MATH447

Fall 2020

Practice Midterm 1 (Edition 1)

1. Three cards are withdrawn from a standard 52 card deck without replacement.
(a) What is the probability of getting two distinct suits?

$$
\begin{aligned}
P(E) & =12 P(2 \text { Diamonds and } 1 \text { Heart }) \\
& =12 \frac{\binom{13}{2}\binom{13}{1}\binom{26}{0}}{\binom{52}{3}} \\
& =\frac{234}{425}
\end{aligned}
$$

(b) What is the probability of getting all three cards of the same rank?

$$
\begin{aligned}
P(E) & =13 \frac{\binom{4}{3}\binom{48}{0}}{\binom{52}{3}} \\
& =\frac{1}{425}
\end{aligned}
$$

2. The Lakers and Heat are playing in the NBA Finals. The series is a best-of-seven (first team to win four games clinches the series). The Lakers will win each game with probability $3 / 4$.
(a) Given that the Heat won game one, what is the probability the Lakers go on to win the series?

$$
\begin{aligned}
P(F \mid E) & =\frac{P(E \cap F)}{P(E)} \\
& =\frac{P(B A A A A)+4 P(B A A A B A)+10 P(B A A A B B A)}{\frac{1}{4}} \\
& =\frac{\frac{1}{4}\left(\frac{3}{4}\right)^{4}+4\left(\frac{1}{4}\right)^{2}\left(\frac{3}{4}\right)^{4}+10\left(\frac{1}{4}\right)^{3}\left(\frac{3}{4}\right)^{4}}{\frac{1}{4}} \\
& =\frac{1701}{2048}
\end{aligned}
$$

(b) Given that the Heat win at least two games in the series, what is the probability the Lakers go on to win the series?

$$
\begin{aligned}
P(F \mid E) & =\frac{10 P(A A B B A A)+20 P(A A A B B B A)}{1-P(A A A A)-4 P(A A B A A)} \\
& =\frac{10\left(\frac{3}{4}\right)^{4}\left(\frac{1}{4}\right)^{2}+20\left(\frac{3}{4}\right)^{4}\left(\frac{1}{4}\right)^{3}}{1-\left(\frac{3}{4}\right)^{4}-4\left(\frac{3}{4}\right)^{4}\left(\frac{1}{4}\right)} \\
& =\frac{1215}{1504}
\end{aligned}
$$

3. 10 people consist of five men and five women. Four people are selected from this group of 10 to form a committee.
(a) What is the expected number of men in the committee?

$$
E(X)=4 \times \frac{5}{10}=2
$$

(b) What is the probability that the number of men in the committee is unequal to the number of women in the committee?

$$
\begin{aligned}
& P(X \neq 4-X) \\
& =1-P(X=2) \\
& =1-\frac{\binom{5}{2}\binom{5}{2}}{\binom{10}{4}} \\
& =\frac{11}{21}
\end{aligned}
$$

(c) Given that the number of men and women are unequal in the committee, what is the probability that the committee either consists of all men or all women?

$$
\begin{aligned}
P & (\{X=0\} \cup\{X=4\} \mid X \neq 4-X) \\
= & P(X=0 \mid X \neq 4-X)+P(X=4 \mid X \neq 4-X) \\
= & \frac{P(X=0)+P(X=4)}{1-P(X=2)} \\
& 2 \times \frac{\binom{5}{0}\binom{5}{4}}{\binom{10}{4}} \\
= & \frac{11}{21} \\
= & \frac{1}{11}
\end{aligned}
$$

4. A multiple choice test consists of 25 questions. For each question, there are five choices, but only one correct answer. A student has not studied for this test and will guess each question randomly.
(a) Use Chebyshev's Inequality to give a lower bound on the probability that the number of questions answered correctly is between 2 and 8 , inclusive.

$$
\begin{gathered}
X \stackrel{d}{=} \text { binomial }\left(25, \frac{1}{5}\right) \\
\mu=5 \\
\sigma^{2}=25 \times \frac{1}{5} \times \frac{4}{5}=4 \\
P(2 \leq X \leq 8)=P(1<X<9)=P(|X-5|<4) \geq 1-\frac{1}{2^{2}}=\frac{3}{4}
\end{gathered}
$$

(b) Compute the probability that the student answers no more than one question correctly.

$$
\begin{aligned}
& P(X \leq 1) \\
& =P(X=0)+P(X=1) \\
& =\left(\frac{4}{5}\right)^{25}+25\left(\frac{1}{5}\right)\left(\frac{4}{5}\right)^{24} \\
& \approx 0.0273897256
\end{aligned}
$$

5. A coin is tossed until a head appears. The probability that the coin shows heads is $1 / 1000$, and let X be the number of coin tosses. Let $\mu=E(X)$ and $\sigma^{2}=\operatorname{Var}(X)$.
(a) Compute μ and σ^{2}.

$$
\begin{gathered}
\mu=\frac{1}{\frac{1}{1000}}=1000 \\
\sigma^{2}=\frac{\frac{999}{1000}}{\left(\frac{1}{1000}\right)^{2}}=999000
\end{gathered}
$$

(b) Compute $P(X \geq 1098)$.

$$
P(X \geq 1098)=P(F F F F \ldots . . F F)=\left(\frac{999}{1000}\right)^{1097} \approx 0.3336879961
$$

6. A random variable X has the moment generating function (mgf)

$$
M_{X}(t)=c \sum_{k=0}^{4} e^{k^{2} t}
$$

where $c>0$.
(a) Determine c.

Use the fact that $M_{X}(0)=1$ to obtain

$$
5 c=1
$$

so that

$$
c=\frac{1}{5}
$$

and therefore X has the pmf

$$
P\left(X=k^{2}\right)=\frac{1}{5} \text { for } k=0,1,2,3,4
$$

(b) Compute $E(\sqrt{X})$.

$$
E(\sqrt{X})=\frac{1}{5}(0+1+2+3+4)=2
$$

(c) Compute $\operatorname{Var}\left(\sin \left(\frac{\pi}{2} X\right)\right)$.

$$
\begin{aligned}
& E\left(\sin \left(\frac{\pi}{2} X\right)\right) \\
& =\frac{1}{5} \sum_{k=0}^{4} \sin \left(\frac{\pi}{2} k^{2}\right) \\
& =\frac{1}{5}(0+1+0+1+0) \\
& =\frac{2}{5}
\end{aligned}
$$

$$
\begin{aligned}
& E\left(\sin ^{2}\left(\frac{\pi}{2} X\right)\right) \\
& =\frac{1}{5} \sum_{k=0}^{4} \sin ^{2}\left(\frac{\pi}{2} k^{2}\right) \\
& =\frac{1}{5}\left(0^{2}+1^{2}+0^{2}+1^{2}+0^{2}\right) \\
& =\frac{2}{5} \\
& \operatorname{Var}\left(\sin \left(\frac{\pi}{2} X\right)\right)=\frac{2}{5}-\frac{4}{25}=\frac{6}{25}
\end{aligned}
$$

You could have also seen this if you observe that $\sin \left(\frac{\pi}{2} X\right) \stackrel{d}{=}$ Bernoulli $\left(\frac{2}{5}\right)$.

