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1 Some Preliminaries

1.1 About This Document

These lecture notes are supporting material to the required text of this Math 447 course on proba-
bility theory. This text is [13] Wackerly, D. and Mendenhall, W. and Scheaffer, R.L.: Mathematical
Statistics with Applications, 7th edition.

At this point in time (July, 2023) it focuses quite a bit on some of the foundations of probability
theory which cannot be found at a sufficient level of generality in that text. Examples are preimages
and o—-algebras. It has not been determined at this point in time what further topics will be included
at some future time.

Note the uses of the symbol for material that will not appear on exams, quizzes and other
graded assignments. Unless you see this symbol in a footnote, please note that I will utilize such
material and build on it in my lectures. Thus, you should understand this material well enough to
follow my lectures, even though you will not be directly tested on it.

Also we use colored boxes according to the following. Generally speaking,

These boxes contain important definitions or parts thereof.

These boxes contain important theorems and propositions or parts thereof.

These boxes contain other kinds of important items that are worth while to know.

There are definitions and theorems that contain two or even three small boxes rather than a big one.
There is a technical reason: such boxes do not span pages and will needlessly inflate the page count
of the document.
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1.2 A First Look at Probability

“All models are wrong, but
some are useful”.

Attributed to the statistician George E. P. Box
(1919-2013)

This quote certainly applies to the probabilistic models and the role they play in answering statisti-
cal questions such as

e How do I collect data to predict next month’s average unemployment rate?
e What is the risk that this prediction will be off by more than 0.5 percent?

You probably agree that we also could have formulated the second question as follows.
e What is the probability that this prediction will be off by more than 0.5 percent?

It is not easy to find a satisfactory answer to that question and it will depend on the assumptions
that go into your model. We will consider probability in much simpler settings.

Example 1.1 (Empirical probability). The concept of probability serves as a model for quantifying
how likely an event will happen that depends on chance. When we say that the probability of
obtaining an even number when rolling a die equals 0.5, then we mean the following.

Assume that
e X denotes the action of rolling that die for the first time.
e X, denotes the action of rolling that die for the second time.
e ... X} denotes the action of rolling that die for the kth time.

Under those assumptions we expect the following:
In the long run (for large k), close to half of X1, X», ..., X}, result in an even outcome.

e Inthelong run (for large k), close to half of X1, X», ..., X} should result in an even outcome.

We formulate this in the language of mathematics as follows:

6 Version: 2025-01-23
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We write P for probability.

We write {2, 4,6} for the event that rolling the die resultsina 2 or a4 or a 6, i.e., in an even

outcome. So we write this event as a set that contains the outcomes 2, 4,and 6 as its elements.
o  We write ny, for the number of outcomes during those k rolls that resultina 2 ora 4 or a 6.

We define P{2,4,6} = klim % and call this limit the probability of the event {2,4,6}. !
—00
We expect this particular limit to be 0.5.

e  We write ) (the Greek capital letter Omega) 2 for the set of all potential outcomes. It is
customary to drop the word “potential” and refer to the elements of 2 simply as outcomes.

e We call the subsets of  events. Thus, an event A is a set A that satisfies A C €, 3 i.e., each
element of A also belongs to (2, i.e., A is a collection of outcomes.

e [tis expedient to also call the empty set () (the set that contains no elements) an event.

For the roll of a die the list of all outcomesis 1,2,...,6. Thus, Q@ = {1,2,3,4,5,6}. An eventis any
set that consists of zero or more integers between 1 and 6.

We can apply the steps we used to determine P{2,4,6} to ANY event A C Q. Now, nj, denotes the
number of outcomes during the first k rolls that result in a number that is listed in A. We define

(1.1) P(A) = lim %

To be precise, this formula denotes the empirical probability of the event A.

Observe that the assignment A — P(A) of (1.1) satisfies the following for all subsets A of €2
0<PA) <L

P(0) =0, since nj, = 0 for all k. (Recall that () is empty set which cont ains no elements.)
P(2) =1, since n = k for all k.

the union P(A U B) satisfies

(1.2) P(AUB) = P(A) + P(B).

To see the validity of (1.2), let ny(A) be the number of times an outcome in A is observed during k
trials, and let and ny(B) be defined likewise for B. Since an outcome w is in A U B if and only if w
either belongs to A or to B, we have ni(A U B) = ng(A) + ni(B), hence,

lim i (4) lim nk(B)

(AUB) = lim —— Jim ==+ i

— P(A) + P(B).

Note the following about the nature of the formula P(A) = lim % for subsets A of Q.

k—o0

'In general we write P(A) or P[A] for the probability of an event A. Accordingly, we could also have written
P({2,4,6}). However, if the event is of the form {. ..}, we are permitted to omit the parenteses/square brackets, since
they obscure readability.

“For a list of all Greek letters see Section 15.1 (Greek Letters) on page 341.

*See Definition 2.3 (Subsets and supersets) on p.19 on page 341.

7 Version: 2025-01-23
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0 Itisafunction A— P(A) = klim % the same way x — f(z) = 22 + 4 is a function.
—00

[ We are familiar with the latter: It assigns to each argument x (which happens to be a real number)
the function value f(x), also a real number. For example, f(3) = 32 + 4 = 13.

0 The function A — P(A) is harder to deal with only because its arguments A are not numbers or
vectors of such numbers. Rather, those arguments are events, i.e., sets. [

You are strongly encouraged to take a first look at Section 2.4 (Functions and Sequences). It is very important
that you understand the following:
e The assignment A — P(A) discussed at the end of Example 1.1 constitutes a function

P : {all subsetsof 2} — [0,1] ([0,1] = {numbersz: 0<z<1})

in the sense of Definition 2.17 on p.33, with domain = { all subsets of Q2 } and codomain = [0, 1].

Remark 1.1. There are some issues with (1.1) as a definition of P(A).

What if the limit klirgo ni/k does not exist? For example, the following is very unlikely but not

impossible.

Let wy, denote the outcome of the kth roll of the die. Assume that we obtain the following sequence

of outcomes (draw a picture!):

wy = 1.

From now on, only the number 6 appears until ny/k > 5. We write K (1

From now on, only the number 1 appears until n;,/k < 2. We write K (2

From now on, only the number 6 appears until ny/k > 5. We write K (3
(

From now on, only the number 1 appears until n/k < 2. We write K (4
o ... andsoon.....

for that index k.
for that index k.
for that index k.
for that index k.

— — — ~—

The resulting sequence K (1) < K(2) < K(3) < -- - satisfies the following: *

e There are infinitely many indices k = K (1), K(3), K(5), ... such that %
e There are infinitely many indices k = K(2), K(4), K(6), ... such that % < 2.

> 5.

n . .
Accordingly, klim ?k does not exist, and we are not able to determine P(A).
—00

But there are issues even if that limit exists. Consider again the event A = {2,4,6}. Let us assume
that, by some freak of nature, all outcomes wy, are 4. °> Accordingly, we declare that P{2,4,6} = 1.
The teamleader has doubts about this result and asks for a repetition of the experiment. This time
all outcomes wj, are either 3 or 5.

What to do? Should we decide that P{2,4,6} = 0? Should the experiment repeated once more?
How about settling on the average, P{2,4,6} = (1+0)/2 =1/2?

You may decide that this is a completely ficticious example without any bearing on reality, and this
author agrees. That being said, consider the following;:

*A strict proof can be obtained by using the fact that the limit of a sequence does not depend its first k members, no
matter how big k may be chosen.

>You will learn the following: If each ji,j2,... is a given potential outcome (an integer between 1 and 6), then
P{wi} = ji, P{ws} = jo,..., P{wr) = jx} = (1/6)*. That number becomes very small for large k, since the se-
quence (1/6)" converges to zero. Nevertheless, (1/6)* > 0 for each fixed , so it is not impossible to obtain wy = 4 for all
k. (This is the case where j; = ja = --- = jix = 4 for all k).

8 Version: 2025-01-23
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The infinite repetition of an action such as rolling a die is in itself an abstraction that serves to
model reality, and so is the limit of a (infinite) sequence.

In the real world the determination of probabilities P(A) often is based on (1.1) as follows: It
is decided to conduct an experiment of k trials. The larger this number k is chosen, the more
confidence we will have that P(A) is a good enough APPROXIMATION of the likelihood that the
event A happens.

Unfortunately there are factors to consider that will limit the size of k.

The more repetitions, the longer it will take to obtain the result. If A is the event that the Old Faith-
ful geyser in Yellowstone National Park erupts to a height of at least 150 feet and it is not possible
for some reason to use the previously obtained records, then we must base the determination of
P(A) on a very small number of observations.

Money is another limiting factor. The more repetitions, the more it will cost to obtain the result.
O

Example 1.2 (Single roll of a die). To avoid the issues concerning the use of formula (1.1) (empirical
probability) on p.7, we also could have employed a model from physics or geometry, that of a fair
die. A fair die is a model of reality obtained from geometry or physics. Such a die is assumed to be
perfectly symmetrical and this symmetry implies that each of the outcomes 1,2,...,6 is equally
likely. Consequently, each outcome must have the same likelihood (probability) of 1/6.

We consider again the probability of rolling an even number The even outcomes are 2, 4, 6. Thus,
1

(1.3) P{even outcome } = P{2,4,6} = G

= 0.5.

=

+ -+

=

Note that fair dice do not exist in the real world. Matter of fact, if we had a sample of 1,000 dice
and we were able to determine with infinite precision the probability that a throw of die #; comes
up even, chances are that we would obtain several different answers, due to imperfections in the
manufacturing process. However, chances are that we work in an environment where the error we
commit when assuming that the die is fair does not matter, so let us make that assumption.

We model the random action of rolling such a fair die just once as follows.

e As in Example 1.1 (Empirical probability) on p.6, the set Q of all (potential) outcomes is

{1,2,3,4,5,6}.
e We associate with each outcome w € 2 the probability P({w}) = 1/6.

e For each outcome w € ( there is a corresponding event {w} C Q. © It is a common abuse of

language to also refer to such “atomar” events as outcomes.
o We generalize (1.3) and associate with each event A C () the probability

(1.4) P(A) = ) P({w}).
weA

Here, )  P({w}) means that we sum up all those expressions P({w}) that satisfy w € A.
w€eA

e For example, let A = {2,4,6} and B = {w € Q2 : w > 4}. Thus. A is the event of rolling an even

outcome and B is that of rolling a 5 or 6. Then,

®Such sets of size 1 are often called singleton sets or simply singletons.
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P(A) = 3T P(w)) = P(2)) + PN + PUSY) = 5 + 5 + ¢ = 5.
w€eA
P(B) = P({5,6}) = P({5}) + P({6}) = é+é _ é
It is customary to write P{...} for P({...}). Thus, the last equation can also be written as
P(B) =P{5,6) = P(5} + P{6} = ¢ + £ = &

e The assignment A — P(A) satisfies forA C ) the following:

EB0<PA)<1 BP0 =0 @P(Q) =1 @P(AUB) = P(A) + P(B), (A, B disjoint)

Note that A — P(A) of Example 1.1 (Empirical probability) obeys the same rules. [
Example 1.3 (Two rolls of a die). Consider what happens when two fair dice are rolled or, equiva-
lently, when one fair die is rolled twice in a row. The set of outcomes is

Q={1,2,....6)2 = {1,2,...,6} x {1,2,...,6} = {w:w=(i,j)andi,j=1,2,...,6}.

e  We make a willful decision to consider the outcomes (i, j) and (j,¢) different for i # j. For exam-
ple, if die #1 is red and #2 is white, we distinguish between the outcome of a red 2 and a white 5
and that of a red 5 and a white 2. Then € consists of 36 outcomes

(1,1), (1,2),...,(1,6), (2,1), (2,2),...,(2,6),...,(6,1), (6,2),...,(6,6)

and symmetry considerations show that each outcome w € € has probability P{w} = 1/36.

e We are faced with the same situation as in Example 1.2. The probabilities P{w} of the outcomes
determine the probability of any event A € Q2 just as we saw in (1.4):

(1.5) P(A) = ) P{w}).

wEA

e Forexample, if A = { die#1 showsa4} = {(4,j):5=1,2,...,6} then

P(A) =) PHw}) = Y PHGNY

weA (i,j)EA

= P{(4,1)} + P{(4,2)} + - + P{(4,6)} = 6(316> - L

e Asinexamples 1.1 (Empirical probability) and 1.2 (Single roll of a die), there is again a assignment
A — P(A) of probabilities that satisfies the familiar rules

BO<PA)<1 @PO) =0 @P(Q)=1 @ P(AUB) = P(A) + P(B), (A, B disjoint) O

10 Version: 2025-01-23
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Example 1.4 (Sum of two die rolls). Consider what happens if two fair dice are rolled and we are
interested in the sum of points obtained that way. For example,

e the outcome 8 is obtained when either of the following are rolled:
Ha2anda6 Ha3andab Had4andad4d ©Cabanda3 Ha6anda?.

e the outcome 5 is obtained when either of the following are rolled:
Halanda4 Ha2anda3 Ha3anda2 ©a4andal.

o The set of outcomes is

Q= {2,3,...,11,12}.

Since a roll of two dice has 36 outcomes (1,1),...,(6,6) and each of those has probability 1/36 (see
Example 1.3), it follows for the outcomes 8 and 5 that

. PUSN = o5 PUBY = o

Here is the complete list of outcome probabilities P({w}):

P(2)) =P({12)) = o5 PU3) = P11} = = P({4}) = P({10}) = o

(1.6) ; : .
P({5}) =P({9}) = 555 PUSH = P(sH) = 525 PUTY = 5.

e In the previous two examples there was equiprobability: Each outcome had the same probability.
Clearly, there is no equiprobability for the sum of points obtained when rolling two dice.
e Nevertheless, the probability of any event A € (2 is obtained again by the formula

(1.7) PA) = ) P{w}).

weA
e For example, if A = { the sum is between 8 and 11}, then

11
P(4) = Y P{w}) = > P({w})
w=8

w€eA

— P{8} + P{9} + P{10} + P{11} = (5+4+3+2) <3l6> _ 118

e Asinexamples 1.1 (Empirical probability) and 1.2 (Single roll of a die), there is again a assignment
A — P(A) of probabilities that satisfies the familiar rules

B0<PA) <1 BPW)=0 @3P(Q) =1 &8 P(AUB) = P(A)+ P(B), (A, Bdisjoint) O

Let us examine what the examples we have studied so far have in common.

11 Version: 2025-01-23
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Remark 1.2. In the examples given so far a probability P(A) was assigned to each event A C (2. In
each case thhis assignment A — P(A) satisfies the following.

(1.8) 0< P(A) < 1.
(1.9) P() = 0. Here () is the empty set which contains no outcomes.
(1.10) P(Q) = 1. Here (2 is the set which contains all potential outcomes.

If the events A, B have no outcomes in common, the union A U B satisfies
(1.11) P(AUB) =P(A) + P(B).

e The probabilist likes to speak of the probability space (2, since it comes with a probability mea-
sure (WMS: probability function), A — P(A), which assigns to the events A of 2, the probability
P(A) that this event might “occur” or “happen”.

e Statisticians tend to call 2 a sample space. An element w of (2 still is referred to as an outcome
but some, like WMS, write S instead of (2 (that’s S as in ample). They also call an element s of
S a sample point of S.

We translate some of the examples already encountered into the language of sample spaces and
sample points.

e In example 1.2 (Single roll of a die) on p.9, S = {1,2,...,6} is the sample space. Its outcomes or
sample points are 1,2, 3,4, 5,6. They can be considered sample of size n = 1. Further, all events
that result from the single roll of a die are formed from those sample points.

e Inexample 1.3 (Two rolls of a die) on p.10, the sample points (1,1), (1,2), ...,(6,5), (6,6) consti-
tute the sample space S = {1,2,...,6}2

e In example 1.4 (Sum of two die rolls) on p.11, S = {2,3,...,12} is the sample space. The sample
points from which all relevant events are formed, are the numbers 2,3,...,12. O

Example 1.5. This example needs more computational skills than the ones we have encountered so
far.

e To understand whether a traffic light works as expected, the following experiment is conducted.
200 cars are observed and a record is made for each one of those cars whether it reached the
intersection on red, green or yellow.

e This “sampling action” of observing those 200 cars results in ONE sample point of size 200. Its
actual outcome depends on chance

e Once the experiment is completed, the result will be a realization of this sampling action (the
SPECIFIC sample point that was obtained). If we write r for red, g for green, y for yellow, this
realization might be, e.g., {r.7,v,9,9,9,7,y,...,7r}.

e Once that realization has been obtained, the sampling action has lost its random character.

e Itis customary among statisticians to use the term sample for both the process of obtaining a sam-
ple (the sampling action) and a realization of this action. We will in general follow this convention.

e The sample space S of all (potential) sample points for this experiment is huge: It contains 32
sample points. This will be discussed in Chapter 7 (Combinatorial Analysis)

e Eachevent A C S comes with a probability P(A) and one can show that the assignment A — P(A)
satisfies the formulas (1.8) — (1.11) of Remark 1.2 on p.12.

12 Version: 2025-01-23
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Here is a formal definition of probability. It is based on the formulas (1.8) — (1.11) of Remark 1.2 on
p-12. This definition is PRELIMINARY and will be amended!

This definition uses the concept of an abstract function. Such functions, which assign the arguments
of an arbitrary set X (the domain) to the elements (the function values) of another arbitrary set Y’
(the codomain) are discussed in Section 2.1 (Sets, Numbers, Sequences and Functions) on page 18.
We suggest that you look at it now!

Definition 1.1 (Probability measure - Preliminary Definition, version I).

A probability measure P on a set {2 is a function which assigns to each subset A of {2 a real
number P(A) between 0 and 1 as follows.
(@ P(?)=0 and P(£2) = 1. Here () denotes the empty set which contains no elements.
(b) If the subsets A, B of €2 have no elements in common, then probability is additive:

P(AuUB) = P(A) + P(B).
This last formula makes disjoint unions so important that we have reserved the special

symbol “l4)” as a visual aid. Henceforth, we usually write U & V for U U V' if we know that

unv =0
P(AwB) = P(A) + P(B). O

Remark 1.3. The additivity condition also holds for three disjoint sets A, B, C' € 29 since,
P(AWwBW(C) =P[(AWB)W(C]| = P(AWB)+ P(C) = P(A)+ P(B)+ P(C).

From this equation one obtains additivity for four disjoint A, B, C, D € 2* as follows:

P(ABWCWD) =P[(AwBW(C)W D]
=P(AWBwWC(C)+ P(D) = P[A] + P[B] + P|C] + P[D].

In a similar fashion one obtains additivity for five, then for six, ..., for any finite number of disjoint
subsets A1, ..., A, of Q. However, we want more than

additivity: P(AiWAsw---WA,) = P(A)) + P(Ay) +---+ P(A,
y

for only any finite number n of events, since it has proven extremely fruitful to extend additivity to
infinite sequences of disjoint events and replace it with

a—additivity:7 P (Al WA W A3 -- ) = P(Al) + P(AQ) + P(Ag) +--- 0O

Definition 1.2 (Probability measure - Preliminary Definition, version II).

A probability measure P on a set {2 is a function which assigns to each subset A of {2 a real
number P(A) between 0 and 1 as follows.

(@ P =0 and P(Q) =1.

(b) If the subsets Ay, Az ... of Q are mutually disjoint, then probability is c—additive:

(1.12) P(AjWAsW--) = P(A1) + P(Ay) +--- = Y P(4)).
j=1

77 (“sigma”) is a greek letter. See the appendices for a complete list.
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We include the following informal definition from earlier parts of this section into this definition:

e The combination (£, P) is called a probability space aka sample space.
e Anelementw of (2 is called an outcome aka sample point
e A subset of (2 is called an event. [J

Remark 1.4. Generally speaking, adding requirements to a model restricts the scenarios for which
the model is useful. So what are the disadvantages of replacing additivity for probability measures
with o-additivity? The consensus is that there are none to be concerned about. 8 On the other
hand, o-additivity greatly enriches the tool kit for solving problems in the area of probability and
statistics and their real-world applications. [

Remark 1.5.

e Note that Definition 1.2 makes no mention about how one should interpret the num-

ber P(A). It may or may not reflect what happens in the real world!

For example, one could take a fair coin and define P{H} := 0.1. Here, H = Heads and 7' = Tails.
This uniquely defines a probability measure A — P(A) on the sample space S := {H,T'}, since the
missing probabilities for the events (), { H}, S can be determined as follows:

P®)=0 and P(S)=1, by Definition 1.1(a) .
P{T}+ P{H} =P{T}wW{H})=P(S) = P{T}=1-01=0.9,
by Definition 1.1(b), since S is the disjoint union of {H} and {7'}. O

Remark 1.6. If the last example strikes you as nonsensical, here is a model used by Wall Street that
uses a probability measure in which the probability of an event is different from the chance that this
event will happen.

The so called binomial asset model is a probabilistic model to determine today’s price of a stock
option which will be exercised at some future point in time. ? In this model, trading of a specific
stock (e.g., IBM or Amazon), happens at times 0,1,2,.... There are only two possible ways that
stock price can change and there are two “real world” probabilities, one for each possibility:

e p, := P{ the price of a share of stock changes by the factor .

e pg := P{ the price of a share of stock changes by the factord < u = 1 — p,.
These two numbers p, and p, are sufficient to determine a probability space {2 and probability
measure P for trading in that stock.

8Tt would be more accurate to say that there are no issues as far as building models of reality is concerned. We will
discuss at length in Chapter 5 (The Probability Model) that there is a cost: One may not be able to assign a probability
P(A) to all subsets A of 2. Rather, one must require A € §, where

§ C {allsubsetsof 2 }.

So § is a set which contains sets as its elements(!) However, § can be chosen so big that it includes all sets that matter for
the applications of probability and statistics.

°Since this is not a course on probabilistic finance, we must refer you to the literature for details. Some references are
[10] Shreve, Steve: Stochastic Calculus for Finance I: The Binomial Asset Pricing Model, [2] Bjork, Thomas: Arbitrage
Theory in Continuous Time and this author’s Math 454 lecture notes (Spring 2023).
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Strangely enough, p,, and p, are replaced by the so-called risk-neutral probabilities p,, and p4, which
are sufficient to determine an altgernate probability measure P on that same probability space §2.
Even stranger, the real world probability measure P has no bearing on the determination of P, i.e.,
of p, and pg. 1 And yet, even though p, and p,y do not reflect the actual probabilities that govern
the stock price, they are used to set today’s price of an option on that stock that can be redeemed
only, say, 90 days from today. [

Next, we combine Example 1.3 and Example 1.4.

Example 1.6. When computing the outcome probabilities of the sum of points obtained by rolling
two dice, we argued with a result obtained in Example 1.3. There, the probability of an outcome
(1,j7)was 1/36 forall i, j = 1,2,...,6. It should not be surprising that there is a connection between
the probability models of those examples. Both had a set of outcomes which we denoted 2 and
a function P : A — P(A) which associated a probability P(A) with each event A C (). Since
this example deals with both outcome sets and both probability measures, we must change our
notation. We proceed as follows.

e We keep the notation (€2, P) for the probability space of Example 1.3 and define
Q:={1,2,...,6} x{1,2,...,6} = {w:w=(i,j)andi,j=1,2,...,6},
1
P{(i,5)} == 5,7 = 1,2,...,6.
{(27.])} 36 for 7’7.7 1= 76

e For the outcome set and probability measure of Example 1.4, we write

Q =1{2,3,...,11,12},

(1.13) 1

P2} = P12} = — P'{3} == P'{11} == =, ...  See(l.6)onp.ll.

36 36
Note that P'{k} equals the probability that the sum of the two die rolls equals k, since the first
probability is given by (1.13), the second by (1.6) on p.11, !! and both formulas match.

Let (i,7) € €, i.e., i is the outcome of rolling die #1 and j is that of rolling die #2. The assignment
(i,5) = Y(i,7) =i+

associates with this outcome an integer between 2 and 12, i.e., an outcome in €Y. Think of Y as a
function which assigns to each argument (i, j) € (2 the function value Y (i,j) = i + j € . 12

We assign to each B C ) the probability

(1.14) Py(B) := P{(i,j)€Q:i+j € B}.

e Observe that Py (B) has been defined by means of the probability measure P (not P’), defined on
Q (not on ')

Since i + j = Y (4, j), (1.14) can also be written the following two ways:

(1.15) Py(B) = P{(i,j) € Q:Y(i,j) € B} = PlweQ:Y(w) € B}.

!0Rather, the interest earned by depositing money in a bank plays a major role.
" After all, P{k} of (1.6) was determined by computing the likelyhood that the sum of two rolls equals k.
2Looking ahead, Definition 2.17 on p.33 will refer to Y as a function Y : Q — Q.
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We spend most of the remainder of this example to prove that
(1.16) Py(B) = P'(B), forall BC.

Step 1: We show (1.16) for singletons B of (2': We assume B = {k} for some k € '. Let

(1.17) A = {(,)eQ:Y(,j)=k} = {(i,j) €Q: Y(i,j) € {k} }.
Then,
(1.18) P " Pl e Y@ j) ek} "L Pk}

If we can show that P'{k} = P(Ay), then (1.18) yields (1.16) for B = {k}. We see this as follows.
P'{k} = probability that sum of points of both rolls equals

— <1> x (the number of elements in Ay)

36
1 .
=Y 5= X Plad)} = P4y,
weAg (i,4) €A

To summarize, we have shown that
(1.19) Py{k} = P'{k}, forall ke .

Step 2: We extend (1.16) to arbitrary events of ('

We start with the observation that any set B is the disjoint union ¢ {b} of the singletons {b} such
beB
that b € B. For example, the set {2,4,6,8,10,12} of the even members of ' can be written as

{2,4,6,8,10,12} = {2} w {4} w {6} w {8} w {10} w {12}.
Let B C Q0. For brevity, we write {Y € B} for the set of allw € Q such that Y (w) € B:
(1.20) (YeB} = {weQ:YWw)eB} = {(i,j)€Q:i+je B}
Even simpler, for singleton sets B = {k} where k € ', we write {Y = k} for { Y € {k}:
(1.21) Y=k} ={Ye{k}} ={weQ:Y(w) =k} = {(i,j)€eQ:i+j=k}.

We suggest that you examine (1.17) and verify that Ay = {Y € {k}} = {Y = k}.
Since ' ={2,3,...,12} only contains 11 numbers and B C (¥, there is n < 11 such that

(1.22) B = {kﬁl,k‘g,...kn} and thus, B = {k‘l}ﬂﬂ{kg}ﬂﬂﬂﬂ{k‘n}

You will learn in section 2.5 (Preimages) that {Y € B} is called the preimage of the set B under the
function Y : (i, j) — i+ j (Definition 2.27 on p.42), and that the preimage of a union (disjoint union)
is the union (disjoint union) of the preimages. In particular,

(1.20) (1.21)

(123) {Y € B} Ve (kiywikwwik)) 20 Y =b} w{V =by)} w0 {Y = b}
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We apply the probability measure P to both sides of (1.23) '*> and apply (0-)additivity of the proba-
bility measure P.

(1.14)

(124) Py (B) PiyeB} " p{y e (i} wik}w - w{k,}}) = znjp{y e {b;j}}
j=1

In likewise manner, we apply (c—)additivity of the probability measure P'.
P'(B) "2 P({ln}w kb o {ka}) = > P'({b;})
j=1

Since Py{k} = P'{k} by (1.19), (1.24) and (1.24) have matching right-hand sides. This shows that
(1.16) is valid for general subsets B C €’ and concludes Step 2. [

Remark 1.7. Example 1.6 is important because is illustrates a very general way of constructing
probability measures from existing ones.
(1) Let (2, P) be any kind of probability space rather than Q = {1,...,6}? with
equiprobability P{(4,j)} = 1/36.
(2) Let Y be any kind of nonempty set, not necessarily Q' = {2,...,12}.
(3) LetY be any function w — Y (w), which assigns arguments w € 2 to function values
Y (w) € &, not necessarily Y (i,j) =i + j.
Then the formula which corresponds to (1.14) of Example 1.6:

(1.25) Py(B) = P{Y € B}, ie, Py(B) = PlweQ : Y(w) € B}, for BC,

“transports” the probability measure P on 2 to a probability measure Py on €. Later we will call
such a function Y that assigns elements of (€2, P) to elements of )/, a random element. Moreover,
we will refer to the probability measure Py on €, given by (1.25) as the distribution of Y. O

BThat’'s P and NOT P’ or Py: All sets of (1.23) are subsets of Q NOT of Q!
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2 Sets, Numbers, Sequences and Functions

Introduction 2.1. O

The student should read this chapter carefully, with the expectation that it contains material
that they are not familiar with, as much of it will be used in lecture without comment. Very

likely candidates are power sets, a function f : X — Y where domain X and codomain Y
are part of the definition.

2.1 Sets — The Basics

An entire book can be filled with a mathematically precise theory of sets. For our purposes the
following “naive” definition suffices:

Definition 2.1 (Sets).

e Asetisa collection of stuff called members or elements which satisfies the following
rules: The order in which you write the elements does not matter and if you list an
element two or more times then it only counts once.

e We write z; € X to denote that an item z; is an element of the set X and x5 ¢ X to
denote that an item x5 is not an element of the set X.

e Occasionally we are less formal and write z; in X for ; € X and x2 not in X for
xIo ¢ X.

We write a set by enclosing within curly braces the elements of the set. This can be done by listing
all those elements or giving instructions that describe those elements. For example, to denote by X
the set of all integer numbers between 18 and 24 we can write either of the following:

X = {18,19,20,21,22,23,24} or X := {n:nisanintegerand 18 <n < 24}

Both formulas clearly define the same collection of all integers between 18 and 24. On the left the
elements of X are given by a complete list, on the right setbuilder notation, i.e., instructions that
specify what belongs to the set, is used instead.

For the above example we have 20 € X, 27— 6 € X, 38 ¢ X, 'Jimmy’ ¢ X.

It is customary to denote sets by capital letters and their elements by small letters We try to adhere
to this convention as much as possible. [

Example 2.1. We looked in the introduction at the set @ = {1,2, 3,4, 5,6} of potential outcomes for
theroll ofadie. Then3 € Q,5€Q, —2¢ Q,234 ¢ Q. O
Example 2.2 (No duplicates in sets). The following collection of alphabetic letters is a set:

S1 ={a,e,i,0,u}

and so is this one:
So ={a,e,e,i,i,i,0,0,0,0,u,u,u,u,u}

Did you notice that those two sets are equal? [
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Remark 2.1. The symbol n in the definition of X = {n : nisanintegerand 18 < n < 24} isa
dummy variable in the sense that it does not matter what symbol you use. The following sets all
are equal to X:

{z : zis an integer and 18 < x < 24},
{a: aisaninteger and 18 < a < 24},
{3 :3isaninteger and 18 < 3 <24} O

Definition 2.2 (empty set).

() denotes the empty set. It is the set that does not contain any elements. [J

Definition 2.3 (subsets and supersets).

o We say that a set A is a subset of the set B and we write A C B if any element of A
also belongs to B. Equivalently we say that B is a superset of the set A and we write
B O A . We also say that B includes A or A is included by B. Note that A C A and
() C Ais true for any set A.

e If AC BbutA # B,i.e, thereis at least one x € B such that z ¢ A, then we say that
A is a strict subset or a proper subset of B. We write “A C B” Alternatively we say
that B is a strict superset or a proper superset of A and we write “B 2> A”)

B

()

Figure 2.1: Set inclusion: AC B, BD> A O

Remark 2.2. (a) We STRONGLY discourage the use of “A C B” in place of “A C B” and of “B D A”
in place of “A O B”. These are outdated symbols for A C Band A O B

(b) Two sets A and B are equal means that they both contain the same elements. In other words,
since U C V means that the set V' contains all elements of the set U,

(2.1) A=B & [ACBand BC A].

In the above, “<* denotes the phrase “if and only if”: The expression to the left (“A = B”)
means the same as the expression to the right (“A C B and B C A”). The square brackets
only serve to clarify that everything inbetween belongs to the scope of the right-hand side
of “&“. [
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Definition 2.4 (unions, intersections and disjoint unions of two sets). Given are two sets A and B.
No assumption is made that either one is contained in the other or that either one is not empty!

e Theunion AUB (pronounced "A union B") is defined as the set of all elements which
belong to at least one of A, B.

e The intersection A N B (pronounced "A intersection B") is defined as the set of all
elements which belong to both A4 and B.

e Wecall Aand B disjoint, also mutually disjoint, if AN B = (). We then often write
AW B (pronounced “A disjoint union B”) rather than AU B.

AU B: AUBUC: AN B: ANnBNC:

» @ vV &

Figure 2.2: Union and intersection of sets [J

A moment’s reflection shows that we can characterize unions, intersections and disjoint unions to
collections of more than two sets: 3 sets, 4 sets, 40 sets, 40 - 1040 sets, even infinitely many sets. We
do this in the next definition.

Definition 2.5 (Arbitrary unions, intersections and disjoint unions of sets). Let J be an arbitrary,
nonempty set. J may be finite or infinite. J may or may not be a set of numbers.

Assume that each j € J is associated with a set A;. 14 For J = {0,3, X}, the sets are A,, A3, Ay; and
J ={1,2,...}, yields the infinite sequence (of sets!) A;, As,....

e Theunion J A;is defined as the set of all elements which belong to at least one A4,

jE€J
where j € J.
e The intersection (1) A; is defined as the set of all elements which belong to each A4,
jE€J
where j € J.

e We call this collection of sets disjoint , also mutually disjoint, if A; N A; = () when-

ever i,j € J and i # j. We then often write [t} A; rather than (J A;. O
j€J JjeJ

"You might call this a collection of sets A; which is indexed by the elements j of J and write (A i) ;e , for this indexed

collection. Later on, in Definition 2.25 on p.38, (Aj)j ey will be called an indexed family of sets.
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Remark 2.3. If J = {ky, ks + 1,k +2,...,k* — 1,k*}, we also write

k* k* k*
U Aj, ﬂ Aj, L‘H Aj, for UA]', ﬂAjv L-HAJ

J=kx J=kx J=k« Jj€J JjeJ Jje€J

If J ={ku,kx+1,ke+2,...,}in particular if k, = 1 (so J =1,2,...), we also write

U4, N4, 4, for U4, 4, 4,0

j=ks =k j=ky jeJ jeJ jeJ

Example 2.3. Some of the examples given here demonstrate that the index set need not be called J
and its elements (they are dummy variables, just like ¢ in fb f(t)dt and k in % z). The third one
also shows that the left to right order of the elements of thg index set does nlé)?r)have to correspond
to the order in which the unions or intersections are taken.

o IfI={1,2}and A;NAy=0,then |§ A, = é1Aa = A1 ¥ A,

acl a=

2
° If.A:{—l,O,l,Q},then ﬂ A, = ﬂ A, = A_1NAgNAINAs.

€A 1=—1

° IfJ:{<>,9,X,F,2},then ﬂSJ = 3SxNJoNFrNFoNFo.
jeJ

° IfU:{5,6,7,...},then UC: UCj:C5UC6UC7U"'. |
jeu Jj=5

Remark 2.4. Convince yourself that for any sets A, B and C.

(2.2) ANB C A C AUB,
(2.3) ACB = AnB=Aand AUB = B,
(2.4) ACB = ANC C BNCand AUC C BUC.

The symbol = stands for “allows us to conclude that”. So A C B = AN B = A means
“From the truth of A C B we can conclude that A N B = A is true”. Shorter: “From A C B
we can conclude that AN B = A”. Shorter: “If A C B, then it follows that AN B = A”.
Shorter: “If A C B, then AN B = A”. More technical: A C B implies AN B =A. 0O

Definition 2.6 (set differences and symmetric differences). Given are two arbitrary sets A and B.
No assumption is made that either one is contained in the other or contains any elements!
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e The difference set or set difference A \ B (pronounced "A minus B") is defined as
the set of all elements which belong to A but not to B:

(2.5) A\B:={zxe€A:x ¢ B}

e The symmetric difference AAB (pronounced "A delta B") is defined as the set of all
elements which belong to either A or B but not to both A and B:

(2.6) AAB:=(AUB) \ (AnB) O

Definition 2.7 (Universal set).

Usually there always is a big set (2 that contains everything we are interested in and we
then deal with all kinds of subsets A C Q. Such a set is called a “universal” set. [

Example 2.4.

(a) Often the context are the real numbers and their subsets. An appropriate universal
set will then be R. 1°

(b) We will discuss at length why the set {1,2,3,4,5,6} can be considered a universal
set in the context of rolling a die. See Section 1.2 (A First Look at Probability). O

If there is a universal set, it makes perfect sense to talk about the complement of a set:

Definition 2.8 (Complement of a set). Let 2 be a universal set. The complement of a set A C 2
consists of all elements of (2 which do not belong to A. We write AP, In other words:

2.7) AL = 0\A = {weQ:z¢ A} O

A\ B: ANAB: Universal set: AL

: ¢ : @

Figure 2.3: Difference, symmetric difference, universal set, complement

I°R is the set of all real numbers, i.e., the kind of numbers that make up the z-axis and y-axis in a beginner’s calculus
course (see Section 2.3 (Numbers) on p.27).
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Remark 2.5. Note that for any kind of universal set (2 it is true that

(2.8) ot =9, ¢ =q O

Example 2.5 (Complement of a set relative to the unit interval). Assume we are exclusively dealing
with the unit interval, i.e., 2 =[0,1] ={z € R: 0<x < 1}. Leta € [0,1] and 6 > 0 and

(2.9) A={ze0,1]]:a—0<x<a+d}

the “5-neighborhood” 1 of a (with respect to [0, 1] because numbers outside the unit interval are
not considered part of our universe). Then the complement of A is

Al = {rel0,]]:x<a—dorz>a+d}. O

Draw some Venn diagrams to visualize the following formulas. It is very important that you un-
derstand each one of them rather than simply trying to memorize them.

Proposition 2.1. Let A, B, X be subsets of a universal set Q) and assume A C X. Then

(2.10a) AUD = A; AND=10
(2.10b) AUQ =Q; ANQ=A
(2.10¢) Auab=q;, Anal=9
(2.10d) AAB = (A\ B)w (B\ A)
(2.10e) A\VA=10

(2.10f) AND = A;  AAA =0
(2.10g) XAA=X\A

(2.10h) AUB = (AAB)W (AN B)
(2.10i) ANB=(AUB)\ (AAB)
(2.10j) AAB =10 ifandonlyif B= A

PROOF: The proof is left as exercise 2.2. See p.54. W

Next we give a very detailed and rigorous proof of a simple formula for sets. You definitely want
to remember the formulas, but it’s perfectly OK to skip the proof.

Proposition 2.2 (Distributivity of unions and intersections for two sets). Let A, B, C be sets. Then

(2.11) (AuB)NC =(ANnC)uU (BnNnAQO),
(2.12) (AnNB)UC =(AUC)n (BUOQO).

PROOQOF: We only prove (2.11). The proof of (2.12) is left as exercise 2.1.

“Draw a picture: The -neighborhood of a is the set of all points (in the universal set [0, 1]) with distance less than &
from a.
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PROOF of “C”: Letx € (A U B) N C. It follows from (2.2) on p.21 thatz € (A U B),ie., x € Aor
x € B (or both). It also follows from (2.2) that € C. We must show thatz € (A N C) U (B N C)
regardless of whether x € Aorz € B.

Case 1: z € A. Since also z € C, we obtain x € ANC, hence, againby (2.2), 2 € (AN C) U (BN C),
which is what we wanted to prove.

Case 2: x € B. We switch the roles of A and B. This allows us to apply the result of case 1, and we
againobtainz € (A N C) U (B N C).

PROOF of “D”: Letz € (A N C) U (BN C),ie,zr€ AN Corz e B N C (or both). We must
show that z € (A U B) N C regardless of whetherz € A N Corz e B N C.

Casel: z € A N C. It follows from A C A U Band (24)onp.2l thatz € (A U B) N C, and we
are done in this case.

Case 2: x € B N C. This time it follows from A C A U Bthatxz € (A U B) N C. This finishes the
proof of (2.11).

Epilogue: The proofs both of “C” and of “2>” were proofs by cases, i.e., we divided the proof into
several cases (to be exact, two for each of “C” and “2”), and we proved each case separately. For
example we proved that x € (AU B) N C implies x € (AN C) U (B N C) separately for the cases
x € Aand x € B. Since those two cases cover all possibilities for = the assertion “if x € (AUB)NC
thenz € (ANC)U(BNC)”isproven. B

Proposition 2.3 (De Morgan’s Law for two sets). Let A, B C . Then the complement of the union is
the intersection of the complements, and the complement of the intersection is the union of the complements:

(2.13) a. (AUB)t =Abn B b. (AnB) = AbuB®

PROOF:
1) First we prove that (AU B)t c AL n Bt
Assume that 2 € (AU B)t. Then z ¢ AU B, which is the same as saying that 2 does not belong to

at least one of A and B. That in turn means that x belongs to all complements, i.e., to both AL and
B and hence, also to the intersection ACn B,

2) Now we prove that (AU B)t D AL n BE:

Let 2 € A® N BL. Then z belongs to each one of A%, BY, hence to none of A, B, hence = ¢ AU B.
Therefore = belong to the complement of A U B. This completes the proof of formula a.

PROQOF of b: The proof is very similar to that of formula a and left as an exercise. W

Definition 2.9 (Power set).

The power set
o= {A:ACQ)

of a set Q2 is the set of all its subsets. Note that many older texts also use the notation (€2)
for the power set. []

Remark 2.6. Note that ) € 2 for any set 2, even if Q = (: 2? = {}. Tt follows that the power set of
the empty set is not empty. [
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Definition 2.10 (Partition). Let Q be a set and 2 C 29, i.e., the elements of 2 are subsets of €.

We call 2 a partition or a partitioning of (2 if
(@) If A, B € 2Asuch that A # B then AN B = (). In other words, 2 consists of mutually
disjoint subsets of €.
(b) Each z € Q is an element of some A € 2. [

Remark 2.7. Let Q be a set and 21 C 22. Then 2l is a partition of Q2 if and only if

For each x € €, there exists a UNIQUE A € A suchthatz € A. O

Example 2.6.

a. Forn e Zlet A, := {n}. Then A := {A, : n € Z} is a partition of Z. 2 is not a partition
of N because not all its members are subsets of N and it is not a partition of Q or R. The
reason: % € Q and hence % € R, but % ¢ A, for any n € Z, hence condition b of def.2.10 is
not satisfied.

b. ForneNletB, :

=[n%,(n+1)}[= {r €eR:n? <z < (n+1)?}. ThenB := {B, : n € N}
is a partition of [1, col.

O

Definition 2.11 (Size of a set).
a. Let X be a finite set, i.e., a set which only contains finitely many elements. We write {X ‘
for the number of its elements, and we call ‘X ‘ the size of the set X.
b. For infinite, i.e., not finite sets Y, we define |Y| := c0. O

More will be said about sets later.

2.2 The Proper Use of Language in Mathematics: Any vs All, etc

Mathematics must be very precise in its formulations. Such precision is achieved not only by means
of symbols and formulas, but also by its use of the English language. We will list some important
points to consider early on in this document.

2.2.0.1 Allvs. ANY

Assume for the following that X is a set of numbers. Do the following two statements mean the
same?

(1) Itis true for ALL x € X that x is an integer.

(2) TItistrue for ANY z € X that z is an integer.
You will hopefully agree that there is no difference and that one could rewrite them as follows:

(3) ALL z € X are integers.
(4) ANY z € X is an integer.
(5) EVERY z € X is an integer.
(6) EACH z € X is an integer.
(7) IF x € X THEN z is an integer.
Is it then always true that ALL and ANY means the same? Consider
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(8a) Itis NOT true for ALL z € X that z is an integer.

(8b) Itis NOT true for ANY z € X that z is an integer.
Completely different things have been said: Statement (8) asserts that as few as one item and as
many as all items in X are not integers, whereas (9) states that no items, i.e., exactly zero items in
X, are integers.

My suggestion: Express formulations like (8b) differently. You could have written instead

(8c) Thereisno x € X such that x is an integer.

2.2.0.2 AND vs. IF.. THEN

Some people abuse the connective AND to also mean IF ... THEN. However, mathematicians use
the phrase “p AND q” exclusively to mean that something applies to both p and q. Contrast the use
of AND in the following statements:
(9) “Jane is a student AND Joe likes baseball”. This phrase means that both are true: Jane is
indeed a student and Joe indeed likes baseball.
(10) “You hit me again AND you'll be sorry”. Never, ever use the word AND in this con-
text! A mathematician would express the above as “IF you hit me again THEN you'll be
sorry”.

2.2.0.3 ORvs. EITHER... OR
The last topic we address is the proper use of “OR”. In mathematics the phrase

(11) “pistrue OR qis true”
is always to be understood as

(12) “pis true OR qis true OR BOTH are true”, i.e., at least one of p, q is true.
This is in contrast to everyday language where “p is true OR q is true” often means that exactly one
of p and q is true, but not not both.
When referring to a collection of items then the use of “OR” also is inclusive If the items a, b, c, . ..
belong to a collection ¥, e.g., if those items are elements of a set, then

(13) “a OR b OR ¢ OR ...” means that we refer to at least one of a, b, c, . ...

Note that “OR” in mathematics always is an inclusive or, i.e., “A OR B” means “A OR B
OR BOTH”. More generally, “A OR B OR ...” means “at least one of A, B, ...”.

To rule out that more than one of the choices is true you must use a phrase like “EXACTLY
ONEOF A, B, C, ...” or “EITHER A OR B OR C OR ...”. We refer to this as an exclusive or.

2.2.04 Some Convenient Shorthand Notation We have previously encountered the notation
“P = Q" for “if P then Q”, i.e., if P is true, then () is true, and “P < Q" for “P iff Q”,i.e., P is true
exactly when @ is true”. We list them here again wich some additional convenient abbreviations.
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Forall z...
There exists an z such that . ..
There exists a UNIQUE x such that . ..

If P then Q)
Piff Q,ie., Pif and only if @

It is important that you are clear about the difference between 3 and 3!.

Jz:  you can find at least one x but there might be more; potentially infinitely many!
dlz:  you can find one and only one z; not zero, not two, not 200, ... [

2.3 Numbers

We start with an informal classification of numbers.

Definition 2.12 (Types of numbers). Here is a definition of the various kinds of numbers in a nut-
shell.

N :={1,2,3,...} denotes the set of natural numbers.

Z:={0,+1,£2,43, ...} denotes the set of all integers.

Q:={n/d:n € Z,d € N} (fractions of integers) denotes the set of all rational numbers.

R := {all integers or decimal numbers with finitely or infinitely many decimal digits} de-
notes the set of all real numbers.

R\ Q = {all real numbers which cannot be written as fractions of integers} denotes the set
of all irrational numbers. There is no special symbol for irrational numbers. Example: /2
and 7 are irrational. I

Here are some customary abbreviations of some often referenced sets of numbers:

No := Z, =250 :={0,1,2,3,...} denotes the set of nonnegative integers,
Ri := R>p := {z € R:z >0} denotes the set of all nonnegative real numbers,
Rt := Ryo := {z € R:z > 0} denotes the set of all positive real numbers,

Ry = {r€R:z#0}. O

Examples of rational numbers are

- _
3.-0.75, -1, .3, £, 16, L2, —5, 2.999, —372.

Note that a mathematician does not care whether a rational number is written as a fraction

numerator
denominator

or as a decimal numeral. The following all are representations of one third:
(2.14) 0.3 = .3 = 0.33333333333... = § = =} = 2,
and here are several equivalent ways of expressing the number minus four:

0 12 4 —4 12 400
(2.15) —4 = —4000 = -39 = -2 = 4 = =4 = 12 - 400,
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Definition 2.13 (Intervals of Numbers). For a,b € R we have the following intervals.

b] := {z € R:a <z < b} is the closed interval with endpoints a and b.
e Ja,b[:={z €R:a <z <b}isthe open interval with endpoints a and b.
o [a,b[:={r€R:a<z<b}and]a,b]:={x € R:a <z < b} are half-open intervals
with endpoints a and b.

The symbol “co” stands for an object which itself is not a number but is larger than any (real)
number, and the symbol “—o00” stands for an object which itself is not a number but is smaller than
any number. We thus have —oo < 2 < oo for any number z. This allows us to define the following

intervals of “infinite length”:

| —o0,al :={zr €eR:z<a}, | —o0,a]:={x eR:xz <a},

216) Ja,00[:={z €R:z >a}, [a,00[:={z€R:x>a}, ]|—o00,00[:=R

You should always work with a < b. In case you don’t, you get

[CL?a] = {a}; [a’a[:]aaa[:]aaa] =0
o [a,b] = [a,b][=]a,b[=]a,b] = O for a>b O

Definition 2.14 (Extended real numbers).

It is sometimes convenient to refer to the set

(2.17) R := [~00,00] := RU {00} U {oo}
as the extended real numbers. and to work with intervals such as
(2.18) [-00,a] = {—o0}U] —00,a], ]b,00] :=]b,00[U{o0}, ... O

Remark 2.8 (Extended real numbers arithmetic). When working with extended real-valued func-
tions we must be clear about the rules of arithmetic where +00 is involved. In the following assume

thatc € Rand 0 < p < oc.

Rules for Addition:
(2.19) c+ oo =00 £ c= o0,
(2.20) ct (—0) = —c0 £t c = —o0,
(2.21) 00 + 00 = 00,
(2.22) —00 — 00 = — 00,
(2.23) (+00) F o0 = UNDEFINED.

Rules for Multiplication:
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(2.24) p- (£oo) = (£oo) -p = Loo,

(2.25) (=p) - (£00) = (£00) - (=p) = Foo,

(2.26) 0- (d00) = (+00)-0 = g — @ el é ~ 0,
(2.27) (£00) - (oo) = oo,

(2.28) (d00) - (F0) = — o0,

Be clear about the ramifications of those rules. Rule (2.23) implies that if we have two extended
real-valued functions f, g defined on a domain A then f + g is only defined on

A\ {z € A: either[f(z) = coand g(z) = —o0] or [f(z) = —ocoand g(x) = oo},
and f — g is only defined on

A\ {x € A: either [f(x) = g(x) = o] or [f(z) = g(z) = —o0]}.

That is easy to understand and remember, but the real danger comes from rule (2.26) which you
might not have expected:

0-+c0 = xc0-0 = 0.

This convention is very convenient for integrals, but it comes at a price:

a = lim a, and b = lim b, no longerimplies lim a,b, = ab.
n—oo n—oo n—oo

A counterexample would be: a,, = n, b, = % O

Notation 2.1 (Notation Alert for intervals of integers or rational numbers).

It is at times convenient to also use the notation [...], |...[, [...[, ]...], for intervals of
integers or rational numbers. We will subscript them with Z or Q. For example,

An interval which is not subscripted always means an interval of real numbers, but we
will occasionally write, e.g., [a,b]r rather than [a, b], if the focus is on integers or rational
numbers and an explicit subscript helps to avoid confusion. [

Definition 2.15 (Absolute value, positive and negative part). For a real number x we define its
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ifr >0
absolute value: |z| = z Tx— J
—x ifz <O0.
z ifx>0
ositive part: 27 = max(z,0) = =
P P (=0 {O ifz < 0.

t ¢ _ ( 0) {—aj ifx <0,
negative part: - = max(—=z,0) = i
0 ifz > 0.

If f is a real-valued function then we define the functions | f|, f, f~ argument by argument:

fl@) = 1f@), fr@) = (f@)", @)= (f@). 0

For completeness we also give the definitions of min and max.

Definition 2.16 (Minimum and maximum). For two real number x, y we define

. r ifx >y,
maximum: 2z Vy = max(z,y) = )

y ifx <uy.

- : y ifz >y,
minimum: 2z Ay = min(z,y) = .

r ifx <y.

If f and g is are real-valued function then we define the functions f V g = max(f, g)

and f A g = min(f, g) argument by argument:

fhale) = f@)hg() = min (f(z), g()). O

fvg(@) = f(z)vg(z) = max (f(), 9(=)),

Remark 2.9. You are advised to compute |z|,z", 2~ for z = —5,2 = 5,2 = 0 and convince yourself
that the following is true:

x =x" -z,

lz| =2t + 27,

Thus any real-valued function f satisfies
f=r-=r,
fl =f"+f",

Get a feeling for the above by drawing the graphs of |f|, fT, f~ for the functon f(z) = 2z. O

Assumption 2.1 (Square roots are always assumed nonnegative). Remember that for any number

a it is true that
a-a = (—a)(—a) = d?, eg., 2°=(-2?%=4,
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or that, expressed in form of square roots, for any number b > 0

(+VB(+VE) = (~VB)(-VE) =b.

We will always assume that “v/b” is the positive value unless the opposite is explicitly
stated.

Example: V9 =43, not—-3. O

Remark 2.10. For any real number = we have

(2.29) Va2 = |z. O

Proposition 2.4 (The Triangle Inequality for real numbers). The following inequality is used all
the time in mathematical analysis to show that the size of a certain expression is limited from above:

(2.30) Triangle Inequality : lar + a2 + -+ an| < |ai| + |az| + -+ |an]
This inequality is true for any list of real numbers a1, az, . .., ay.
PROOF:

It is easy to prove this for n = 2: Just look separately at the three cases where both numbers are
nonnegative, both are negative, or one of each is positive and negative. W

24 Functions and Sequences

Introduction 2.2. You are familiar with functions from calculus. Examples are fi(z) = /= and
fo(z,y) = In(x — y). Sometimes fi(z) means the entire graph, i.e., the entire collection of points
(z,/7) in the plane and sometimes it just refers to the function value /z for a “fixed but arbitrary”
number z. In case of the function f>(z): Sometimes f>(z,y) means the entire graph, i.e., the entire
collection of points ((z,y), In(z — y)) in threedimensional space. At other times this expression just
refers to the function value In(z — y) for a pair of “fixed but arbitrary” numbers (z,y).

To obtain a usable definition of a function there are several things to consider. In the following f;(z)
and fa(z,y) again denote the functions fi(z) = v/z and fa(x,y) = In(z — y).

a. The source of all allowable arguments (z—values in case of f(z) and (z,y)-values in case
of fa(z,y)) will be called the domain of the function. The domain is explicitly specified
as part of a function definition and it may be chosen for whatever reason to be only a
subset of all arguments for which the function value is a valid expression. In case of the
function f;(x) this means that the domain must be a subset of the interval [0, oo because
the square root of a negative number cannot be taken. In case of the function f>(z, y) this
means that the domain must be a subset of

{(z,y): z,yeRandz —y >0},

because logarithms are only defined for strictly positive numbers.
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b. The set to which all possible function values belong will be called the codomain of the

function. As is the case for the domain, the codomain also is explicitly specified as part
of a function definition. It may be chosen as any superset of the set of all function values
for which the argument belongs to the domain of the function.
For the function fi(x) this means that we are OK if the c