 = · · · = Xim,ym = ω′m for all 1 ≤ m ≤ k} ,

it follows that

P (A) = P{~Y = ~y} = P
(⊎

A(J1, . . . , Jk)
)
,(C)

where this union is taken over all
(

n
y1,...yk

)
partitions J1, . . . , Jk of [1, n]Z.

For a fixed 1 ≤ m ≤ k, we write Jm = {im,1 < im,2 < · · · < im,ym}. Since the Xj are independent,

P{Xim,1 = Xim,2 = · = Xim,ym = ω′m} = P
(
{Xim,1 = ω′m} ∩ · · · ∩ {Xim,ym = ω′m} = (pm)ym

Since theXj are independent not only for indices j belonging to Jm, but also across all Jm, it follows
from the definition of A(J1, . . . , Jk) that

P
(
A(J1, . . . , Jk)

)
= (p1)y1 (p2)y2 · · · (pk)yk .(D)

The right–hand side is independent of the particular partition J1, . . . , Jk. We obtain from (B), (C)
and (D) that

P{~Y = ~y} =

(
n

y1, · · · , yk

)
(p1)y1 (p2)y2 · · · (pk)yk .

Thus, ~Y has the joint PMF that was specified in (8.59). We conclude that ~Y has a multinomial
distribution with parameters n and p~Y (y1, y2, . . . , yk). �

Example 8.6. Research by the marketing division of
GreatWidgets Corp. has established that their cus-
tomers’ age is distributed as shown in the table to the
right. A random sample of eight customers is taken. As-
sume that the proportions shown accurately reflect those
of GreatWidgets Corp.

Age Proportion
Group 1: 15− 20 0.2
Group 2: 21− 30 0.2
Group 3: 31− 40 0.1
Group 4: 41− 50 0.2
Group 5: > 50 0.3
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what is the probability that the sample is composed as follows:
• Group 1: 1 person • Group 2: 3 persons • Group 4: 2 persons • Group 5: 2 persons?
Solution:
We interpret the sample picks as the members X1, . . . , X8 of a multinomial sequence each of which
has age group k as an outcome with probability pk as indicated in the table.
Then the probability we are looking for is given by (8.59) on p.175

p~y(y1, y2, y3, y4, y5) =
n!

y1! y2! y3! y4! y5!
py1

1 py2
2 py3

3 py4
4 py5

5 , �

In the context of this example we obtain

p(1, 3, 2, 0, 2) =
8!

1! 3! 2! 0! 2!
0.21 0.22 0.10 0.22 0.30 , = 0.009768. �

8.9 Order Statistics

AAA
@@Author

The presentation of the material in this section is largely based on the 2015 Math
447 lecture notes of Prof. Xingye Qiao, Binghamton University

Given are n random variables ~Y = (Y1, Y2, . . . , Yn). One can sort them, for any fixed ω ∈ Ω, in
nondecreasing order. One obtains in this fashion a sequence, of size n, of numbers

Y(1)(ω) ≤ Y(2)(ω) ≤ Y(3)(ω) ≤ · · · ≤ Y(n)(ω) .

Since these numbers depend on randomness ω, each Y(j)(ω) represents an outcome of a random
variable Y(j).

Example 8.7. Here are some examples.
(a) 70 students are randomly selected when exiting lecture hall and their age is measured in years.
Those 70 ages, A1(ω), . . . , A70(ω), are sorted in increasing order:
• A(1)(ω) = height of the smallest person in the sample
• A(2)(ω) = height of the second smallest person in the sample
• - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
• A(j)(ω) = height of the jth smallest person in the sample
• - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
• A(n)(ω) = height of the tallest person in the sample

Clearly, A(1)(ω) ≤ A(2)(ω) ≤ A(3)(ω) ≤ · · · ≤ A(n)(ω) .

Almost all of those ages will be one of 18, 19, .., 25. Accordingly, it is not only possible that we
encounter an index j that results in equality, A(j) = A(j+1), but this will be the rule rather than the
exception.

(b) Rather than considering the age of those 70 students, we now look at their height, measured in
millimeters. Those 70 heights, H1(ω), . . . ,H70(ω), are sorted in increasing order.
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Height can be considered a continuous random variable. Since the probability of two students
having precisely the same height is zero, we may consider the outcomes H(j) distinct. Accordingly,
we can replace “less or equal” with strict inequality and obtain

H(1)(ω) < H(2)(ω) < H(3)(ω) < · · · < H(n)(ω) . �

• We will deal in this section exclusively with continuous random variables.
• When considering a finite or infinite sequence Y1, Y2, Y3, . . . of such random variables, we

assume that they are iid (independent and identically distributed).

Definition 8.20 (Order statistics).

Given n iid continuous random variables ~Y = (Y1, Y2, . . . , Yn), we sort them in inreasing
order. The resulting sequence of random variables, which we denote as Y(j), j = 1, . . . , n,
then satisfies

Y(1) ≤ Y(2) ≤ Y(3) ≤ · · · ≤ Y(n) .(8.60)

We call Y(j) the jth order statistic of ~Y .

See Example 8.7(b) why we may consider strictly increasing rather than nondecreasing. �

Assumption 8.4.

Unless explicitly stated otherwise,
• ~Y = (Y1, Y2, . . . , Yn) denotes a list of n iid continuous random variables (n ∈ N).
• Y1 ∼ Y2 ∼ · · · ∼ Yn implies FY1 = FY2 = · · · = FYn and fY1 = fY2 = · · · = fYn

We write F (y) := FYj (y) and f(y) := fYj (y) for the common CDF and PDF. �

Remark 8.12. Note that
• The first order statistic or smallest order statistic is Y(1) = min{Y1, . . . , Yn}.
• The nth order statistic or largest order statistic is Y(n) = max{Y1, . . . , Yn}.
• A simple consequence of the definition of min and max are the following formulas:

Y(1)(ω) > y ⇔ min
(
Y1(ω), . . . , Yn(ω)

)
> y ⇔ Yj(ω) > y for all j ∈ [1, n]Z ,(8.61)

Y(n)(ω) ≤ y ⇔ max
(
Y1(ω), . . . , Yn(ω)

)
≤ y ⇔ Yj(ω) ≤ y for all j ∈ [1, n]Z . �(8.62)

Theorem 8.21 (CDF and PDF of the jth order statistic).

For y ∈ R, the CDF of the kth order statistic (k = 1, . . . , n) satisfies the following:

FY(1)(y) = 1 − [1− F (y)]n ,(8.63)

FY(n)(y) = [F (y)]n ,(8.64)

FY(k)(y) = 1 −
k−1∑
j=0

(
n

j

)
[F (y)]j [1− F (y)]n−j =

n∑
j=k

(
n

j

)
[F (y)]j [1− F (y)]n−j .(8.65)
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For y ∈ R, the PDF of the kth order statistic (k = 1, . . . , n) satisfies the following:

fY(1)(y) = n [1− F (y)]n−1 f(y) ,(8.66)

fY(n)(y) = n [F (y)]n−1 f(y) ,(8.67)

fY(k)(y) =

k−1∑
j=0

(
n

j

)
f(y)

(
n [F (y)]n−1 − j[F (y)]j−1

)
.(8.68)

fY(k)(y) = n

(
n− 1

k − 1

)
f(y) ·

[
F (y)

]k−1 ·
[

1− F (y)
]n−k

.(8.69)

Note that the proofs are not given in the order of the seven formulas of the theorem.
PROOF of (8.64):

FY(n)(y)
(8.62)
= P

(
{Y1 ≤ y} ∩ {Y2 ≤ y} ∩ · · · ∩ {Yn ≤ y}

)
indep

= P{Y1 ≤ y} · P{Y2 ≤ y} · · ·P{Yn ≤ y} = [F (y)]n .

PROOF of (8.63):

P{Y(1) > y} (8.61)
= P

(
{Y1 > y} ∩ {Y2 > y} ∩ · · · ∩ {Yn > y}

)
indep

= P{Y1 > y} · P{Y2 > y} · · ·P{Yn > y} = [1− F (y)]n .

Thus, FY(1)(y) = 1− P{Y(1) > y} = 1− [1− F (y)]n.
PROOF of (8.66) and (8.67):

This follows from
d

dy

(
1− [1− F (y)]n

)
= −n[1− F (y)]n−1

(
− f(y)

)
and

d

dy

(
[F (y)]n

)
= n[F (y)]n−1 f(y).

PROOF of (8.65):
This proof requires a lot more work than the proofs we have done so far. It will be done by con-
structing a binomial random variable.
• Since y is fixed, so is p := F (y) = P{Yj ≤ y}. (Identical for all j, since the Yj are iid.)

• For j = 1, . . . , n, let Xj(ω) :=

{
1 if Yj(ω) ≤ y ,
0 else .

Let U(ω) :=
n∑
j=1

Xj(ω).

• We interpret Yj(ω) ≤ y as a success and Yj(ω) > y as a failure. Then X1, . . . , Xn form a 0–1
encoded Bernoulli sequence 49 andU ∼ binom(n, p), sinceU counts the number of successes.

• Observe that Y(k)(ω) ≤ y ⇔ Yj(ω) ≤ y at least k times ⇔ there are at least k successes ⇔
U(ω) ≥ k. It does not matter whether or not there are more than k successes.

• Thus, FY(k)
(y) = P{Y(k) ≤ y} = P{U ≥ k} =

n∑
j=k

P{U = j} = 1 −
k−1∑
j=0

P{U = j}.

• Since U ∼ binom(n, p) and p = F (y), FY(k)
(y) = 1 −

k−1∑
j=0

(
n

j

)
[F (y)]j [1− F (y)]n−j .

49See Definition 6.5 (Bernoulli items and variables) on p.100.
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PROOF of (8.68):
This is done by differentiation. For each j = 0, . . . , k − 1,

d

dy

(
n

j

)
[F (y)]j [1− F (y)]n−j =

(
n

j

)
d

dy

(
[F (y)]j − F (y)]n

)
=

(
n

j

) (
j [F (y)]j−1 f(y) − nF (y)]n−1 f(y)

)(A)

Thus, fY(k)
=

d

dy

 1 −
k−1∑
j=0

(
n

j

)
[F (y)]j [1− F (y)]n−j


= −

k−1∑
j=0

d

dy

(
n

j

)(
[F (y)]j [1− F (y)]n−j

)
(A)
=

k−1∑
j=0

(
n

j

)
f(y)

(
n [F (y)]n−1 − j F (y)]j−1

)
.

This finishes the proof of (8.68).
The proof of (8.69) is based on an entirely different approach. Before we do that proof, we first
illustrate that approach by redoing those of (8.66) and (8.67). Those proofs are much simpler and
are a good preparation for that of (8.69).
ALTERNATE PROOF of (8.66):
First we note the following for a continuous random variable U with density fU (u) Assume that
δ > 0 is very close to zero. Since we assumed for all our continuous random variables that they
have continuous density, fU (·) ≈ const = fU (u) on ]u, u+ δ[.

(a) Thus, P{u < U ≤ u+ δ} =
∫ u+δ
u fU (t) dt ≈ fU (u) · δ.

(b) For the fixed y and some “really small” δy, we create three events:
� L (for “left–hand side”) � I (for “inside”) � R (for “right–hand side”),

and a sequence of random elements X1, . . . , Xn as follows.
� Xj(ω) = L ⇔ Yj(ω) ≤ y. Then P{Xj = L} = P{Yj ≤ y} = F (y).

� Xj(ω) = I ⇔ y < Yj(ω) ≤ y + δ, Then P{Xj = I} = P{y < Yj ≤ y + δ}
(a)
≈ fU (u) · δ.

� Xj(ω) = R ⇔ Yj(ω) > y + δ. Then P{Xj = R} = P{Yj > y + δ} = 1− F (y + δ).
(c) By construction, the Xj form a multinomial sequence. Let ~U :=

(
U1, U2, U3

)
, where

� U1 := # of indices j such that Xj = L,
� U2 := # of indices j such that Xj = I ,
� U3 := # of indices j such that Xj = R.

(d) Then ~U is multinomial with parameters n, p1 = F (y), p2 = f(y)δ, p3 = 1− F (y).
(e) Since we assume that Y(j)(ω) is strictly increasing with j for all ω, it seems reasonable that,

for “really small” δ, the following is true:

• If Y(1)(ω) > y, then Y(j)(ω) > y + δ for all j > 1.
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(f) Thus, fY(1)
(y) · δ

(a)
≈ P{ y < Y(1) ≤ y + δ }

= P{ exactly one of Y1, . . . , Yn ∈ ]y, y + δ] and Yj > y + δ for all other j }.
= P{ none of the Xj are L and exactly one is I and n− 1 are R }.

= P{U1 = 0, U2 = 1, U3 = n− 1, } (d)
=

(
n

0, 1, n− 1

)
[F (y)]0

[
f(y)δ

]1
[1− F (y + δ)]n−1.

(g) Since
(

n

0, 1, n− 1

)
=

n!

0! · 1! · (n− 1)!
= n,

we obtain fY(1)
(y) · δ ≈ n [1− F (y + δ)]n−1 f(y)δ.

We divide both expressions by δ, then let δ → 0. Since t 7→ F (t) is continuous, lim
δ→0

F (y+ δ) = F (y).

We conclude that the density of Y(1) is

fY(1)
(y) = n [1− F (y)]n−1 f(y) .

ALTERNATE PROOF of (8.67):
We can adapt the alternate proof for the density of Y(1) to obtain that of Y(n) as follows.
We keep all items through (e) and modify (f) and (g) as follows.

(f’) fY(n)
(y) · δ

(a)
≈ P{ y < Y(n) ≤ y + δ }

= P{ exactly one of Y1, . . . , Yn ∈ ]y, y + δ] and Yj ≤ y for all other j }.
= P{ none of the Xj are R and exactly one is I and n− 1 are L }.

= P{U1 = n− 1, U2 = 1, U3 = 0, } (d)
=

(
n

n− 1, 1, 0

)
[F (y)]n−1

[
f(y)δ

]1
[1− F (y + δ)]0.

(g’) Since
(

n

n− 1, 1, 0

)
=

n!

(n− 1)! · 1! · 0!
= n,

we obtain fY(n)
(y) · δ ≈ n [F (y)]n−1 f(y)δ.

We divide both expressions by δ, then let δ → 0. We obtain the density of Y(n) as

fY(n)
(y) = n [F (y)]n−1 f(y) .

PROOF of (8.69):
This time we adapt the alternate proof for the density of Y(1) to obtain that of Y(k) as follows.
We keep all items through (e) and modify (f) and (g) as follows.

(f”) fY(k)
(y) · δ

(a)
≈ P{ y < Y(k) ≤ y + δ }

= P{ exactly one of Y1, . . . , Yn ∈ ]y, y + δ] and Yj ≤ y for k − 1 indices j
and Yj > y for n− k indices j }

= P{k − 1 of the Xj are L, n− k of the Xj are R and exactly one is I }

= P{U1 = k − 1, U2 = 1, U3 = n− k}
(d)
=

(
n

k − 1, 1, n− k

)
[F (y)]k−1

[
f(y)δ

]1
[1− F (y + δ))]n−k.
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(g”) Since
(

n

k − 1, 1, n− k

)
=

n · (n− 1)!

(k − 1)! · 1! · (n− k)!
= n ·

(
n− 1

k − 1

)
,

we obtain fY(k
(y) · δ ≈ n ·

(
n− 1

k − 1

)
[F (y)]k−1 f(y)δ [1− F (y + δ)]n−k.

We divide both expressions by δ, then let δ → 0. Since t 7→ F (t) is continuous, lim
δ→0

F (y+ δ) = F (y).

We conclude that the density of Y(1) is

fY(k)
(y) = n

(
n− 1

k − 1

)
[F (y)]k−1 f(y) [1− F (y)]n−k . �

Remark 8.13. (8.65) yields (8.63) for k = 1 and (8.64) for k = n. This can be seen as follows:
Recall that

1 =
(
F (y) + [1− F (y)]

)n
=

n∑
j=0

(
n

j

)
[F (y)]j [1− F (y)]n−j

=
n−1∑
j=0

(
n

j

)
[F (y)]j [1− F (y)]n−j +

(
n

0

)
[F (y)]0 [1− F (y)]n .

(A)

If we evaluate (8.65) for k = 1 and k = n, we obtain

FY(1)(y) = 1 −
(
n

0

)
[F (y)]0 [1− F (y)]n = 1 − 1 · 1 · [1− F (y)]n = [1− F (y)]n ,

FY(n)(y) = 1 −
n−1∑
j=0

(
n

j

)
[F (y)]j [1− F (y)]n−j

(A)
=

(
n

0

)
[F (y)]0 [1− F (y)]n = [1− F (y)]n . �

Remark 8.14. You may have noticed that there are two formulas for fY(k)(y).
(8.69) was shown by means of the “density approach” that utilized a limiting process δ → 0 in
conjunction with the multinomial distribution. The proof was harder than that of (8.68). In return,
(8.69) has computational advantages, since no more summation

∑k−1
j=0 is required. �

The next remark belongs thematically into Section 4.2 (Permutations) of Chapter 4. However, it has
been placed here, since every order statistic

~Y(•) =
(
Y(1), . . . , Y(n)

)
.

is a (specific) permutation of ~Y =
(
Y1, . . . , Yn

)
, and every other permutation(

Yi1 , Yi2 , . . . , Yin
)

of ~Y =
(
Y1, . . . , Yn

)
, possesses the same order statistic.

Remark 8.15. If we deal with a list ~a = (a1, a2, . . . , an) of distinct numbers, e.g.,

~a = (13.2, −3, 6.6, 2, −1.5) ,(A)
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then there is a uniquely determined permutation, ~a(•) = (a(1), a(2), . . . , a(n)) of ~a, which has those
aj in increasing order. In other words,

a(1) < a(2) < · · · < a(n) .

In the specific example (A), we obtain

~a(•) = (−3, −1.5, 2, 6.6, 13.2) .

If~b = (b1, b2, . . . , bn) is another list of distinct numbers, then

~b(•) = ~a(•) ⇔ ~b is a permutation of ~a .

Going back to our example, if

~b = (13.2, 6.6, −1.5, −3, 2) ,

~c = (13.2, −3, 6.6, 2, −1.51) ,

then ~b(•) = ~a(•), but ~c(•) 6= ~a(•), since ~a(•) does not include the number −1.51. �

Theorem 8.22 (Joint PDF of the order statistic).

A: Let ~y ∈ Rn satisfy

(8.70) y1 < y2 < · · · < yn .

For the vector ~Y =
(
Y1, . . . , Yn

)
, let ~Y(•) be the vector of its associated order statistics, i.e.,

(8.71) ~Y(•) =
(
Y(1), . . . , Y(n)

)
.

Then its density function at ~y is given by

(8.72) f~Y(•)
(~y) = n! ·

n∏
j=1

f(yj) = n! f(y1) · · · f(yn) .

B: If ~y does not satisfy (8.70), then f~Y(•)
(~y) = 0.

FIRST PROOF:
Let ∆ be a “small” n–dimensional cube with volume V ol(∆) that is centered at ~y. Study the proof of
(8.65) of Theorem 8.21 on p.178. It explains (in the onedimensional case), why one can approximate

P{~Y ∈ ∆} ≈ f~Y (~y) · V ol(∆) ,

P{~Y(•) ∈ ∆} ≈ f~Y(•)
(~y) · V ol(∆) .

A cube of sidelength 2ε has volume V ol(∆) = (2ε)n. If we solve that equation for ε, we obtain

ε =
V ol(∆)1/n

2
.

Since y1 < y2 < · · · < yn, one can choose ∆ and hence, ε = V ol(∆)1/n/2, so small, that any two
intervals [ yi − ε, yi + ε ] and [ yj − ε, yj + ε ] have empty intersection for i 6= j.
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For the following, see Remark 8.15 on p.182. Note that

~Y(•)(ω) ∈ ∆ ⇔ yk − ε ≤ Y(k)(ω) ≤ yk + ε for all k,

⇔ for all k, ∃ j such that yk − ε ≤ Yj(ω) ≤ yk + ε .
(A)

We illustrate this point for n = 3, V ol(∆) = 1/8, y1 = 2.6, y2 = 4.2, y3 = 7.8. ε = (1/83)/2 = 0.25.
This is small enough for the intervals yj ± 0.25 to be disjoint.

There are 3! = 6 different ways to have ~Y (ω) ∈ ∆. They are:
(1) 2.35 ≤ Y1(ω) ≤ 2.85, 3.95 ≤ Y2(ω) ≤ 4.45, 7.55 ≤ Y3(ω) ≤ 8.05,
(2) 2.35 ≤ Y1(ω) ≤ 2.85, 3.95 ≤ Y3(ω) ≤ 4.45, 7.55 ≤ Y2(ω) ≤ 8.05,
(3) 2.35 ≤ Y2(ω) ≤ 2.85, 3.95 ≤ Y1(ω) ≤ 4.45, 7.55 ≤ Y3(ω) ≤ 8.05,
(4) 2.35 ≤ Y2(ω) ≤ 2.85, 3.95 ≤ Y3(ω) ≤ 4.45, 7.55 ≤ Y1(ω) ≤ 8.05,
(5) 2.35 ≤ Y3(ω) ≤ 2.85, 3.95 ≤ Y1(ω) ≤ 4.45, 7.55 ≤ Y2(ω) ≤ 8.05,
(6) 2.35 ≤ Y3(ω) ≤ 2.85, 3.95 ≤ Y2(ω) ≤ 4.45, 7.55 ≤ Y1(ω) ≤ 8.05,

Let us assume that k = 2, i.e., we consider the interval [3.95, 4.45].
In (2) and (4), we choose j = 3 to obtain Yj ∈ [3.95, 4.45].
On the other hand, in (1) and (6), we choose j = 2 to obtain Yj ∈ [3.95, 4.45].
We refer you again to Remark 8.15 on p.182 to understand that (A) shows that

~Y(•)(ω) ∈ ∆ ⇔ some permutation of ~Y (ω) ∈ ∆

⇔ each permutation of ~Y (ω) ∈ ∆ .
(B)

• Since a list of n items has n! permutations, there are n! such (disjoint) events: There are n!
permutations (k1, k2, . . . , kn) of (1, 2, . . . , n) with corresponding event

{y1 − ε ≤ Yk1 ≤ y1 + ε} ∩ {y2 − ε ≤ Yk2 ≤ y2 + ε} ∩ · · · ∩ {yn − ε ≤ Ykn ≤ yn + ε}.

• Since the Yj are iid and P{yi − ε ≤ Ykj ≤ yi + ε} ≈ 2ε · f(yi) for each i and j,

each such event has probability ≈
∏n
j=1 f(yj) ·

(
2ε
)n.

• Thus, f~Y(•)
(~y) · V ol(∆) ≈ n! ·

∏n
j=1 f(yj) · V ol(∆)

• As ∆→ 0, “≈” becomes “=” and then f~Y(•)
(~y) = n! ·

∏n
j=1 f(yj). �

ALTERNATE PROOF:
(a) We may assume that ~y satisfies y1 < y2 < · · · < yn, since f~Y(•)

(~y) = 0 otherwise.
• For small enough dt1, dt2, dtn, the intervals [yj , yj + d tj ] are disjoint.

(b) Thus,
[
yj ≤ Y(j)(ω) ≤ yj + d tj for all j

]
⇔ [ there is a permutation i1, i2, . . . , in of the

indices 1, 2, . . . , n such that yj ≤ Yij (ω) ≤ yj + d tj for all j
]
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(c) Thus,
[
yj ≤ Y(j)(ω) ≤ yj +d tj for all j

]
⇔ [ among theXi(ω), exactly one is in [y1, y1 +d t1],

exactly one is in [y2, y2 + d t2], ..., exactly one is in [yn, yn + d tn]. (Thus, NONE are outside
the union of those intervals.)

(d) This can be interpreted as the counts of the outcomes of a multinomial sequenceX1, . . . , Xn,
where Xk(ω) results in outcome #j, if yj ≤ Yk ≤ yj + d tj .

• The probabilities pj = P{Xk results in #j} are, for small enough dtj , equal to

pj = P{Yi ∈ [yj , y + dtj ] } =
y+dtj∫
yj

f(t) dt ≈ f(tj) dtj .

(e) From (b), (c), (d):

f~Y(•)
(~y) dt1 · · · dtn = P{yj ≤ Y(j)(ω) ≤ yj + d tj for all j}

=P{ there is a permutation i1, i2, . . . , in of the indices 1, 2, . . . , n

such that yj ≤ Yij ≤ yj + d tj for all j}
=P{ each Xk has exactly one outcome #j for each j = 1, . . . , n}

=

(
n

1, 1, . . . , 1

)
p1

1p
1
2 · · · p1

n =
n!

1! · · · 1!

∏
j

(
f(tj) dtj

)
.

Thus, f~Y(•)
(~y) dt1 · · · dtn = n!

∏
j f(tj) (dt1 · · · dtn).

(f) We cancel dt1 · · · dtn on both sides and obtain f~Y(•)
(~y) dt1 = n!

∏
j f(tj). �

Example 8.8. Find the formula for the joint density of Y(1) and Y(n).

Solution:
(a) Note that, since the Yj are continuous, “<” and “≤” can be interchanged and the same is

true for “>” and “≥” when computing probabilities.
(b) Also, applying A = (A ∩B)

⊎
A ∩B{ with A = {Y(n) ≤ yn} and B = {Y(1) ≤ y1} yields

P{Y(n) ≤ yn} = P{Y(n) ≤ yn, Y(1) ≤ y1} + P{Y(n) ≤ yn, Y(1) > y1}.

We find the CDF as follows:

FY(1),Y(n)
(y1, yn)

(b)
= P{Y(n) ≤ yn} − P{Y(1) > y1, Y(n) ≤ yn}
=P{Yj ≤ yn for all j} − P{y1 < Yj ≤ yn for all j}

=

n∏
j=1

P{Yj ≤ yn} −
n∏
j=1

P{y1 < Yj ≤ yn} =
[
F (yn)

]n − [F (yn)− F (y1)
]n
.

We used first independence, then identical distribution in the last line.
Differentiation of the above then gives us fY(1),Y(n)

(y1, yn) as follows:
For convenience, we define G(y1, yn) := FY(1),Y(n)

(y1, yn). Then,

G(y1, yn) =
[
F (yn)

]n − [F (yn)− F (y1)
]n

Thus,
∂G

∂y1
= 0 − n

[
F (yn)− F (y1)

]n−1
f(y1) = n · f(y1)

[
F (yn)− F (y1)

]n−1

Thus,
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fY(1),Y(n)
(y1, yn) =

∂2G

∂y1 ∂yn
= n · f(y1) · (n− 1)

[
F (yn)− F (y1)

]n−2 · f(yn)

= n(n− 1) · f(y1) f(yn) ·
[
F (yn)− F (y1)

]n−2

Alternate solution:
The PDF can be found by interpreting certain events related to finding the density as the outcomes
of the following multinomial sequence, ~X = (X1, . . . , Xn),

(c) For a given j, the outcomes ω′i and associated probabilities pi for Xj are

� ω′1: Yj is close to y1 ⇒ p1 = f(y1) dy1 � ω′2: Yj is close to yn; ⇒ p2 = f(yn) dyn

� ω′3: Yj strictly inbetween y1 and yn ⇒ y1 < Yj < yn.; ⇒ p3 = F (yn)− F (y1).

Note that it is impossible that none of ω′1, ω
′
2, ω

′
3 happens and Yj < y1 or Yj > yn.

(d) We denote by Wi the count of indices j such that Xj = ω′i.
Then ~W = (W1,W2,W3) ∼multinomial 50 with joint PMF p ~W (~w) given by

p ~W (~w) =

(
n

w1, w2, w3

)
pw1

1 pw2
2 pw3

k .

• Similar to what was done in the proofs of theorems 8.21 (CDF and PDF of the jth order
statistic) and 8.22 (Joint PDF of the order statistic), we conclude from (c) and (d) that

(e) fY(1),Y(n)
(y1, yn)d ynd yn = P{Y(1) is “dy1 close” to y1 and Y(n) is “dyn close” to yn }

= P{ exactly one Yj is “dy1 close” to y1 and exactly one Yj is “dyn close” to yn
and the other Yj (there are n− 2 left) are between y1 and yn

= P{W1 = 1,W2 = 1,W3 = n− 2} = p ~W (1, 1, n− 2) =

(
n

1, 1, n− 2

)
p1

1 p
1
2 p

n−2
k .

= n(n− 1) · f(y1) dy1 · f(yn) dyn · F (yn)− F (y1).

(f) Thus, fY(1),Y(n)
(y1, yn) dy1 dyn

(e)
= n(n− 1) · f(y1) · f(yn) ·

[
F (yn)− F (y1)

]n−2
dy1 dyn.

• We cancel dy1 dyn in that last equation and obtain

(g) fY(1),Y(n)
(y1, yn) = n(n− 1) · f(y1) · f(yn) ·

[
F (yn)− F (y1)

]n−2.

We have obtained the same result for the joint PDF of Y(1) and Y(n) as in the first solution. �

Remark 8.16 (Sample median). Recall from Definition 7.4 (pth quantile) on p.119 that the median
of a random variable U with CDF FU (·) was its 0.5th quantile

φ0.5 = min{u ∈ R : FU (u) ≥ 0.5} .

If U is continuous with a strictly increasing CDF, then φ0.5 is that unique value u, for which FU (u) =
0.5. Thus, half of the area under the density fU (·) is to the left of φ0.5 and the other half is to the
right of φ0.5.

50See Definition 8.19 (Multinomial distribution) on p.175.
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Assume that ~Y =
(
Y1, . . . , Yn

)
describes the action of picking a sample of n real numbers. In other

words, each Yj is a random variable and each invocation ~Y (ω) results in the specific sample ~y =(
y1, . . . , yn

)
, where

y1 = Y1(ω), y2 = Y2(ω), . . . yn = Yn(ω) .

Further assume that the Yj are continuous. Then we can assume that all sample picks Y1, . . . , Yn are
distinct, so that the order statistic satisfies strict inequalities

Y(1) < Y(2) < · · · Y(n) .(A)

The sample median of ~Y is defined as follows.

(a) If n = 2k + 1 is odd, then the sample median of ~Y is is the (k + 1)th order statistic Y(k+1).

(b) If n = 2k is even, then the sample median of ~Y is is the (random) average
Yk + Yk+1

2
.

Two examples:
(1) If n = 7 , then the sample median is Y(n+1) = Y(4). Three of the Yj are to the left of Y(4) and

the same number are to the right.

(2) If n = 8, then the sample median of ~Y is is the average
Y4 + Y5

2
. Since we have strict in-

equalities in (A), four of the Yj are to the left of the sample median and the same number are
to the right.

The point to remember is that the sample median of an odd–sized sampling action is an order
statistic, whereas that of an even sized one is not.

Example: Let us assume that the the sample picks of an odd sized sample ~Y =
(
Y1, . . . , Y2n+1

)
are

continuous and iid random variables. We can compute the PDF of the sample median as that of
Y(n+1) This time we do so by associating a multinomial random vector with three outcomes: Either
Yj is near yn+1 or it is near one of the n values to the left or it is near one of the n values to the right.
In that manner we obtain

fY(n+1)
(y) =

(
2n+ 1

n, 1, n

)
[F (y)]n · f(y) · [1− F (y)]n . �

Remark 8.17. Here are two observations about n iid random variables Y1, . . . , Yn.
(a) Assume that Yk1 , . . . , Ykn is a permutation (ANY permutation!!) of Y1, . . . , Yn. Then the

symmetry that results from iid implies that

P{Y1 < Y2 < · · · < Yn} = P{Yk1 < Yk2 < · · · < Ykn} .

Since there are n! permutations, each one of those probabilities equals
1

n!
.

(b) Fix an arbitrary k ∈ [1, k]Z. Then

P{Y = Y(1)} = P{Y = Y(2)} = . . . P{Y = Y(n)} .

Since there are n such arrangements, each one of those probabilities equals
1

n
. �
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8.10 The Bivariate Normal Distribution (Optional)

Definition 8.21 (Bivariate normal distribution). ?

We say that two continuous random variables Y1 and Y2 have a bivariate normal distribu-
tion, or that they have a joint normal distribution, if their joint PDF is

fY1,Y2(y1, y2) =
e−Q/2

2πσ1σ2

√
1− ρ2

, −∞ < y1 <∞, −∞ < y2 <∞,(8.73)

where Q =
1

1− ρ2

[
(y1 − µ1)2

σ2
1

− 2ρ
(y1 − µ1)(y2 − µ2)

σ1σ2
+

(y2 − µ2)2

σ2
2

]
.

We then also write (Y1, Y2) ∼NNN (µ1, σ
2
1, µ2, σ

2
2, ρ). �

Whereas we have marked this definition as optional, you should remember the following theorem.

Theorem 8.23.

If two random variables Y1 and Y2 are NNN (µ1, σ
2
1, µ2, σ

2
2, ρ), then

(a) Y1 ∼NNN (µ1, σ
2
1 and Y1 ∼NNN (µ2, σ

2
2 .

Thus, E[Y1] = µ1, V ar[Y1] = σ2
1, E[Y2] = µ2, V ar[Y2] = σ2

2 .
(b) Cov[Y1, Y2] = σ1 σ2 ρ. Thus, ρ is the correlation coefficient of Y1 and Y2.

PROOF (outline):
One proves (a) by showing that the marginal densities are

fY1(y) =
1

σ1

√
2π
e−(y−µ1)2/(2σ2

1) , fY2(y) =
1

σ2

√
2π
e−(y−µ2)2/(2σ2

2) .

See (7.37) on p.133.
For the proof of (b), see Casella, Berger [3]. �

Theorem 8.24.

If two jointly normal random variables Y1 and Y2 are uncorrelated, then they are independent.

PROOF: If ρ = 0, the joint PDF of Y1 and Y2 which was given in (8.73) is

fY1,Y2(y1, y2) =
e−Q/2

2πσ1σ2
,

where Q =
(y1 − µ1)2

σ2
1

− 0 +
(y2 − µ2)2

σ2
2

. Thus,

fY1,Y2(y1, y2) =
1

(
√

2πσ1)(
√

2πσ2)
exp

{
−(y1 − µ1)2

2σ2
1

− (y2 − µ2)2

2σ2
2

}
=

(
1

(
√

2πσ1)
exp

{
−(y1 − µ1)2

2σ2
1

})(
1

(
√

2πσ2)
exp

{
−(y2 − µ2)2

2σ2
2

})
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It follows from Theorem 8.23(a) that fY1,Y2(y1, y2) = fY1(y1) fY2(y2). The independence of Y1 and Y2

follows from Theorem 8.4 on p.150. �

Remark 8.18. The concept of joint normality can be extended from two random variables to an
arbitrary number of random variables Y1, . . . , Yn. However, the definition of their joint PDF utilizes
n× n matrices and their determinants. This requires some background in linear algebra and that is
not a prerequisite for this course. �
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9 Functions of Random Variables and their Distribution

This chapter essentially only contains enough material to serve as a reference and review
“sheet”. You will not be able to properly understand the techniques noted here if you do
not work through the many examples of the WMS text!

9.1 The Method of Distribution Functions

The Method of Distribution Functions is best explained by some examples.

Example 9.1. Find the CDF and PDF for U := 2Y − 6, where the density of the random variable Y
is

fY (y) =

{
8y , if 0 ≤ y ≤ 1/2 ,

0 , else .
(9.1)

Solution: Applying the distribution function method means the following:
� Find the CDF FU (u) of U � Find the PDF fU (u) of U by differentiating FU (u)

� Do this with help of the relation U = 2Y − 6 ⇔ Y =
U + 6

2
.

We obtain

FU (u) = P{U ≤ u} = P{2Y − 6 ≤ u} = P

{
Y ≤ u+ 6

2

}
= FY

(
u+ 6

2

)
.

Note that
0 ≤ y ≤ 1

2
⇔ 0 ≤ u+ 6

2
≤ 1

2
⇔ −6 ≤ u ≤ −5

Thus, FU (u) = 0 for u < −6 and FU (u) = 1 for u > −5.
For −6 ≤ u ≤ −5, i.e., 0 ≤ y ≤ 1

2 , we must integrate:

P

{
Y ≤ u+ 6

2

}
=

∫ (u+6)/2

0
fY (y) dy =

∫ (u+6)/2

0
8y dy =

8

2

(
u+ 6

2

)2

.

We combine the cases u < −6; −6 ≤ u ≤ −5; u > −5 and obtain

FU (u) =


0 , if u < −6 ,

(u+ 6)2 , if − 6 ≤ u ≤ −5 ,

1 , if u > −5 .

We differentiate this CDF and otain the density function for U :

fU (u) =
dFU (u)

du
=

{
2(u+ 6) , if − 6 ≤ u ≤ −5 ,

0 , else . �
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Example 9.2 (WMS Ch.06.3, Example 6.3). The following is Example 6.3 of the WMS text. Its proof
has been substantially rewritten.
Let (Y1, Y2) denote a random sample of size n = 2 from the uniform distribution on the interval
(0, 1). In other words, we assume that Y1 and Y2 are jointly continuous and have a joint PDF which
is constant and not zero on the unit square.
The issue is to find the probability density function for U := Y1 + Y2.

Solution: It follows from the assumptions that Y1 and Y2 possess the same mariginal PDF The
density function for each Yi is

f(y) := fY1(y) = fY2(y) =

{
1 , 0 ≤ y ≤ 1 ,

0 , elsewhere .

Since Y1 and Y2 are independent,

fY1,Y2(y1, y2) = fY1(y1)fY2(y2) = f(y1)f(y2) =

{
1 , 0 ≤ y1 ≤ 1 , 0 ≤ y2 ≤ 1 ,

0 , elsewhere .

Thus, FU (u) = P{Y1 + Y2 ≤ u} =

∫∫
B
f(y1)f(y2) dy1 dy2 , where, for a fixed u, the region of inte-

gration is

B :=
(
[0, 1]× [0, 1]

)
∩ {(y1, y2) ∈ R2 : y1 + y2 ≤ u} .(A)

We will separately treat the cases • u ≤ 0 or u ≥ 2 • 0 < u ≤ 1 • 1 < u < 2.

Case 1: u ≤ 0 or u ≥ 2.
If u ≤ 0, then [0, 1]× [0, 1] and {(y1, y2) ∈ R2 : y1 + y2 ≤ u} are disjoint. Thus, B = ∅ and

∫∫
B · · · = 0

and thus, FU (u) = 0.

If u ≥ 2, then [0, 1] × [0, 1] ⊆ {(y1, y2) ∈ R2 : y1 + y2 ≤ u}. Thus,
∫∫
B · · · =

1∫
0

1∫
0

· · · and thus,

FU (u) = 1.

Case 2: • 0 < u ≤ 1.
The graph of y1+y2 = u in the (y1, y2) plane is a straight line which intersects the vertical coordinate
axis, y1 = 0, at y2 = u and the horizontal coordinate axis, y2 = 0, at y1 = u. Thus, B is the triangle
bounded by the coordinate axes and the line y1 + y2 = u. since it is half of a square with side length
u, its area is u2/2.
Of course, this also follows from the fact that

∫∫
B . . . is achieved by first integrating, for 0 ≤ y1 ≤ u,

over the vertical slice of B at y1 and then integrating those integrals. Since the vertical slice of B at
y1 extends from y2 = 0 to y1 + y2 = u, i.e., to y2 = u− y1

FU (u) =

∫∫
B

1 dy1 dy2 =

∫ u

0

∫ u−y1

0
1 dy2 dy1

=

∫ u

0
(u− y1) dy1 =

(
uy1 −

u2

2

) ∣∣∣∣u
0

= u2 − u2

2
=

u2

2
.

Case 3: • 1 < u < 2.
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Let B̃ :=
(
[0, 1]× [0, 1]

)
\ {(y1, y2) ∈ R2 : y1 + y2 ≥ u} . Then

B̃ =
(
[0, 1]× [0, 1]

)
∩ {(y1, y2) ∈ R2 : y1 + y2 ≤ u} ,(B)

FU (u) = 1 − P{Y1 + Y2 ≥ u} = 1 −
∫∫

B̃
1 dy1 dy2(C)

Now, the graph of y1 + y2 = u in the (y1, y2) plane is a straight line which intersects the vertical line,
y1 = 1, at y2 = u− 1 and the horizontal line, y2 = 0, at y1 = u− 1.
B̃ is the right angle triangle bounded by the lines y1 = 1, y2 = 1 and y1 + y2 = u.
Its legs have length 1− (u− 1) = 2− u. Thus, its area is half that of a square with side length 2− u.
Thus, the area of B̃ is (2− u)2/2. It follows from (C) that

FU (u) = 1 − area(B̃) = 1 − 4− 4u+ u2

2
= −1 + 2u − u2

2
.

This also could have been computed by iterated integration. In this case,

1 − FU (u) =

∫∫
B̃

1 dy1 dy2 =

∫ 1

u−1

∫ 1

u−y1

1 dy2 dy1

=

∫ 1

u−y1

(1− u+ y1) dy1 =

(
(1 − u) +

y2
1

2

) ∣∣∣∣1
u−1

= (1− u)(2− u) +
1

2
− (u− 1)2

2
= 2 − 2u +

u2

2
.

We thus obtain, as before, FU (u) = 1−
(
2 + 2u− u2/2

)
= −1 + 2u− u2/2. �

The problem of the next example is that of WMS Ch.6.4, Example 6.8. This instructor does not
understand the reasoning given there and has provided a completely different proof. You find this
example here rather than in the next section (section 9.2: The Method of Transformations in One
Dimension), because it is solved with the techniques of this section.

Example 9.3. Let Y1 and Y2 be jointly continuous random variables with density function

fY1,Y2(y1, y2) =

{
e−(y1+y2) , 0 ≤ y1 , 0 ≤ y2 ,

0 , else .

What are the CDF andPDF of U := Y1 + Y2?

Solution:

P{U ≤ u} = P{Y1 + Y2 ≤ u} =

∫∫
R
e−y1−y2 d~y

where R = triangle with vertices (0, u), (0, 0), (u, 0). Thus, for u > 0,

P{U ≤ u} =

∫ u

0

[∫ u−y1

0
e−y1−y2 dy2

]
dy1 =

∫ u

0
e−y1

[
−e−y2

∣∣∣u−y1

0

]
dy1

=

∫ u

0
e−y1

[
1 − e−(u−y1)

]
dy1 =

∫ u

0
e−y1

[
1 − ey1e−u

]
dy1

=

∫ u

0
e−y1 dy1 −

∫ u

0
e−u dy1 = −e−y1

∣∣∣u
0
− u e−u

= − (e−u − 1) − u e−u = 1 − (1 + u) e−u .
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The derivative is (for u > 0)

fU (u) =
d

du

(
1 − (1 + u) e−u

)
= −(1 + u)′ e−u − (1 + u)

(
e−u
)′

= − e−u − (1 + u)
(
− e−u

)
= −e−u + e−u + u e−u = u e−u .

Thus, the CDF is FU (u) =

{
1 − (1 + u) e−u , if u > 0 ,

0 , else

and the PDF is fU (u) =

{
u e−u , if u > 0 ,

0 , else .

The latter agrees with the WMS result. �

Remark 9.1. In the following we use the arrow notation ~y =
(
y1, . . . , yn

)
, ~Y =

(
Y1, . . . , Yn

)
, ...

Summary of the Distribution Function Method
Goal: Find the PDF fU (u) for U = g(~Y ), where g : D → R has a domain D ⊆ Rn large
enough to hold all arguments ~y that are relevant for the problem.

(1) Find the region R = {g ≤ u} = g−1
(
]−∞, u]

)
. (Thus, R ⊆ Rn.)

(2) Find the “boundary” R∗ = {g = u} of the region R.
(3) Find the CDF FU (u) = P{U ≤ u} by integrating f(~y) over the region R.
(4) Find the the PDF fU (u) = dFU (u)

du by differentiating FU (u).

Note for the above that, since g may not be invertible, g−1 denotes the preimage g−1(B) = {~y :
g(~y) ∈ B}, where B ⊆ R. If, e.g., B = ]−∞, u] , then R = g−1

(
]−∞, u]

)
, and (3) expresses

FU (u) = P{U ≤ u} = P{g
(
~Y
)
≤ u} = P

{
ω : ~Y (ω) = ~y such that g(~y) ≤ u

}
= P{Y ∈ R} =

∫∫
· · ·
∫
R
f~Y (~y) d~y . �

(9.2)

The next remark really should be considered another example for the distribution method. It has
been marked as optional, so it will not be part of any exam or quiz. Nevertheless, you are strongly
encouraged to work through its proof and increase your skills with respect to applying the distri-
bution method.

Remark 9.2. ? Let Y be a continuous random variable with PDF fY (y) and let h : R → R be a
symmetrical function (also, symmetric function), i.e., h(−y) = h(y) for all y. Also, assume that

(1) y 7→ h(y) is differentiable (hence, continuous) everywhere.
(2) y 7→ h(y) is injective for y ≥ 0, i.e., 0 ≤ y < y′ ⇒ h(y) 6= h(y′). (Thus, by symmetry, h(y)

also is injective for y < 0).

Continuous functions of a real variable are either strictly increasing or strictly decreasing on any
subset of the domain where they are injective. (Draw a picture!) Thus, there are two possibilities.

(1) h is strictly increasing on [0,∞[ (and then, by symmetry, h is strictly decreasing on [−∞, 0[).
Also, h attains its global minimum at y = 0.

(2) h is strictly decreasing on [0,∞[ (and then, by symmetry, h is strictly increasing on [−∞, 0[).
Also, h attains its global maximum at y = 0.
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In either case, there are no jumps for the continuous h(·). We will determine the CDF and PDF
under the following assumptions: For any given u ∈ R,

(3) h is strictly increasing on [0,∞[
(4) h(0) = 0 and thus, h(y) ≥ 0 for all y. Note that then P{U > 0} = 1 and P{U ≤ 0} = 0.

(6) Thus, if u > 0, then U
(
ω
)
≤ u ⇔ |Y (ω)| ≤ y = h−1(u). Thus,

FU (u) = P{U ≤ u} = P{|Y | ≤ h−1(u)} = P{−h−1(u) ≤ Y ≤ h−1(u)}
= FY

(
h−1(u)

)
− FY

(
− h−1(u)

)
if u > 0, i.e.,

(9.3) FU (u) =


1 , if h(y) < u for all y ,
FY
(
h−1(u)

)
− FY

(
− h−1(u)

)
, if there is y = h−1(u) ,

0 , if u ≤ 0 .

We differentiate
d

du
to obtain the density. We write h−1′(u) =

dh−1(u)

du
:

• fU (u) = h−1′(u) fY
(
h−1(u)

)
− (−1)h−1′(u)fY

(
− h−1(u)

)
Thus,

(9.4) fU (u) =

{
h−1′(u)

[
fY
(
h−1(u)

)
+ fY

(
− h−1(u)

) ]
, if there is y = h−1(u) ,

0 , else . �

Example 9.4. As an example for that last remark, let us consider the function h(y) = y2. 51 h is
strictly increasing on [0,∞[ and its minimum is h(0) = 0. Thus, h satisfies the assumptions (3) and
(4) of Remark9.2. Since lim

y→∞
y2 = ∞, the condition “if h(y) < u for all y” of (9.3) is never satisfied.

Further, the condition “if there is y = h−1(u)” of (9.3) and (9.4) becomes “u ≥ 0”.

Thus, if U = Y 2, then h−1(u) =
√
u for u ≥ 0 and h−1′(u) = 1/(2

√
u). We obtain

fU (u) =


1

2
√
u

[
fY
(√
u
)

+ fY
(
−
√
u
) ]

, if u > 0 ,

0 , else . �

Example 9.5. Assume that the random variable Y is NNN (0, 1), i.e., Y is standard normal. What is the
distribution of U := Y 2?
For this example, let

φ(y) := fY (y) =
1√
2π
e−y

2/2 ,(9.5)

Φ(y) :=

∫ y

−∞
φ(t) dt .(9.6)

In other words, φ is the PDF of Y and Φ is the CDF of Y .
Since U ≥ 0, we have fU (u) = FU (u) = 0 for u < 0. Thus, we may assume that u ≥ 0.

51That is WMS Example 6.4.
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Then, FU (u) = P{−
√
u ≤ Y ≤

√
u} = Φ(

√
u) − Φ(−

√
u) and thus,

fU (u) = F ′U (u) =
d

du

[
Φ(
√
u) − Φ(−

√
u)
]

= φ(
√
u)

1

2
√
u

+ φ(−
√
u)

1

2
√
u

= φ(
√
u)

1√
u

=
1√
2π

e−(
√
u)2/2 1√

u

Above, we used symmetry φ(−
√
u) = φ(

√
u) to obtain the equation before the last. Thus,

fU (u) =
1√
2π

e−u/2 u−1/2 =
u1/2−1

21/2
√
π
e−u/2

One can show that Γ(1/2) =
√
π. 52 We use that result without attempting to prove it and obtain,

setting α := 1/2 and β := 2,

fU (u) =
u1/2−1 e−u/2

21/2Γ(1/2)
=

uα−1 e−u/β

βαΓ(α)
.

We finally remember that all this was done for u ≥ 0 and that fU (u) = 0 for u < 0.

fU (u) =


uα−1 e−u/β

βαΓ(α)
, if u ≥ 0 ,

0 , else .

It follows that the square of a NNN (0, 1) variable has a gamma(1/2, 2) distribution. Equivalently, it
has a chi–square distribution with one degree of freedom. �

Example 9.6. It is important that you recognize when there are significant shortcuts. It might be
possible to obtain FU (u) = FU

(
g−1(y)

)
without having to integrate the PDF. Here is an example.

Let the random variable Y be expon(1). Find the CDF and PDF of U := 2Y − 4.
Solution:

(1) Here, u = g(y) = 2y − 4 has inverse y = g−1(u) = (u+ 4)/2.

(2) The CDF of Y is FY (y) =

{
1 − e−y , if y ≥ 0 ,

0 , else .

(3) Thus, FU (u) = P{U ≤ u} = P{2Y − 4 ≤ u} = P

{
Y ≤ u+ 4

2

}
= FY

(
u+ 4

2

)
.

(4) From (2): FU (u) =

{
1 − e−

u+4
2 , if u+4

2 ≥ 0 ,

0 , else .

(5) Thus, FU (u) =

{
1 − e−

u+4
2 , if u ≥ −4 ,

0 , else .
(6) We have obtained FU (u) without integrating a PDF.

(7) The density is fU (u) = F ′U (u) =


1
2 e
−u+4

2 , if u ≥ −4 ,

0 , else .
�

52See, e.g., https://en.wikipedia.org/wiki/Gamma_function or Shilov, G. [9].
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9.2 The Method of Transformations in One Dimension

Introduction 9.1. We already encountered the method of transformations in Remark 9.2 on p.193.
There we computed the CDF and PDF of the random variable U = h(Y ) for a continuous random
variable Y and a symmetric and differentiable function h(y) which was injective on the interval
B1 = [0,∞[. (By symmetry, h also had those characteristics on B2 =]−∞, 0[.)
At the heart of the calculations was the fact that injectivity allowed us to compute, for a given u, a
unique y = h−1(u) such that h(y) = u.
Since differentiable functions are continuous, injectivity on an interval B implies that h is either
strictly increasing or strictly decreasing on B. See figures 9.1 and 9.2 below.

9.1 (Figure). Strictly increasing function.
Source: WMS Ch.6.4

9.2 (Figure). Strictly decreasing function.
Source: WMS Ch.6.4

Those figures illustrate the following.
(1) If h is strictly increasing, then h(y) ≤ u1 ⇔ y ≤ h−1(u1). Thus,

P{U ≤ u} = P{h(Y ) ≤ u} = P{h−1[h(Y )] ≤ h−1(u)} = = P{Y ≤ h−1(u)} ,
i.e., FU (u) = FY

(
h−1(u)

)
.

(9.7)

We differentiate with respect to u and write h−1′(u) for
dh−1(u)

du
. Then

fU (u) =
dFU (u)

du
=

dFY
(
h−1(u)

)
du

= fY
(
h−1(u)

)
· h−1′(u) .

Since h is strictly increasing, h−1′(u) > 0. Thus, h−1′(u) = |h−1′(u)|. Thus,

(9.8) fU (u) = fY
(
h−1(u)

)
· |h−1′(u)| .

(2) If h is strictly decreasing, then h(y) ≤ u1 ⇔ y ≥ h−1(u1). Thus,

P{U ≤ u} = P{h(Y ) ≤ u} = P{Y ≥ h−1(u)} = 1 − P{Y ≤ h−1(u)} ,
i.e., FU (u) = 1− FY

(
h−1(u)

)
.

(9.9)

We differentiate with respect to u. Then

fU (u) = −
dFY

(
h−1(u)

)
du

= fY
(
h−1(u)

)
·
(
− h−1′(u)

)
.
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Since h is strictly decreasing, h−1′(u) < 0. Thus, −h−1′(u) = |h−1′(u)|. Thus,

(9.10) fU (u) = fY
(
h−1(u)

)
· |h−1′(u)| .

(3) We compare (9.8) and (9.10) and see that they are equal. Thus, as long as h is eiher strictly
increasing everywhere or strictly decreasing everywhere, (i.e., as long as f is invertible ev-
erywhere,)

(9.11) fU (u) = fY
(
h−1(u)

)
· |h−1′(u)| = fY

(
h−1(u)

)
·
∣∣∣∣ d[h−1(u)]

du

∣∣∣∣ .
Since

∫ b

a
fY (t) dt =

∫
[a,b]∩{ỹ:f(ỹ) 6=0}

fY (t) dt for any interval [a, b], we only need to worry about the

behavior of h for arguments belonging to

suppt(fY ) := {ỹ : f(ỹ) 6= 0} .

It is customary to call suppt(fY ) the support of the density fY (y). 53

• suppt(fY ) = ]y2, y5[∪ ]y6, y7[. It does not
matter what h(y) does outside suppt(fY ).

• h must be injective on the support of fY .
• h changes direction at y3 and y4, so

the pieces ]y2, y3[, ]y3, y4[, ]y4, y5[, must be
treated separately. �

The following theorem summarizes the observations of those introductory results:

Theorem 9.1.

Given are a continuous random variable Y with density fY (y) and a differentiable function h(y)
which is either strictly increasing or strictly decreasing for all y ∈ suppt(fY ), i.e., for all y that
satisfyy fY (y) > 0. Then the PDF of U := h(Y ) is

(9.12) fU (u) = fY
(
h−1(u)

)
· |h−1′(u)| = fY

(
h−1(u)

)
·
∣∣∣∣ d[h−1(u)]

du

∣∣∣∣ .

PROOF: See the introduction 9.1. �

Example 9.7 (Increasing function). Given is a random variable Y with the following PDF:

fY (y) =

{
2y , if 0 ≤ y ≤ 1 ,

0 , else .

53 ? In general, one defines the support suppt(h) := {x̃ : h(x̃) 6= 0} for any real valued function x 7→ h(x).
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Let U := 4Y − 3. Find the PDF for U by means of the transformation method.

Solution: We apply the transformation method with the strictly increasing function
u = h(y) = 4y − 3. Then the inverse of h is y = h−1(u) = (u+ 3)/4, for all u ∈ R.

(1) We apply the transformation method with u = h(y) = 4y − 3 (strictly increasing).
(2) Then the inverse of h is y = h−1(u) = (u+ 3)/4, for all u ∈ R.
(3) Further, h−1′(u) = 1/4. Since 0 ≤ (u+ 3)/4 ≤ 1 ⇔ −3 ≤ u ≤ 1,

fU (u) =


2(u+ 3)

4
· 1

4
, if − 3 ≤ u ≤ 1 ,

0 , else .
=


u+ 3

8
, if − 3 ≤ u ≤ 1 ,

0 , else . �

Example 9.8 (Decreasing function). Given is a random variable Y with the same PDF as in Example
9.7:

fY (y) =

{
2y , if 0 ≤ y ≤ 1 ,

0 , else .

Let U := −3Y + 2. Find the PDF for U by means of the transformation method.

Solution: We apply the transformation method with the strictly decreasing function
u = h(y) = 2− 3y. Then the inverse of h is y = h−1(u) = (2− u)/3, for all u ∈ R.

(1) We apply the transformation method with u = h(y) = 2− 3y (strictly decreasing).
(2) Then the inverse of h is y = h−1(u) = (2− u)/3, for all u ∈ R.
(3) Further, h−1′(u) = −1/3. Since 0 ≤ (2− u)/3 ≤ 1 ⇔ 0 ≥ (u− 2) ≥ −3 ⇔ −1 ≤ u ≤ 2,

fU (u) =


2(2− u)

3
·
∣∣∣∣−1

3

∣∣∣∣ , if − 1 ≤ u ≤ 2 ,

0 , else .
=


4− 2u

9
, if − 3 ≤ u ≤ 1 ,

0 , else . �

Example 9.9 (Distribution function method with two variables). Given are two jointly continuous
random variables with uniform distribution on the triangle

B := {(y1, y2) : 0 < y2 < 1− y1 < 1} .

Find the CDF of U = Y1 + Y2.

(1) The joint PDF of (Y1, Y2) is fY1,Y2(y1, y2) =

{
2 , if 0 < y2 < 1− y1 < 1 ,

0 , else .

(2) FU (u) = P{U ≤ u} = P{Y1 + Y2 ≤ u} =
∫∫
B∩C

2 d~y, where C = {(y1, y2) : y1 + y2 ≤ u}.

(3) (y1, y2) ∈ B ⇒ 0 < 1− y1 < 1 ⇒ 0 > y1 − 1 > −1 ⇒ 0 < y2 < 1.
0 < y2 < 1 is obvious. Thus, u ≤ 0 ⇒ P{U ≤ u} = 0.

(4) B is the triangle with vertices (0, 0), (0, 1) and (1, 0).
For u > 0, C is the triangle with vertices (0, 0), (0, u) and (u, 0)
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(5) Thus, 0 < u < 1 ⇒ B ∩ C = C ⇒
∫∫
B∩C

2 d~y = 2
∫∫
C d~y

(6) Thus, from (5) & (2), 0 < u < 1 ⇒ B ∩ C = C ⇒ FU (u) = 2
∫∫
C d~y.∫∫

C · · · d~y is done by integrating, for each fixed 0 < y1 < u, over that part of the vertical line
{y2 : y2 = y1} that is within C. That is the segment 0 < y2 < u− y1.

(7) Thus, 0 < u < 1 ⇒ FU (u) = 2

∫ u

0

∫ u−y1

0
dy2 dy1

= 2

∫ u

0
(u− y1 − 0) dy1 = 2u2 − 2

y2
1

2

∣∣∣u
0

= u2 .

(8) From (4), u ≥ 1 ⇒ B ∩ C = B = suppt(fU ) ⇒ FU (u) = 1.

(9) Thus, from (3) & (7) & (8), FU (u) =


0 , if u ≤ 0 ,

u2 , if 0 < u < 1 ,

1 , if u ≥ 1 .

Differentiation yields fU (u) =

{
2u , if 0 < u < 1 ,

0 , if u ≤ 0 or u ≥ 1 . �

Remark 9.3. In the following we use the arrow notation ~y =
(
y1, . . . , yn

)
, ~Y =

(
Y1, . . . , Yn

)
, ...

Summary of the Transformation Method
Goal: Find the PDF fU (u) for U = h(Y ), where
• h : R → R has a domain R ⊆ R large enough to hold all arguments y that are

relevant for the problem. That requires that R contains the support of the PDF fY
(the set where fY is not zero).

• h is invertible on R. In other words, h is injective on R: If y ∈ R and u = h(y), then
there is no ỹ ∈ R such that ỹ 6= y and h(ỹ) = u.

• Thus h has an inverse u 7→ h−1(u) which maps any u that is a function value u = h(y)
back to y. Do not confuse this genuine inverse function of h(·) with the preimage
function B 7→ h−1(B) = {y ∈ Y : h(y) ∈ B}! That one maps sets to sets!

• We require that h is either strictly increasing or strictly decreasing for those y ∈ R
where fY (y) > 0. This assumption guarantees that h is injective and its inverse
u 7→ h−1(u) exists on the support of fY .

To find the PDF fU (u) for U = h(Y ), proceed as follows:
(1) Find the inverse function, y = h−1(u), for those u that correspond to y with fY (y) 6=

0.

(2) Find the derivative
dh−1

du
=

dh−1(u)

du
= h−1′(u).

(3) Finally, compute fU (u) as follows: fU (u) = fY
(
h−1(u)

) ∣∣∣∣ dh−1(u)

du

∣∣∣∣ . �

Remark 9.4. The transformation method still works if h is not either strictly increasing or decreasing
on suppt(g),as long as h is injective andR can be subdivided by intervals on which h is either strictly
increasing or strictly decreasing.

199 Version: 2024-05-06



Math 447 – MF Lecture Notes Student edition with proofs

As an example, consider u := h(y) :=

{
y, if y ≤ 0 ,

e−y, if y > 0 .

• On ]−∞, 0], h is strictly increasing with inverse y = h−1(u) = u. This inverse has derivative
h−1′(u) = 1 > 0.

• On ]0,∞[, h is strictly decreasing with inverse y = h−1(u) = − ln(u). This inverse has
derivative h−1′(u) = −1/u < 0.

• Obviously if y ≤ 0, then y ≤ 0 ⇔ u ≤ 0. Moreover, y > 0 ⇔ 0 < u = e−y < 1.

• Thus, fU (u) =


fY (u) · |1| = fY (u), ifu ≤ 0 ,

fY
(
e−u
)
· |−1/u| =

fY
(
− ln(u)

)
u

, if 0 < u < 1 ,

0, else . �

9.3 The Method of Transformations in Multiple Dimension

Introduction 9.2. In Chapter 9.2 (The Method of Transformations in Multiple Dimension), we
looked for ways to compute the density fU (u) of the transform U = h(Y ) of a continuous ran-
dom variable Y by means of a function h which maps real numbers y to real numbers u = h(y).
Theorem 9.1 on p.197 provided us with an explicit formula for the PDF fU (u) of the transformed
random variable U = h(Y ):

(9.13) fU (u) = fY
(
h−1(u)

)
· |h−1′(u)| = fY

(
h−1(u)

)
·
∣∣∣∣ d[h−1(u)]

du

∣∣∣∣ .
(1) Since |h−1′(u)| appears in that formula, h−1(u) must exist and be differentiable.
(2) That in turn requires that h is differentiable, in particular continuous.
(3) Moreover, neither h′(y) nor h−1′(u) can be zero, since h′(y) · h−1′(u) = 1.

Existence of h−1(u) requires h to be injective on the support of the PDF fY :
(4) If u0 is the function value u0 = h(y) of some argument y that satisfies fY (y) > 0,

• then there is no other argument ỹ that also satisfies u0 = h(ỹ) and fY (ỹ) > 0.

Since h is continuous, (4) is satisfied if h is either strictly increasing or strictly decreasing for all y in
the support of h, so we replaced (4) with that simpler assumption.
We now look for an n–dimensional analogue. If you have attended a linear algebra course, you
are knowledgeable about n × n matrices and their determinants. If your background about those
subjects is limited to a course in multivariable calculus, then assume that n = 2 or n = 3. We study

• random vectors ~Y =
(
Y1, . . . , Yn

)
, where each coordinate Yj is a random variable.

• functions ~u = ~h
(
~y
)

that map n–dimensional arguments ~y to n–dimensional function values

~y, have continuous partial derivatives
∂hi
yj

for i, j ∈ [1, n]Z and that satisfy a multidimen-

sional analogue of (4):

(5) If the vector ~u0 is a function value ~u0 = ~h
(
~y
)

of some argument ~y that satisfies f~Y
(
~y
)
> 0,

(here, f~Y
(
~y
)

) is the PDF of the jointly continuous random variables Y1, . . . , Yn),
• then there is no other argument ~̃y that also satisfies ~u0 = h(~̃y) and fY (~̃y) > 0.
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These two conditions guarantee the invertibility of the function ~y 7→ ~u = ~h
(
~y
)
: This inverse function

~h−1(·) is defined by the relation

~u = ~h
(
~y
)
⇔ ~y = ~h−1

(
~u
)
.

Since the function values ~y = ~h−1
(
~u
)

belong to Rn, ~h−1(·) consists of n coordinate functions
h−1

1 (·), h−1
2 (·), . . . , h−1

n (·). They are defined by the equations

(9.14) h−1
1

(
~u
)

= y1, h−1
2

(
~u
)

= y2, . . . , h
−1
n

(
~u
)

= yn.

In the onedimensional case, the existence of continuous
dh

du
which satisfies

∣∣∣∣dhdu
∣∣∣∣ 6= 0 implies that of

a continuous and non–zero derivative
dh−1

dy
. Further,

(9.15)
dh−1

dy
= 1

/dh
du

.

In the n–dimensional case, we must replace the condition
∣∣∣∣dhdu

∣∣∣∣ 6= 0 with the condition

(5) J−1 := det


∂h1
∂y1

∂h1
∂y2

· · · ∂h1
∂yn

∂h2
∂y1

∂h2
∂y2

· · · ∂h2
∂yn

· · · · · · · · · · · ·
∂hn
∂y1

∂hn
∂y2

· · · ∂hn
∂yn

 6= 0 .

The choice of the symbol J−1 for this determinant will become clear in a moment. The assump-

tions(5) and (6) are sufficient for the existence of all partial derivatives
∂h−1

i

uj
and their continuity.

They form an n×n matrix and one can show that it’s determinant, which we denote by J , also does
not vanish. In other words,

(9.16) J = det



∂h−1
1

∂u1

∂h−1
1

∂u2
· · · ∂h−1

1
∂un

∂h−1
2

∂u1

∂h−1
2

∂u2
· · · ∂h−1

2
∂un

· · · · · · · · · · · ·
∂h−1

n
∂u1

∂h−1
n

∂u2
· · · ∂h−1

n
∂un

 6= 0 .

Moreover, the determinants J−1 and J satisfy the analogue of (9.15):

(9.17) J−1 =
1

J
. �

Before we examine how this material about the matrices of the partial derivatives and their deter-
minants can be used to compute the joint PDF of the random vector ~U(ω) = ~h

(
~Y (ω)

)
and before

state our findings as a formal theorem, we illustrate the above with the following example.
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Example 9.10 (The joint PDF of two independent, exponential random variables – Part 1). In this
twodimensional example, the function ~h = (h1, h2) is defined as follows:

u1 :=h1(y1, y2) := 2y1 + y2 ,(9.18)
u2 :=h2(y1, y2) := y1 − 2y2 .(9.19)

(1) We show that this function can be inverted by solving these equations for ~y = (y1, y2).

• u1 − 2u2
(9.18)
= y2 + 4y2 = 5y2 ⇒ y2 = u1/5 − 2u2/5 .

• Thus, y1
(9.19)
= u2 + 2y2 = u2 + (1/5)[2u1 − 4u2] = (2u1)/5 + u2/5.

We have found the inverse function ~h−1 =
(
h−1

1 , h−1
2

)
to be

h−1
1 (u1, u2) = y1 =

1

5
(2u1 + u2) ,(9.20)

h−1
2 (u1, u2) = y2 =

1

5
(u1 − 2u2) .(9.21)

We will continue in Example9.11 on p.204. �

In the introduction, we informally discussed the following result from multivariable calculus which
we are rephrasing here in the language of joint PDFs of continuous random variables and which
is at the heart of this section. It is so lengthy that we spread it over several boxes. As mentioned
before, assume that n ≤ 3 if you do not have sufficient knowledge of linear algebra.

Theorem 9.2.

• Let ~Y =
(
Y1, . . . , Yn

)
be a vector of randomvariables with joint PDF f~Y

(
~y
)

and let R be a
“nice” subset of Rn which is so big that it hosts all outcomes ~Y (ω) of ~Y .

• Let the function ~h : R→ Rn; ~y 7→ ~u = ~h
(
~y
)

satisfy the following.

� ~h has continuous partial derivatives
∂hi
yj

for all 1 ≤ i, j ≤ n.

� If the vector ~u is a function value ~u = ~h
(
~y
)

of some argument ~y that satisfies f~Y
(
~y
)
> 0,

then there is no other argument ~̃y that satisfies all those conditions.

Then ~h has an inverse ~h−1 = h−1
1 , h−1

2 , . . . , h−1
n which is defined by the relation

~u = ~h
(
~y
)
⇔ ~y = ~h−1

(
~u
)
.

We can write this for the coordinate functions hi(·) and h−1
j (·) as follows:

(9.22) u1 = h1

(
~y
)
, . . . , un = hn

(
~y
)

and y1 = h−1
1

(
~u
)
, . . . , yn = h−1

n

(
~u
)
.

Also, all partial derivatives
∂h−1

i

uj
exist and are continuous for 1 ≤ i, j ≤ n.
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(9.23) Let
d~h

d~y
:=


∂h1
∂y1

∂h1
∂y2

· · · ∂h1
∂yn

∂h2
∂y1

∂h2
∂y2

· · · ∂h2
∂yn

· · · · · · · · · · · ·
∂hn
∂y1

∂hn
∂y2

· · · ∂hn
∂yn

 ,
d ~h−1

d~u
:=



∂h−1
1

∂u1

∂h−1
1

∂u2
· · · ∂h−1

1
∂un

∂h−1
2

∂u1

∂h−1
2

∂u2
· · · ∂h−1

2
∂un

· · · · · · · · · · · ·
∂h−1

n
∂u1

∂h−1
n

∂u2
· · · ∂h−1

n
∂un

 .

(9.24) Let J−1 := J−1(~y) := det

(
d~h

d~y

)
, J := J(~u) := det

(
d ~h−1

d~u

)
.

• We add another assumption: J−1(~y) 6= 0 for all y that satisfy f~Y
(
~y
)
> 0.

(9.25) Then J
(
h(~y)

)
6= 0 and J

(
h(~y)

)
= 1

/
J−1

(
~y
)
.

Further, the density of the transform ~U = h
(
~Y
)

is computed as

(9.26) f~U (~u)
)

= f~Y
(
h−1(~u)

)
· |J(~u)| .

PROOF: Beyond the scope of this course. It needs knowledge not only of linear algebra, but also of
the so called implicit function theorem. �

Before we give some examples to illustrate this theorem, we make a remark about some of the

notation introduced there and then give a name to the determinant J−1 of the matrix
d~h

d~y
of the

partial derivatives of h.

Remark 9.5. In the onedimensional case (n = 1), the situation is as follows.

• Rn is the set R of real numbers, • ~u = ~h
(
~y
)

becomes u = h(y) for real numbers y and u,

• the 1× 1 “matrix” of “partial” derivatives is h′(y) =
dh

dy
.

Considering that last point, it seems natural to write
d~h

d~y
for the n × n matrix of partial derivatives

∂hi
∂yj

and this author chose to do so. However, you will find either different notation 54 or, like in the

WMS text, no dedicated symbols at all. That works well enough with 2× 2 matrices. �

Definition 9.1 (Jacobian and Jacobian matrix).

54For example, Williamson, Richard E. and Trotter, Hale [12] uses the notation ~h′(~y), the multidimensional analogue of
h′(y).
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The matrix
d~h

d~y
of the partial derivatives of the function ~y 7→ ~h(~y) is called the Jacobian

matrix of~h(·). We refer to its determinant, J−1(~y) = det

(
d~h

d~y

)
, as the Jacobian, sometimes

also the Jacobian determinant, of ~h(·). �

Notation 9.1 (Jacobian).

• Stewart writes
∂(u1, . . . , un)

∂(y1, . . . , yn)
:= det

(
d~h−1

d~u

)
and

∂(y1, . . . , yn)

∂(u1, . . . , un)
:= det

(
d~h−1

d~u

)
• Thus, the expression J = J(~u) = det

(
d ~h−1

d~u

)
, which appears in

(9.26) f~U (~u)
)

= f~Y
(
h−1(~u)

)
· |J(~u)|, is the Jacobian of h−1(~u) and not of h(~y)

.
• This author follows the great majority of books on multivariable calculus in defining

the the Jacobian as the determinant of
d~h

d~y
.

• Be aware that WMS chooses instead to call J = det
d~h−1

d~u
the Jacobian.

• The reason seems to be that most books on probability and statistics agree on using

the letter J for det
d~h−1

d~u
(without giving a name to that determinant) and WMS does

not want to use the somewhat lengthy “the reciprocal of the Jacobian” in its frequent
references to J

�

Example 9.11 (The joint PDF of two independent, exponential random variables – Part 2). In Exam-
ple 9.10 on p.202, we defined ~u = ~h(~y) as follows:

u1 = h1(y1, y2) = 2y1 + y2 , u2 = h2(y1, y2) = y1 − 2y2 .

We computed its inverse ~u = ~h−1(~u) = and obtained

y1 = h−1
1 (u1, u2) =

1

5
(2u1 + u2) , y2 = h−1

1 (u1, u2) =
1

5
(u1 − 2u2) .

Observe that both ~h and ~h−1 are defined for all points in R2.

The partial derivatives of ~h are

∂h1

∂y1
= 2 ,

∂h1

∂y2
= 1 ,

∂h2

∂y1
= 1 ,

∂h2

∂y2
= −2 .

Those of ~h−1 are

∂h−1
1

∂u1
=

2

5
,

∂h−1
1

∂u2
=

1

5
,

∂h−1
2

∂u1
=

1

5
,

∂h−1
2

∂u2
=
−2

5
.
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Further,

d~h

d~y
=

[
2 1
1 −2

]
,

d~h−1

d~u
=

[
2
5

1
5

1
5
−2
5

]
,

Since the determinant of a 2× 2 matrix
[
a b
c d

]
, is ad− bc, we obtain

J−1 = (2)(−2) − (1)(1) = −5, J =

(
2

5

)(
−2

5

)
−
(

1

5

)(
1

5

)
=
−4 − 1

25
=
−1

5
,

Observe that J =
1

J−1
, validates what was stated in (9.25) on p.203.

We will continue in Example9.12. �

Example 9.12 (The joint PDF of two independent, exponential random variables – Part 3). In Exam-
ple 9.10 on p.202, we defined ~u = ~h(~y) as follows:

u1 = h1(y1, y2) = 2y1 + y2 , u2 = h2(y1, y2) = y1 − 2y2 .(9.27)

In its continuation, Example 9.11 above, we obtained J = const =
−1

5
for the reciprocal of the

Jacobian of ~h.
We are ready to specify the random variables that we wish to transform by means of ~h(·).
• Assume that Y1 and Y2 are independent expon(2) random variables.
• Let U1 := h1(~Y ) = 2Y1 + Y2, U2 := h2(~Y ) = Y1 + 2Y2.
• Apply Theorem 9.2 on p.202 to compute the joint density f~U (u1, u2) of ~U = ~h(~Y ).

Solution:

(a) f~Y (~y) = fY1,Y2(y1, y2) = fY1(y1) · fY2(y2) =


1

4
e−(y1+y2)/2, if y1, y2 > 0 ,

0, else .

(b) We recall that y1 =
1

5
(2u1 + u2) and y2 =

1

5
(u1 − 2u2). Thus,

f~U (~u) = fU1,U2(u1, u2) =
1

4
exp

{
−
(

1

5
(2u1 + u2) +

1

5
(u1 − 2u2)

)/
2

}
·
∣∣∣∣− 1

5

∣∣∣∣
=

1

20
exp

{
−1

10
(2u1 + u2 + u1 − 2u2)

}
=

1

20
exp

{
3u1 − u2

−10

}
=

1

20
exp

{
u2 − 3u1

10

}
.

• BUT ONLY IF y1 = h−1
1 (~u) ≥ 0 AND y2 = h−1

2 (~u) ≥ 0! What are those vectors ~u?
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(c) y1 ≥ 0 and y2 ≥ 0 ⇔ 2u1 + u2 ≥ 0
and u1 − 2u2 ≥ 0

(d) y1 ≥ 0 and y2 ≥ 0
(9.27)⇒ u1 = 2y1 + y2 ≥ 0.

(e) From (c): 2u1 + u2 ≥ 0 ⇒ u2 ≥ −2u1

(f) From (c): u1 − 2u2 ≥ 0 ⇒ u1 ≥ 2u2

⇒ u2 ≤
u1

2
(g) From (d), (e), (f): h−1

1 (~u) ≥ 0 and h−1
2 (~u) ≥ 0 ⇔

u1 ≥ 0 and −2u1 ≤ u2 ≤
u1

2
.

• The figure to the right shows that those are the
points enclosed by the quadrant which is ob-
tained when rotating the first quadrant clock-
wise, by an angle of 60◦

(h) Thus, if we denote this quadrant by R,

f~U (~u) =


1

20
e(u2−3u1)/10, if ~u ∈ R ,

0, else . where h−1
1 (u1,u2) > 0 and h−1

2 (u1,u2) > 0

At this point we know how to integrate with respect to the PDF of ~U = ~h(~Y ). We can replace the
integral d~u over the region R by an iterated integral du2 du1 as follows.

For a fixed u1 > 0, the integration bounds for u2 are −2u1 ≤ u2 ≤
u2

2
. (See (g)). Thus,

∫∫
R2

· · · f~U (~U) d~u =

∫∫
R
· · · −1

20 e
(u2−3u1)/10 d~u =

∫ ∞
0

∫ u2/2

−2u1

· · · −1
20 e

(u2−3u1)/10 du2 du1

For example, if w = g(~U) = g(u1, u2) is a real–valued function of (u1, u2) ∈ R2, then

E[g(~U)] = =

∫ ∞
0

∫ u2/2

−2u1

g(~u)−1
20 e

(u2−3u1)/10 du2 du1 �

9.4 The Method of moment–generating Functions

Assumption 9.1. Unless stated otherwise, we will assume in this entire section that

(a) ~Y = (Y1, Y2, . . . , Yn) denotes a list of n random variables (n ∈ N).
• Either all Yj are discrete, or they all are continuous random variables.

(b) h : D → R; ~y 7→ u = h(~y) = h(y1, . . . , yn)
is a function with domain D ⊆ Rn (this covers R = R1 for n = 1), such that
• there is no issue with the existence of the PMF or PDF of U := h(~Y ).
• All MGFs, mYj (t) = E

[
etYj

]
and mU (t) = E

[
etU
]

exist if |t| is small enough, i.e.,
there is some δ > 0 such that those MGFs exist for −δ < t < δ.

(c) Those assumptions also hold for differently named (vectors of) random variables

and functions, e.g. V = g
(~̃
Y
)

= g
(
Ỹ1, . . . , Ỹk

)
. �
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Introduction 9.3. The moment–generating function method for finding the probability distribution
of a function of random variables Y1, Y2, . . . , Yn is based on Proposition 6.5 on p.111 (Section 6.5:
Moments, Central Moments and Moment Generating Functions). It was stated without proof and
asserts that the following is true under the conditions stated in Assumption 9.1:

Assume that two random variables Y and Ỹ possess identical kth moments about the origin for all
k = 1, 2, . . . . In other words, assume that

E[Y 1] = E[Ỹ 1], E[Y 2] = E[Ỹ 2], E[Y 3] = E[Ỹ 3], . . .

Then PY = PỸ , i.e., Y and Ỹ have the same distribution. �

We have the following uniqueness theorem.

Theorem 9.3 (The MGF determines the distribution).

Given are two random variables Y and Ỹ . If their moment–generating functions mY (t) and m
Ỹ

(t)
exist and coincide in a small interval that is centered at t = 0,
• Then PY = P

Ỹ
, i.e., Y and Ỹ have the same probability distribution.

PROOF:
Theorems 6.18 on p.111 and 7.9 on p.127 allow us to conclude that

E[Y k] =
dk

dtk
mY (t)

∣∣∣
t=0

=
dk

dtk
m
Ỹ

(t)
∣∣∣
t=0

= E[Ỹ k] for all k ∈ N .

It follows from Proposition 6.5 on p.111 that PY = P
Ỹ
�

Remark 9.6.

To find the distribution of U = h(~Y ) = h
(
Y1, Y2, . . . , Yn

)
by means of the MGF method,

proceed as follows:
• Compute the MGF mU (t) = E

[
etU
]

of U
• Does this MGF match that of a random variable V with a known distribution?

You may want to consult a list of MGFs like the one in Appendix 2 of [11] Wackerly,
Mendenhall, Scheaffer, R.L.

• Then you are done, since Theorem 9.3 (The MGF determines the distribution) guar-
antees that PU = PV .

Of course, the devil is in the details. In most cases, you will not succeed in finding that matching
MGF, unless one or both of the following are satisfied:
• U is a linear function U = a1Y1 + · · ·+ anYn, with constant aj ∈ R.
• The random variables Y1, . . . , Yn are independent and h(~y) = h1(y1) ·

h2(y2) · · ·hn(yn), for suitable functions hj(y).
We will examine some very important and general cases that illustrate all this. �

Example 9.13 (WMS Ch.06.5, Example 6.10). Suppose that Y is a normally distributed random
variable with mean µ and variance σ2. Show that

Z :=
Y − µ

σ
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has a standard normal distribution, i.e., Z ∼NNN (0, 1).

Solution:
(a) According to Proposition 7.6 on p.133, mY (t) = eµt+ (σ2t2)/2 .
(b) Any random variable W is independent from any constant (real number) a.
(c) Thus, according to Theorem 8.10 on p.157, the random variables h1(W ) = etW and h2(a) =

e−at are independent, and E[etW · e−at] = E[etW ] · e−at].
(d) Thus if U = Y − µ, then mU (t) = E

[
etY−tµ

]
= E

[
etY e−tµ

]
= E

[
etY
]
· e−tµ.

• Thus, mU (t) = mY (t) e−tµ
(a)
= eµt+ (σ2t2)/2 · e−tµ = e(σ2t2)/2.

• Since Z = U/σ, mZ(t) = mU (t/σ) = e(σ2(t/σ)2/2 = et
2/2.

(e) We use Proposition 7.6 once more and see that t 7→ et
2/2 is the MGF of a standard normal

random variable. Thus, Z ∼NNN (0, 1). �

Example 9.14 (WMS Ch.06.5, Example 6.11). Let Z be a normally distributed random variable with
mean 0 and variance 1. Use the method of moment–generating functions to find the probability
distribution of Z2.

Solution:
The moment–generating function for Z2 is

mZ2(t) = E(etZ
2
) =

∫ ∞
−∞

etz
2
f(z) dz =

∫ ∞
−∞

etz
2 e−z

2/2

√
2π

dz

=

∫ ∞
−∞

1√
2π

e−(z2/2)(1−2t) dz =

∫ ∞
−∞

ψ(z) dz ,

(A)

where

ψ(z) = exp

[
−
(
z2

2

)
(1 − 2t)

]/√
2π

= exp

[
−
(
z2

2

)/
(1 − 2t)−1

]/(√
2π(1 − 2t)−1/2 · 1

(1 − 2t)−1/2

)
.

We define σ := (1 − 2t)−1/2 and obtain

ψ(z) = exp

[
−
(
z2

2

)/
σ2

]/(√
2π σ · 1

σ

)
= e−z

2/(2σ2) · σ√
2π σ

= σ ϕ(z) ,

where ϕ(z) is the density of a NNN (0, σ) random variable. Thus,
∫∞
−∞ ϕ(z) dz = 1. It follows from (A)

and ψ(z) = σ ϕ(z) and σ := (1 − 2t)−1/2 that

mZ2(t) =

∫ ∞
−∞

ψ(z) dz =

∫ ∞
−∞

(1 − 2t)−1/2 ϕ(z) dz =
1

(1 − 2t)1/2

∫ ∞
−∞

ϕ(z) dz =
1

(1 − 2t)1/2
.

According to Proposition 7.8 on p.136, t 7→ 1

(1 − 2t)1/2
is the MGF of a random variable which

follows a gamma(1/2, 2) distribution which is, by definition 7.11 on p.137, also known as a χ2 dis-
tribution with one degree of freedom. We obtained this result previously in Example 9.5 on p.194
by the method of distribution functions. �
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Theorem 9.4 (MGF of a sum of functions of independent variables).

Given are n independent random variables Y1, Y2, . . . , Yn with MGFs mY1(t),mY2(t), . . . ,mYn(t).
and n real–valued functions h1(y1), . . . , hn(yn) of real numbers y1, . . . , yn.
Let U := h1(Y1) + h2(Y2) + · · ·+ hn(Yn). Then (under the conditions of Assumption 9.1 on 206)

mU (t) = mh1(Y1) +···+hn(Yn) =
n∏
j=1

mhj(Yj)(t) .(9.28)

PROOF:
For each j = 1, . . . , n, let gj(y) := ethj(y). Consider a fixed t. Since functions of independent random
variables are independent random variables, the random variables Vj := gj(Yj) = ethj(Yj) are
independent. We apply Theorem 8.10 on p.157 and obtain

mU (t) = E
[
et(V1+V2+···+Vn)

]
= E

[
etV1

]
· · ·E

[
etVn

]
. = E

[
eth1(Y1)

]
· · ·E

[
ethn(Yn)

]
= mh1(Y1)(t) ·mh1(Y1)(t) · · ·mh1(Yn)(t) . �

Corollary 9.1 (WMS Ch.06.5, Theorem 6.2).

Let Y1, Y2, . . . , Yn be independent random variables with moment–generating functions
mY1(t),mY2(t), . . . ,mYn(t), respectively. Then

mY1 +···+Yn(t) =
n∏
j=1

mYj (t) = mY1(t) ·mY2(t) · · ·mYn(t) .(9.29)

PROOF:
This follows from applying Theorem 9.4 to the functions hj(yj) = yj . �

Next, we generalize But its great importance gives it the status of a theorem.

Theorem 9.5 (Linear combinations of uncorrelated normal variables are normal).

Given are n uncorrelated, NNN (µj , σ
2
j ) random variables Yj , (j = 1, . . . , n. In other words, each Yj

is normal with expectation µj and standard deviation σj . Let a1, . . . , an ∈ R. Then

n∑
j=1

ajYj ∼ NNN

 n∑
j=1

ajµj ,
n∑
j=1

a2
jσ

2
j

 .(9.30)

Thus, the linear combination of uncorrelated normal random variables is normal with expectation and vari-
ance being the linear combinations of the indivicual expectations and variances.

PROOF:
First off, we recall that one of the special properties of normal random variables is that they are
uncorrelated if and only if they are independent. Thus we can use everything that applies to inde-
pendent random variables.
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Consider a fixed t and define

U :=
n∑
j=1

ajYj .

We apply Theorem 9.4 (MGF of a sum of functions of independent variables) on p.209 with the
functions hj(yj) = ajyj and obtain

mU (t) =

n∏
j=1

majYj (t) =

n∏
j=1

mYj (ajt)

=
n∏
j=1

exp
{

(σ2
j /2)(ajt)

2 + µj(ajt)
}

Here we used that a NNN (µ̃, σ̃2) variable has MGF eσ̃
2t2/2+µ̃t. See Proposition 7.6 on p.133. Thus,

mU (t) = exp


n∑
j=1

(σ2
j /2)(ajt)

2 + µj(ajt)


= exp


 n∑
j=1

(σ2
ja

2
j/2) t2

 +

 n∑
j=1

(µjaj) t


= exp


 n∑
j=1

(a2
jσ

2
j )

/2 · t2 +

 n∑
j=1

(ajµj)

 · t


By Proposition 7.6, the last expression is the MGF of a NNN (µ̃, σ̃2) variable with

µ̃ =

n∑
j=1

(ajµj) , σ̃2 =

n∑
j=1

(a2
jσ

2
j ) .

Since distributions of random variables are determined by their MGFs,

U ∼ NNN

 n∑
j=1

ajµj ,
n∑
j=1

a2
jσ

2
j

 . �

Remark 9.7. It is a consequence of Theorem 9.5 that the sum of two independent random variables
also is normal. The following counterexample shows that we cannot drop the assumption of inde-
pendence. It is cited in many books on probability and can be found, e.g., in [7] Pishro-Nik, Hossein:
Introduction to Probability, Statistics, and Random Processes.
Assume that U and V are independent random variables with distributions
• U ∼NNN (0, 1),
• V ∼ binom(n = 1, p = 0.5).

Let

W (ω) :=

{
U(ω), if V (ω) = 1,

−U(ω), if V (ω) = 0 .
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(a) Show that W ∼NNN (0, 1).
(b) Let Y := U +W . Show that Y is not a continuous random variable.

It follows from (b) that Y is not normal, since normal random variables are continuous. �

Solution to (a): Note that the PDF of U is symmetric, i.e., fU (u) = fU (−u) for all u ∈ R. Thus, for
all u,

P{U ≤ u} =

∫ u

−∞
fU (t)dt =

∫ ∞
−u

fU (t)dt = P{U ≥ −u} = P{−U ≤ u} .

It follows that U and −U have the same distribution and thus, −U ∼NNN (0, 1). 55

Now, we show that W ∼NNN (0, 1). Let w ∈ R. Then,

P{W ≤ w} = P{W ≤ w, V = 0} + P{W ≤ w, V = 1}
= P{W ≤ w | V = 0}P{V = 0} + P{W ≤ w | V = 1}P{V = 1}

=
1

2
P{−U ≤ w | V = 0} +

1

2
P{U ≤ w | V = 1}

We use the independence of U and V followed by U ∼ −U and obtain

P{W ≤ w} =
1

2

(
P{−U ≤ w} + P{U ≤ w}

)
=

1

2

(
P{U ≤ w} + P{U ≤ w}

)
= P{U ≤ w} .

Thus, W ∼ U . Since U is standard normal, so is W . We have proven (a).

Solution to (b): It follows from the definition of W and Y := U +W , that

Y (ω) :=

{
2U(ω), if V (ω) = 1,

0, if V (ω) = 0 .

It follows that the CDF FY of Y has a jump
• FY (0) − FY (0−) = P{Y = 0} = 1/2

at y = 0. Thus, Y is not a continuous random variable and we have shown (b). �

Theorem 9.6.

Given are n independent, gamma(αj , β) random variables Yj , (j = 1, . . . , n. In other words, each
Yj is gamma with the same scale parameter β. Then

n∑
j=1

Yj ∼ gamma

 n∑
j=1

αj , β

 .(9.31)

Thus, the sum of independent gamma random variables with the same scale parameter β is gamma with the
shape parameter being the sum of the shape parameters, and scale parameter β.

55This result should not come as a surprise since, for n = 1 and a1 = −1, Theorem 9.5 on p.209 states the following:
If Y1 ∼NNN (µ, σ2), then −Y1 ∼NNN (−µ, σ2). Note though, that the proof given here shows that U and −U have the same
distribution whenever U has a symmetric PDF. Also note that U ∼ −U holds if U is discrete with a symmetric PMF,
i.e., pU (u) = P{U = u} = P{U = −u} = pU (−u), for all u.
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PROOF:
Consider a fixed t and define

U :=
n∑
j=1

Yj .

We apply Theorem 9.4 (MGF of a sum of functions of independent variables) on p.209 and recall
that the MGF of a gamma(α̃, β̃) variable Ỹ is, according to Proposition 7.8 on p.136,m

Ỹ
= (1− β̃t)α̃.

We obtain

mU (t) =

n∏
j=1

majYj (t) =

n∏
j=1

mYj (ajt)

=

n∏
j=1

1

(1− βt)αj
=

1

(1− βt)
∑n
j=1 αj

.

Since distributions of random variables are determined by their MGFs,

U ∼ gamma

 n∑
j=1

αj , β

 . �

Corollary 9.2.

Let Y1, Y2, . . . , Yn be independent χ2 variables such that each Yj has νj degrees of freedom. Then

mY1 +···+Yn(t) ∼ χ2

 n∑
j=1

νj df

 .(9.32)

PROOF:
This follows immediately from Theorem 9.6, Since χ2 variables with νj df are gamma(νj/2, 2). �
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10 Limit Theorems

Introduction 10.1. In this section we will discuss the ways in which a sequence Yn of random vari-
ables can have a random variable Y as its limit. Before we go there, let us quickly review conver-
gence of a sequence (yn)n of real numbers and of a sequence of functions fn : A → R, with all
members fn defined on a subset A of Rk, where k = 1, 2, . . . . Note that k = 1 covers the situation
where the arguments are real numbers. Some examples of number sequences:

• If yn =
3− 2n

5 + n2 − 6n
, then lim

n→∞
yn =

3

5
, and the sequence converges to

3

5
.

• If yn = (−1)n, then lim
n→∞

yn does not exist.

• If yn =
n∑
j=1

n, then lim
n→∞

yn = ∞. Recall that convergence only happens if the limit is a real

number. Thus, (yn)n does not “converge to∞”. Rather, this sequence diverges. 56

For the following examples of function sequences, let us agree that, if fn, f : A → R, where A ⊆ R,
then “pointwise convergence” 57 of the functions fn to the function f simply means that

(10.1) lim
n→∞

fn(a) = f(a) for all a ∈ A .

• Let fn, f, g, h : [0, 1]→ R be the functions

(10.2) � fn(x) := xn � f(x) :=

{
0 , if 0 ≤ x < 1,

1 , if x = 1 ,
� g(x) := 0, �h(x) := x.

The situation with respect to pointwise convergence is as follows:
• f is the pointwise limit of the sequence fn.
• Even though g is the pointwise limit of the sequence fn on [0, 1[, it is not the pointwise limit

on [0, 1], since lim
n→∞

fn(x) = g(x) = 0, for 0 ≤ x < 1, but lim
n→∞

fn(1) = 1, whereas g(1) = 0.

• h is not the pointwise limit of the sequence fn (except on {0, 1}.

Did you notice that no use was made of the fact that the domain [0, 1] of those functions is a set of
numbers?
• Assume instead that Ω is some arbitrary, nonempty set (not necessarily a probability space).

Further assume that there are functions fn, f : Ω→ R. We still have the notion of pointwise
convergence of the functions fn to the function f : (10.1) becomes

(10.3) lim
n→∞

fn(ω) = f(ω) for all ω ∈ Ω

and one certainly can examine whether or not the above is true for any kind of domain, i.e.,
for any nonempty set Ω.

We will not discuss vector–valued sequences. However, for completeness sake, we give the follow-
ing example.

56There is no such thing as divergence to ±∞. Thus, you must say that (yn) diverges, not that (yn) diverges to∞.
57The formal definition of pointwise limits will be given in Section 10.1 (Four Kinds of Limits for Sequences of Random

Variables).
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• If ~yn =
(
(−1)n, cos(2/n)

)
, then lim

n→∞
~yn does not exist, since the limit of a vector–valued

sequence is, by definition, the vector of the limits of the coordinates. The second coordinate
sequence, yn = cos(2/n)

)
, converges to the number 1. Since the first coordinate sequence,

yn = (−1)n, does not have a limit, neither does
(
~yn
)
n

. Thus this sequence does not converge.

After these preliminary remarks, let us consider sequences of random variables. We recall that all
random variables Y are functions

Y : (Ω,F, P )→ R ω 7→ Y (ω) .

They take their arguments ω in a probability space (Ω,F, P ) and map them to numeric outcomes
y = Y (ω).
• The σ–algebra is of no significance in this chapter, so we keep ignoring it and simply con-

sider the probability space (Ω, P ).
• On the other hand, the arguments ω play an essential role and we will often replace “Y ”

with “ω 7→ Y (ω)” to remind the reader that we are dealing with functions of ω.
• If (Yn)n is a sequence of random variables (Ω, P )→ R. Then each ω ∈ Ω comes with its own

sequence
(
Yn(ω)

)
n

of real numbers.
• One obvious question to ask about those sequences Yn(ω) of real numbers is this one:

� Does lim
n→∞

Yn(ω) exist and will it be a real number (rather than ±∞) for all ω ∈ Ω?

� If so, then the assignment ω 7→ Y (ω) := lim
n→∞

Yn(ω) defines a real–valued function

Y : (Ω, P )→ R, i.e., another random variable. What are its properties?
• Not quite so obvious: � Does the presence of the probability measureP on Ω give additional

insight about the convergence behavior of the functions ω 7→ Yn(ω)?
• In contrast to the deterministic case where the only mode of convergence available to us is

pointwise convergence, 58 we will see in Section 10.1 (Four Kinds of Limits for Sequences
of Random Variables) that the presence of a probability P allows us to consider additional
modes of convergence:
� convergence almost surely,
� convergence in probability measure,
� convergence in distribution. �

10.1 Four Kinds of Limits for Sequences of Random Variables

The following definition is a central place for all the different convergence modes of sequences of
random variables that are of interest to us. We will examine each one in detail.

Definition 10.1 (Convergence of Random Variables).

58This is not entirely true: If Ω is a subset of R or of Rk. then there is the notion of uniform convergence, fn(·)→ f(·).
We will not be concerned with uniform convergence in this course.
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Let Yn (n ∈ N) and Y be random variables on a probability space (Ω, P ). We define

Yn
pw→Y or pw – lim

n→∞
Yn = Y , if lim

n→∞
Yn(ω) = Y (ω), for all ω ∈ Ω ,(10.4)

Yn
a.s.→Y or a.s. – lim

n→∞
Yn = Y , if P{ω ∈ Ω : lim

n→∞
Yn(ω) = Y (ω)} = 1 ,(10.5)

Yn
P→Y or P – lim

n→∞
Yn = Y , if ∀ ε > 0 lim

n→∞
P{ω ∈ Ω : |Yn(ω)− Y (ω)| > ε} = 0 ,(10.6)

Yn
D→Y, if lim

n→∞
FYn(y) = FY (y), ∀ y ∈ R where the CDF FY of Y is continuous.(10.7)

We also say:
If Yn

pw→ Y , Y is the pointwise limit of the Yn, or: Yn converges pointwise to Y .
If Yn

a.s.→ Y , Y is the almost sure limit of the Yn, or: Yn converges almost surely to Y .
If Yn

P→ Y , Y is the limit in probability; of the Yn, or: Yn converges in probability to Y .
If Yn

D→ Y , Y is the limit in distribution of the Yn, or: Yn converges in distribution to Y .

Example 10.1. Consider Ω := [0, 1] as a probability space (Ω, P ) by defining

P (]a, b]) := b− a, for 0 ≤ a < b ≤ 1 .

In other words, P is the uniform distribution on [0, 1].
We rename the functions fn, f, g, h of (10.2) in the introduction to Yn, Y, U, V , since doing so will
make it less confusing to examine the convergence behavior of the sequence. This particularly
applies to converges in probability and in distribution. Accordingly, we define

Yn(ω) := ωn, U(ω) = 0, V (ω) := ω, (for 0 ≤ ω ≤ 1) Y (ω) :=

{
0 , if 0 ≤ ω < 1,

1 , if ω = 1 .

Part I: Pointwise and a.s convergence

Pointwise convergence behavior of the Yn corrresponds to that of (10.2):
• Y is the pointwise limit of the sequence Yn,
• U is the pointwise limit of the Yn on [0, 1[ only, but not on Ω,
• V is not the pointwise limit of the Yn (except for ω = 0) or ω = 1).

With respect to almost sure convergence, we see that

• Yn
a.s.→ Y , since { lim

n→∞
Yn = Y } = [0, 1] = Ω, and P (Ω) = 1.

• Yn
a.s.→ U , since { lim

n→∞
Yn 6= U} = {1}, and P ({1}) = 0.

• (Yn)n does not converge to V a.s., since P{ lim
n→∞

Yn = V } = P{0, 1} = 0 6= 1.

Part II: Convergence in probability

Next, we examine convergence in probability. We will see that a sequence of random variables can
have more than one P–limit by showing the following: The sequence ω 7→ Yn(ω) = ωn has both
ω 7→ U(ω) = 0 and ω 7→ Y (ω) = 1 if ω = 1 and 0 else as P–limits.
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By definition of P– lim
n→∞

Yn = Ỹ , we must prove that, for any fixed, but arbitrary ε > 0,

lim
n→∞

P{ |Yn − Ỹ | > ε } = 0. See (10.6).

Since this probability decreases as ε increases and we must show that it approaches 0 as n→∞, we
only need to worry about the very small ε. Thus, we may assume that 0 < ε < 1.
We observe that, for Yn(ω) = ωn and 0 < ε < 1,[

|Yn(ω)| ≥ ε ⇔ ωn ≥ ε ⇔ ω ≥ ε1/n
]

⇒
[
P{ |Yn| ≥ ε } = P

(
[ε1/n, 1]

)
= 1 − ε1/n

]
.

(A)

0 < ε < 1 ⇒ lim
n→∞

ε1/n = 1 ⇒ lim
n→∞

(
1− ε1/n

)
= 0.(B)

Part II (1): We now prove that P– lim
n→∞

Yn = Y :

[
|Yn(ω) − Y (ω)| ≥ ε ⇔ |Yn(ω)| ≥ ε and ω 6= 1

]
⇒
[
P{|Yn − Y | ≥ ε} ≤ P{|Yn| ≥ ε}

(A)
= 1 − ε1/n (B)→ 0, as n→∞.

]
.

(a)

Thus, lim
n→∞

P{|Yn − Y | ≥ ε} = 0.

Part II (2): We now prove that P– lim
n→∞

Yn = U :

• We could repeat the proof for the P–convergence of Yn to Y with very minor modifications
and the reader is encouraged to do so. Instead, we will use that result to show that P–
lim
n→∞

Yn = U

• Since the outcome {1} has probability zero and Y (ω) = U(ω) for ω 6= 1,

P{|Yn − Y | ≥ ε} = P{|Yn − Y | ≥ ε and ω 6= 1}
= P{|Yn − U | ≥ ε and ω 6= 1} = P{|Yn − U | ≥ ε} .

• Since lim
n→∞

P{|Yn − Y | ≥ ε} = 0,

lim
n→∞

P{|Yn − U | ≥ ε} = lim
n→∞

P{|Yn − Y | ≥ ε} = 0.

Thus, P– lim
n→∞

Yn = U .

Part II (3): Next, we show that it is not true that (Yn)n converges in probability to V .
We argue by picture rather than giving an exact proof, since that would require some very tedious
of terms containing ln(k).
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• The picture makes it very clear that
ε = 1/10 ⇒ ω − ωn > ε for 49

100 ≤ ω ≤ 51
100 and

n ≥ 100.
Thus, P{|Yn − V | ≥ ε} ≥ ε ·

(
51
100 −

49
100

)
= 2

1000 .
Thus, lim

n→∞
P{|Yn − V | ≥ ε} = 0 is not true.

• Since lim
n→∞

P{|Yn−V | ≥ ε} = 0 must hold for ALL

ε and we showed that this is not so for ε =
1

10
,

it follows that (Yn)n does not converge in proba-
bility to V .

Part III: Convergence in distribution

We will show that Yn does not converge to V in distribution as follows.
• Recall that P ]a, b] = b− a for all 0 ≤ a < b ≤ 1. Let y ∈ R.
• Since V (ω) = ω, FV (y) = P{V ≤ y} = P{ω ∈ Ω : V (ω) ≤ y} = P ]0, y] = y.
• Since Yn(ω) = ωn, FYn(y) = P{Yn ≤ y} = P{ω ∈ Ω : ωn ≤ y} = P ]0, y1/n] = y1/n.
• Thus, for 0 < y < 1, FV (y) = y, whereas, lim

n→∞
FYn(y) = 0 6= FV (y).

• Since all those y are points of continuity for FV , it follows that (Yn)n does not converge in
distribution to V .

On the other hand, the theorem that follows now shows that (Yn)n converges in distribution to Y
and U , since we have shown convergence in probability to those random variables. �

Theorem 10.1 (Relationship between the modes of convergence).

Let Y and Y1, Y2, . . . be random variables on a probability space (Ω, P ). Then,

(10.8) Yn
pw→ Y ⇒ Yn

a.s.→ Y ⇒ Yn
P→ Y ⇒ Yn

D→ Y .

PROOF:

I: It is obvious that Yn
pw→ Y ⇒ Yn

a.s.→ Y for the following reason:
• For each n ∈ N, let An := {ω ∈ Ω : lim

n→∞
Yn(ω) 6= Y (ω)}.

• Then, for k ∈ N, Yn
pw→ Y ⇒ Ak = ∅ ⇒ P (Ak) = 0 ⇒ lim

n→∞
P (An) = 0 ⇒ Yn

a.s.→ Y .

II: The proofs that Yn
a.s.→ Y ⇒ Yn

P→ Y and Yn
P→ Y ⇒ Yn

D→ Y are outside the scope of this
course. Fairly accessible proofs for those who can work with sets like⋂

n≥1

⋃
j≥n
{ω ∈ Ω : |Yj(ω)− Y (ω)| ≥ ε}


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and are familiar with the exact definition of convergence of sequences 59 can be found at this
Wikipedia link. �

There are many theorems concerning the convergence of random variables. We only mention here
the following two which will be used later in this chapter.

Theorem 10.2 (Slutsky’s Theorem). ?

Let Y1, Y2, . . . ) and U1, U2, . . . be two sequences of random variables. Let Y be another random
variable and c a constant such that

• Yn
D−→ Y (convergence in distribution) • Un

P−→ c (convergence in probability)

Then,

Yn + Un
D−→Y + c ,(10.9)

Yn · Un
D−→cY ,(10.10)

Yn
Un

D−→ Yn
c
, assuming that c 6= 0.(10.11)

PROOF: Omitted. See, e.g., [1] Bickel and Doksum: Mathematical Statistics.

Theorem 10.3 (Convergence is maintained under continuous transformations). ?

Let Y1, Y2, . . . ) and Y be random variables on some probability space (Ω, P ). Let f : R → R be
continuous. Then,

Yn
a.s.−→ Y ⇒ f ◦ Yn

a.s.−→ f ◦ Y .

Yn
P−→ Y ⇒ f ◦ Yn

P−→ f ◦ Y .

Yn
D−→ Y ⇒ f ◦ Yn

D−→ f ◦ Y .

PROOF: Omitted. 60 �

Example 10.2 (Convergence in probability but not a.s.). ?

Consider the “sliding hump” example. 61 As our probability space we choose Ω := [0, 1], the unit
interval in R, with the probability measure defined by P

(
]a, b]

)
:= b− a.

(a) We partition Ω into the two intervals I1 = [0, 1/2] and I2 =]1/2, 1].

• For n = 1, 2, let Yn(ω) :=

{
1 , if ω ∈ In,
0 , else .

59xn converges to x ⇔ for all ε > 0 one can find N ∈ N such that |xn − x| < ε whenever n ≥ N .
60A proof can be found at this Convergence of random variables (Mann–Wald theorem, general transformation theo-

rem) Wikipedia link.
61See this StackExchange link.
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(b) We partition Ω into the three intervals I3 = [0, 1/3], I4 =]1/3, 2/3], and I5 =]2/3, 1],

then into I6 = [0, 1/4], I7 =]1/4, 2/4], I8 =]2/4, 3/4], and I9 =]3/4, 1], and so on .....

• We define random variables Yn as in (a): For n ∈ N, let Yn(ω) :=

{
1 , if ω ∈ In,
0 , else .

(c) Then the sequence Yn converges in probability to the (deterministic) random variable
ω 7→ Y (ω) := 0. A proof is given directly after this example.

(d) But this sequence of random variables does not converge almost surely. In fact, there is no
0 ≤ ω ≤ 1 for which lim

n→∞
Yn(ω) exist:

• Fix ω ∈ [0, 1]. By construction, there are indices

n1 = n1(ω) < n2 = n2(ω) < n3 = n3(ω) < · · · , such that ω ∈ Ink and Ink has length 1/k.
(Thus, P (Ink) = 1/k.)

(e) Let ω′ ∈ [0, 1];ω′ 6= ω. The subsequences nk(ω) and nk(ω′) will differ for all k so large that
1

k
<
|ω − ω′|

2
, i.e.,

2

k
< |ω−ω′| , since ω ∈ Ink(ω) and ω′ ∈ Ink(ω′) ⇒ Ink(ω)∩Ink(ω′) = ∅.

(Draw a picture!)
(f) It follows for such big k, that Ynk(ω)(ω) = 1 and Ynk(ω)(ω

′) = 0.
On the other hand, Ynk(ω′)(ω) = 0 and Ynk(ω′)(ω

′) = 1.
Thus, the full sequences Yn(ω) does not have a limit, since it would have to be 1 along the
subsequence nk(ω) and 0 along the subsequence nk(ω′).

(g) ω is arbitrary in Ω = [0, 1]. This shows that there is no ω ∈ Ω for which lim
n→∞

Yn(ω) exists. �

PROOF that (Yn) converges in probability:
If we write |In| for the length of the interval In, then

(h) � |In| = 1 ⇔ n = 1 � |In| = 1/2 ⇔ n = 2, 3 � |In| = 1/3 ⇔ n = 4, 5, 6.

Thus, if s1 = 1, s2 = s1 + 2, s3 = s2 + 3, . . . , sk = sk−1 + k =
k∑
j=1

j =
k · (k + 2)

2
, . . . ,

(i) then In = 1/k ⇔ n = sk−1 + 1, sk−1 + 2, . . . , sk−1 + k ⇔ sk−1 < n ≤ sk.

(j) It should be clear that
[
n→∞

][
k →∞

]
For a proof: � “⇐” follows from n ≥ k.

�For the other direction, we observe that n
(i)
≤ 2sk = 2k(k + 1) < 2(k + 1)2,

i.e.,
√
n/2− 1 < k. Thus,

[
n→∞

]
⇒
[
k →∞

]
and “⇒” follows.

(k) Since Yn(ω) :=

{
1 , if ω ∈ In,
0 , else

for n ∈ N, we obtain P{|Yn| ≥ ε} = 0 for ε ≤ 1 and, with nk

as defined in (k), P{|Ynk | ≥ ε} =
1

k
for 0 < ε ≥ 1. Thus, P{|Ynk | ≥ ε} ≤

1

k
for ε > 0.

(l) Fix ε > 0 and k ∈ N. |In| and hence, P{|Yn| > ε} is nonincreasing with n. Thus,

n ≥ nk ⇒ P{|Yn| > ε} ≤ P{|Ynk | > ε} =
1

k
. Since

[
n → ∞

] (j)⇒
[
k → ∞

]
, it follows

that lim
n→∞

P{|Yn| > ε} = 0 and this shows that Yn
P→ 0. �

�
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10.2 Two Laws of Large Numbers

Our knowledge of convergence in probability and almost surely enables us to understand the weak
law and the strong law of large numbers. Recall that the “id” part of any iid sequence (Yn) implies
that E[Y1] = E[Y2] = · · · and V ar[Y1] = V ar[Y2] = · · · .

Theorem 10.4 (Weak Law of Large Numbers).

Let Y1, Y2, . . . be an iid sequence of random variables on a probability space (Ω, P ).
with finite variance: σ2 := var[Yn] <∞. Let µ := E[Yn]. Then,

Y1 + Y2 + · · ·+ Yn
n

converges in probability to µ, i.e.,

[
ε > 0

]
⇒

 lim
n→∞

P


∣∣∣∣ 1n

n∑
j=1

Yj − µ
∣∣∣∣ > ε

 = 0.

(10.12)

PROOF: Let

ω 7→ Ȳn(ω) :=
Y1(ω) + Y2(ω) + · · ·+ Yn(ω)

n
=

1

n

n∑
j=1

Yj(ω).

We have seen in Example 8.5 (Variance of the sample mean) on p.163, that

µȲn = E
[
Ȳn
]

= µ , and σ2
Ȳn

= V ar
[
Ȳn
]

=
σ2

n
.(A)

We apply Tchebysheff’s inequality 7.53 on p.140 with k = ε
√
n/σ and obtain from (A), that

P
{
|Ȳn − µ| > ε

}
≤ 1

(n ε2/σ)2
=

σ2

n ε2
→ 0, as n→∞

This proves that P– lim
n→∞

Ȳn = µ. �

Remark 10.1. We have previously encountered the random variable Ȳn under the name Ȳ , as the
sample mean of a sample of size n. See Example 8.5 (Variance of the sample mean) on p.163.
It is considered bad form to use a subscript for the sample mean. We chose to do so in this section
about the laws of large numbers anyway, since we are not dealing with this sample mean in the
context of samples of a fixed size, but we are examining what happens as this size approaches
infinity. �

Remark 10.2. We have learned in Theorem 10.1 (Relationship between the modes of convergence)
on p.217, that almost sure convergence implies convergence in probability. One can interpret this in
the following manner:
• It is harder to establish almost sure convergence, since it is a more powerful tool for proving

that some mathematical property is true.
• Accordingly, it would be wonderful if one could strengthen a theorem that proves conver-

gence in probability for some sequence of random variables, to show that this convergence
actually happens almost surely.
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• It turns out that this is possible for the weak law of large numbers (Theorem 10.4 on p.220. It
is called the weak law of large numbers because there also is a strong law of large numbers

which replaces the conclusion P– lim
n→∞

1
n

n∑
j=1

Yj = µ with a.s.– lim
n→∞

1
n

n∑
j=1

Yj = µ. We will

study that next. �

Our knowledge of convergence in probability and almost surely enables us to understand the weak
law and the strong law of large numbers. Recall that the “id” part of any iid sequence (Yn) implies
that E[Y1] = E[Y2] = · · · and V ar[Y1] = V ar[Y2] = · · · .

Theorem 10.5 (Strong Law of Large Numbers).

Let Y1, Y2, . . . be an iid sequence of random variables on a probability space (Ω, P ).
Let µ := E[Yn]. Then,

Y1 + Y2 + · · ·+ Yn
n

converges almost surely to µ, i.e.,

P

 lim
n→∞

1

n

n∑
j=1

Yj 6= µ

 = 0 .
(10.13)

PROOF:
Outside the scope of these lecture notes. �

Example 10.3 (Infinite Monkey Theorem). A monkey has been granted eternal life. It is continually
hitting at random the keys of a wordprocessor that will never break down.
The keyboard has a customized layout that makes it equally likely for each key, at any given key
stroke, to be selected by the monkey. (For example, there is no CAPS key. Rather, there are separate
keys for “a” and “A”, “b” and “B”, .....)
What is the probability that, in this infinite sequence of letters, there is a contiguous block that
constitutes the collected work of William Shakespeare? We expect a flawless result: No typos,
correct punctuation, CAPS exactly when required, ....?

Solution:
• There are K different keys that are being hit, at each stroke, with equal probability.
• Only one of them is correct at any given time and the others are failures.
• Thus, the sequence X1, X2, . . . of key strokes is a sequence of independent random items

with constant success probability pj = p = 1/K.
• We consider the indices 1, 2, 3, . . . as points in time, so X753 is the key that was hit at time

j = 753.
• The author does not know how many letters Shakespeares collected work (“S-C-W”) con-

sists of, but this certainly is a finite number. Let us denote it by N .
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Let Y1 := 1, if X1, X2, . . . , XN form S-C-W. Let Y1 := 0, else.
Let Y2 := 1, if XN+1, XN+2, . . . , X2N form S-C-W. Let Y2 := 0, else.

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Let Yj := 1, if X(j−1)N+1, X(j−1)N+2, . . . , XjN form S-C-W. Let Yj := 0, else.

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

• If i 6= j, then Yi and Yj depend on “disjoint” chunks
(
X(i−1)N+1, X(i−1)N+2, . . . , XiN

)
and(

X(j−1)N+1, X(j−1)N+2, . . . , XjN

)
of the independent Xk. Thus, Yi and Yj are independent.

• Also, both are binom(1, (1/K)N ) (Bernoulli trials).
• Thus, (Yn)n is an iid sequence with expectations µ = (1/K)N .
• By the strong law of large numbers, there is an event A ⊆ Ω such that P (A) = 1 and

ω ∈ A ⇒ lim
n→∞

n∑
j=1

Yj(ω)
/
n = µ =

(
1

K

)N
> 0.

• Since we divide the sum by n, the limit is zero if only finitely many Yj(ω) are 1. Thus,

ω ∈ A ⇒ Yj(ω) = 1 , infinitely often!

• Since P (A) = 1 and Yi denotes the completion of the nth collection of Shakespeare’s works:
• With probability 1, the monkey will produce an infinite number of Shakespeare’s entire

collection! �

10.3 Sampling Distributions

Introduction 10.2. Back in Chapter 5.2 (Random Sampling and Urn Models With and Without Re-
placement), we gave Definition 5.2 (Sampling as a Random element) on p.88 of a sampling action.

• A sampling action of size n was nothing but a vector ~X =
(
X1, X2, . . . , Xn

)
of random

elements. What makes it a sampling action is the interpretation of ω 7→ Xj(ω) as the jth
pick of an item from a population of interest and the intent to use the outcomes xj = Xj(ω)
for inferences about that population.

These sample picks may happen with or without replacement. Sampling with replacement is desir-
able from a mathematical point of view, since we may consider the sample picks as having identical
distribution. Thus,

FX1(x) = FX2(x) = · · · = FXn(x) (x ∈ R) ;

This in turn implies that, if the sample picks are real-valued functions of ω i.e., they are random
variables, they all have the same expectation and variance and .....
Moreover, nothing is assumed about the independence of the sample picks. To have it would be
extremely desirable from a mathematical perspective. For example, if the Xj are jointly continuous
random variables, knowledge of the marginal densities yields the joint density, because,

f ~X(~x) = fX1(x1) · fX2(x2) · · · fXn(xn) (~x ∈ Rn) .
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Unfortunately, identical distribution and independence are simplifications of the real world. This
is even true when one considers n rolls of a die. 62 The surface on which the die is rolled is not
perfectly even, so that negates identical distribution. If several people take turns, then the different
ways in which they throw the die creates a dependency. Of course, it is very likely that those
differences, if we are able to detect them, are so minuscule that they can be ignored.
But there are many examples where those deviations are so large that we cannot work under the iid
assumption. This need not necessarily occur in a real world application. It can also be part of the
probabilistic models we create: Whenever we assume that we sample without replacement from a
finite population, the probabilistic makeup of the items remaining in that population changes with
every item we happen to pick for our sample.
Consider sampling at random from an urn that initially contains R red and N −R black balls. If Xj

is red, then there will be less of a probability of Xj+1 being red, than if Xj was black. Hence, the Xj

are neither independent, nor identically distributed.
However, those sample picks constitute a simple random sample action according to Definition 5.3
(Simple Random Sample) on p.89:

• A sampling action ~X =
(
X1, X2, . . . , Xn

)
of size n from a population of size N ≥ n is called

a simple random sampling action (SRS action), if it is done without replacement and if each
one of the potential outcomes ~x = ~X(ω) has equal chance of being selected.

If the sample size of an SRS action is large, but small when compared to the size of the population,
then treating it as iid will result in insignificant domputational differences. 63 This observation is
one of the reasons that even the more restrictive definition of an SRS action is of a generality we are
not looking for in this chapter. We follow [5] Hogg, McKean, Craig: Introduction to Mathematical
Statistics.
A typical statistical problem can be described as follows: We have a random variable Y that we
know about, but we do not know its distribution, given by its CDF FY (y).
Our insufficient knowledge of Y can manifest itself in two different ways:

(I) We know the type of distribution, but not all of its parameters. For example, we may know
that Y is normal with σ2 = 3.65, but its mean µ is unknown.

(II) We do not even know the type of distribution: Does Y follow a Poisson distribution or is it
normal or exponential or .....?

We deal in this section with problem (I). �

Example 10.4. Some more problem (I) examples are the following:
(a) Y ∼ binom(64, p), with unknown success probability p. We write pY (y; p) for the PMF to

make explicit the role of the unknown parameter, p.
(b) Y ∼NNN (µ, σ2), where both µ and σ2 are unknown. We write fY (y;µ, σ) for the PDF to make

explicit the role of the unknown parameters, µ and σ.
(c) Y ∼ expon(β), with unknown β. We write fY (y;β) for the PDF.
(d) Y ∼ gamma(α, 3), with unknown α. We write fY (y;α) for the PDF. �

62Interpret Xj as the jth pick from the population of all rolls of that die.
63We mentioned this in Remark 5.2 on p.88.
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Remark 10.3. The examples just given suggest now to handle the general case. Since the random
variable Y is given and we know its distribution except for one or several parameters, we know its
PMF pY (y) in the discrete case or PDF fY (y) in the continuous case. It is customary to write θ or
~θ for the unknown parameter or parameters of the distribution and to write Θ for the parameter
space, i.e., the set of all parameters we consider for the problem. 64

Thus, in Example 10.3(a), Θ = [0, 1]. In Example 10.3(b), Θ =]−∞,∞[×[0,∞[.
Problem (I) can now be formulated as follows:
• Given is a random variable Y of which we know its distribution except for one or several

parameters.
� We know the PMF pY (y; θ) if Y is discrete. � We know the PDF fY (y; θ) if Y is continuous.

• How can we find a good, possibly optimal, procedure to estimate θ from the sample? that
we have drawn or intend to draw from the population?

It seems obvious enough, that this estimate must be a function

θ = T (~y) = T (y1, . . . , yn) = T
(
~Y (ω)

)
= T

(
Y1(ω), . . . , Yn(ω)

)
.

In the context of a sampling action, we refer to the specific list of numbers, ~y = (y1, . . . , yn), as the
values or realizations, of the sampling action. �

We had stated in the introduction that we will restrict the scope of the sampling actions in this
section to the iid case.

Definition 10.2 (Random sampling action from a distribution).

Let Y be a random variable on a probability space (Ω, P ). We call a vector ~Y =
(
Y1, . . . , Yn

)
a random sampling action from the distribution of Y , or also, a random sampling action
on Y , if
• each Yj has the same distribution as Y
• the random variables Y1, . . . , Yn are iid. �

That definition allows us to restate the essence of Remark 10.3 as follows: We expect a procedure to
estimate the parameter θ of a PMF pY (y; θ) or PDF fY (y; θ) to be a random variable ω 7→ T

(
~Y (ω)

)
.

There is a special name for transforms ~y 7→ T (~y) of a random sampling action on Y .

Definition 10.3 (Statistic ).
64It is unfortunate that this standard notation for parameters to be estimated is at odds with the other standard which

uses the CAPS version of a letter to denote a random item and the corresponding small letter to denote an outcome of
this random element. (For example, y = Y (ω)).

224 Version: 2024-05-06



Math 447 – MF Lecture Notes Student edition with proofs

Let Y be a random variable on a probability space (Ω, P ) and ~Y =
(
Y1, . . . , Yn

)
a random

sampling action on Y . Let
T : Rn 7→ R ; ~y 7→ T (~y)

be some function that can be applied to the sampling action ~Y . We call the random variable

ω 7→ T
(
~Y (ω)

)
a statistic of that sampling action. We call the distribution of that random variable,

B 7→ PT◦~Y (B) = P{T (~Y ) ∈ (B)} = P{ω ∈ Ω : T
(
~Y (ω)

)
∈ B}(10.14)

its sampling distribution. Once the sampling action has been performed and the corre-
sponding realization ~y = ~Y (ω) has been obtained, we call t = T

(
~Y (ω)

)
the realization of

the statistic. �

Theorem 10.6.

Let Y be a random variable on a probability space (Ω, P ) and ~Y =
(
Y1, . . . , Yn

)
a random sampling

action on Y . Let T1, T2, . . . , Tk : Rn 7→ R be statistics for that sample action. Let

T ∗ : Rk 7→ R ; (t1, . . . , tk) 7→ T ∗(t1, . . . , tk) .

Then, setting ~t = (t1, . . . , tk) and ~T = (T1, . . . , Tk), the composition

T ∗ ◦ ~T ◦ ~Y : ω 7→ T ∗
(
~T [ ~Y (ω) ]

)
= T ∗

(
T1[ ~Y (ω) ], . . . , Tk[ ~Y (ω) ]

)
also is a statistic of ~Y .

PROOF:
Left as an exercise which is very easy for the student who has had exposure to functions Rn → Rk

with dimensions n and/or k that can exceed the value 3. �

The last theorem can be stated succinctly and without mathematical symbols as follows:

A function of a function of the data is a function of the data.

Here is an example of a statistic which is so important that it deserves its own definition. It also is
used to illustrate Theorem 10.6.

Definition 10.4 (Sample variance).
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Let ~Y =
(
Y1, . . . , Yn

)
be a random sample action on a random variable Y .

The sample variance is defined as the random variable

ω 7→ S2(ω) :=
1

n− 1

n∑
j=1

(
Yj(ω)− Ȳ (ω)

)2
.(10.15)

We further call ω 7→ S(ω) :=
√
S2(ω) the The sample standard deviation.

We will often write s2 and s for the realizations S2(ω) and S(ω) that result from creating the
sample. �

Example 10.5. For the following examples assume that ~Y =
(
Y1, . . . , Yn

)
is a random sample action

on a random variable Y .
(a) In Example 8.5 (Variance of the sample mean) on p.163, we considered the sample mean

ω 7→ Ȳ (ω) = 1
n

n∑
j=1

Yj(ω) . Ȳ is a statistic: The transform is T (~Y ) = 1
n

n∑
j=1

Yj .

We also mentioned that this statistic is an obvious choice for estimating the parameter µ =
E[Y ] of the underlying random variable Y .

(b) Sample variance S2 and sample standard deviation S which were defined above are statis-
tics. This can be shown with the help of Theorem 10.6 on p.225 as follows. Let

t1 = T1(~y) = y1, t2 = T2(~y) = y2, . . . , tn = Tn(~y) = yn, tn+1 = Tn+1(~y) = ȳ .

T ∗(t1, . . . , tn, tn+1) =
1

n− 1

n∑
j=1

(
tj − tn+1

)2
Then S2 = T ∗

(
T1(~Y ), . . . , Tn(~Y )

)
, Tn+1(~Y )

)
. By Theorem 10.6, S2 is a statistic for the rand-

pom sampling action ~Y . We apply this theorem again to the function T ∗∗ : t∗ 7→
√
t∗ and

obtain that the standard deviation S is a statistic, since S = T ∗∗(S2).
(c) The jth order statistic, Y(j) is indeed a statistic, since knowledge of all values of a list

y1, . . . , yn of real numbers uniquely determines which one is the jth largest value in that
list.

(d) The sample range, R = Y(n) − Y(1), is a statistic, since it is a function (the difference) of
the two statistics Y(n) and Y(1). �

Example 10.6 (WMS Ch.07.1, Example 7.1). Example 7.1 of the WMS text discusses in quite big de-
tail the sampling distribution of the statistic Ȳ for a sample of three independent rolls of a balanced
die. You are strongly encouraged to study it. �

Theorem 10.7 (WMS Ch.07.2, Theorem 7.1). ()

Let Y1, Y2, . . . , Yn be a random sampling action of size n from a normal distribution with mean µ
and variance σ2, i.e., we sample on a random variable Y ∼ NNN (µ, σ2). Then the sample mean Ȳ
follows a normal distribution with mean µ and variance σ2/n.
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PROOF: That is an immediate consequence of Theorem 9.5 (Linear combinations of uncorrelated
normal variables are normal) on p.209. �

Theorem 10.8 (WMS Ch.07.2, Theorem 7.2).

Let ~Y =
(
Y1, . . . , Yn

)
be a random sampling action on Y ∼ NNN (µ, σ2). Let Zj = (Yj − µ)/σ

for j = 1, 2, . . . , n. Then ~Z =
(
Z1, . . . , Zn

)
is a random sampling action on a standard normal

variable. (In particular, the Zj are iid.) Further,

(10.16)
n∑
j=1

Z2
i =

n∑
j=1

(
Yj − µ

σ

)2

follows a χ2 distribution with n degrees of freedom.

PROOF: It follows from Theorem 9.5 (Linear combinations of uncorrelated normal variables are
normal) on p.209 that the linear combination Zj = (Yj − µ/σ) is standard normal. It follows from
Theorem 9.4 (MGF of a sum of functions of independent variables) on p.209 that the Zj are iid. It

follows from Theorem 9.6 on p.211 that
n∑
j=1

Z2
i ∼ χ2(df = n). �

The following is Example Example 6.13 of the WMS text.

Proposition 10.1. ?

Let Y1 and Y2 be independent standard normal random variables. Then Y1 + Y2 and Y1 − Y2 are
independent and normally distributed, both with mean 0 and variance 2.

PROOF: See WMS Ch.06.6, Example 6.13. �

Theorem 10.9 (Independence of sample mean and sample variance in normal populations).

Let ~Y = (Y1, . . . , Yn) be a random sample action on a NNN (µ, σ2) random variable Y . Then, ~Z =
(Z1, . . . , Zn) is a random sample action on a standard normal variable Z. Further,

(a)
(n− 1)S2

σ2
=

1

σ2

n∑
j=1

(Yj − Ȳ )2 ∼ χ2(df = (n− 1))

(b) Ȳ and S2 are independent random variables.

PROOF: ? See the proof of WMS Ch.07.2, Theorem 7.3 for the case n = 2. �

• The sample mean Ȳ was a natural choice to estimate the mean µ = E[Y ] of a random
variable X .

• It seems just as natural to use the sample variance S2 to estimate σ2 = V ar[Y ]. We will see
that, if Y follows a normal distribution, this choice turns out to be mathematically sound.

The t distribution which we define next is a means towards that end.
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Definition 10.5 (Student’s t–distribution 65 ).

Let Z and W be independent random variables such that Z is standard normal andW is χ2

with ν df. Let

(10.17) T =
Z√
W/ν

Then we refer to the distribution PT of T as a t–distribution or Student’s t–distribution
with ν df. We also write that as T ∼ t(ν) or T ∼ t(df = ν). �

Remark 10.4.

• One can prove that E[T ] = 0 for any ν, and V ar[T ] =
ν

ν − 2
for ν > 2.

The density of the t–distribution looks very similar to that of a normal density. Both have a sym-
metrical, bell shaped graph. But note the following:
• Since it does not depend on ν, E[T ] = 0 is not a parameter of the t–distribution.
• Since

ν

ν − 2
> 1, the tails are fatter than those of a NNN (0, 1) variable. See Figure 10.1. �

10.1 (Figure). densities of the standard normal and t distribution. Source: Wikipedia.

65Named after the English statistician William S. Gosset (1876 – 1937). Georg Ferdinand Ludwig Philipp Cantor
(1845 – 1918), Gosset was Head Brewer of the Guinness Brewery in Dublin, Ireland and published his papers under
the pseudonym "Student".
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Theorem 10.10.

Let Y ∼NNN (µ, σ2) and ~Y =
(
Y1, . . . , Yn

)
be a random sample action on Y . Let

(10.18) T :=
Ȳ − µ

S/
√
n
.

Then T follows a t–distribution with (n− 1) df.

PROOF: Let

Z :=
Ȳ − µ
σ/
√
n

and W :=
(n− 1)S2

σ2
.(A)

We have seen that Z ∼NNN (0, 1) and W ∼ χ2(df = n− 1). Since Ȳ and S2 are independent by The-
orem 10.9 on p.227, Z as a function of Ȳ only and W as a function of S2 only also are independent.
Thus,

T =
Z√

W/(n− 1)

(A)
=

(Ȳ − µ)/(σ/
√
n)

[
√

(n− 1)S2/σ2]/(n− 1)
=

(
Ȳ − µ
S
√
n

)
has at distribution with (n− 1) df. �

Example 10.7 (WMS Ch.07.2, Example 7.6). Example 7.6 of the WMS text discusses a practical ex-
ample of the Student’s t–distribution that discusses how to estimate the unknown variance of a
normal random variable from a sample. You are strongly encouraged to study it. �

The next and last distribution tied to random sampling on a normal variable that we give in this
section allows us to compare the variances of two random sampling actions on normal random
variables that represent two independent populations. This is used in the so called analysis of
variance (ANOVA) to decide whether the means of several independent normal populations all
coincide or whether at least two of them are different.

Definition 10.6 (F–distribution).

Given are two independent random variables W1 ∼ χ2(df = ν1) and W2 ∼ χ2(df = ν2).
with ν1 and ν2 df, respectively. Then we say that

F =
W1/ν1

W2/ν2

follows an F distribution with ν1 numerator degrees of freedom and ν2 denominator
degrees of freedom. �

Remark 10.5. ? One can show that

• ν2 > 2 ⇒ E[F ] =
ν2

ν2 − 2
,

• ν2 > 4 ⇒ V ar[F ] =
2ν2

2(ν1 + ν2 − 2)

ν1(ν2 − 2)2(ν2 − 4)
. �
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Theorem 10.11.

Consider two random sampling actions of sizes n1 and n2 on random variables
Y1 ∼ NNN (µ1, σ

2
1) and Y2 ∼ NNN (µ2, σ

2
2) from two independent populations, with sample variances

S2
1 and S2

2 . Let

(10.19) F :=
S2

1/σ
2
1

S2
2/σ

2
2

.

Then F follows an F distribution with (n1 − 1) numerator df and (n2 − 1) denominator df.

PROOF: Let

W1 :=
(n1 − 1)S2

1

σ2
1

, W2 :=
(n2 − 1)S2

2

σ2
2

.

Since the random sampling actions are independent, so are their sample variances S2
1 and S2

2 , and
so are the transforms W1 of S2

1 and W2 of S2
2 . By Definition 10.6 of an F distribution,

W1/ν1

W2/ν2
=

[(n1 − 1)S2
1/σ

2
1]/[(n1 − 1)

[(n2 − 1)S2
2/σ

2
2/(n2 − 1)]

=
S2

1/σ
2
1

S2
2/σ

2
2

follows an F distribution with (n1 − 1) numerator df and (n2 − 1) denominator df. �

Example 10.8 (WMS Ch.07.2, Example 7.7). Example 7.6 of the WMS text discusses another practical
example of the Student’s F distribution. You are strongly encouraged to study it. �

10.4 The Central Limit Theorem

Introduction 10.3. In section10.3 (Sampling Distributions) we were able to determine the sampling
distributions of some very important statistics that can be computed from the realization of a ran-
dom sample action ~Y on some random variable Y . But there was very restrictive assumption on
that underlying random variable
• Y had to follow a normal distribution.

We will find a solution for determining the sampling distribution of the sample mean, Ȳ = 1
n

n∑
j=1

Yj ,

even if Y is not normal.
• It is an asymptotic solution, i.e., its comes in form of a U = lim

n→∞
Un theorem.

• Here, Un is a statistic Tn ◦ ~Y , which we can compute from (the realization of) ~Y and

Ȳn := 1
n

n∑
j=1

Yj , a very natural approximation of Ȳ , can also be computed from Un

• n denotes the sample size. Thus, the sample must be sufficiently large to allow us to ignore
the discrepancy between Un and U .

We have learned that there are four different kinds of limits which occur in connection with a se-
quence of random variables. We will discuss in this chapter the central limit theorem. It allows us
to show the existence of the least desirable of those four limits, the limit in distribution. But that is
not as bad as it sounds for the following reason.
• For large enough n, the CDF of Un is close to that of U . Since the CDF determines the

probabilities of all important events B, we can approximate P{Un ∈ B} ≈ P{U ∈ B}, �
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We will state and prove the limit theorem which was mentioned in the introduction above, after
the following important theorem that relates convergence in distribution, Yn

D→ Y , to (pointwise)
convergence, mYn(t)→ mY (t) of the associated MGFs.

Theorem 10.12 (Lévy–Cramér continuity theorem). ?

Let Y1, Y2, . . . ) be a sequence of random variables (iid is not assumed) with associated CDFs
FY1 , FY2 , . . . ) and MGFs mY1(t),mY2(t), . . . ).
Let Y be a random variable with associated CDF FY and MGF mY (t). Then,[

mYn(t) → mY (t) as n→∞, for all t ∈ R
]

⇒
[
FYn(y) → FY (y) as n→∞, for all y where FY (·) is continuous.

](10.20)

PROOF: Outside the scope of this course. �

Theorem 10.13 (Central Limit Theorem).

Central Limit Theorem:
Let ~Y = (Y1, Y2, . . . , Yn) be a vector of iid random variables with common expectation E[Yj ] = µ
and finite variance V ar[Yj ] = σ2. Let Z be a standard normal variable and

Un :=

n∑
j=1

Yj − nµ

σ ·
√
n

=
Ȳn − µ
σ/
√
n
, where n ∈ N , Ȳn =

1

n

n∑
i=1

Yi .

Then, Un converges to Z in distribution as n→∞. In other words,

lim
n→∞

P{Un ≤ u} = P{Z ≤ u} =

∫ u

−∞

1√
2π

e−t
2/2 dt for all u .

PROOF:
(1) Let Ỹn := Yn − µ. The Ỹn are iid, with E[Ỹj ] = 0, V ar[Ỹj ] = σ2 and MGF m(t) := m

Ỹn
(t).

By Corollary 9.1 on p.209, m
Ỹ1+···Ỹn(t) =

[
m(t)

]n. Thus.

mUn(t) = E

exp


n∑
j=1

Ỹj ·
t

σ
√
n


 = m

Ỹ1+···Ỹn

(
t

σ
√
n

)
=

[
m

(
t

σ
√
n

)]n
.(2)

(3) According to Theorem 10.12 (Lévy–Cramér continuity theorem), it suffices to show that
lim
n→∞

mUn(t) = mZ(t) = et
2/2 .

Equivalently, since x 7→ ex is continuous, it suffices to show that

lim
n→∞

ln mUn(t) =
t2

2
.(4)

(5) Let h :=
t

σ
√
n

. Then n =
t2

σ2 h2
. Thus, by (2),

ln mUn(t) = n lnm(h) =
t2

σ2 h2
lnm(h) =

t2

σ2

(
lnm(h)

h2

)
.
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Thus,

lim
n→∞

ln mUn(t) =
t2

σ2
lim
h→0

lnm(h)

h2
.(6)

Since m(0) = e0 = 1, the right–hand limit is of the form 0/0. We use L’Hôpital’s rule 66 twice in a
row and obtain, since m(t) = m

Ỹn
(t) and hence, m′′(0) = E[Ỹ 2

n ],

lim
h→0

lnm(h)

h2
= lim

h→0

[
1/m(h)

]
m′(h)

2h
= lim

h→0

m′(h)

2hm(h)

= lim
h→0

m′′(h)

2m(h) + 2hm′(h)
=

m′′(0)

2m(0) + 0
=

m′′
Ỹn

(0)

2
=

E[Ỹ 2
n ]

2
.(7)

(8) Since Ỹn = Yn − µ and hence, E[Ỹ 2
n ] = E[(Yn − µ)2] = V ar[Yn] = σ2, (7) implies

lim
h→0

lnm(h)

h2
=

σ2

2
.

Thus, by (6), lim
n→∞

ln mUn(t) =
t2

σ2
· σ

2

2
=

t2

2
.

We have shown (4) and this finishes the proof. �

Remark 10.6. In statistical applications the CLT often is employed as follows: Carefully designed
statistical techniques have resulted in the estimate µ = µ0 for µ, the unknown mean of the popu-
lation of interest. But this has been quite some time ago. Today there is reason to believe that this
value is now outdated and one wants to obtain supporting evidence for that claim.
• We make µ = µ0 our working hypothesis.

• An SRS ~Y of size n is taken and c0 :=
ȳ − µ0

σ/
√
n

is computed from the sample mean realization

ȳ =
n∑
j=1

yj which one obtains from the realization ~y = ~Y (ω) of the sample.

• If Ȳ (ω) is far away from µ0, then α0 := P

{ ∣∣∣∣ Ȳ − µ0

σ/
√
n

∣∣∣∣ > c0

}
will be very small.

For example, assume that c0 = 3, i.e., |ȳ − µ0| = 3 · (σ)/
√
n). The r.v. ω → Ȳ (ω) satisfies

E[Ȳ ] = E[Y ] = µ = µ0 and V ar[Ȳ ] =
V ar[Y ]

n
=

σ2

n
, i.e.,

σ√
n

= SD(Ȳ ) ,

Thus, c0 = 3 signifies that this r.v. is three SDs away from its mean. According to the CLT,
Ȳ − µ0

σ/
√
n

is approximately standard normal and we can employ the the 68%–95%–99.7% rule for the normal
distribution (the empirical rule). It tells us that only about 0.3% of the probability is outside the ±3
SD range:

α0 ≈ 1 − 0.997 = 0.003 .

That is the probability that a Ȳ belonging to a random sample like ours (with the same sample size)
is 3 SDs or more away from µ0.

66in the form lim
x→0

f(x)

g(x)
= lim

x→0

f ′(x)

g′(x)
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• So it was just the luck of the draw that let us obtain a sample that only has a chance of one
in 333 of being picked. Or is there another explanation?

How about this? α0 = 0.05 was obtained contingent on the hypothesis that µ still equals µ0. Let us
change our point of view and assume that there was nothing unusual about our sample.
• We reject the hypothesis µ = µ0, since the data obtained from the sample suggest that
|Ȳ − µ| < |Ȳ − µ0| and that necessitates µ 6= µ0.

• In the extreme, we could dispense with any effort to find a well founded estimate of µ.
Instead, we act as if our particular sample serves that purpose and replace µ0 with µ1 := ȳ.

In the extreme, we could dispense with any effort to find a well founded estimate of µ. Instead, we
act as if our particular sample serves that purpose and replace µ0 with µ1 := ȳ. But of course, that
generally is not a good idea and one should follow the established process to obtain a new estimate
of µ. �

Remark 10.7. This is a continuation of the previous example.
• The procedure outlined there to decide whether or not to reject the hypothesis µ = µ0 in-

volved the computation of the expression c0 :=
ȳ − µ0

σ/
√
n

.

• However, knowledge of the population variance σ2 = V ar[Yj ] of a sample pick Yj from that
population is the exception rather than the rule and σ2 must be estimated from the sample.
The obvious way of doing so is use of the sample variance realization s2 = S2(ω).

• We have the following problem. The CLT asserts that, for large enough n, ω 7→ Ȳ (ω)− µ0

σ/
√
n

is approximately standard normal. We used that fact to compute P

{ ∣∣∣∣ Ȳ − µ0

σ/
√
n

∣∣∣∣ > c0

}
and

we based the decision to reject or not reject the hypothesis µ = µ0 on that number.

• But what happens if we replace σ with S(ω)? If the random variable ω 7→ Ȳ (ω)− µ0

S(ω)/
√
n

also

is approximately standard normal for large n, then our problem is solved. �

To show that the CLT indeed remains in force if σ2 is replaced by S2, we must collect some material.

Theorem 10.14 (Student t converges to normal distribution).

Let T1, T2, . . . ) be a sequence of random variables such that Tj ∼ t(df = j). Then Tj converges in
distribution to a standard normal variable.

PROOF: Omitted. 67 Note though that the graphs of the t–PDFs shown in Remark 10.4 on p.228
visually support the assertion of this theorem.

Lemma 10.1. ? Let ~y := (y1, . . . , yn) ∈ Rn, (n ∈ N), and ȳ :=
∞∑
j=1

yj the arithmetic mean of ~y. Then,

(a)
n∑
j=1

(yj − c)2 =
n∑
j=1

(yj − ȳ)2 +
n∑
j=1

(ȳ − c)2 ,

67A proof can be found at this StackExchange link.
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(b) ȳ minimizes the expression
n∑
j=1

(yj − c)2, where c ∈ R):

n∑
j=1

(yj − c)2 ≥
n∑
j=1

(yj − ȳ)2 for all c ∈ R ,

PROOF: To show (a), we observe that

n∑
j=1

(yj − ȳ) (ȳ − c) = ȳ
n∑
j=1

yj + ȳ · c
n∑
j=1

1 − c
n∑
j=1

yj − ȳ · ȳ
n∑
j=1

1

= ȳ(nȳ) + (ȳc)n − c(nȳ) − (ȳ2)n = 0 .

(10.21)

Hence,

n∑
j=1

(yj − c)2 =
n∑
j=1

(yj − ȳ + ȳ − c)2

=
n∑
j=1

(yj − ȳ)2 + 2
n∑
j=1

(yj − ȳ) (ȳ − c) +
n∑
j=1

(ȳ − c)2

(10.21)
=

n∑
j=1

(yj − ȳ)2 +
n∑
j=1

(ȳ − c)2 .

This proves (a). Clearly, the last expression is minimal when the right–hand summation term van-
ishes, i.e., when ȳ = c. This proves (b). �

Corollary 10.1. ?

The sample variance S2 =
1

n− 1

n∑
j=1

(
Yj−Ȳ

)2 of any sample ~Y := (Y1, . . . , Yn), (n ∈ N), satisfies

(n− 1)S2 =
n∑
j=1

Y 2
j − n Ȳ 2 .

PROOF: We apply formula (a) of Lemma 10.1 with c = 0 and obtain

n∑
j=1

Y 2
j =

n∑
j=1

(Yj − Ȳ )2 +
n∑
j=1

Ȳ 2 . =
n∑
j=1

(Yj − Ȳ )2 + n · Ȳ 2 .

Thus,

(n− 1)S2 =
n∑
j=1

(Yj − Ȳ )2 =
n∑
j=1

Y 2
j − n Ȳ 2 . �
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Theorem 10.15 (Sample variance converges to population variance).

Let ~Y := (Y1, . . . , Yn) ∈ Rn, (n ∈ N), be a random sampling action from the distribution of a
random variable Y with finite variance σ2 <∞.

Then the sample variance S2
n =

1

n− 1

n∑
j=1

(
Yj − Ȳ

)2 converges a.s (hence, also in probability

and in distribution) to σ2.

PROOF: ? Let Un :=
n− 1

n
S2
n and Ȳn := Ȳ =

1

n

n∑
j=1

Yj . By Corollary 10.1,

Un =
1

n

n∑
j=1

Y 2
j − Ȳ 2

n .(A)

Since the sample picks Yj are iid, so are their squares. Note that

E[Y 2
j ] = V ar[Yj ] +

(
E[Yj ]

)2
= σ2 + µ2

We apply the Strong Law of Large Numbers to the iid sequences Y 2
j and Yj and obtain

a.s.– lim
n→∞

1

n

n∑
j=1

Y 2
j = σ2 + µ2 , a.s.– lim

n→∞
Ȳn = µ .(B)

Next, we apply Theorem 10.15 (Sample variance converges to population variance) on p.234 to the
continuous function x 7→ x2. It follows from a.s.– lim

n→∞
Ȳn = µ obtained in (B), that

a.s.– lim
n→∞

Ȳ 2
n = µ2 .(C)

It now follows from the definition of Un and from (A) and (B) and (C), that

a.s.– lim
n→∞

S2
n = a.s.– lim

n→∞

n− 1

n
S2
n = a.s.– lim

n→∞
Un = (σ2 + µ2) − µ2 = σ2 .

It follows from Theorem 10.1 (Relationship between the modes of convergence) on p.217 that con-
vergence S2

n → σ2 also takes place in probability and in distribution. �

We now are able to provide a version of the CLT which allows us to work with ω 7→ Ȳ (ω)− µ0

S(ω)/
√
n

instead of ω 7→ Ȳ (ω)− µ0

σ/
√
n

and solves the issue brought up in Remark 10.7 on p.233.

Theorem 10.16 (CLT – Sample variance version).

Let ~Y = (Y1, Y2, . . . , Yn) be a vector of iid random variables with common expectation E[Yj ] = µ
and finite variance V ar[Yj ] = σ2. Let Z be a standard normal variable. For n ∈ N, let

Ȳn :=
1

n

n∑
i=1

Yi , S2
n :=

1

n− 1

n∑
i=1

(
Yi − Ȳn

)2
, Sn :=

√
S2 , Wn :=

Ȳn − µ
Sn/
√
n
.

(Thus, Ȳn and Sn are sample mean and sample standard deviation of the RSA ~Y ).

Then Wn converges to Z in distribution as n→∞.
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PROOF: ? 68 Let Un :=
Ȳn − µ
σ/
√
n
.

According to the standard version of the CLT (Theorem 10.13 on p.231) Un
D−→ Z and, according

to Theorem 10.15 (Sample variance converges to population variance) on p.234, S2
n

D−→ σ2.
By Theorem 10.3 (Convergence is maintained under continuous transformations) on p.218,

σ Un
D−→ σ Z and Sn =

√
S2
n

D−→
√
σ2 = σ .

Since the limit σ of Sn is constant, we can apply Slutsky’s theorem (Theorem 10.2 on p.218) and
obtain

Wn =
σUn
S

D−→ σY

σ
= Y . �

Remark 10.8. Note that it follows from Theorem 10.10 on p.229 that, in the special case that the
sample picks Yj are NNN (µ, σ2),

Wn =
Ȳn − µ
Sn/
√
n
∼ t(df = n− 1) .

For that reason, one would rather approximate Wn with a t(df = n−1) distribution than a standard
normal distribution, if the following was true:

(1) The population is known to approximately follow a normal distribution.
(2) The sample size is rather small (rule of thumb: n < 40. For such small n, the distri-

bution of Wn may be too far away from NNN (0, 1), the limit for n→∞. �

Example 10.9 (WMS Ch.07.3, Example 7.8). Example 7.8 of the WMS text discusses a practical ex-
ample of the use of the CLT (SAT scores). You are strongly encouraged to study it. �

Example 10.10 (WMS Ch.07.3, Example 7.9). Example 7.9 of the WMS text discusses another prac-
tical example of the use of the CLT (checkout counter service times). You are strongly encouraged
to study it. �

Example 10.11 (WMS Ch.07.4, Example 7.10). Example 7.10 of the WMS text also discusses an ap-
plication of the CLT The approximation of a binomial distribution with a normal distribution. You
are strongly encouraged to study it. �

Example 10.12 (WMS Ch.07.4, Example 7.11). Example 7.11 of the WMS text also discusses the so
called continuity correction that should be done whe one approximates a binomial distribution
with a normal distribution. You are strongly encouraged to study that example. �

68Adapted from stats stackexchange link.
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11 Sample Problems for Exams

11.1 Practice Midterm 1 for Math 447 - Chris Haines

Here are some commented excerpts of a practice exam for the first midterm. It was written by Prof.
Christopher Haines and forwarded to me by Prof. Adam Weisblat, both at Binghamton University
(October 2023).

Exercise 11.1. Practice Midterm 1 (C. Haines) – # 01
SKIPPED �

Answer: N/A �

Exercise 11.2. Practice Midterm 1 (C. Haines) – # 02

The Lakers and Heat are playing in the NBA Finals. The series is a best–of–seven (first team to win
four games clinches the series). The Lakers will win each game with probability 3/4.

(a) Given that the Heat won game one, what is the probability the Lakers go on to win the
series?

(b) Given that the Heat win at least two games in the series, what is the probability the Lakers
go on to win the series?

�

Solution:
We denote a sequence of games as ~x = (x1, x2, . . . , xn), where n ≤ 7 and xj = H if the Heat
win game j and xj = L if the Lakers win game j. Note that n < 7 is possible, for example, if
~x = (H,H,H,H). (The series is finished.)

Solution to (a):
• Let A := { The Lakers win the series }
• Let B := { The Heat win game #1}
• �

Assume that ~x ∈ A ∩B. Then x1 = H and
• either x2 = x3 = x4 = x5 = L ⇒ one choice
• or one of x2, . . . , x4 is H and the other three and x5 are L ⇒

(
4
1

)
= 4 choices

• or two of x2, . . . , x5 are H and the other three and x6 are L ⇒
(

5
2

)
= 10 choices

• Thus, P (A ∩B) = 1 · 1
4 ·
(

3
4

)4
+ 4 ·

(
1
4

)2 · (3
4

)4
+ 10 ·

(
1
4

)3 · (3
4

)4
We obtain P (A | B) = P (A ∩B)/P (B) = 1701/2048. �

Solution to (b): Note that my solution differs from that given in the original (see course materials
page!)
• Let A := { The Lakers win the series },
• B := { The Heat win at least 2 games },
• B2 := { The Heat win precisely 2 games }.
• B3 := { The Heat win precisely 3 games },
• Then A ∩B = A ∩

(
B2
⊎
B3

)
(Heat cannot win more than 3 if Lakers win the series).
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To compute P (A ∩B) = P (A ∩B2) + P (B3 ∩B3), we note that

• either ~x ∈ A ∩B2 ⇔ exactly two of x1, . . . , x5 are H and x6 = L ⇒
(

5
2

)
= 10 choices

• or ~x ∈ A ∩B3, i.e., exactly 3 of x1, . . . , x6 are H and x7 = L ⇒
(

6
3

)
= 6·5·4

3! = 20 choices
• Thus, P (A ∩B) = 10 ·

(
1
4

)2 · (3
4

)4
+ 20 ·

(
1
4

)3 · (3
4

)4
Next, we compute P (B{).
• Let B0 := { The Heat win precisely 0 games }. Then ~x ∈ B0 ⇔ x1 = x2 = x3 = x4 = L
⇒ 1 choice

• Let B1 := { The Heat win precisely 1 game }. Then ~x ∈ B1 ⇔ exactly one of x1, . . . , x4 is
H and x5 = L ⇒ 4 choices

• Further, P (B{) = P (B0) + P (B1) =
(

3
4

)4
+ 4 · 1

4

(
3
4

)4
= 2

(
3
4

)4.

Thus,

P (A | B) =
P (A ∩B)

1− P (B{)
=

10 ·
(

1
4

)2 · (3
4

)4
+ 20 ·

(
1
4

)3 · (3
4

)4
1 − 2

(
3
4

)4 �
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12 Other Appendices

12.1 Greek Letters

The following section lists all greek letters that are commonly used in mathematical texts. You do
not see the entire alphabet here because there are some letters (especially upper case) which look
just like our latin alphabet letters. For example: A = Alpha B = Beta. On the other hand there
are some lower case letters, namely epsilon, theta, sigma and phi which come in two separate forms.
This is not a mistake in the following tables!

α alpha θ theta ξ xi φ phi
β beta ϑ theta π pi ϕ phi
γ gamma ι iota ρ rho χ chi
δ delta κ kappa % rho ψ psi
ε epsilon κ kappa σ sigma ω omega
ε epsilon λ lambda ς sigma
ζ zeta µ mu τ tau
η eta ν nu υ upsilon

Γ Gamma Λ Lambda Σ Sigma Ψ Psi
∆ Delta Ξ Xi Υ Upsilon Ω Omega
Θ Theta Π Pi Φ Phi

12.2 Notation

This appendix on notation has been provided because future additions to this document may use
notation which has not been covered in class. It only covers a small portion but provides brief
explanations for what is covered.
For a complete list check the list of symbols and the index at the end of this document.

Notation 12.1. a) If two subsets A and B of a space Ω are disjoint, i.e., A ∩ B = ∅, then we often
write A

⊎
B rather than A ∪B or A+B. The complement Ω \A of A is denoted A{. .

b) R>0 or R+ denotes the interval ]0,+∞[, R≥0 or R+ denotes the interval [0,+∞[,
c) The set N = {1, 2, 3, · · · } of all natural numbers excludes the number zero. We write N0 or Z+ or
Z≥0 for N

⊎
{0}. Z≥0 is the B/G notation. It is very unusual but also very intuitive. �
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List of Symbols

An ↓ A – nonincreasing set seq. , 31
An ↑ A – nondecreasing set seq. , 31
FY (y) – CDF of random var. Y , 115
[a, b[, ]a, b] – half-open intervals , 24
[a, b] – closed interval , 24
Cnk – nbr of combinations , 75
Pnr – permutation , 73(
n
r

)
– nbr of combinations , 75

⇒ – implication , 18
∅ – empty set, 16
∃! – exists unique , 23
∃ – exists , 23
∀ – for all , 23
P(Ω), 2Ω – power set , 21
±∞ – ± infinity , 24
|x| – absolute value , 25
]a, b[Q – interval of rational #s , 25
]a, b[Z – interval of integers , 25
]a, b[ – open interval , 24
x ∈ X – element of a set, 15
x /∈ X – not an element of a set, 15
xn ↓ x – nonincreasing seq. , 31
xn ↑ x – nondecreasing seq. , 31
A{ – complement of A , 19
N0 – nonnegative integers, 24
R+ – positive real numbers, 24
R>0 – positive real numbers, 24
R≥0 – nonnegative real numbers, 24
R 6=0 – non-zero real numbers, 24
R+ – nonnegative real numbers, 24
Z≥0 – nonnegative integers, 24
Z+ – nonnegative integers, 24

(xi)i∈I – family , 32
1A – indicator function of A , 64
2Ω,P(Ω) – power set , 21(

n
n1 n2···nk

)
– multinom. coeff. , 77(

n
k

)
– binomial coeff. , 77

µ′k – kth moment , 110
µk – kth central moment , 111, 127
µ′k – kth moment , 127
φp – pth quantile , 119
ρ – correlation coeff. , 160
σY – standard dev, discr. r.v. , 98
σ2
Y – variance, cont. r.v. , 127

σ2
Y – variance, discr. r.v. , 98

binom(n, p) , 101
θ – distribution parameter , 224
Θ – parameter space , 224
Cov[Y1, Y2] – covariance , 159
E(Y ) – expected value , 122
E[g(Y1) | Y2 = y2] – conditional expectation ,

169
E[Y ] – expected value , 93
m(t) – MGF , 111
R – sample range , 226
S – sample standard deviation , 226
s – sample standard deviation , 226
S2 – sample variance , 226
s2 – sample variance , 226
SD(Y ) – standard dev, discr. r.v. , 98
V ar[Y1 | Y2 = y2] – conditional variance , 170
V ar[Y ] – variance, cont. r.v. , 127
V ar[Y ] – variance, discr. r.v. , 98
Yn

a.s.→ Y – almost sure limit , 215
Yn

D→ Y – limit in distrib. , 215
Yn

pw→ Y – pointwise limit , 215
Yn

P→ Y – limit in probab. , 215
Γ(α) – gamma function , 135
⇔ – if and only if, 16
N,N0 , 239
R+,R>0 , 239
R+,R≥0 , 239
R>0,R+ , 239
R≥0,R+ , 239
Z+,Z≥0 , 239
B – Borel σ–algebra of R , 52
Bn – Borel σ–algebra of Rn , 52
NNN (µ, σ2) – normal with µ, σ2 , 133
NNN (µ1, σ

2
1, µ2, σ

2
2, ρ) – bivariate normal , 188

σ{AAA } – σ–algebra generated by AAA , 51
suppt(fY ) – support of the PDF fY , 197
|X| – size of a set , 22
{} – empty set, 16
A
⊎
B – disjoint union , 239

A ∩B – A intersection B, 17
A \B – A minus B , 18
A ⊂ B – Do not use, 16
A ⊆ B – A is subset of B , 16
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A ( B – A is strict subset of B, 16
A4B – symmetric difference of A and B , 18
A ]B – A disjoint union B , 17
A{ – complement , 239
B ⊃ A – Do not use, 16
B ) A – B is strict superset of A, 16
B(α, β) , 139
f : X → Y – function, 27
f−1(B) – indirect image, preimage , 61
fY1|Y2

(y1 | y2) – conditional PDF , 148
P (A | B) – conditional probab , 55, 147
(Ω,F, P ) – probability space , 44
(S,SSS , P ) – sample space , 44
χ2(ν) – chi–square with ν df , 137
7→ – maps to , 27
σ{AAA } – σ–algebra generated by AAA , 51
A ∪B – A union B , 17
A ⊇ B – A is superset of B, 16
f
∣∣
A

– restriction of f , 29
FY1,Y2(y1, y2) – joint CDF , 143
P – measure , 44
pY1,Y2(y1, y2) – joint PMF , 144
X1 ×X2 · · · ×Xn – cartesian product , 35
Y(j) – jth order statistic, 178
beta(α, β) – beta with α, β , 139
chi–square(ν) – chi–square with ν df , 137
expon(β) – exponential with β , 137
gamma(α, β) – gamma with α, β , 135
geom(p) , 102
poisson(λ) , 108
uniform(θ1, θ2) – uniform distrib , 128
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χ2(ν) (chi–square distribution), 137
σ–algebra, 43

Borel σ–algebra, 52
σ–algebra generated by collection of sets, 51
σ–field, 43
0–1 encoded Bernoulli trial, 100
68%–95%–99.7% rule, 132

absolute value, 25
absolutely convergent series, 37
almost sure convergence, 215
almost sure limit, 215
argument, 27
assignment operator, 27
asymptotic solution, 230

Bayes formula, 84
Bernoulli random element, 100
Bernoulli sequence, 100
Bernoulli trial, 100

0–1 encoded, 100
failure probability, 100
success probability, 100

Bernoulli variable, 100
beta probability distribution, 139
beta(α, β), 139
bijective, 28
binom(n, p) distribution, 101
binomial coefficients, 77
binomial distribution, 101
binomial theorem, 77
bivariate cumulative distribution function, 143
bivariate normal distribution, 188
bivariate probability mass function, 144
Borel σ–algebra, 52
Borel set, 52

carrier, 44
carrier set, 44
cartesian product, 35
CDF, 115

conditional, 147
joint, 143

central moment of a random variable, 111
characteristic function, 64

chi–square distribution, 137
chi–square with ν df (chi–square distribution),

137
chi–square(ν) (chi–square distribution), 137
closed interval, 24
codomain, 27
coefficient

binomial, 77
multinomial, 77

collection, 17
indexed, 17

combination, 75
combinatorics, 71
complement, 19
conditional CDF, 147
conditional distribution function, 147
conditional expectation, 169
conditional PDF, 148
conditional PMF, 147
conditional probability, 55
conditional probability density function, 148
conditional probability mass function, 147
conditional variance, 170
continuous random variable, 116
continuous unifurm probability distribution,

128, 154
convergence

almost surely, 215
in distribution, 215
in probability, 215
pointwise, 215
uniform, 214

convergence in distribution, 215
convergence in probability, 215
correction factor, 108
correlation

negative, 158, 160
positive, 158, 160
zero, 158, 160

correlation coefficient, 160
countable set, 31
covariance, 159
cumulative distribution function, 115

bivariate, 143

243



Math 447 – MF Lecture Notes Student edition with proofs

joint, 143

De Morgan’s Law, 21
decreasing, 31
degrees of freedom, 137

chi–square distribution, 137
denominator, 229
numerator, 229

denominator degrees of freedom, 229
density function

marginal, 146
dependent random elements, 149
dependent random variables, 149
determinant

Jacobian, 204
deterministic sample, 88
deterministic sampling action, 87
df = degrees of freedom, 137
discrete probability space, 49
discrete random variable, 67
discrete random vector, 67
disjoint, 17
distribution, 66

binomial, 101
marginal, 146
multinomial, 175
parameter, 224
uniform, 128, 154

distribution function, 115
conditional, 147
joint, 143

domain, 27
dummy variable (setbuilder), 16

element of a set, 15
empirical probability, 5
empirical rule, 132
empty set, 16
equiprobability, 47
estimator, 164

unbiased, 164
event, 5

independence, 57, 58
mutually exclusive, 44

events generated by random elements, 148
exclusive events, 44
expectation

conditional, 169
expectation - continuous r.v., 122
expectation - discrete r.v., 93
expected value, 156
expected value - continuous r.v., 122
expected value - discrete r.v., 93
experiment

multinomial, 175
expon(β) (exponential distribution), 137
exponential distribution, 137
extension of a function, 29

F distribution, 229
failure probability, 100
family, 32
finite sequence, 29
first quartile, 119
function, 27

argument, 27
assignment operator, 27
codomain, 27
domain, 27
extension, 29
function value, 27
inverse, 28
linear, 161
maps to operator, 27
range, 27
restriction, 29
support, 197
symmetric, 193
symmetrical, 193

function value, 27

gamma distribution, 135
gamma function, 135
gamma(α, β), 135
geom(p) distribution, 102
geometric distribution, 102
graph, 27
greek letters, 239

half-open interval, 24
histogram

left skewed, 135
right skewed, 135

hypergeometric distribution, 106
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identity, 69
identity function, 69
iid sequence, 100
increasing, 30, 31
independent and identically distributed, 100
independent events, 57, 58
independent random elements, 149
independent random variables, 149
index set, 32
indexed collection, 17
indexed family, 32
indicator function, 64
infinite sequence, 29
injective, 28
integer, 23
interval

closed, 24
half-open, 24
open, 24

inverse function, 28
irrational number, 23

Jacobian, 204
Jacobian determinant, 204
Jacobian matrix, 204
joint CDF, 143
joint cumulative distribution function, 143
joint distribution function, 143, 144
joint normal distribution, 188
joint PDF, 145
joint PMF, 144
joint probability density function, 145
joint probability mass function, 144
jointly continuous random variables, 145

largest order statistic, 178
left skewed, 135
left tailed, 135
limit

almost sure, 215
in probability, 215
pointwise, 215

limit in probability, 215
linear function, 161

maps to operator, 27
marginal density function, 146
marginal distribution, 146

marginal PDF, 146
marginal PMF, 146
marginal probability mass function, 146
Markov inequality, 140
maximum, 25
mean, 156
mean - continuous r.v., 122
mean - discrete r.v., 93
mean squared distance, 174
measurable, 65
median, 119

sample median, 187
member of a set, 15
member of the family, 32
memoryless property, 138
MGF (moment–generating function), 111
moment about about its mean, 111
moment about the origin, 110
moment of a random variable, 110
moment–generating function, 111
MS distance, 174
multinomial coefficients, 77
multinomial distribution, 175
multinomial experiment, 175
multinomial sequence, 175
multiplicative law of probability, 56
mutually disjoint, 6, 8–10, 17
mutually exclusive, 44

natural number, 23
negative binomial distribution, 105
negative correlation, 158, 160
nondecreasing, 30, 31
nonincreasing, 31
normal distribution

bivariate, 188
joint, 188

normal probability distribution, 133
numerator degrees of freedom, 229

open interval, 24
or

exclusive, 23
inclusive, 23

order statistic, 178
largest, 178
smallest, 178
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outcome, 5, 11
sample space, 11

parameter of a distribution, 224
parameter space, 224
partition, 21, 33
partitioning, 21, 33
PDF

conditional, 148
joint, 145
marginal, 146

PDF (probability density function), 117
percentile, 119
permutation, 73
PMF

conditional, 147
joint, 144
marginal, 146

PMF (probability mass function), 91
pointwise convergence, 215
pointwise limit, 215
Poisson probability distribution, 108
poisson(λ), 108
positive correlation, 158, 160
power set, 21
preimage, 61
probability, 44

conditional, 55
empirical, 5

probability density function, 50, 117
conditional, 148
joint, 145

probability distribution, 66
probability function, 91
probability mass function, 91

conditional, 147
joint, 144
marginal, 146

probability measure, 11, 44
probability space, 11, 44

discrete, 49
proof by cases, 20

quantile, 119
quartile

first, 119
third, 119

r.v. = random variable, 67
random action, 7
random element, 68

dependence, 149
events generated by, 148
independence, 149

random item, 68
random sampling action

from a distribution, 224
on a random variable, 224

random variable, 67
central moment, 111
continuous, 116

expectation, 122
expected value, 122
mean, 122

dependence, 149
discrete, 67

expectation, 93
expected value, 93
mean, 93
variance, 98

distribution function, 115
independence, 149
moment, 110
moment about its mean, 111
moment about the origin, 110
moment–generating function, 111
standard deviation, 98
standard normal, 133
uncorrelated, 158, 160
uniform, 128

random variables
jointly continuous, 145

random vector, 67
discrete, 67

range, 27
sample, 226

rational number, 23
real number, 23
realization, 11, 86, 88
realizations, 224
rearrangement

sequence, 37
series, 37

restriction of a function, 29
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right continuous function, 116
right skewed, 135
right tailed, 135
rv = random variable, 67

sample, 86, 88
deterministic, 88
realization, 86, 88
realizations, 224

sample mean, 164
sample point, 11, 44
sample range, 226
sample space, 11, 44
sample standard deviation, 226
sample variance, 226
sampling action, 11, 86, 88
sampling distribution, 225
sampling procedure, 86, 88
sampling process, 86, 88
scale parameter, 135
sequence, 29

finite, 29
finite subsequence, 30
infinite, 29
multinomial, 175
start index, 29
subsequence, 30

series
absolutely convergent, 37

set, 15
countable, 31
difference, 18
difference set, 18
disjoint, 17
intersection, 17, 33
mutually disjoint, 17
proper subset, 16
proper superset, 16
setbuilder notation, 15
size, 22
strict subset, 16
strict superset, 16
subset, 16
superset, 16
symmetric difference, 18
uncountable, 31
union, 17, 33

shape parameter, 135
sigma–algebra, 43
sigma–field, 43
simple random sample, 89
simple random sampling action, 89
singleton = singleton set, 8
size, 22
smallest order statistic, 178
SRS, 89
SRS action, 89
standard deviation, 98

sample, 226
standard normal, 133
start index, 29
statistic, 225
strictly decreasing, 31
strictly increasing, 30, 31
Student’s t–distribution, 228
subsequence, 30

finite, 30
success probability, 100
support, 197
surjective, 28
symmetric function, 193
symmetrical function, 193

t–distribution, 228
Tchebysheff inequalities, 140
third quartile, 119
triangle inequality, 25

unbiased estimator, 164
uncorrelated random variables, 158, 160
uncountable set, 31
uniform convergence, 214
uniform probability distribution, 128
uniform random variable, 128
uniform random vector, 154
uniform(θ1, θ2), 128
universal set, 18
urn model with replacement, 90
urn model without replacement, 90

variance
conditional, 170
sample, 226

variance - discrete r.v., 98
vector, 35
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zero correlation, 158, 160
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