
Lecture Notes for Math 447 - Probability
Student edition with proofs

Michael Fochler
Department of Mathematics

Binghamton University

Last update: February 20, 2025

Version: 2025-02-20 ©Michael Fochler 2023 – 2025

1



Contents

1 Some Preliminaries 5
1.1 About This Document . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2 A First Look at Probability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Sets, Numbers, Sequences and Functions 18
2.1 Sets – The Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.2 The Proper Use of Language in Mathematics: Any vs All, etc . . . . . . . . . . . . . . . 25
2.3 Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.4 Functions and Sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.5 Preimages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
2.6 Infimum and Supremum: Generalized Minimum and Maximum . . . . . . . . . . . . 47
2.7 Cartesian Products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
2.8 Indicator Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
2.9 Exercises for Ch.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

2.9.1 Exercises for Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
2.9.2 Other Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

2.10 Blank Page after Ch.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3 Calculus Revisited 58
3.1 Absolute Convergence of Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
3.2 Integration – The Riemann Integral . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.2.1 The Riemann Integral of a Step Function . . . . . . . . . . . . . . . . . . . . . . 64
3.2.2 The Riemann Integral as the Limit of Riemann Sums . . . . . . . . . . . . . . . 68

3.3 Improper Integrals and Integrals Over Subsets . . . . . . . . . . . . . . . . . . . . . . . 74
3.4 Series and Integrals as Tools to Compute Probabilities . . . . . . . . . . . . . . . . . . . 77

3.4.1 Series and Sums . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
3.4.2 Integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4 Calculus Extensions 83
4.1 Extension of Lebesgue Measure to the Borel sets of Rd . . . . . . . . . . . . . . . . . . . 84
4.2 The Lebesgue Integral . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5 The Probability Model 101
5.1 Probability Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
5.2 Conditional Probability and Independent Events . . . . . . . . . . . . . . . . . . . . . . 118
5.3 Random Elements and their Probability Distributions . . . . . . . . . . . . . . . . . . . 123
5.4 Independence of Random Elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

6 Advanced Topics – Measure and Probability ? 137
6.1 Random Variables as Measurable Functions . . . . . . . . . . . . . . . . . . . . . . . . . 137
6.2 Measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
6.3 Abstract Integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
6.4 The ILMD Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
6.5 Expectation and Variance as Probability Measure Integrals . . . . . . . . . . . . . . . . 165

7 Combinatorial Analysis 168

2



Math 447 – MF Lecture Notes Student edition with proofs

7.1 The Multiplication Rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
7.2 Permutations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
7.3 Combinations, Binomial and Multinomial Coefficients . . . . . . . . . . . . . . . . . . . 171

8 More on Probability 181
8.1 Total Probability and Bayes Formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
8.2 Sampling and Urn Models With and Without Replacement . . . . . . . . . . . . . . . . 183

9 Discrete Random Variables and Random Elements 188
9.1 Probability Mass Function and Expectation . . . . . . . . . . . . . . . . . . . . . . . . . 188
9.2 Bernoulli Variables and the Binomial Distribution . . . . . . . . . . . . . . . . . . . . . 197
9.3 Geometric + Negative Binomial + Hypergeometric Distributions . . . . . . . . . . . . . 199
9.4 The Poisson Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
9.5 Moments, Central Moments and Moment Generating Functions . . . . . . . . . . . . . 207
9.6 Exercises for Ch.9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210

10 Continuous Random Variables 212
10.1 Cumulative Distribution Function of a Random Variable . . . . . . . . . . . . . . . . . 212
10.2 Continuous Random Variables and Probability Density Functions . . . . . . . . . . . . 213
10.3 Expected Value, Variance and MGF of a Continuous Random Variable . . . . . . . . . 219
10.4 The Uniform Probability Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226
10.5 The Normal Probability Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230
10.6 The Gamma Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232
10.7 The Beta Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236
10.8 Inequalities for Probabililities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237

11 Multivariate Probability Distributions 241
11.1 Multivariate CDFs, PMFs and PDFs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241
11.2 Marginal and Conditional Probability Distributions . . . . . . . . . . . . . . . . . . . . 244
11.3 Independence of Random Variables and Discrete Random Elements . . . . . . . . . . . 246
11.4 The Mulitivariate Uniform Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . 252
11.5 The Expected Value of a Function of Several Random Variables . . . . . . . . . . . . . 253
11.6 The Covariance of Two Random Variables . . . . . . . . . . . . . . . . . . . . . . . . . . 257
11.7 Conditional Expectations and Conditional Variance . . . . . . . . . . . . . . . . . . . . 263

11.7.1 The Conditional Expectation With Respect to an Event ? . . . . . . . . . . . 263
11.7.2 The Conditional Expectation w.r.t a Random Variable or Random Element . . . 266
11.7.3 Conditional Expectations as Optimal Mean Squared Distance Approximations 269

11.8 The Multinomial Probability Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . 273
11.9 Order Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277
11.10The Bivariate Normal Distribution (Optional) . . . . . . . . . . . . . . . . . . . . . . . . 288

12 Functions of Random Variables and their Distribution 290
12.1 The Method of Distribution Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 290
12.2 The Method of Transformations in One Dimension . . . . . . . . . . . . . . . . . . . . . 296
12.3 The Method of Transformations in Multiple Dimension . . . . . . . . . . . . . . . . . . 300
12.4 The Method of moment–generating Functions . . . . . . . . . . . . . . . . . . . . . . . 306

3 Math 447 - Version 2025-02-20



Math 447 – MF Lecture Notes Student edition with proofs

13 Limit Theorems 313
13.1 Four Kinds of Limits for Sequences of Random Variables . . . . . . . . . . . . . . . . . 314
13.2 Two Laws of Large Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 320
13.3 Sampling Distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 322
13.4 The Central Limit Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 330

14 Sample Problems for Exams 340
14.1 Practice Midterm 1 for Math 447 - Chris Haines . . . . . . . . . . . . . . . . . . . . . . . 340

15 Other Appendices 342
15.1 Greek Letters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 342
15.2 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 342

References 343

List of Symbols 344

Index 346

History of Updates:
Date Topic

2020-12-23 Created.

4 Math 447 - Version 2025-02-20



Math 447 – MF Lecture Notes Student edition with proofs

1 Some Preliminaries

1.1 About This Document

These lecture notes are supporting material to the required text of this Math 447 course on proba-
bility theory. This text is [13] Wackerly, D. and Mendenhall, W. and Scheaffer, R.L.: Mathematical
Statistics with Applications, 7th edition.
At this point in time (July, 2023) it focuses quite a bit on some of the foundations of probability
theory which cannot be found at a sufficient level of generality in that text. Examples are preimages
and σ–algebras. It has not been determined at this point in time what further topics will be included
at some future time.
Note the uses of the symbol ? for material that will not appear on exams, quizzes and other
graded assignments. Unless you see this symbol in a footnote, please note that I will utilize such
material and build on it in my lectures. Thus, you should understand this material well enough to
follow my lectures, even though you will not be directly tested on it.
Also we use colored boxes according to the following. Generally speaking,

These boxes contain important definitions or parts thereof.

These boxes contain important theorems and propositions or parts thereof.

These boxes contain other kinds of important items that are worth while to know.

There are definitions and theorems that contain two or even three small boxes rather than a big one.
There is a technical reason: such boxes do not span pages and will needlessly inflate the page count
of the document.
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1.2 A First Look at Probability

“All models are wrong, but
some are useful”.

Attributed to the statistician George E. P. Box
(1919–2013)

This quote certainly applies to the probabilistic models and the role they play in answering statisti-
cal questions such as
• How do I collect data to predict next month’s average unemployment rate?
• What is the risk that this prediction will be off by more than 0.5 percent?

You probably agree that we also could have formulated the second question as follows.
• What is the probability that this prediction will be off by more than 0.5 percent?

It is not easy to find a satisfactory answer to that question and it will depend on the assumptions
that go into your model. We will consider probability in much simpler settings.

Example 1.1 (Empirical probability). The concept of probability serves as a model for quantifying
how likely an event will happen that depends on chance. When we say that the probability of
obtaining an even number when rolling a die equals 0.5, then we mean the following.
Assume that
• X1 denotes the action of rolling that die for the first time.
• X2 denotes the action of rolling that die for the second time.
• . . . Xk denotes the action of rolling that die for the kth time.

Under those assumptions we expect the following:
In the long run (for large k), close to half of X1, X2, . . . , Xk result in an even outcome.
• In the long run (for large k), close to half ofX1, X2, . . . , Xk should result in an even outcome.

We formulate this in the language of mathematics as follows:

6 Math 447 - Version 2025-02-20
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• We write P for probability.
• We write {2, 4, 6} for the event that rolling the die results in a 2 or a 4 or a 6, i.e., in an even

outcome. So we write this event as a set that contains the outcomes 2, 4,and 6 as its elements.
• We write nk for the number of outcomes during those k rolls that result in a 2 or a 4 or a 6.

We define P{2, 4, 6} = lim
k→∞

nk
k

and call this limit the probability of the event {2, 4, 6}. 1

We expect this particular limit to be 0.5.

• We write Ω (the Greek capital letter Omega) 2 for the set of all potential outcomes. It is
customary to drop the word “potential” and refer to the elements of Ω simply as outcomes.

• We call the subsets of Ω events. Thus, an event A is a set A that satisfies A ⊆ Ω, 3 i.e., each
element of A also belongs to Ω, i.e., A is a collection of outcomes.

• It is expedient to also call the empty set ∅ (the set that contains no elements) an event.

For the roll of a die the list of all outcomes is 1, 2, . . . , 6. Thus, Ω = {1, 2, 3, 4, 5, 6}. An event is any
set that consists of zero or more integers between 1 and 6.

We can apply the steps we used to determine P{2, 4, 6} to ANY event A ⊆ Ω. Now, nk denotes the
number of outcomes during the first k rolls that result in a number that is listed in A. We define

P (A) = lim
k→∞

nk
k
.(1.1)

To be precise, this formula denotes the empirical probability of the event A.
Observe that the assignment A 7→ P (A) of (1.1) satisfies the following for all subsets A of Ω:
• 0 ≤ P (A) ≤ 1.
• P (∅) = 0, since nk = 0 for all k. (Recall that ∅ is empty set which cont ains no elements.)
• P (Ω) = 1, since nk = k for all k.
• If the subsets A,B of Ω have no elements in common (we speak of mutually disjoint sets), then

the union P (A ∪B) satisfies

P (A ∪B) = P (A) + P (B) .(1.2)

To see the validity of (1.2), let nk(A) be the number of times an outcome in A is observed during k
trials, and let and nk(B) be defined likewise for B. Since an outcome ω is in A ∪ B if and only if ω
either belongs to A or to B, we have nk(A ∪B) = nk(A) + nk(B), hence,

P (A ∪B) = lim
k→∞

nk(A ∪B)

k
= lim

k→∞

nk(A)

k
+ lim

k→∞

nk(B)

k
= P (A) + P (B) .

Note the following about the nature of the formula P (A) = lim
k→∞

nk
k

for subsets A of Ω.

1In general we write P (A) or P [A] for the probability of an event A. Accordingly, we could also have written
P ({2, 4, 6}). However, if the event is of the form {. . . }, we are permitted to omit the parenteses/square brackets, since
they obscure readability.

2For a list of all Greek letters see Section 15.1 (Greek Letters) on page 342.
3See Definition 2.3 (Subsets and supersets) on p.19 on page 342.
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� It is a function A 7→ P (A) = lim
k→∞

nk
k

the same way x 7→ f(x) = x2 + 4 is a function.

� We are familiar with the latter: It assigns to each argument x (which happens to be a real number)
the function value f(x), also a real number. For example, f(3) = 32 + 4 = 13.

� The function A 7→ P (A) is harder to deal with only because its arguments A are not numbers or
vectors of such numbers. Rather, those arguments are events, i.e., sets. �

You are strongly encouraged to take a first look at Section 2.4 (Functions and Sequences). It is very important
that you understand the following:
• The assignment A 7→ P (A) discussed at the end of Example 1.1 constitutes a function

P : { all subsets of Ω } −→ [0, 1] ( [0, 1] = { numbers x : 0 ≤ x ≤ 1 } )

in the sense of Definition 2.17 on p.33, with domain = { all subsets of Ω } and codomain = [0, 1].

Remark 1.1. There are some issues with (1.1) as a definition of P (A).
What if the limit lim

k→∞
nk/k does not exist? For example, the following is very unlikely but not

impossible.
Let ωk denote the outcome of the kth roll of the die. Assume that we obtain the following sequence
of outcomes (draw a picture!):
• ω1 = 1.
• From now on, only the number 6 appears until nk/k > 5. We write K(1) for that index k.
• From now on, only the number 1 appears until nk/k < 2. We write K(2) for that index k.
• From now on, only the number 6 appears until nk/k > 5. We write K(3) for that index k.
• From now on, only the number 1 appears until nk/k < 2. We write K(4) for that index k.
• ..... and so on .....

The resulting sequence K(1) < K(2) < K(3) < · · · satisfies the following: 4

• There are infinitely many indices k = K(1),K(3),K(5), . . . such that
nk
k

> 5.

• There are infinitely many indices k = K(2),K(4),K(6), . . . such that
nk
k

< 2.

Accordingly, lim
k→∞

nk
k

does not exist, and we are not able to determine P (A).

But there are issues even if that limit exists. Consider again the event A = {2, 4, 6}. Let us assume
that, by some freak of nature, all outcomes ωk are 4. 5 Accordingly, we declare that P{2, 4, 6} = 1.
The teamleader has doubts about this result and asks for a repetition of the experiment. This time
all outcomes ωk are either 3 or 5.
What to do? Should we decide that P{2, 4, 6} = 0? Should the experiment repeated once more?
How about settling on the average, P{2, 4, 6} = (1 + 0)/2 = 1/2?

You may decide that this is a completely ficticious example without any bearing on reality, and this
author agrees. That being said, consider the following:

4A strict proof can be obtained by using the fact that the limit of a sequence does not depend its first k members, no
matter how big k may be chosen.

5You will learn the following: If each j1, j2, . . . is a given potential outcome (an integer between 1 and 6), then
P{ω1} = j1, P{ω2} = j2, . . . , P{ωk) = jk} = (1/6)k. That number becomes very small for large k, since the se-
quence (1/6)k converges to zero. Nevertheless, (1/6)k > 0 for each fixed k, so it is not impossible to obtain ωk = 4 for all
k. (This is the case where j1 = j2 = · · · = jk = 4 for all k).

8 Math 447 - Version 2025-02-20
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• The infinite repetition of an action such as rolling a die is in itself an abstraction that serves to
model reality, and so is the limit of a (infinite) sequence.

• In the real world the determination of probabilities P (A) often is based on (1.1) as follows: It
is decided to conduct an experiment of k trials. The larger this number k is chosen, the more
confidence we will have that P (A) is a good enough APPROXIMATION of the likelihood that the
event A happens.

Unfortunately there are factors to consider that will limit the size of k.
• The more repetitions, the longer it will take to obtain the result. IfA is the event that the Old Faith-

ful geyser in Yellowstone National Park erupts to a height of at least 150 feet and it is not possible
for some reason to use the previously obtained records, then we must base the determination of
P (A) on a very small number of observations.

• Money is another limiting factor. The more repetitions, the more it will cost to obtain the result.
�

Example 1.2 (Single roll of a die). To avoid the issues concerning the use of formula (1.1) (empirical
probability) on p.7, we also could have employed a model from physics or geometry, that of a fair
die. A fair die is a model of reality obtained from geometry or physics. Such a die is assumed to be
perfectly symmetrical and this symmetry implies that each of the outcomes 1, 2, . . . , 6 is equally
likely. Consequently, each outcome must have the same likelihood (probability) of 1/6.
We consider again the probability of rolling an even number The even outcomes are 2, 4, 6. Thus,

P{ even outcome } = P{2, 4, 6} =
1

6
+

1

6
+

1

6
= 0.5 .(1.3)

Note that fair dice do not exist in the real world. Matter of fact, if we had a sample of 1, 000 dice
and we were able to determine with infinite precision the probability that a throw of die #k comes
up even, chances are that we would obtain several different answers, due to imperfections in the
manufacturing process. However, chances are that we work in an environment where the error we
commit when assuming that the die is fair does not matter, so let us make that assumption.
We model the random action of rolling such a fair die just once as follows.
• As in Example 1.1 (Empirical probability) on p.6, the set Ω of all (potential) outcomes is
{1, 2, 3, 4, 5, 6}.

• We associate with each outcome ω ∈ Ω the probability P ({ω}) = 1/6.
• For each outcome ω ∈ Ω there is a corresponding event {ω} ⊆ Ω. 6 It is a common abuse of

language to also refer to such “atomar” events as outcomes.
• We generalize (1.3) and associate with each event A ⊆ Ω the probability

(1.4) P (A) =
∑
ω∈A

P ({ω}) .

Here,
∑
ω∈A

P ({ω}) means that we sum up all those expressions P ({ω}) that satisfy ω ∈ A.

• For example, let A = {2, 4, 6} and B = {ω ∈ Ω : ω > 4}. Thus. A is the event of rolling an even
outcome and B is that of rolling a 5 or 6. Then,

6Such sets of size 1 are often called singleton sets or simply singletons.

9 Math 447 - Version 2025-02-20
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P (A) =
∑
ω∈A

P ({ω}) = P ({2}) + P ({4}) + P ({6}) =
1

6
+

1

6
+

1

6
=

1

2
,

P
(
B
)

= P
(
{5, 6}

)
= P ({5}) + P ({6}) =

1

6
+

1

6
=

1

3
.

It is customary to write P{...} for P ({...}). Thus, the last equation can also be written as

P
(
B
)

= P{5, 6} = P{5} + P{6} =
1

6
+

1

6
=

1

3
.

• The assignment A 7→ P (A) satisfies forA ⊆ Ω the following:

��� 0 ≤ P (A) ≤ 1 ��� P (∅) = 0 ��� P (Ω) = 1 ��� P (A ∪B) = P (A) + P (B), (A,B disjoint)

Note that A 7→ P (A) of Example 1.1 (Empirical probability) obeys the same rules. �

Example 1.3 (Two rolls of a die). Consider what happens when two fair dice are rolled or, equiva-
lently, when one fair die is rolled twice in a row. The set of outcomes is

Ω = {1, 2, . . . , 6}2 = {1, 2, . . . , 6} × {1, 2, . . . , 6} = {ω : ω = (i, j) and i, j = 1, 2, . . . , 6} .
• We make a willful decision to consider the outcomes (i, j) and (j, i) different for i 6= j. For exam-

ple, if die #1 is red and #2 is white, we distinguish between the outcome of a red 2 and a white 5
and that of a red 5 and a white 2. Then Ω consists of 36 outcomes

(1, 1), (1, 2), . . . , (1, 6), (2, 1), (2, 2), . . . , (2, 6), . . . , (6, 1), (6, 2), . . . , (6, 6)

and symmetry considerations show that each outcome ω ∈ Ω has probability P{ω} = 1/36.

• We are faced with the same situation as in Example 1.2. The probabilities P{ω} of the outcomes
determine the probability of any event A ∈ Ω just as we saw in (1.4):

(1.5) P (A) =
∑
ω∈A

P ({ω}) .

• For example, if A = { die #1 shows a 4} = {(4, j) : j = 1, 2, . . . , 6} then

P (A) =
∑
ω∈A

P ({ω}) =
∑

(i,j)∈A

P ({(i, j)})

= P{(4, 1)} + P{(4, 2)} + · · ·+ P{(4, 6)} = 6

(
1

36

)
=

1

6
.

• As in examples 1.1 (Empirical probability) and 1.2 (Single roll of a die), there is again a assignment
A 7→ P (A) of probabilities that satisfies the familiar rules

��� 0 ≤ P (A) ≤ 1 ��� P (∅) = 0 ��� P (Ω) = 1 ��� P (A ∪B) = P (A) + P (B), (A,B disjoint) �

10 Math 447 - Version 2025-02-20
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Example 1.4 (Sum of two die rolls). Consider what happens if two fair dice are rolled and we are
interested in the sum of points obtained that way. For example,
• the outcome 8 is obtained when either of the following are rolled:

� a 2 and a 6 � a 3 and a 5 � a 4 and a 4 � a 5 and a 3 � a 6 and a 2.
• the outcome 5 is obtained when either of the following are rolled:

� a 1 and a 4 � a 2 and a 3 � a 3 and a 2. � a 4 and a 1.

• The set of outcomes is

Ω = {2, 3, . . . , 11, 12} .

Since a roll of two dice has 36 outcomes (1, 1), . . . , (6, 6) and each of those has probability 1/36 (see
Example 1.3), it follows for the outcomes 8 and 5 that

• P ({8}) =
5

36
; P ({5}) =

4

36
.

Here is the complete list of outcome probabilities P ({ω}):

P ({2}) =P ({12}) =
1

36
; P ({3}) = P ({11}) =

2

36
; P ({4}) = P ({10}) =

3

36
;

P ({5}) =P ({9}) =
4

36
; P ({6}) = P ({8}) =

5

36
; P ({7}) =

6

36
.

(1.6)

• In the previous two examples there was equiprobability: Each outcome had the same probability.
Clearly, there is no equiprobability for the sum of points obtained when rolling two dice.

• Nevertheless, the probability of any event A ∈ Ω is obtained again by the formula

(1.7) P (A) =
∑
ω∈A

P ({ω}) .

• For example, if A = { the sum is between 8 and 11}, then

P (A) =
∑
ω∈A

P ({ω}) =

11∑
ω=8

P ({ω})

= P{8} + P{9} + P{10} + P{11} = (5 + 4 + 3 + 2)

(
1

36

)
=

7

18
.

• As in examples 1.1 (Empirical probability) and 1.2 (Single roll of a die), there is again a assignment
A 7→ P (A) of probabilities that satisfies the familiar rules

��� 0 ≤ P (A) ≤ 1 ��� P (∅) = 0 ��� P (Ω) = 1 ��� P (A ∪B) = P (A) + P (B), (A,B disjoint) �

Let us examine what the examples we have studied so far have in common.
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Remark 1.2. In the examples given so far a probability P (A) was assigned to each event A ⊆ Ω. In
each case thhis assignment A 7→ P (A) satisfies the following.

0 ≤ P (A) ≤ 1 .(1.8)
P (∅) = 0 . Here ∅ is the empty set which contains no outcomes.(1.9)
P (Ω) = 1 . Here Ω is the set which contains all potential outcomes.(1.10)

If the events A,B have no outcomes in common, the union A ∪B satisfies

P (A ∪B) = P (A) + P (B) .(1.11)

• The probabilist likes to speak of the probability space Ω, since it comes with a probability mea-
sure (WMS: probability function), A 7→ P (A), which assigns to the events A of Ω, the probability
P (A) that this event might “occur” or “happen”.

• Statisticians tend to call Ω a sample space. An element ω of Ω still is referred to as an outcome
but some, like WMS, write S instead of Ω (that’s S as in S ample). They also call an element s of
S a sample point of S.

We translate some of the examples already encountered into the language of sample spaces and
sample points.
• In example 1.2 (Single roll of a die) on p.9, S = {1, 2, . . . , 6} is the sample space. Its outcomes or

sample points are 1, 2, 3, 4, 5, 6. They can be considered sample of size n = 1. Further, all events
that result from the single roll of a die are formed from those sample points.

• In example 1.3 (Two rolls of a die) on p.10, the sample points (1, 1), (1, 2), . . . , (6, 5), (6, 6) consti-
tute the sample space S = {1, 2, . . . , 6}2.

• In example 1.4 (Sum of two die rolls) on p.11, S = {2, 3, . . . , 12} is the sample space. The sample
points from which all relevant events are formed, are the numbers 2, 3, . . . , 12. �

Example 1.5. This example needs more computational skills than the ones we have encountered so
far.
• To understand whether a traffic light works as expected, the following experiment is conducted.

200 cars are observed and a record is made for each one of those cars whether it reached the
intersection on red, green or yellow.

• This “sampling action” of observing those 200 cars results in ONE sample point of size 200. Its
actual outcome depends on chance

• Once the experiment is completed, the result will be a realization of this sampling action (the
SPECIFIC sample point that was obtained). If we write r for red, g for green, y for yellow, this
realization might be, e.g., {r, r, y, g, g, g, r, y, . . . , r}.

• Once that realization has been obtained, the sampling action has lost its random character.
• It is customary among statisticians to use the term sample for both the process of obtaining a sam-

ple (the sampling action) and a realization of this action. We will in general follow this convention.
• The sample space S of all (potential) sample points for this experiment is huge: It contains 3200

sample points. This will be discussed in Chapter 7 (Combinatorial Analysis)
• Each eventA ⊆ S comes with a probability P (A) and one can show that the assignmentA 7→ P (A)

satisfies the formulas (1.8) – (1.11) of Remark 1.2 on p.12. �
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Here is a formal definition of probability. It is based on the formulas (1.8) – (1.11) of Remark 1.2 on
p.12. This definition is PRELIMINARY and will be amended!
This definition uses the concept of an abstract function. Such functions, which assign the arguments
of an arbitrary set X (the domain) to the elements (the function values) of another arbitrary set Y
(the codomain) are discussed in Section 2.1 (Sets, Numbers, Sequences and Functions) on page 18.
We suggest that you look at it now!

Definition 1.1 (Probability measure - Preliminary Definition, version I).

A probability measure P on a set Ω is a function which assigns to each subset A of Ω a real
number P (A) between 0 and 1 as follows.

(a) P (∅) = 0 and P (Ω) = 1. Here ∅ denotes the empty set which contains no elements.
(b) If the subsets A,B of Ω have no elements in common, then probability is additive:

P (A ∪B) = P (A) + P (B) .

This last formula makes disjoint unions so important that we have reserved the special
symbol “

⊎
” as a visual aid. Henceforth, we usually write U ] V for U ∪ V if we know that

U ∩ V = ∅:
P (A ]B) = P (A) + P (B) . �

Remark 1.3. The additivity condition also holds for three disjoint sets A,B,C ∈ 2Ω since,
P (A ]B ] C ) = P [ (A ]B) ] C ] = P (A ]B) + P (C) = P (A) + P (B) + P (C) .

From this equation one obtains additivity for four disjoint A,B,C,D ∈ 2Ω as follows:

P (A ]B ] C ]D) = P [ (A ]B ] C) ]D ]

= P (A ]B ] C) + P (D) = P [A] + P [B] + P [C] + P [D] .

In a similar fashion one obtains additivity for five, then for six, ..., for any finite number of disjoint
subsets A1, . . . , An of Ω. However, we want more than

additivity: P (A1 ]A2 ] · · · ]An) = P (A1) + P (A2) + · · ·+ P (An)

for only any finite number n of events, since it has proven extremely fruitful to extend additivity to
infinite sequences of disjoint events and replace it with

σ–additivity:7 P (A1 ]A2 ]A3 ] · · · ) = P (A1) + P (A2) + P (A3) + · · · �

Definition 1.2 (Probability measure - Preliminary Definition, version II).

A probability measure P on a set Ω is a function which assigns to each subset A of Ω a real
number P (A) between 0 and 1 as follows.

(a) P (∅) = 0 and P (Ω) = 1.
(b) If the subsets A1, A2 . . . of Ω are mutually disjoint, then probability is σ–additive:

(1.12) P (A1 ]A2 ] · · · ) = P (A1) + P (A2) + · · · =
∞∑
j=1

P (Aj) .

7σ (“sigma”) is a greek letter. See the appendices for a complete list.
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We include the following informal definition from earlier parts of this section into this definition:

• The combination (Ω, P ) is called a probability space aka sample space.
• An element ω of Ω is called an outcome aka sample point
• A subset of Ω is called an event. �

Remark 1.4. Generally speaking, adding requirements to a model restricts the scenarios for which
the model is useful. So what are the disadvantages of replacing additivity for probability measures
with σ–additivity? The consensus is that there are none to be concerned about. 8 On the other
hand, σ–additivity greatly enriches the tool kit for solving problems in the area of probability and
statistics and their real–world applications. �

Remark 1.5.

• Note that Definition 1.2 makes no mention about how one should interpret the num-
ber P (A). It may or may not reflect what happens in the real world!

For example, one could take a fair coin and define P{H} := 0.1. Here, H = Heads and T = Tails.
This uniquely defines a probability measure A 7→ P (A) on the sample space S := {H,T}, since the
missing probabilities for the events ∅, {H}, S can be determined as follows:

P (∅) = 0 and P (S) = 1 , by Definition 1.1(a) .
P{T}+ P{H} = P ({T} ] {H}) = P (S) ⇒ P{T} = 1− 0.1 = 0.9 ,

by Definition 1.1(b), since S is the disjoint union of {H} and {T}. �

Remark 1.6. If the last example strikes you as nonsensical, here is a model used by Wall Street that
uses a probability measure in which the probability of an event is different from the chance that this
event will happen.
The so called binomial asset model is a probabilistic model to determine today’s price of a stock
option which will be exercised at some future point in time. 9 In this model, trading of a specific
stock (e.g., IBM or Amazon), happens at times 0, 1, 2, . . . . There are only two possible ways that
stock price can change and there are two “real world” probabilities, one for each possibility:
• pu := P{ the price of a share of stock changes by the factor u.
• pd := P{ the price of a share of stock changes by the factor d < u = 1− pu.

These two numbers pu and pd are sufficient to determine a probability space Ω and probability
measure P for trading in that stock.

8It would be more accurate to say that there are no issues as far as building models of reality is concerned. We will
discuss at length in Chapter 5 (The Probability Model) that there is a cost: One may not be able to assign a probability
P (A) to all subsets A of Ω. Rather, one must require A ∈ F, where

F ⊆ { all subsets of Ω } .

So F is a set which contains sets as its elements(!) However, F can be chosen so big that it includes all sets that matter for
the applications of probability and statistics.

9Since this is not a course on probabilistic finance, we must refer you to the literature for details. Some references are
[10] Shreve, Steve: Stochastic Calculus for Finance I: The Binomial Asset Pricing Model, [2] Björk, Thomas: Arbitrage
Theory in Continuous Time and this author’s Math 454 lecture notes (Spring 2023).
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Strangely enough, pu and pd are replaced by the so-called risk–neutral probabilities p̃u and p̃d, which
are sufficient to determine an altgernate probability measure P̃ on that same probability space Ω.

Even stranger, the real world probability measure P has no bearing on the determination of P̃ , i.e.,
of p̃u and p̃d. 10 And yet, even though p̃u and p̃d do not reflect the actual probabilities that govern
the stock price, they are used to set today’s price of an option on that stock that can be redeemed
only, say, 90 days from today. �

Next, we combine Example 1.3 and Example 1.4.

Example 1.6. When computing the outcome probabilities of the sum of points obtained by rolling
two dice, we argued with a result obtained in Example 1.3. There, the probability of an outcome
(i, j) was 1/36 for all i, j = 1, 2, . . . , 6. It should not be surprising that there is a connection between
the probability models of those examples. Both had a set of outcomes which we denoted Ω and
a function P : A 7→ P (A) which associated a probability P (A) with each event A ⊆ Ω. Since
this example deals with both outcome sets and both probability measures, we must change our
notation. We proceed as follows.
• We keep the notation (Ω, P ) for the probability space of Example 1.3 and define

Ω := {1, 2, . . . , 6} × {1, 2, . . . , 6} = {ω : ω = (i, j) and i, j = 1, 2, . . . , 6} ,

P{(i, j)} :=
1

36
for i, j = 1, 2, . . . , 6 .

• For the outcome set and probability measure of Example 1.4, we write

Ω′ := {2, 3, . . . , 11, 12} ,

P ′{2} := P ′{12} :=
1

36
, P ′{3} := P ′{11} :=

2

36
, . . . See (1.6) on p.11.

(1.13)

Note that P ′{k} equals the probability that the sum of the two die rolls equals k, since the first
probability is given by (1.13), the second by (1.6) on p.11, 11 and both formulas match.
Let (i, j) ∈ Ω, i.e., i is the outcome of rolling die #1 and j is that of rolling die #2. The assignment

(i, j) 7→ Y (i, j) := i+ j

associates with this outcome an integer between 2 and 12, i.e., an outcome in Ω′. Think of Y as a
function which assigns to each argument (i, j) ∈ Ω the function value Y (i, j) = i+ j ∈ Ω′. 12

We assign to each B ⊆ Ω′ the probability

PY (B) := P{(i, j) ∈ Ω : i+ j ∈ B} .(1.14)

• Observe that PY (B) has been defined by means of the probability measure P (not P ′), defined on
Ω (not on Ω′)

Since i+ j = Y (i, j), (1.14) can also be written the following two ways:

PY (B) = P{(i, j) ∈ Ω : Y (i, j) ∈ B} = P{ω ∈ Ω : Y (ω) ∈ B} .(1.15)

10Rather, the interest earned by depositing money in a bank plays a major role.
11After all, P{k} of (1.6) was determined by computing the likelyhood that the sum of two rolls equals k.
12Looking ahead, Definition 2.17 on p.33 will refer to Y as a function Y : Ω −→ Ω′.
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We spend most of the remainder of this example to prove that

PY (B) = P ′(B), for all B ⊆ Ω′ .(1.16)

Step 1: We show (1.16) for singletons B of Ω′: We assume B = {k} for some k ∈ Ω′. Let

Ak :=
{

(i, j) ∈ Ω : Y (i, j) = k
}

=
{

(i, j) ∈ Ω : Y (i, j) ∈ {k}
}
.(1.17)

Then,

P (Ak)
(1.17)
= P

{
(i, j) ∈ Ω : Y (i, j) ∈ {k}

} (1.15)
= PY {k} .(1.18)

If we can show that P ′{k} = P (Ak), then (1.18) yields (1.16) for B = {k}. We see this as follows.

P ′{k} = probability that sum of points of both rolls equals k

=

(
1

36

)
× (the number of elements in Ak)

=
∑
ω∈Ak

1

36
=

∑
(i,j)∈Ak

P{(i, j)} = P (Ak) .

To summarize, we have shown that

PY {k} = P ′{k} , for all k ∈ Ω′ .(1.19)

Step 2: We extend (1.16) to arbitrary events of Ω′.
We start with the observation that any set B is the disjoint union

⊎
b∈B
{b} of the singletons {b} such

that b ∈ B. For example, the set {2, 4, 6, 8, 10, 12} of the even members of Ω′ can be written as

{2, 4, 6, 8, 10, 12} = {2} ] {4} ] {6} ] {8} ] {10} ] {12} .

Let B ⊆ Ω′. For brevity, we write {Y ∈ B} for the set of all ω ∈ Ω such that Y (ω) ∈ B:

(1.20) {Y ∈ B} := {ω ∈ Ω : Y (ω) ∈ B} = {(i, j) ∈ Ω : i+ j ∈ B} .

Even simpler, for singleton sets B = {k}where k ∈ Ω′, we write {Y = k} for
{
Y ∈ {k}:

(1.21) {Y = k} :=
{
Y ∈ {k}

}
= {ω ∈ Ω : Y (ω) = k} = {(i, j) ∈ Ω : i+ j = k} .

We suggest that you examine (1.17) and verify that Ak = {Y ∈ {k}} = {Y = k}.
Since Ω′ = {2, 3, . . . , 12} only contains 11 numbers and B ⊆ Ω′, there is n ≤ 11 such that

(1.22) B = {k1, k2, . . . kn} and thus, B = {k1} ] {k2} ] · · · ] {kn} .

You will learn in section 2.5 (Preimages) that {Y ∈ B} is called the preimage of the set B under the
function Y : (i, j)→ i+j (Definition 2.27 on p.42), and that the preimage of a union (disjoint union)
is the union (disjoint union) of the preimages. In particular,

(1.23) {Y ∈ B} (1.20)
= {Y ∈ {k1} ] {k1} ] · · · ] {kn}}

(1.21)
= {Y = b1} ] {Y = b2} ] · · · ] {Y = bn}
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We apply the probability measure P to both sides of (1.23) 13 and apply (σ–)additivity of the proba-
bility measure P .

(1.24) PY (B)
(1.14)
= P{Y ∈ B} (1.23)

= P
(
{Y ∈ {k1} ] {k1} ] · · · ] {kn}}

)
=

n∑
j=1

P{Y ∈ {bj}}

In likewise manner, we apply (σ–)additivity of the probability measure P ′.

P ′(B)
(1.22)
= P ′

(
{k1} ] {k2} ] · · · ] {kn}

)
=

n∑
j=1

P ′
(
{bj}

)
Since PY {k} = P ′{k} by (1.19), (1.24) and (1.24) have matching right–hand sides. This shows that
(1.16) is valid for general subsets B ⊆ Ω′ and concludes Step 2. �

Remark 1.7. Example 1.6 is important because is illustrates a very general way of constructing
probability measures from existing ones.

(1) Let (Ω, P ) be any kind of probability space rather than Ω = {1, . . . , 6}2 with
equiprobability P{(i, j)} = 1/36.

(2) Let Ω′ be any kind of nonempty set, not necessarily Ω′ = {2, . . . , 12}.
(3) Let Y be any function ω 7→ Y (ω), which assigns arguments ω ∈ Ω to function values

Y (ω) ∈ Ω′, not necessarily Y (i, j) = i+ j.
Then the formula which corresponds to (1.14) of Example 1.6:

(1.25) PY (B) := P{Y ∈ B} , i.e., PY (B) = P{ω ∈ Ω : Y (ω) ∈ B}, for B ⊆ Ω′ ,

“transports” the probability measure P on Ω to a probability measure PY on Ω′. Later we will call
such a function Y that assigns elements of (Ω, P ) to elements of Ω′, a random element. Moreover,
we will refer to the probability measure PY on Ω′, given by (1.25) as the distribution of Y . �

13That’s P and NOT P ′ or PY : All sets of (1.23) are subsets of Ω NOT of Ω′!
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2 Sets, Numbers, Sequences and Functions

Introduction 2.1. �

The student should read this chapter carefully, with the expectation that it contains material
that they are not familiar with, as much of it will be used in lecture without comment. Very
likely candidates are power sets, a function f : X → Y where domain X and codomain Y
are part of the definition.

2.1 Sets – The Basics

An entire book can be filled with a mathematically precise theory of sets. For our purposes the
following “naive” definition suffices:

Definition 2.1 (Sets).

• A set is a collection of stuff called members or elements which satisfies the following
rules: The order in which you write the elements does not matter and if you list an
element two or more times then it only counts once.

• We write x1 ∈ X to denote that an item x1 is an element of the set X and x2 /∈ X to
denote that an item x2 is not an element of the set X .

• Occasionally we are less formal and write x1 in X for x1 ∈ X and x2 not in X for
x2 /∈ X .

We write a set by enclosing within curly braces the elements of the set. This can be done by listing
all those elements or giving instructions that describe those elements. For example, to denote by X
the set of all integer numbers between 18 and 24 we can write either of the following:

X := {18, 19, 20, 21, 22, 23, 24} or X := {n : n is an integer and 18 ≤ n ≤ 24}

Both formulas clearly define the same collection of all integers between 18 and 24. On the left the
elements of X are given by a complete list, on the right setbuilder notation, i.e., instructions that
specify what belongs to the set, is used instead.
For the above example we have 20 ∈ X , 27− 6 ∈ X , 38 /∈ X , ’Jimmy’ /∈ X .
It is customary to denote sets by capital letters and their elements by small letters We try to adhere
to this convention as much as possible. �

Example 2.1. We looked in the introduction at the set Ω = {1, 2, 3, 4, 5, 6} of potential outcomes for
the roll of a die. Then 3 ∈ Ω, 5 ∈ Ω, −2 /∈ Ω, 2.34 /∈ Ω. �

Example 2.2 (No duplicates in sets). The following collection of alphabetic letters is a set:

S1 = {a, e, i, o, u}

and so is this one:
S2 = {a, e, e, i, i, i, o, o, o, o, u, u, u, u, u}

Did you notice that those two sets are equal? �
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Remark 2.1. The symbol n in the definition of X = {n : n is an integer and 18 ≤ n ≤ 24} is a
dummy variable in the sense that it does not matter what symbol you use. The following sets all
are equal to X :

{x : x is an integer and 18 ≤ x ≤ 24},
{α : α is an integer and 18 ≤ α ≤ 24},
{Z : Z is an integer and 18 ≤ Z ≤ 24} �

Definition 2.2 (empty set).

∅ denotes the empty set. It is the set that does not contain any elements. �

Definition 2.3 (subsets and supersets).

• We say that a set A is a subset of the set B and we write A ⊆ B if any element of A
also belongs to B. Equivalently we say that B is a superset of the set A and we write
B ⊇ A . We also say that B includes A or A is included by B. Note that A ⊆ A and
∅ ⊆ A is true for any set A.

• If A ⊆ B but A 6= B, i.e., there is at least one x ∈ B such that x /∈ A, then we say that
A is a strict subset or a proper subset of B. We write “A ( B” Alternatively we say
that B is a strict superset or a proper superset of A and we write “B ) A”)

BBB

AAA

Figure 2.1: Set inclusion: A ⊆ B, B ⊇ A �

Remark 2.2. (a) We STRONGLY discourage the use of “A ⊂ B” in place of “A ( B” and of “B ⊃ A”
in place of “A ) B”. These are outdated symbols for A ⊆ B and A ⊇ B
(b) Two sets A and B are equal means that they both contain the same elements. In other words,
since U ⊆ V means that the set V contains all elements of the set U ,

A = B ⇔
[
A ⊆ B and B ⊆ A

]
.(2.1)

In the above, “⇔“ denotes the phrase “if and only if”: The expression to the left (“A = B”)
means the same as the expression to the right (“A ⊆ B and B ⊆ A”). The square brackets
only serve to clarify that everything inbetween belongs to the scope of the right–hand side
of “⇔“. �
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Definition 2.4 (unions, intersections and disjoint unions of two sets). Given are two sets A and B.
No assumption is made that either one is contained in the other or that either one is not empty!

• The unionA∪B (pronounced "A union B") is defined as the set of all elements which
belong to at least one of A,B.

• The intersection A ∩ B (pronounced "A intersection B") is defined as the set of all
elements which belong to both A and B.

• We callA andB disjoint , also mutually disjoint , if A ∩B = ∅. We then often write
A ]B (pronounced “A disjoint union B”) rather than A ∪B.

A ∪B: A ∪B ∪ C: A ∩B: A ∩B ∩ C:

A B A B

C

A B A B

C

Figure 2.2: Union and intersection of sets �

A moment’s reflection shows that we can characterize unions, intersections and disjoint unions to
collections of more than two sets: 3 sets, 4 sets, 40 sets, 40 · 1040 sets, even infinitely many sets. We
do this in the next definition.

Definition 2.5 (Arbitrary unions, intersections and disjoint unions of sets). Let J be an arbitrary,
nonempty set. J may be finite or infinite. J may or may not be a set of numbers.
Assume that each j ∈ J is associated with a set Aj . 14 For J = {�, 3,XXX}, the sets are A�, A3, AXXX ; and
J = {1, 2, . . . }, yields the infinite sequence (of sets!) A1, A2, . . . .

• The union
⋃
j∈J

Aj is defined as the set of all elements which belong to at least oneAj ,

where j ∈ J .
• The intersection

⋂
j∈J

Aj is defined as the set of all elements which belong to each Aj ,

where j ∈ J .
• We call this collection of sets disjoint , also mutually disjoint , if Ai ∩Aj = ∅when-

ever i, j ∈ J and i 6= j. We then often write
⊎
j∈J

Aj rather than
⋃
j∈J

Aj . �

14You might call this a collection of setsAj which is indexed by the elements j of J and write
(
Aj
)
j∈J for this indexed

collection. Later on, in Definition 2.25 on p.38,
(
Aj
)
j∈J will be called an indexed family of sets.
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Remark 2.3. If J = {k?, k? + 1, k? + 2, . . . , k? − 1, k?}, we also write

k?⋃
j=k?

Aj ,

k?⋂
j=k?

Aj ,

k?⊎
j=k?

Aj , for
⋃
j∈J

Aj ,
⋂
j∈J

Aj ,
⊎
j∈J

Aj .

If J = {k?, k? + 1, k? + 2, . . . , },in particular if k? = 1 (so J = 1, 2, . . . ), we also write

∞⋃
j=k?

Aj ,

∞⋂
j=k?

Aj ,

∞⊎
j=k?

Aj , for
⋃
j∈J

Aj ,
⋂
j∈J

Aj ,
⊎
j∈J

Aj . �

Example 2.3. Some of the examples given here demonstrate that the index set need not be called J

and its elements (they are dummy variables, just like t in
b∫
a
f(t)dt and k in

25∑
k=5

xk). The third one

also shows that the left to right order of the elements of the index set does not have to correspond
to the order in which the unions or intersections are taken.

• If I = {1, 2} and A1 ∩A2 = ∅, then
⊎
α∈I

Aα =
2⊎

α=1
Aα = A1 ]A2.

• IfAAA = {−1, 0, 1, 2}, then
⋂
i∈AAA

Ai =
2⋂

i=−1
Ai = A−1 ∩A0 ∩A1 ∩A2.

• If J = {�, 9,XXX , F, 2}, then
⋂
j∈J

Fj = FXXX ∩ F9 ∩ FF ∩ F� ∩ F2.

• If U = {5, 6, 7, . . . }, then
⋃
j∈U

Cj =
∞⋃
j=5

Cj = C5 ∪ C6 ∪ C7 ∪ · · · . �

Remark 2.4. Convince yourself that for any sets A,B and C.

A ∩B ⊆ A ⊆ A ∪B,(2.2)
A ⊆ B ⇒ A ∩B = A and A ∪B = B,(2.3)
A ⊆ B ⇒ A ∩ C ⊆ B ∩ C and A ∪ C ⊆ B ∪ C.(2.4)

The symbol ⇒ stands for “allows us to conclude that”. So A ⊆ B ⇒ A ∩ B = A means
“From the truth of A ⊆ B we can conclude that A ∩ B = A is true”. Shorter: “From A ⊆ B
we can conclude that A ∩ B = A”. Shorter: “If A ⊆ B, then it follows that A ∩ B = A”.
Shorter: “If A ⊆ B, then A ∩B = A”. More technical: A ⊆ B implies A ∩B = A. �

Definition 2.6 (set differences and symmetric differences). Given are two arbitrary sets A and B.
No assumption is made that either one is contained in the other or contains any elements!
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• The difference set or set difference A \ B (pronounced "A minus B") is defined as
the set of all elements which belong to A but not to B:

(2.5) A \B := {x ∈ A : x /∈ B}

• The symmetric difference A4B (pronounced "A delta B") is defined as the set of all
elements which belong to either A or B but not to both A and B:

(2.6) A4B := (A ∪B) \ (A ∩B) �

Definition 2.7 (Universal set).

Usually there always is a big set Ω that contains everything we are interested in and we
then deal with all kinds of subsets A ⊆ Ω. Such a set is called a “universal” set. �

Example 2.4.
(a) Often the context are the real numbers and their subsets. An appropriate universal

set will then be R. 15

(b) We will discuss at length why the set {1, 2, 3, 4, 5, 6} can be considered a universal
set in the context of rolling a die. See Section 1.2 (A First Look at Probability). �

If there is a universal set, it makes perfect sense to talk about the complement of a set:

Definition 2.8 (Complement of a set). Let Ω be a universal set. The complement of a set A ⊆ Ω

consists of all elements of Ω which do not belong to A. We write A{. In other words:

(2.7) A{ = Ω \A = {ω ∈ Ω : x /∈ A} �

A \B: A4B: Universal set: A{:

A B A B
ΩΩΩ AAA

A{A{A{

Figure 2.3: Difference, symmetric difference, universal set, complement

15R is the set of all real numbers, i.e., the kind of numbers that make up the x-axis and y-axis in a beginner’s calculus
course (see Section 2.3 (Numbers) on p.27).
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Remark 2.5. Note that for any kind of universal set Ω it is true that

Ω{ = ∅, ∅{ = Ω. �(2.8)

Example 2.5 (Complement of a set relative to the unit interval). Assume we are exclusively dealing
with the unit interval, i.e., Ω = [0, 1] = {x ∈ R : 0 ≤ x ≤ 1}. Let a ∈ [0, 1] and δ > 0 and

(2.9) A = {x ∈ [0, 1] : a− δ < x < a+ δ}

the “δ–neighborhood” 16 of a (with respect to [0, 1] because numbers outside the unit interval are
not considered part of our universe). Then the complement of A is

A{ = {x ∈ [0, 1] : x ≤ a− δ or x ≥ a+ δ}. �

Draw some Venn diagrams to visualize the following formulas. It is very important that you un-
derstand each one of them rather than simply trying to memorize them.

Proposition 2.1. Let A, B, X be subsets of a universal set Ω and assume A ⊆ X . Then

A ∪ ∅ = A; A ∩ ∅ = ∅(2.10a)
A ∪ Ω = Ω; A ∩ Ω = A(2.10b)

A ∪A{ = Ω; A ∩A{ = ∅(2.10c)
A4B = (A \B) ] (B \A)(2.10d)
A \A = ∅(2.10e)
A4∅ = A; A4A = ∅(2.10f)
X4A = X \A(2.10g)
A ∪B = (A4B) ] (A ∩B)(2.10h)
A ∩B = (A ∪B) \ (A4B)(2.10i)
A4B = ∅ if and only if B = A(2.10j)

PROOF: The proof is left as exercise 2.2. See p.54. �

Next we give a very detailed and rigorous proof of a simple formula for sets. You definitely want
to remember the formulas, but it’s perfectly OK to skip the proof.

Proposition 2.2 (Distributivity of unions and intersections for two sets). Let A,B,C be sets. Then

(A ∪ B) ∩ C = (A ∩ C) ∪ (B ∩ C),(2.11)
(A ∩ B) ∪ C = (A ∪ C) ∩ (B ∪ C).(2.12)

PROOF: ? We only prove (2.11). The proof of (2.12) is left as exercise 2.1.

16Draw a picture: The δ–neighborhood of a is the set of all points (in the universal set [0, 1]) with distance less than δ
from a.
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PROOF of “⊆”: Let x ∈ (A ∪ B) ∩ C. It follows from (2.2) on p.21 that x ∈ (A ∪ B), i.e., x ∈ A or
x ∈ B (or both). It also follows from (2.2) that x ∈ C. We must show that x ∈ (A ∩ C) ∪ (B ∩ C)
regardless of whether x ∈ A or x ∈ B.
Case 1: x ∈ A. Since also x ∈ C, we obtain x ∈ A∩C, hence, again by (2.2), x ∈ (A ∩ C) ∪ (B ∩ C),
which is what we wanted to prove.
Case 2: x ∈ B. We switch the roles of A and B. This allows us to apply the result of case 1, and we
again obtain x ∈ (A ∩ C) ∪ (B ∩ C).
PROOF of “⊇”: Let x ∈ (A ∩ C) ∪ (B ∩ C), i.e., x ∈ A ∩ C or x ∈ B ∩ C (or both). We must
show that x ∈ (A ∪ B) ∩ C regardless of whether x ∈ A ∩ C or x ∈ B ∩ C.
Case 1: x ∈ A ∩ C. It follows from A ⊆ A ∪ B and (2.4) on p.21 that x ∈ (A ∪ B) ∩ C, and we
are done in this case.
Case 2: x ∈ B ∩ C. This time it follows from A ⊆ A ∪ B that x ∈ (A ∪ B) ∩ C. This finishes the
proof of (2.11).
Epilogue: The proofs both of “⊆” and of “⊇” were proofs by cases, i.e., we divided the proof into
several cases (to be exact, two for each of “⊆” and “⊇”), and we proved each case separately. For
example we proved that x ∈ (A ∪ B) ∩ C implies x ∈ (A ∩ C) ∪ (B ∩ C) separately for the cases
x ∈ A and x ∈ B. Since those two cases cover all possibilities for x the assertion “if x ∈ (A∪B)∩C
then x ∈ (A ∩ C) ∪ (B ∩ C)” is proven. �

Proposition 2.3 (De Morgan’s Law for two sets). Let A,B ⊆ Ω. Then the complement of the union is
the intersection of the complements, and the complement of the intersection is the union of the complements:

a. (A ∪B){ = A{ ∩B{ b. (A ∩B){ = A{ ∪B{(2.13)

PROOF:
1) First we prove that (A ∪B){ ⊆ A{ ∩B{:
Assume that x ∈ (A ∪B){. Then x /∈ A ∪B, which is the same as saying that x does not belong to
at least one of A and B. That in turn means that x belongs to all complements, i.e., to both A{ and
B{ and hence, also to the intersection A{ ∩B{.
2) Now we prove that (A ∪B){ ⊇ A{ ∩B{:
Let x ∈ A{ ∩B{. Then x belongs to each one of A{, B{, hence to none of A,B, hence x /∈ A ∪ B.
Therefore x belong to the complement of A ∪B. This completes the proof of formula a.
PROOF of b: The proof is very similar to that of formula a and left as an exercise. �

Definition 2.9 (Power set).

The power set
2Ω := {A : A ⊆ Ω}

of a set Ω is the set of all its subsets. Note that many older texts also use the notation P(Ω)
for the power set. �

Remark 2.6. Note that ∅ ∈ 2Ω for any set Ω, even if Ω = ∅: 2∅ = {∅}. It follows that the power set of
the empty set is not empty. �
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Definition 2.10 (Partition). Let Ω be a set and A ⊆ 2Ω, i.e., the elements of A are subsets of Ω.

We call A a partition or a partitioning of Ω if
(a) If A,B ∈ A such that A 6= B then A ∩B = ∅. In other words, A consists of mutually

disjoint subsets of Ω.
(b) Each x ∈ Ω is an element of some A ∈ A. �

Remark 2.7. Let Ω be a set and A ⊆ 2Ω. Then A is a partition of Ω if and only if

For each x ∈ Ω, there exists a UNIQUE A ∈ A such that x ∈ A . �

Example 2.6.
a. For n ∈ Z let An := {n}. Then A := {An : n ∈ Z} is a partition of Z. A is not a partition

of N because not all its members are subsets of N and it is not a partition of Q or R. The
reason: 1

2 ∈ Q and hence 1
2 ∈ R, but 1

2 /∈ An for any n ∈ Z, hence condition b of def.2.10 is
not satisfied.

b. For n ∈ N let Bn := [ n2, (n+1)2[ = {x ∈ R : n2 ≤ x < (n+1)2}. Then B := {Bn : n ∈ N}
is a partition of [1,∞[. �

Definition 2.11 (Size of a set).
a. Let X be a finite set, i.e., a set which only contains finitely many elements. We write

∣∣X∣∣
for the number of its elements, and we call

∣∣X∣∣ the size of the set X .
b. For infinite, i.e., not finite sets Y , we define |Y | :=∞. �

More will be said about sets later.

2.2 The Proper Use of Language in Mathematics: Any vs All, etc

Mathematics must be very precise in its formulations. Such precision is achieved not only by means
of symbols and formulas, but also by its use of the English language. We will list some important
points to consider early on in this document.

2.2.0.1 All vs. ANY
Assume for the following that X is a set of numbers. Do the following two statements mean the
same?

(1) It is true for ALL x ∈ X that x is an integer.
(2) It is true for ANY x ∈ X that x is an integer.

You will hopefully agree that there is no difference and that one could rewrite them as follows:
(3) ALL x ∈ X are integers.
(4) ANY x ∈ X is an integer.
(5) EVERY x ∈ X is an integer.
(6) EACH x ∈ X is an integer.
(7) IF x ∈ X THEN x is an integer.

Is it then always true that ALL and ANY means the same? Consider
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(8a) It is NOT true for ALL x ∈ X that x is an integer.
(8b) It is NOT true for ANY x ∈ X that x is an integer.

Completely different things have been said: Statement (8) asserts that as few as one item and as
many as all items in X are not integers, whereas (9) states that no items, i.e., exactly zero items in
X , are integers.
My suggestion: Express formulations like (8b) differently. You could have written instead

(8c) There is no x ∈ X such that x is an integer.

2.2.0.2 AND vs. IF ... THEN
Some people abuse the connective AND to also mean IF ... THEN. However, mathematicians use
the phrase “p AND q” exclusively to mean that something applies to both p and q. Contrast the use
of AND in the following statements:

(9) “Jane is a student AND Joe likes baseball”. This phrase means that both are true: Jane is
indeed a student and Joe indeed likes baseball.

(10) “You hit me again AND you’ll be sorry”. Never, ever use the word AND in this con-
text! A mathematician would express the above as “IF you hit me again THEN you’ll be
sorry”.

2.2.0.3 OR vs. EITHER ... OR
The last topic we address is the proper use of “OR”. In mathematics the phrase

(11) “p is true OR q is true”
is always to be understood as

(12) “p is true OR q is true OR BOTH are true”, i.e., at least one of p, q is true.
This is in contrast to everyday language where “p is true OR q is true” often means that exactly one
of p and q is true, but not not both.
When referring to a collection of items then the use of “OR” also is inclusive If the items a, b, c, . . .
belong to a collection C , e.g., if those items are elements of a set, then

(13) “a OR b OR c OR ...” means that we refer to at least one of a, b, c, . . . .

Note that “OR” in mathematics always is an inclusive or, i.e., “A OR B” means “A OR B
OR BOTH”. More generally, “A OR B OR ...” means “at least one of A, B, ...”.
To rule out that more than one of the choices is true you must use a phrase like “EXACTLY
ONE OF A, B, C, ...” or “EITHER A OR B OR C OR ...”. We refer to this as an exclusive or.

2.2.0.4 Some Convenient Shorthand Notation We have previously encountered the notation
“P ⇒ Q” for “if P thenQ”, i.e., if P is true, thenQ is true, and “P ⇔ Q” for “P iffQ”, i.e., “P is true
exactly when Q is true”. We list them here again wich some additional convenient abbreviations.
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• ∀x . . . For all x...
• ∃x s.t. . . . There exists an x such that . . .
• ∃!x s.t. . . . There exists a UNIQUE x such that . . .
• P ⇒ Q If P then Q
• P ⇔ Q P iff Q, i.e., P if and only if Q

It is important that you are clear about the difference between ∃ and ∃!.
∃x: you can find at least one x but there might be more; potentially infinitely many!
∃!x: you can find one and only one x; not zero, not two, not 200, ... �

2.3 Numbers

We start with an informal classification of numbers.

Definition 2.12 (Types of numbers). Here is a definition of the various kinds of numbers in a nut-
shell.

N := {1, 2, 3, . . . } denotes the set of natural numbers.
Z := {0,±1,±2,±3, . . . } denotes the set of all integers.
Q := {n/d : n ∈ Z, d ∈ N} (fractions of integers) denotes the set of all rational numbers.
R := {all integers or decimal numbers with finitely or infinitely many decimal digits} de-
notes the set of all real numbers.
R \Q = {all real numbers which cannot be written as fractions of integers} denotes the set
of all irrational numbers. There is no special symbol for irrational numbers. Example:

√
2

and π are irrational. �

Here are some customary abbreviations of some often referenced sets of numbers:

N0 := Z+ := Z≥0 := {0, 1, 2, 3, . . . } denotes the set of nonnegative integers,
R+ := R≥0 := {x ∈ R : x ≥ 0} denotes the set of all nonnegative real numbers,
R+ := R>0 := {x ∈ R : x > 0} denotes the set of all positive real numbers,
R 6=0 := {x ∈ R : x 6= 0}. �

Examples of rational numbers are

3
4 , −0.75, −1

3 , .3̄,
7
1 , 16, 13

4 , −5, 2.999̄, −372
7 .

Note that a mathematician does not care whether a rational number is written as a fraction
numerator

denominator

or as a decimal numeral. The following all are representations of one third:

(2.14) 0.3̄ = .3̄ = 0.33333333333 . . . = 1
3 = −1

−3 = 2
6 ,

and here are several equivalent ways of expressing the number minus four:

(2.15) − 4 = −4.000 = −3.9̄ = −12
3 = 4

−1 = −4
1 = 12

−3 = −400
100 .
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Definition 2.13 (Intervals of Numbers). For a, b ∈ R we have the following intervals.

• [a, b] := {x ∈ R : a ≤ x ≤ b} is the closed interval with endpoints a and b.
• ]a, b[ := {x ∈ R : a < x < b} is the open interval with endpoints a and b.
• [a, b[ := {x ∈ R : a ≤ x < b} and ]a, b] := {x ∈ R : a < x ≤ b} are half-open intervals

with endpoints a and b.

The symbol “∞” stands for an object which itself is not a number but is larger than any (real)
number, and the symbol “−∞” stands for an object which itself is not a number but is smaller than
any number. We thus have −∞ < x < ∞ for any number x. This allows us to define the following
intervals of “infinite length”:

]−∞, a] :={x ∈ R : x ≤ a}, ]−∞, a[ := {x ∈ R : x < a},
]a,∞[ :={x ∈ R : x > a}, [a,∞[ := {x ∈ R : x ≥ a}, ]−∞,∞[ := R

(2.16)

You should always work with a < b. In case you don’t, you get

• [a, a] = {a}; [a, a[ = ]a, a[ = ]a, a] = ∅
• [a, b] = [a, b[ = ]a, b[ = ]a, b] = ∅ for a ≥ b �

Definition 2.14 (Extended real numbers). ?

It is sometimes convenient to refer to the set

(2.17) R := [−∞,∞] := R ∪ {−∞} ∪ {∞}
as the extended real numbers. and to work with intervals such as

(2.18) [−∞, a] := {−∞}∪ ]−∞, a ] , ]b,∞] := ]b,∞[∪{∞} , . . . �

Remark 2.8 (Extended real numbers arithmetic). When working with extended real–valued func-
tions we must be clear about the rules of arithmetic where±∞ is involved. In the following assume
that c ∈ R and 0 < p <∞.
Rules for Addition:

c ± ∞ =∞ ± c = ∞,(2.19)
c ± (−∞) = −∞ ± c = −∞,(2.20)
∞ + ∞ =∞,(2.21)
−∞ − ∞ = −∞,(2.22)

(±∞)∓∞ = UNDEFINED.(2.23)

Rules for Multiplication:

28 Math 447 - Version 2025-02-20



Math 447 – MF Lecture Notes Student edition with proofs

p · (±∞) = (±∞) · p = ±∞,(2.24)
(−p) · (±∞) = (±∞) · (−p) = ∓∞,(2.25)

0 · (±∞) = (±∞) · 0 =
0

0
= 0, and

1

∞
= 0,(2.26)

(±∞) · (±∞) =∞,(2.27)
(±∞) · (∓∞) = −∞,(2.28)

Be clear about the ramifications of those rules. Rule (2.23) implies that if we have two extended
real–valued functions f, g defined on a domain A then f + g is only defined on

A \ {x ∈ A : either [f(x) =∞ and g(x) = −∞] or [f(x) = −∞ and g(x) =∞]},

and f − g is only defined on

A \ {x ∈ A : either [f(x) = g(x) =∞] or [f(x) = g(x) = −∞]}.

That is easy to understand and remember, but the real danger comes from rule (2.26) which you
might not have expected:

0 · ±∞ = ±∞ · 0 = 0.

This convention is very convenient for integrals, but it comes at a price:
a = lim

n→∞
an and b = lim

n→∞
bn no longer implies lim

n→∞
anbn = ab.

A counterexample would be: an = n, bn = 1
n . �

Notation 2.1 (Notation Alert for intervals of integers or rational numbers).

It is at times convenient to also use the notation [. . . ], ] . . . [, [. . . [, ] . . . ], for intervals of
integers or rational numbers. We will subscript them with Z or Q. For example,

[ 3, n ]Z = [ 3, n] ∩ Z = {k ∈ Z : 3 ≤ k ≤ n},
]−∞, 7 ]Z = ]−∞, 7 ] ∩ Z = {k ∈ Z : k ≤ 7} = Z≤7,

]a, b[Q = ]a, b[∩Q = {q ∈ Q : a < q < b}.

An interval which is not subscripted always means an interval of real numbers, but we
will occasionally write, e.g., [a, b]R rather than [a, b], if the focus is on integers or rational
numbers and an explicit subscript helps to avoid confusion. �

Definition 2.15 (Absolute value, positive and negative part). For a real number x we define its
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absolute value: |x| =

{
x ifx ≥ 0,

−x ifx < 0.

positive part: x+ = max(x, 0) =

{
x ifx ≥ 0,

0 ifx < 0.

negative part: x− = max(−x, 0) =

{
−x ifx ≤ 0,

0 ifx > 0.

If f is a real–valued function then we define the functions |f |, f+, f− argument by argument:

|f |(x) := |f(x)|, f+(x) :=
(
f(x)

)+
, f−(x) :=

(
f(x)

)−
. �

For completeness we also give the definitions of min and max.

Definition 2.16 (Minimum and maximum). For two real number x, y we define

maximum: x ∨ y = max(x, y) =

{
x ifx ≥ y,
y ifx ≤ y.

minimum: x ∧ y = min(x, y) =

{
y ifx ≥ y,
x ifx ≤ y.

If f and g is are real–valued function then we define the functions f ∨ g = max(f, g)

and f ∧ g = min(f, g) argument by argument:

f∨g(x) := f(x)∨g(x) = max
(
f(x), g(x)

)
, f∧g(x) := f(x)∧g(x) = min

(
f(x), g(x)

)
. �

Remark 2.9. You are advised to compute |x|, x+, x− for x = −5, x = 5, x = 0 and convince yourself
that the following is true:

x = x+ − x−,

|x| = x+ + x−,

Thus any real–valued function f satisfies

f = f+ − f−,

|f | = f+ + f−,

Get a feeling for the above by drawing the graphs of |f |, f+, f− for the functon f(x) = 2x. �

Assumption 2.1 (Square roots are always assumed nonnegative). Remember that for any number
a it is true that

a · a = (−a)(−a) = a2, e.g., 22 = (−2)2 = 4,
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or that, expressed in form of square roots, for any number b ≥ 0

(+
√
b)(+
√
b) = (−

√
b)(−
√
b) = b.

We will always assume that “
√
b” is the positive value unless the opposite is explicitly

stated.

Example:
√

9 = +3, not −3. �

Remark 2.10. For any real number x we have
√
x2 = |x|. �(2.29)

Proposition 2.4 (The Triangle Inequality for real numbers). The following inequality is used all
the time in mathematical analysis to show that the size of a certain expression is limited from above:

Triangle Inequality : |a1 + a2 + · · ·+ an| ≤ |a1| + |a2| + · · ·+ |an|(2.30)

This inequality is true for any list of real numbers a1, a2, . . . , an.

PROOF:
It is easy to prove this for n = 2: Just look separately at the three cases where both numbers are
nonnegative, both are negative, or one of each is positive and negative. �

2.4 Functions and Sequences

Introduction 2.2. You are familiar with functions from calculus. Examples are f1(x) =
√
x and

f2(x, y) = ln(x − y). Sometimes f1(x) means the entire graph, i.e., the entire collection of points(
x,
√
x
)

in the plane and sometimes it just refers to the function value
√
x for a “fixed but arbitrary”

number x. In case of the function f2(x): Sometimes f2(x, y) means the entire graph, i.e., the entire
collection of points

(
(x, y), ln(x− y)

)
in threedimensional space. At other times this expression just

refers to the function value ln(x− y) for a pair of “fixed but arbitrary” numbers (x, y).
To obtain a usable definition of a function there are several things to consider. In the following f1(x)
and f2(x, y) again denote the functions f1(x) =

√
x and f2(x, y) = ln(x− y).

a. The source of all allowable arguments (x–values in case of f1(x) and (x, y)–values in case
of f2(x, y)) will be called the domain of the function. The domain is explicitly specified
as part of a function definition and it may be chosen for whatever reason to be only a
subset of all arguments for which the function value is a valid expression. In case of the
function f1(x) this means that the domain must be a subset of the interval [0,∞[ because
the square root of a negative number cannot be taken. In case of the function f2(x, y) this
means that the domain must be a subset of

{ (x, y) : x, y ∈ R and x− y > 0 } ,

because logarithms are only defined for strictly positive numbers.
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b. The set to which all possible function values belong will be called the codomain of the
function. As is the case for the domain, the codomain also is explicitly specified as part
of a function definition. It may be chosen as any superset of the set of all function values
for which the argument belongs to the domain of the function.
For the function f1(x) this means that we are OK if the codomain is a superset of the
interval [0,∞[. Such a set is big enough because square roots are never negative. It is OK
to specify the interval ]−3.5,∞[ or even the set R of all real numbers as the codomain. In
case of the function f2(x, y) this means that we are OK if the codomain contains R. Not
that it would make a lot of sense, but the set R ∪ { all inhabitants of Chicago } also is an
acceptable choice for the codomain.

c. A function y = f(x) is not necessarily something that maps (assigns) numbers or pairs
of numbers to numbers. Rather domain and codomain can be a very different kind of
animal. The following example will be very relevant for the remainder of the course:

At the end of Section 1.2 (A First Look at Probability) We informally defined the
probability associated with rolling a die as a function A 7→ P (A) which maps
subsets A of Ω = {1, 2, . . . , 6} to a real number 0 ≤ P (A) ≤ 1. Thus, the domain
here is 2Ω, the power set of Ω; the codomain is [0, 1] (or any superset of [0, 1]).

d. Considering all that was said so far one can think of the graph of a function f(x) with
domain D and codomain C (see earlier in this note) as the set

Γf := {
(
x, f(x)

)
: x ∈ D}.

Alternatively one can characterize this function by the assignment rule which specifies
how f(x) depends on any given argument x ∈ D. We write “x 7→ f(x)” to indicate this.
You can also write instead f(x) = whatever the actual function value will be.
This is possible if one does not write about functions in general but about specific func-
tions such as f1(x) =

√
x and f2(x, y) = ln(x− y). We further write

f : D −→ C

as a short way of saying that the function f(x) has domain D and codomain C.
In case of the function f1(x) =

√
x for which we might choose the interval X := [ 2.5, 7 ]

as the domain (small enough because X ⊆ [0,∞[) and Y := ]1, 3[ as the codomain (big
enough because 1 <

√
x < 3 for any x ∈ X) we specify this function as

either f1 : [ 2.5, 7 ]→ ]1, 3[; x 7→
√
x or f1 : [ 2.5, 7 ]→ ]1, 3[; f(x) =

√
x.
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Let us choose U := {(x, y) : x, y ∈ R and 1 ≤ x ≤ 10 and y < −2} as the domain
and V := [0,∞[ as the codomain for f2(x, y) = ln(x − y). These choices are OK because
x − y ≥ 1 for any (x, y) ∈ U and hence ln(x − y) ≥ 0, i.e., f2(x, y) ∈ V for all (x, y ∈ U .
We specify this function as

either f2 : U → V, (x, y) 7→ ln(x− y) or f2 : U → V, f(x, y) = ln(x− y). �

We incorporate what we noted above into this definition of a function.

Definition 2.17 (Function).

A function f consists of two nonempty sets X and Y and an assignment rule x 7→ f(x)
which assigns any x ∈ X uniquely to some y ∈ Y . We write f(x) for this assigned value
and call it the function value of the argument x. X is called the domain and Y is called
the codomain of f . We write

f :X → Y, x 7→ f(x).(2.31)

We read “a 7→ b” as “a is assigned to b” or “a maps to b” and refer to 7→ as the maps to
operator or assignment operator. The graph of such a function is the collection of pairs

Γf := {
(
x, f(x)

)
: x ∈ X},(2.32)

and the subset f(X) := {f(x) : x ∈ X} of Y is called the range of the function f . �

Note that the codomain) Y of f and its range f(X) can be vastly different. For example, if f : R→ R
is given by the assignment f(x) = sin(x) then f(R) = [−1, 1] is a very small part of the codomain!

Remark 2.11. The name given to the argument variable is irrelevant. Let f1, f2, X, Y, U, V be as
defined in d of the introduction to ch.2.4 (A First Look at Functions and Sequences). The function

g1 : X → Y, p 7→ √p

is identical to the function f1. The function

g2 : U → V, (t, s) 7→ ln(t− s)

is identical to the function f2 and so is the function

g3 : U → V, (s, t) 7→ ln(s− t).

The last example illustrates the fact that you can swap function names as long as you do it consis-
tently in all places. �

We all know what it means that f : R→]0,∞]; x 7→ ex has f−1(x) = ln(x) as its inverse function:
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• The arguments of f−1 will be the function values of f and the function values of f−1

will be the arguments of f : f(x) = ex = y ⇔ g(y) = ln(y) = x.
• f and f−1 cancel each other, i.e.,

f−1
(
f(y)

)
= y and f

(
f−1(x)

)
= x .

• Not so obvious but very useful: We want both codomains to be so small that
f−1

(
f(y)

)
= y is true for all y in the codomain of f and f

(
f−1(x)

)
= x is true for

all x in the codomain of f−1. One can show that this requires

domain of f = codomain of f−1 and domain of f−1 = codomain of f .

This leads to the following definition for the inverse of a function.

Definition 2.18 (Inverse function).

Given are two nonempty sets X and Y and a function f : X → Y with domain X and
codomain Y . We say that f has an inverse function if it satisfies all of the following condi-
tions which uniquely determine this inverse function, so that we are justified to give it the
symbol f−1:

(a) f−1 : Y → X , i.e., f−1 has domain Y and codomain X .
(b) f−1

(
f(x)

)
= x for all x ∈ X , and f

(
f−1(y)

)
= y for all y ∈ Y . �

Definition 2.19 (Surjective, injective and bijective functions).

Given are two nonempty sets X and Y and a function f : X → Y with domain X and
codomain Y . We say that

(a) f is “one–one” or injective, if for each y ∈ Y there is at most one x ∈ X such that
f(x) = y.

(b) f is “onto” or surjective, if for each y ∈ Y there is at least one x ∈ X such that f(x) = y.
(c) f is bijective, f is both injective and surjective. �

Remark 2.12. that One can show that a function f has an inverse f−1 if and only if f is bijective. �

Remark 2.13. that If the inverse function f−1 exists and if x ∈ X and y ∈ Y , then we have the
relation

y = f(x) ⇔ x = f−1(y) .

Example 2.7. If h is a function, we write Domh and Codh for its domain and codomain. Be sure you
understand the following:

(a) f : R → R; x → ex does not have an inverse f−1(y) = ln(y) since its domain Domf−1

would have to be the codomain R of f and ln(y) is not defined for y ≤ 0.
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(b) g : R→ ]0,∞[; x→ ex has the inverse g−1 : ]0,∞[→ R; g−1(y) = ln(y) since

Domg−1 = Codg = ]0,∞[, Codg−1 = Domg = R,

eln(y) = y for 0 < y <∞, ln(ex) = x for all x ∈ R. �

Definition 2.20 (Restriction/Extension of a function). ? Given are three nonempty sets A,X
and Y such that A ⊆ X , and a function f : X → Y with domain X . We define the restriction of f
to A as the function

f
∣∣
A

: A→ Y defined as f
∣∣
A

(x) := f(x) for all x ∈ A.(2.33)

Conversely let f : A → Y and ϕ : X → Y be functions such that f = ϕ |A. We then call ϕ an
extension of f to X . �

We now briefly address sequences and subsequences.

Definition 2.21. Let n? be an integer and assume that an item xj associated
• either with each integer j ≥ n?, In other words, we have an item xj assigned to each

j = n?, n? + 1, n? + 2, . . . .
• or with each integer j such that n? ≤ j ≤ n?. In this case an item xj is assigned to each

j = n?, n? + 1, . . . , n?.
Such items can be anything, but we usually deal with numbers or outcomes or sets of outcomes of
an experiment.

• In the first case we usually write xn? , xn?+1 , xn?+2 , . . . or (xn)n≥n? for such a collection
of items and we call it a sequence with start index n?.

• In the second case we speak of a finite sequence, which starts at n? and ends at n?.
We write (xn)n?≤n≤n? or xn? , xn?+1 , . . . , xn? for such a finite collection of items.

• If we refer to a sequence (xn)n without qualifying it as finite then we imply that we
deal with an infinite sequence, xn? , xn?+1 , xn?+2 , . . . . �

Example 2.8.
(1) If uk = k2 for k ∈ Z, then (uk)k≥−2 is the sequence of integers 4, 1, 0, 1, 4, 9, 16, . . . .
(2) If Aj = [−1 − 1

j , 1 + 1
j ] = {x ∈ R : −1 − 1

j ≤ x ≤ 1 + 1
j }, then (Aj)j≥3 is the sequence of

intervals of real numbers [−4
3 ,

4
3 ], [−5

4 ,
5
4 ], [−6

5 ,
6
5 ], . . . . This is a sequence of sets! �

Remark 2.14 (Sequences are functions). that
• One can think of a sequence (xi)i≥n? in terms of the assignment i 7→ xi. This sequence can

then be interpreted as the function

x(·) : [n?,∞[Z −→ suitable codomain; i 7→ x(i) := xi ,

where that “suitable codomain” depends on the nature of the items xi.
• In Example 2.8(1), we could chose Z as that codomain. In Example 2.8(2) 2R, the power set

of R would be an appropriate choice. �
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Definition 2.22.

• If (xn)n is a finite or infinite sequence and one pares down the full set of indices to a
subset {n1, n2, n3, . . . } such that n1 < n2 < n3 < . . . , then we call the corresponding
thinned out sequence (xnj )j∈N a subsequence of that sequence.

• If this subset of indices is finite, i.e., we have n1 < n2 < · · · < nK for some suitable
K ∈ N, then we call (xnj )j≤K a finite subsequence of the original sequence. �

Note that subsequences of finite sequences are necessarily finite whereas subsequences of infinite
sequences can be finite or infinite.

Remark 2.15. Does it matter whether we look at a sequence
(
xj
)
j∈J or at the corresponding set

{xj : j ∈ J}? The answer: THIS CAN MATTER GREATLY! Consider the sequence

x1 = −1, x2 = 1, x3 = −1, x1 = −1, . . . ; i.e., xn = (−1)n for n ∈ N

• The sequence is infinite, since the index set N is infinite
• Let A := {xj : j ∈ N}. Since sets have no duplicates, A = {−1, 1} has only two elements.
• The ordering of the indices j is lost when considering the set: There is no difference between
{−1, 1} and {1,−1}!

Considering the last point, do not confuse the ordering of the indices j with a possible ordering of
the xj ! The order may be reversed (e.g., xj = 5− j), neither increasing nor decreasing (xj = sin(j)),
or there is no ordering (xj = eye color of person j). �

Definition 2.23. We give some convenient definitions and notations for monotone sequences of
numbers, functions and sets.

(a) Let xn be a sequence of extended real–valued numbers.
• We call xn a nondecreasing or increasing sequence, if j < n ⇒ xj ≤ xn .
• We call xn a strictly increasing sequence, if j < n ⇒ xj < xn .

• We call xn a nonincreasing or decreasing sequence, if j < n ⇒ xj ≥ xn .
• We call xn a strictly decreasing sequence, if j < n ⇒ xj > xn .

• We write xn ↑ for nondecreasing xn, and xn ↑ x to indicate that lim
n→∞

xn = x,

• We write xn ↓ for nonincreasing xn, xn ↓ x to indicate that lim
n→∞

xn = x. �

(b) Let An be a sequence of sets.
• We call An a nondecreasing or increasing sequence, if j < n ⇒ Aj ⊆ An .
• We call An a strictly increasing sequence, if j < n ⇒ Aj ( An .

• We call An a nonincreasing or decreasing sequence, if j < n ⇒ Aj ⊇ An .
• We call An a strictly decreasing sequence, if j < n ⇒ Aj ( An .

• We write An ↑ for nondecreasing An, and An ↑ A to indicate that
⋃
nAn = A,

• We write An ↓ for nonincreasing An, An ↓ A to indicate that
⋂
nAn = A. �

Example 2.9.
(a) The sequence xn = − 1

n is strictly increasing.
(b) The sequence yn = 1

n is strictly decreasing.
(c) The sequence a1 = 1, an+1 = an for even n and an+1 = − 1

n for odd n, is nonincreasing.
(c) The sequence b1 = 1, bn+1 = bn for even n and bn+1 = 1

n for odd n, is nondecreasing. �
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There are different degrees of infinity for the size of a set. Finite sets and many inifinite sets are
“small enough” to list all their elements in a finite or infinite sequence. Other infinite sets are too
big for that.

Definition 2.24 (Countable and uncountable sets). Let X be a set.

(a) We call X countable if its elements can be written as a finite sequence (those are the
finite sets) X = {x1, x2, . . . , xn} or as an infinite sequences. X = {x1, x2, . . . }.

(b) We callX countably infinite X is both countable and infinite, i.e., there is an infinite
sequence. X = {x1, x2, . . . }. of distinct items xj .

(c) We call a nonempty set uncountable if it is not countable, i.e., its elements cannot
be sequenced.

(d) By convention the empty set, ∅, is countable. �

Fact 2.1. One can prove the following important facts:

(a) The integers are countable. (Easy: Z = {0,−1, 1,−2, 2,−3, 3, . . . }) lists all elements of Z
in a sequence.

(b) Subsets of countable sets are countable. (Easy: If X = {x1, x2, . . . } and A ⊆ X , then
remove all xj that are not in A. That subsequence lists the elements of A.

(c) Countable unions of countable sets are countable: IfA1, A2, . . . is a finite or infinite sequence
of sets, then A1 ∪A2 ∪ · · · is countable.

(d) The rational numbers Q are countable. A proof is given below.
(e) The real numbers R are uncountable! �

? Here is a proof that Q is countable. For fixed d ∈ N, let Ad := {n/d : n ∈ Z} (“d” for
denominator). Then is countable since it can be sequenced as follows.

Ad = {0,−1

d
,

1

d
,−2

d
,

2

d
, . . . }

The assertion follows from fact (c) and Q =
∞⋃
d=1

Ad (WHY?)

Example 2.10. ? For a, b, r ∈ R, letA(a,b,r) := {(x, y) ∈ R2} such that (x−a)2 + (y−b)2 = r2 ,

i.e., A(a,b,r) is the circle with radius |r| around the point (a, b) in the plane. It is not possible to write
the indexed collection (

A(a,b,r)

)
(a,b,r)∈R3

as a sequence, since R3 is bigger than the uncountable set R, hence cannot be sequenced. �

There is a name for those “generalized sequences”
(
xi
)
i∈I which have an index set that not neces-

sarily consists of integers n?, n? + 1, . . . , n? or n?, n? + 1, . . . or of a subset of such a set. The next
definition is marked as optional and you not need remember it for quizzes or exams. But you must
remember it well enough to understand problems and propositions which refer to families.
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Definition 2.25 (Families). ?

Let I and X be nonempty sets such that each i ∈ I is associated with some xi ∈ X . Then
a.

(
xi
)
i∈I is called an indexed family or simply a family in X .

b. I is called the index set of the family.
c. For each i ∈ IJ , xi is called a member of the family (xi)i∈I . �

Remark 2.16 (Families are functions). that
We saw in example 2.14 on p.35 that sequences

(
xn
)
n

can be interpreted as functions with domain
= index set and codomain = a set that contains all members xn. This also holds true for families and
is particularly easily understood if the family

(
xi
)
i∈I in X is written in a way that each member

explicitly tracks the index that it is associated with, i.e., we write
(
i, xi

)
i∈I . The set

Γf := {
(
i, xi

)
: i ∈ I }

is the graph Γf of the function

f : I −→ X ; i 7→ f(i) := xi .

At the end of Definition 2.4 on p.20 we defined unions and intersections of any collection of sets
(Ai)i∈J which is indexed by integers, i.e., J ⊆ Z. We did so by saying that 17⋃

i∈J
Ai = {x : ∃ i0 ∈ J s.t. x ∈ Ai0} and

⋂
i∈J

Ai = {x : ∀ i ∈ J : x ∈ Ai} .

This allows us to generalize unions and intersections of finite and infinite sequences of sets to col-
lections of sets with an arbitrary index set. Note the following:
• The next definition is NOT marked as OPTIONAL
• It contains Definition 2.4 as a special case!

Definition 2.26 (Arbitrary unions and intersections of families of sets). Let J be an arbitrary,
nonempty set and

(
Aj
)
j∈J a family of sets with index set J . We define

• The union
⋃
j∈J

Aj := {x : ∃ i0 ∈ J s.t. x ∈ Ai0}.

• The intersection
⋂
j∈J

Aj = {x : ∀ i ∈ J : x ∈ Ai}.

• If the sets Ai are disjoint, we often write
⊎
j∈J

Aj rather than
⋃
j∈J

Aj .

• Let
(
Bj
)
j∈J be a family of subsets of a set X . We call this family a partition or a

partitioning of X if the corresponding set of sets {Bi : i ∈ J} is a partition of X :
(a) i 6= j ⇒ Bi ∩Bj = ∅ (b) X =

⊎
j∈J

Bj . See Definition 2.10 on p.25. �

17See paragraph 2.2.0.4 (Some Convenient Shorthand Notation) on p.26 about ∀ and ∃.
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Notation 2.2. Empty unions and intersections: If J = ∅, it seems reasonable to define
⋃
j∈∅

Aj :=

∅, since there is no x for which one can find i0 ∈ ∅ such that x ∈ Ai0 . Also, since there are no
indices i ∈ ∅, any x, no matter what it might be, satisfies x ∈ Ai for all i ∈ ∅. So should one
define the intersection of an empty family as

⋂
j∈∅

Aj := { everything }? It turns out that the use of

an “everything” set leads to contradictions. However, if there is a universal set Ω which one can
interpret as “everything under consideration”, then

⋂
j∈∅

Aj := Ω looks reasonable. Thus, we define

(2.34)
⋃
i∈∅

Ai := ∅, always ;
⋂
i∈∅

Ai := Ω, if there is a universal set, Ω .

For nonempty index sets I and J , unions and intersections are monotone:

(2.35) I ⊆ J ⇒
[[[ ⋃
i∈I

Ai ⊆
⋃
j∈J

Aj ,
⋂
i∈I

Ai ⊇
⋃
j∈J

Aj

]]]
.

Note that (2.34) respects monotoneness, since (2.35) holds for I = ∅. �

Remark 2.17. ? For typographical reasons we sometimes use the following notation.⋃[
Ai; i ∈ I

]
:=

⋃
i∈I

Ai .

Analogous notation exists for
⋂

,
⊎

and even summation. For example, assume that g : R → R is
some rel–valued function of real numbers, and that the indices of interest are

I := {x ∈ R : x > 5 and 0 ≤ g(x) < 5} .

Then
⋂
x∈I

Bx can also be expressed as follows:

⋂
x∈I

Bx =
⋂[

Bx : x > 5 and 0 ≤ g(x) < 5
]

=
⋂

x>5 and 0≤g(x)<5

Bx . =
⋂
x> 5

0≤g(x)<5

Bx . �

Be sure that you understand how to solve the following problem. (Draw a picture!)

Problem 2.1. ? For a, b ∈ R, let Q(a,b) := {(x, y) ∈ R2 : |x − a| ≤ 3/2, |y − b| ≤ 3/2} .
Thus, Q(a,b) is the square in the plane with center (a, b) and side length 3. Compute

⋂
(a,b)∈K

Q(a,b)

and
⋃

(a,b)∈K
Q(a,b).

For K = {(a, b) ∈ R2 : −1 ≤ a, b ≤ 1} , compute
⋂

(a,b)∈K

Q(a,b) and
⋃

(a,b)∈K

Q(a,b) .

Solution:
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Let U :=
⋂

(a,b)∈K
Q(a,b) and V :=

⋃
(a,b)∈K

Q(a,b).

Fix b0 ∈ [−1, 1] and consider the squares Q(a,b0) moving from the left (a = −1) all the way to the
right (a = +1). Even Q(−1,b0) as the leftmost square has x values as big as 1/2, and Q(1,b0) as the
rightmost square has x values as small as −(1/2), Thus,

(x, y) ∈
⋂

−1≤a≤1

Q(a,b0) ⇔
[
− 1

2
≤ x ≤ 1

2
and b0 −

3

2
≤ y ≤ b0 +

3

2

]
.

Likewise, if we now also move the squares vertically from b = −1 to b = 1, then the y values of
points in the intersection are exactly those that satisfy −(1/2) ≤ y ≤ 1/2. Thus,

U = {(x, y) : |x| ≤ 1/2 and |y| ≤ 1/2} .

One sees in likewise faxhion that the points in the union V are exactly those with x values and y
values between −1− (3/2) = −5/2 and 1 + (3/2) = 5/2. Thus,

V = {(x, y) : ||x| ≤ 5/2 and |y| ≤ 5/2} . �

We finish this section with two very useful propositions. The first one (De Morgan) you already
have encountered for two sets (see Proposition 2.3 on p.2.3).

Recall for the next theorem that we have defined unions and intersections for arbitrary collections,
(Aj)j∈J , of sets. See Definition 2.5 on p.20.

Theorem 2.1 (De Morgan’s Law). Let J be an arbitrary, nonempty set. Let (Aj)j∈J be a collection of sub-
sets of a set Ω. Then the complement of the union is the intersection of the complements, and the complement
of the intersection is the union of the complements:

(2.36) (a)

⋃
j∈J

Aj

{ =
⋂
j∈J

A{j ; (b)

⋂
j∈J

Aj

{ =
⋃
k

A{k ;

PROOF of De Morgan’s law, formula (a): ?

1) First we prove that (
⋃
α
Aα){ ⊆

⋂
α
A{α:

Assume that x ∈ (
⋃
α
Aα){. Then x /∈

⋃
α
Aα which is the same as saying that x does not belong to

any of the Aα. That means that x belongs to each A{α and hence also to the intersection
⋂
α
A{α.

2) Now we prove that (
⋃
α
Aα){ ⊇

⋂
α
A{α:

Let x ∈
⋂
A{α. Then x belongs to each of the A{α and hence to none of the Aα. Then it also does

not belong to the union of all the Aα and must therefore belong to the complement (
⋃
α
Aα){. This

completes the proof of formula (a). The proof of (b) is similar. �
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Remark 2.18. Note that (2.36) holds true for any index set J . In particular, for finite and infinite
sequences of sets. �

Proposition 2.5 (Distributivity of unions and intersections). Let (An)n be a finite or infinite sequence
of sets and let B be a set. Then

⋃
j

(B ∩Aj) = B ∩
⋃
j

Aj ,(2.37)

⋂
j∈I

(B ∪Aj) = B ∪
⋂
j

Aj .(2.38)

PROOF: �

The next proposition shows how to rewrite any countable union (finite or infinite) as a DISJOINT
union.

Proposition 2.6 (Rewrite unions as disjoint unions). Let (Aj)j∈N be a sequence of sets which all are
contained within the universal set Ω. Let

Bn :=
n⋃
j=1

Aj = A1 ∪A2 ∪ · · · ∪An (n ∈ N),

C1 := A1 = B1, Cn+1 := An+1 \Bn (n ∈ N).

Then

(a) The sequence (Bj)j is increasing: m < n⇒ Bm ⊆ Bn.

(b) For each n ∈ N,
n⋃
j=1

Aj =
n⋃
j=1

Bj . Further,
∞⋃
j=1

Aj =
∞⋃
j=1

Bj .

(c) The sets Cj are mutually disjoint,
n⋃
j=1

Aj =
n⊎
j=1

Cj for all n, and
∞⋃
j=1

Aj =
∞⋃
j=1

Cj .

(d) The sets Cj (j ∈ N) form a partition of the set
∞⋃
j=1

Aj .

PROOF: ? (a) and (b) are trivial. For the proof of (c) and (d), convince yourself that

Cn = An \ (A1 ∪A2 ∪ · · · ∪An−1) .

Thus, Cn precisely contains those elements of An that have not previously been encountered! �

2.5 Preimages

Introduction 2.3. The major part of this course will be about functions

X : (Ω, P ) −→ Ω′ ; ω 7→ X(ω)
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which assign the outcomes (= elements) ω of a probability space (Ω, P ) to items X(ω) ∈ Ω′. In
the context of probability theory, such functions will be called random elements. 18 Usually, those
function values are numbers or vectors of numbers. In other words, the codomain often is (a subset
of) R or Rn. It is customary to call a real–valued random element

Y : (Ω, P ) −→ B (B ⊆ R); ω 7→ Y (ω)

a random variable. 19

Let us take another look at Examples 1.3 (Two rolls of a die), 1.4 (Sum of two die rolls), 1.6, and
Remark 1.7. This material begins on p.10 of Section 1.2 (A First Look at Probability). There,

• Ω = [1, 6]2Z, Ω′ = [2, 12]Z , P was determined by P{ω} =
1

36
(ω ∈ Ω),

• Y : Ω→ Ω′ ; ω = (ω1, ω2) 7→ Y (ω1, ω2) := ω1 + ω2 .
20

The probability space (Ω, P ) represent the outcomes of two rolls of a fair die:
• Interpret ω = (ω1, ω2) as follows: Die1 yields ω1, die2 yields ω2.

� Thus, ω = (5, 2) represents the outcome of die1 giving a 5 and die2 giving a 2.
The function Y was used to “transport” the probability measure P , defined on the powerset of the
domain, Ω, to a probability measure PY , defined on the powerset of the Codomain, Ω., by means of
the formula (1.25) (see Remark 1.7, p.17). We repeat it here:
(2.39) PY (B) := P{Y ∈ B} , i.e., PY (B) = P{ω ∈ Ω : Y (ω) ∈ B}, for B ⊆ Ω′ .

This formula makes those sets so important that they warrant their own definition. �

Since the following definition is of interest not only for probabilistic topics, we now switch from the
probabilistic function notation Y : Ω→ Ω′, to the more familiar f : X → Y .

Definition 2.27.

Let X,Y be two nonempty sets. Let f : X → Y and B ⊆ Y . Then

f−1(B) := {x ∈ X : f(x) ∈ B}(2.40)

is a subset of X which we call the preimage of B under f . �

Remark 2.19.
(a) ? If we vary B ⊆ Y , i.e., B ∈ 2Y , we can think of the preimage as a function

2Y → 2X (since f−1(B) ∈ 2X ).
(b) The symbol f−1 is the same for the preimage function f−1 : 2Y → 2X and for the ordinary

inverse function f−1 : Y → X , if this inverse function exists! DO NOT CONFUSE THOSE
TWO CONCEPTS:
��� Arguments and function values of the inverse function are elements of X and Y ,
��� Arguments and function values of the preimage function are subsets of X and Y .

(c) The preimage f−1(B) exists for any choice of X,Y, f : X → Y , and B ⊆ Y , even if the
inverse function does not exist! �

18See Definition 5.15 (Random element) on p.125
19See Definition 5.14 (Random Variables and Random Vectors) on p.124. We are trying to adhere to the probability

theory conventions of using capital letters U, V,W,X, Y, Z rather than f, g, h for random elements and in particular the
letter Y for random variables.

20We often prefer to write ω rather than ~ω if the the symbol Ω is involved, even if it represents a vector.
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�

Example 2.11. This example illustrates the point made in Remark 2.19(c). Let

f : R → [−1,∞[ ; f(x) = x2 .

If there was an inverse function, f−1, then its domain must be the codomain of f , and its codomain
must be the domain of f . In other words,

f−1 : [−1,∞[→ R ; f−1(y) =
√
y .

it would have to assign to EACH y ∈ [−1,∞[ a UNIQUE x ∈ R (that x would be f−1(y)) such that
f(x) = y. But such is not the case:
• If y = −0.5, then there is no x ∈ R such that x2 = y
• If y = 10, then there are too many x ∈ R such that x2 = y:

Both x =
√

10 and x = −
√

10 satisfy x2 = 10.
• Note that, for the preimages, we obtain f−1

(
{−0.5}

)
= ∅

and f−1
(
{10}

)
= {−

√
10,
√

10}. Coincidence? �

Example 2.12. For a more extreme example, consider

g : [0,∞[→ R ; g(x) = sin(x) .

If B1 = [5, 10], B2 = {0}, what are g−1(B1) and g−1(B2)? So, does each y ∈ R have a unique
x ∈ [0,∞[ such that g(x) = y? �

Example 2.13. For an even more extreme example, consider the constant function

h : R → R ; h(x) = 2π .

If B1 = [5, 10], B2 = {2π}, B3 = [−500, 5], what are h−1(Bj)(j = 1, 2, 3) ? Again, does each y ∈ R
have a unique x ∈ [0,∞[ such that h(x) = y? �

Example 2.14. Let
h :]0, 3[→ ]0, 9[ ; h(x) = x2 .

Does h have an inverse? The answer is Yes. The inverse function of h is

h−1 :]0, 9[→ ]0, 3[ ; h−1(y) =
√
y ,

since for each 0 < y < 9, x =
√
y is the unique solution of the equation h(x) = y.

Note the following:
• h−1(4) = 2, but h−1{4} = {2} and NOT 2.
• h−1(−4) does not exist, but h−1{−4} = ∅! �
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Notation 2.3 (Notational conveniences for preimages - I).

If we have a set that is written as {. . . } then we may write f−1{. . . } instead of f−1({. . . }).
Specifically for singletons {y} such that y ∈ Y , it is OK to write f−1{y}.
You also are allowed to write f−1(y) instead of f−1{y}, even though this author thinks that
it is not a good idea to confound elements y and subsets {y} of Y .

VERY IMPORTANT: Work the following examples closed book and then check that your solutions
are correct!

Example 2.15 (Preimages). Let f : R→ R; f(x) = x2. Determine
a. f−1(]− 4,−2[), b. f−1([1, 2]), c. f−1([5, 6]), d. {−4 < f < −2 or 1 ≤ f ≤ 2 or 5 ≤ f < 6]}.

Solution:
a. f−1(]− 4,−2[) = { x ∈ R : x2 ∈]− 4,−2[ } = { −4 < f < −2 } = ∅.
b. f−1([1, 2]) = { x ∈ R : x2 ∈ [1, 2] } = { 1 ≤ f ≤ 2 } = [−

√
2,−1] ∪ [1,

√
2].

c. f−1([5, 6]) = { x ∈ R : x2 ∈ [5, 6] } = { 5 ≤ f ≤ 6 } = [−
√

6,−
√

5] ∪ [
√

5,
√

6].
d. {−4 < f < −2 or 1 ≤ f ≤ 2 or 5 ≤ f < 6]} = f−1(]− 4,−2[ ∪ [1, 2] ∪ [5, 6])

= { x ∈ R : x2 ∈ ]− 4,−2[ or x2 ∈ [1, 2] or x2 ∈ [5, 6] }
= [−

√
2,−1] ∪ [1,

√
2] ∪ [−

√
6,−
√

5] ∪ [
√

5,
√

6]. �

Example 2.16 (Preimages). Let f : R→ R; f(x) = x2. Determine
a. f−1(]− 4, 2[), b. f−1([1, 3]), c. {−4 < f < 2 and 1 ≤ f ≤ 3}.

Solution:
a. f−1(]− 4, 2[) = { x ∈ R : x2 ∈ ]− 4, 2[ } = { x ∈ R : −4 < x2 < 2 } = ]−

√
2,
√

2[.
b. f−1([1, 3]) = { x ∈ R : x2 ∈ [1, 3] } = { x ∈ R : 1 ≤ x2 ≤ 3 } = [−

√
3,−1] ∪ [1,

√
3].

c. {−4 < f < 2 and 1 ≤ f ≤ 3} = f−1(]− 4, 2[ ∩ [1, 3])
= { x ∈ R : x2 ∈ ]− 4, 2[ and x2 ∈ [1, 3] }
= { x ∈ R : 1 ≤ x2 < 2 } = ]−

√
2,−1] ∪ [1,

√
2[ . �

Proposition 2.7. Some simple properties:

f−1(∅) = ∅(2.41)

B1 ⊆ B2 ⊆ Y ⇒ f−1(B1) ⊆ f−1(B2) (monotonicity of f−1{. . . } )(2.42)

f−1(Y ) = X always!(2.43)

PROOF of 2.42:
We show that x ∈ f−1(B1) ⇒ f−1(B1) as follows.

x ∈ f−1(B1)
(a)⇒ f(x) ∈ B1

(b)⇒ f(x) ∈ B2
(c)⇒ x ∈ f−1(B2)

In the above, (a) and (c) state the definition of a preimage and (b) follows from B1 ⊆ B2

The proof of of 2.41 and 2.42 is left as an exercise. �
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Notation 2.4 (Notational conveniences for preimages - II).

If we have a set that is written as {. . . } then we may write f−1{. . . } instead of f−1({. . . }).
Specifically for singletons {y} such that y ∈ Y , it is OK to write f−1{y}.
You also are allowed to write f−1(y) instead of f−1{y}, even though this author thinks that
it is not a good idea to confound elements y and subsets {y} of Y .

Example 2.17. Consider the random variable Y : (ω1, ω2) 7→ ω1 + ω2 of the introduction to this
section.
• PY ({10}) = P

(
{(ω1, ω2) ∈ Ω : Y (ω1, ω2) = 10}

)
can be written PY ({10}) = P

(
Y −1{10}

)
= P{Y = 10}.

• PY ({(ω′)}) = P
(
{(ω1, ω2) ∈ Ω : Y (ω1, ω2) = ω′}

)
.

can be written PY ({ω′}) = P
(
Y −1{ω′}

)
= P{Y = ω′}.

• PY (B) = P
(
{ω ∈ Ω : Y (ω) ∈ B}

)
can be written PY (B) = P

(
Y −1(B)

)
= P{Y ∈ B}.

It is very important that you remember the first four of the six formulas of the Theorem 2.2 below.
In the proof of Theorem 5.11 on p.123 they show the following: For a function X : (Ω, P ) → Ω′,
the assignment

A 7→ PX(A) := P
(
f−1(A)

)
defines a probability measure 21 on Ω′.

Theorem 2.2 (f−1 is compatible with all basic set ops). Assume that X,Y be nonempty, f : X → Y , J
is an arbitrary index set. 22 Further assume that B ⊆ Y and that Bj ⊆ Y for all j. Then

f−1(
⋂
j∈J

Bj) =
⋂
j∈J

f−1(Bj)(2.44)

f−1(
⋃
j∈J

Bj) =
⋃
j∈J

f−1(Bj)(2.45)

f−1(B{) =
(
f−1(B)

){(2.46)

B1 ∩B2 = ∅ ⇒ f−1(B1) ∩ f−1(B2) = ∅.(2.47)

f−1(B1 \B2) = f−1(B1) \ f−1(B2)(2.48)

f−1(B1∆B2) = f−1(B1)∆f−1(B2)(2.49)

Note that (2.47) implies that the preimages of a disjoint family form a disjoint family.

PROOF: ? MF330 notes, ch.8 �

Proposition 2.8 (Preimages of function composition). Let X,Y, Z be arbitrary, nonempty sets.

21the so–called distribution of X with respect to P . See Definition 5.13 (Probability Distribution) on p.124.
22If you have problems with the concept of a family, think of J as a set of integers which are bounded below, i.e., that

J is the index set of a finite or infinite sequence or subsequence of sets
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Let f : X → Y and g : Y → Z and h : X → Z the composition

h(x) = g ◦ f(x) = g
(
f(x)

)
.

Let U ⊆ X and W ⊆ Z. Then

(2.50) (g ◦ f)−1 = f−1 ◦ g−1, i.e., (g ◦ f)−1(W ) = f−1
(
g−1(W )

)
for all W ⊆ Z.

PROOF: ? MF330 notes, ch.8 �

Try to understand the above with a simple example, such as X = Y = R,
f(x) = 3x− 1, g(y) = y2, and W = [0, 1], W = {−10}W = {10} (three different choices for W ).

Given a function f : X → Y , the preimage acts as a set function which assigns subsets B of the
codomain to the subsets f−1(B) of the domain. There is a “dual” definition which goes the other
way: It assigns set in the domain to sets in the codomain.

Definition 2.28 (Direct image). ?

Let X,Y be two nonempty sets and f : X → Y . Let A ⊆ X . We call the set

(2.51) f(A) := {f(a) : a ∈ A} .

which consists of all function values of arguments in A, the direct image of A under f . �

Note that the range f(X) of f (see Definition 2.17 (Function) on p.33) is a special case of a direct
image.

Notation 2.5 (Notational conveniences for direct images).

As we do for preimages, if we deal with a set that is written as {. . . }, then we may write
f{. . . } instead of f({. . . }). In particular, we can write f{x} for singletons {x} ⊆ X . �

4!4!4!
The same symbol f is used for the original function f : X → Y and the direct
image which we can think of as a function

2X → 2Y ; A 7→ f(A) = {f(a) : a ∈ A} , (A ⊆ X) .

Be careful not to let this confuse you! �

Example 2.18 (Direct images). ? Let f : R→ R; f(x) = x2.

(a) f(]− 4,−2[) = { x2 : x ∈ ]− 4,−2[ } = { x2 : −4 < x < −2 } = ]4, 16[.
(b) f([1, 2]) = { x2 : x ∈ [1, 2] } = { x2 : 1 ≤ x ≤ 2 } = [1, 4].
(c) f([5, 6]) = { x2 : x ∈ [5, 6] } = { x2 : 5 ≤ x ≤ 6 } = [25, 36].
(d) f(]− 4,−2[ ∪ [1, 2] ∪ [5, 6]) = { x2 : x ∈ ]− 4,−2[ or x ∈ [1, 2] or x ∈ [5, 6] }

= ]4, 16[ ∪ [1, 4] ∪ [25, 36] = [1, 16[ ∪ [25, 36]. �
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Example 2.19 (Direct images). ? Let f : R→ R; f(x) = x2.

(a) f(]− 4, 2[) = { x2 : x ∈]− 4, 2[ } = { x2 : −4 < x < 2 } = ]4, 16[.
(b) f([1, 3]) = { x2 : x ∈ [1, 3] } = { x2 : 1 ≤ x ≤ 3 } = [1, 9].
(c) f(]− 4, 2[ ∩ [1, 3]) = { x2 : x ∈ ]− 4, 2[ and x ∈ [1, 3] } = { x2 : 1 ≤ x < 2 } = [1, 4[. �

2.6 Infimum and Supremum: Generalized Minimum and Maximum

Introduction 2.4. Let A :=]2, 4] and B := [6, 10[. Then A possesses 4 as its maximum, and the
minimum of B is 6.
It is just as obvious that 2 plays a role for A very similar to the one that min(B) = 6 plays for B, and
that 10 plays a role for B very similar to the one that max(A) = 4 plays for A.
But is min(A) = 2 and max(B) = 10? The answer is NO: The minimum and the maximum of a set
must belong to that set, and neither is 2 ∈ A, nor is 10 ∈ B.
Let us find some appropriate names for those two numbers. In the pictures below the sets A and B
are colored blue and their upper and lower bounds are colored red.

A: ]]] ]]] B: [[[ [[[

2 4 6 10
Upper bounds are those numbers so far “up” to the right that they dominate each item in the set.
For example, 20 is an upper bound of both A and B, since 20 ≥ a for each a ∈ A and 20 ≥ b for each
b ∈ B. Clearly any x > 20 also is an upper bound for both A and B.
What about x = 2π ≈ 6.28? That one is smaller than 20 but still an upper bound of A, since 2π ≥ a
for each a ∈ A. However, it is not an upper bound of B since, e.g., 7.5 ∈ B and 6 > 7.5 is false.
Lower bounds are the opposite of upper bounds. They are so far “down” to the left that they are
dominated by each item in the set. For example, −

√
2 is a lower bound of both A and B, since

−
√

2 ≤ a for each a ∈ A and −
√

2 ≤ b for each b ∈ B. Clearly any x < −
√

2 also is a lower bound
for both A and B. Matter of fact, any negative number is a lower bound of both A and B.
What about x = π? That one is larger than −

√
2 but still a lower bound of B, since π ≤ b for each

b ∈ B. However, π is too large for a lower bound of A. For example, 3 ∈ A and π < 3 is false.

Our goal was to find appropriate names for 2 in relation to A and for 10 in relation to B.
2 is similar to 6 = min(B) in the following sense:
• 2 is a lower bound of A, just as min(B) is a lower bound of B
• Not only that, but 2 is the GREATEST lower bound of A, just as min(B) is the greatest lower

bound of B
Similarly, 10 is similar to 4 = max(A) in the following sense:
• 10 is an upper bound of B, just as max(A) is an upper bound of A.
• Not only that, but 10 is the LEAST (smallest) upper bound of A, just as max(A) is the least

upper bound of A.
In summary, greatest lower bound and least upper bound or something equivalent seems to be
bood names. �

We give mathematical precision to our findings in the next definition. You will not be asked to
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recite it from memory, but you are expected to determine the min/max/inf/sup of a given set of
real numbers.

Definition 2.29 (Minimum, maximum, infimum, supremum). ? Let A ⊆ R, A 6= ∅, and let l
and u be real numbers.

(a) We call l a lower bound of A if l ≤ a for all a ∈ A.
(b) We call u an upper bound of A if u ≥ a for all a ∈ A.
(c) We call A bounded above if this set has an upper bound.
(d) We call A bounded below if A has a lower bound.
(e) We call A bounded if A is both bounded above and bounded below.

(f) The minimum of A, if it exists, is the unique lower bound l of A such that l ∈ A.
(g) A maximum of A, if it exists, is the unique upper bound u of A such that u ∈ A.

Since they are uniquely determined by A, we may write min(A) for the minimum of A and
max(A) for the maximum of A.

(h) If A is bounded below (i.e., A has lower bounds), we call the maximum of those
bounds the infimum of A. Thus, it is the greatest lower bound of A. We write inf(A)
or g.l.b.(A). Otherwise (A is not bounded below), we define inf(A) := −∞.

(i) If A is bounded above (i.e., A has upper bounds), we call the minimum of those
bounds the supremum of A. Thus, it is the least upper bound of A. We write sup(A)
or l.u.b.(A). Otherwise (A is not bounded above), we define sup(A) :=∞. �

Problem 2.2. Let A = ]− 3,−1] ∪ [2, 4[∪{−4, 0, 1}. Determine min(A), max(A), inf(A), sup(A).

Solution: In the picture below the segments belonging to A are colored blue, upper and lower
bounds are colored red,

||| ]]] ]]] ||| ||| [[[ [[[ lower bounds of A = ]−∞,−4 ]

-4 -3 -1 0 1 2 4 upper bounds of A = [ 4,∞[

• inf(A) = min(A) = −4 = greatest lower bound = max{ lower bounds }
• sup(A) = 4 = least upper bound = min({ upper bounds }; max(A) = DNE, since 4 /∈ A

Remark 2.20. Here is the cookbook approach to infima and suprema. (NOT OPTIONAL!)

• Infima are generalized minima and suprema are generalized maxima.

• Think of inf(A) as a minimum that does not need to belong to A.
• Traverse the lower bounds of A from the left (from −∞) to the rigt until you “hit” A.

That’s the greatest lower bound. That’s inf(A).

• Think of sup(A) as a maximum that does not need to belong to A.
• Traverse the upper bounds of A from the right (+∞) to the left until you “hit” A.

That’s the least (smallest) upper bound. That’s sup(A). �
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The min/max/inf/sup of a function or family or sequence which takes values in R, is the
min/max/inf/sup of the set of all values that this entity can have. We give explicit definitions
of the notation of those items only for infimum and supremum. It is obvious how to define their
maximum and minimum. (But remember: max and min are not guaranteed to exist!)

Definition 2.30. ? This is marked optional, but be sure you can work with the most common
notation introduced here, including the counterparts for min and max!

Let X be an arbitrary set (need not be numbers or elements of Rd!) and A ⊆ X .
Let f : X → R be real–valued. The supremum and infimum of f on A are defined as

sup
A
f := sup

x∈A
f(x) := sup{f(x) : x ∈ A}(2.52)

inf
A
f := inf

x∈A
f(x) := inf{f(x) : x ∈ A}.(2.53)

The supremum and infimum of a family of real numbers (xi)i∈I (xi)i∈I are defined as

sup (xi) := sup
i

(xi) := sup (xi)i := sup (xi)i∈I := sup
i∈I

xi := sup {xi : i ∈ I}.(2.54)

inf (xi) := inf
i

(xi) := inf (xi)i := inf (xi)i∈I := inf
i∈I

xi := inf {xi : i ∈ I}. �(2.55)

The definition above for families extends to sequences xn, defined for n = n∗, n∗ + 1, n∗ + 2, . . . .

The supremum and infimum of a sequence of real numbers (xn)n≥n∗ are defined as

sup (xn) := sup (xn)n≥n∗ := sup
n≥n∗

xn = sup {xn : n = n∗, n∗ + 1, n∗ + 2, . . . }(2.56)

inf (xn) := inf (xn)n≥n∗ := inf
n≥n∗

xn = inf {xn : n = n∗, n∗ + 1, n∗ + 2, . . . } �(2.57)

Problem 2.3.
(a) Let f(x) := | sinx|; Determine min, max, inf and sup of f on R \ {kπ : k ∈ Z}.
(b) Let (xα)α∈J be the family defined by xα := cosα; J := R \ {kπ : k ∈ Z}.

Determine min, max, inf and sup of (xα)α∈J .
(c) Let (an :=

n

n+ 1
;n = 0, 1, 2, . . . . Determine min, max, inf and sup of the sequence (an)∞n=0.

Solution:
(a) Let A := R \ {kπ : k ∈ Z}. Then max

A
f = sup

x∈A
f(x) = 1,

min{f(x) : x ∈ A} DNE, inf{f(x) : x ∈ R and x 6= kπ for k ∈ Z} = 0.

(b) min(xα)α∈J DNE, max
α∈J

xα DNE, inf
α

(xα) = −1, sup{xα : α ∈ J} = 1.

(c) min(an) = inf
n≥0

an = 0,
∞

max
n=0

an DNE, sup{xn : n = 0, 1, 2, . . . } = 1. �

49 Math 447 - Version 2025-02-20



Math 447 – MF Lecture Notes Student edition with proofs

Theorem 2.3. ?

Let α1 ≥ α2 ≥ · · · be a nonincreasing sequence and β1 ≤ β2 ≤ · · · a nondecreasing sequence of
real numbers. Then

(a) lim
n→∞

αn exists (might be −∞) and equals inf
n∈N

αn.

(b) lim
n→∞

βn exists (might be∞) and equals sup
n∈N

βn.

Let ∅ 6= A ⊆ R and fn, gn : A→ R two sequences of real–valued functions on A, such that

(fn)n is nonincreasing, i.e., f1 ≥ f2 ≥ · · · , i.e., f1(x) ≥ f2(x) ≥ · · · , for all x ∈ A,
(gn)n is nonincreasing, i.e., g1 ≤ g2 ≤ · · · , i.e., g1(x) ≤ g2(x) ≤ · · · , for all x ∈ A,

Then
(c) x→ lim

n→∞
fn(x) exists (might be −∞ for some or all x ∈ A) and equals x→ inf

n∈N
fn(x).

(d) x→ lim
n→∞

gn(x) exists (might be∞ for some or all x ∈ A) and equals x→ sup
n∈N

gn(x).

PROOF: Will not be given here. Note though, that (c) follows from (a) and (d) follows from (b),
simply by freezing x and examining the sequences of numbers, αn := fn(x) and βn := gn(x). �

Example 2.20. Let fn :] − 1, 0] → R; fn(x) :=
n∑
j=0

xn, and gn : [0,∞[→ R; gn(x) :=
n∑
j=0

xn. (Same

function (geometric series with quotient x), but different domains!) Then

lim
n→∞

fn(x) = lim
n→∞

1− xn+1

1− x
↓ 1

1− x
= inf

n≥0
fn(x) (↓, since −xn+1 ≥ 0) ,

lim
n→∞

gn(x) = lim
n→∞

1− xn+1

1− x
↑ 1

1− x
= sup

n≥0
gn(x) for 0 ≤ x < 1,

↑ ∞ = sup
n≥0

gn(x) for x ≥ 1 (since xn ≥ 1). �

2.7 Cartesian Products

We next define cartesian products of sets. Those mathematical objects generalize rectangles

[a1, b1]× [a2, b2] = {(x, y) : x, y ∈ R, a1 ≤ x ≤ b1 and a2 ≤ y ≤ b2}

and quads

[a1, b1]× [a2, b2]× [a3, b3] = {(x, y, z) : x, y, z ∈ R, a1 ≤ x ≤ b1, a2 ≤ y ≤ b2 and a3 ≤ z ≤ b3}.

which you certainly have encountered in multivariable calculus.

Definition 2.31 (Cartesian Product). Let X and Y be two sets The set

X × Y := {(x, y) : x ∈ X, y ∈ Y }(2.58)
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is called the cartesian product of X and Y . We write X2 as an abbreviation forX ×X .

Note that the order is important: (x, y) and (y, x) are different unless x = y.

This definition generalizes to more than two sets as follows:

Let X1, X2, . . . , Xn be sets. The set

X1 ×X2 · · · ×Xn := {(x1, x2, . . . , xn) : xj ∈ Xj for each j = 1, 2, . . . n}(2.59)

is called the cartesian product of X1, X2, . . . , Xn.
We write Xn as an abbreviation forX ×X × · · · ×X .

Example 2.21. In your multivariable calculus course you have learned about twodimensional vec-
tors and threedimensional vectors. Convenient notations would often be

(x, y) ∈ R2 , (a, b) ∈ R2 , (x, y, z) ∈ R3 , (a, b, c) ∈ R3 .(2.60)

Note that those vectors are elements of the cartesian products R2 = R× R R3 = R× R× R.
In general, any finite list of real numbers

(
β1, β2, . . . , βd

)
is an element of Rd which we call a d–

dimensional vector of real numbers. You probably are used to write Rn rather than Rd. We choose
the letter d (first letter of “dimension”), to keep the symbol n free for other purposes, such as denot-
ing the size of a sample.
Here is an example.

(8,−3, 0, 4,−7)

is a 5–dimensional vector of Integers. Since integers are special cases of rational numbers which
themselves are also real numbers, this vector is an element of each one of Z5,Q5,R5.
The notation used in (2.60) does not scale for higher dimensional vectors. On the other hand, the
expression

(
β1, β2, . . . , βd

)
is very suitable. However, this is very lengthy notation, so we use the

symbol for the subscripted components (that’s β) and write an arrow on top of that symbol to
indicate that we are dealing with a vector. 23

We will use this arrow notation for vectors very frequently. Here are some examples.

~x = (x1, x2, . . . , xn) , ~b = (b1, b2, b3, b4) , ~Z = (Z1, Z2, . . . , Zd) .

Assuming that each subscripted item belongs to R we have ~x ∈ Rn,~b ∈ R4, ~Z ∈ Rd. �

Notation 2.6. Notational conveniences for vectors: Unless something else is stated, we will always
assume the following. If X is a nonempty set (usually, X is a set of numbers),

~x ∈ Xd is shorthand for ~x =
(
x1, x2, . . . , xd

)
∈ Xd (i.e., xj ∈ X for j = 1, 2, . . . , d.)

We extend this convention to the case X1 × · · · ×Xd with potentially different sets Xj . �

23We borrow that notation from physics.
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This is best explained by example.

Example 2.22. Let a1 < b1, a2 < b2, . . . , ad < bd, be d pairs of numbers (d ∈ N). We apply the
notation established above to Xj := ]aj , bj ] and see that

~y ∈ ]a1, b1 ] × · · ·× ]ad, bd ] is shorthand for
~y =

(
y1, y2, . . . , yd

)
, where ai < yi ≤ bi, for i = 1, . . . , d.

It is customary to call sets of the form
��� ]a1, b1[ × · · ·× ]ad, bd[, ��� ]a1, b1 ] × · · ·× ]ad, bd ],
��� [ a1, b1[ × · · · × [ ad, bd[, ��� [ a1, b1 ] × · · · × [ ad, bd ],

d–dimensional rectangles. �

Example 2.23. Cartesian products occur in a natural manner in probability theory when one models
the outcomes of repeated experiments.

(a) If the experiment is three rolls of a die, then the set

Ω =
(
[1, 6]Z

)3
= {1, 2, 3, 4, 5, 6}3

is a natural container for the outcomes of this experiment. For example, (4, 2, 6) ∈ Ω is the
outcome of having rolled a 4 followed by a 2 followed by a 6.

(b) n tosses of a coin (n ∈ N) are modeled as follows. Let H stand for Heads and T for Tails.
Then let

Ω = {H,T}n

For example, if n = 5, then (H,H, T,H, T ) ∈ Ω models the outcome of having tossed Heads
followed by Heads followed by Tails followed by Heads followed by Tails. This example
demonstrates that cartesian products are also defined for sets that do not necessarily consist
of numbers �

Here is an abstract example.

Example 2.24. The graph Γf of a function with domain X and codomain Y (see def.2.32) is a subset
of the cartesian product X × Y . �

Proposition 2.9. Let X1, X2, Xn be finite, nonempty sets. Then,

The size of the cartesian product is the product of the sizes of its factors, i.e.,∣∣X1 ×X2 × · · · ×Xn

∣∣ =
∣∣X1

∣∣ · ∣∣X2

∣∣ · ∣∣X3

∣∣ · · · ∣∣Xn

∣∣ .(2.61)

PROOF:
Case n = 2: This trivial for two sets, since the proposition simply states that a matrix (a rectangular
grid) of m rows and n columns possesses mn entries.
Case n = 3: For three setsX1, X2, X3, we arrange the |X1|·|X2| entries ofX1×X2 into a single row. In
other words, we consider the members (x

(1)
i , x

(2)
j , x

(3)
k ) ofX1×X2×X3 as members

(
(x

(1)
i , x

(2)
j ), x

(3)
k

)
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of
(
X1×X2

)
×X3. We apply the result for two sets to the cartesian product of X1×X2 and X3 and

obtain ∣∣X1 ×X2 ×X3

∣∣ =
∣∣(X1 ×X2)×X3

∣∣ =
∣∣X1 ×X2

∣∣ · ∣∣X3

∣∣ . =
∣∣X1

∣∣ · ∣∣X2

∣∣ · ∣∣X3

∣∣ .
We repeat this procedure for n = 3, 4, 5, . . . sets.
Case n: We arrange the elements of X1 ×X2 ××Xn−1 into a single row and

interpret each (x1, . . . , xn) ∈ X1 ×Xn as
(
(x1, . . . , xn−1), xn

)
∈ (X1 ×Xn−1)×Xn.

Thus, the sets X1 ×Xn and (X1 ×Xn−1)×Xn have the same size. We know from the prior step,
case n− 1, that

∣∣X1 × · · · ×Xn−1

∣∣ =
∣∣X1

∣∣ · · · ∣∣Xn−1

∣∣. Hence,∣∣X1 × · · · ×Xn

∣∣ =
∣∣ (X1 × · · ·Xn−1)×Xn

∣∣ =
(∣∣X1 × · · ·Xn−1

∣∣) · ∣∣Xn

∣∣
=
(∣∣X1

∣∣ · · · ∣∣Xn−1

∣∣)∣∣Xn

∣∣ =
∣∣X1

∣∣ · ∣∣X2

∣∣ · ∣∣X3

∣∣ · · · ∣∣Xn

∣∣ . �
2.8 Indicator Functions

Indicator functions often are a great notational convenience, for example, when dealing with func-
tions that are defined differently in two or more parts of the domain.

Definition 2.32 (indicator function for a set).

Let Ω be a nonempty set and A ⊆ Ω. Let 111A : Ω→ {0, 1} be the function defined as

(2.62) 111A(ω) :=

{
1 if ω ∈ A,
0 if ω /∈ A.

111A is called the indicator function of the set A. 24 �

Example 2.25. The following examples demonstrate the usefulness of indicator functions.
(a) Let f : R→ R be the function

f(x) :=


3x if − 10 < x ≤ 0,

sin(7x) if 2 ≤ x ≤ 4,

4x3 + 6, ifx > 10,

0, else.
More compactly, f(x) = 3x · 111]−10,0] + sin(7x) · 111[2,4] + (4x3 + 6) · 111]10,∞[.

(b) The so-called density function of the exponential distribution with parameter β > 0 is 25

f(y) =

{
1
β e
−y/β , 0 ≤ y <∞ ,

0 , elsewhere .
This can also be written as f(y) = 1

β e
−y/β 111[0,∞[(y).

25See definition 10.12 (Exponential distribution) on p.235.
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(c) Let f : R2 → R be the function f(x, y) := 2x2 − xy. Let A := {(x, y) ∈ R2 : x2 + y2 = 9},
i.e., A is the circle centered at the origin with radius 3. Recall from (multivariable) calculus
that the integral of f on the set A is defined (by means of Riemann sums) as follows:∫
A
f(x, y)d(x, y) =

∫
R

111A(x, y)f(x, y)d(x, y). Here, R is some rectangle [a1, b1]× [a1, b1] big

enough to contain A. 26 For example, once could chose R = [−3, 3]× [−4, 8]. �

Proposition 2.10. Let A1, A2, . . . be subsets of Ω. Then

A1 ⊆ A2 ⇒ 111A1 ≤ 111A2 ,(2.63)
111A1∩A2 = min(111A1 ,111A2), 111⋂[An :n∈N] = inf

n∈N
111An ,(2.64)

111A1∪A2 = max(111A1 ,111A2), 111⋃[An :n∈N] = sup
n∈N

111An ,(2.65)

111A{
1

= 1− 111A1 ,(2.66)

111A1]A2 = 111A1 + 111A2 , 111⊎[An :n∈N] =
∑
n∈N

111An , (A1, A2, . . . disjoint).(2.67)

PROOF: The proof is an easy exercise.

2.9 Exercises for Ch.2

2.9.1 Exercises for Sets

Exercise 2.1. Prove (2.12) of prop.2.2 on p.23.

Exercise 2.2. Prove the set identities of prop.2.1.

Exercise 2.3. Prove that for any three sets A,B,C it is true that (A \B) \ C = A \ (B ∪ C).
Hint: use De Morgan’s formula (2.13.a). �

Exercise 2.4. Let X = {x, y, {x}, {x, y} }. True or false?
a. {x} ∈ X c. { {x} } ∈ X e. y ∈ X g. {y} ∈ X
b. {x} ⊆ X d. { {x} } ⊆ X f. y ⊆ X h. {y} ⊆ X �

For the subsequent exercises refer to Definition 2.11 on p.25 of the size
∣∣A∣∣ of a setA and to Definition

2.31 on p.50 of Cartesian products.

Exercise 2.5. Find the size of each of the following sets:
a. A = {x, y, {x}, {x, y} } c. C = {u, v, v, v, u} e. E = {sin(kπ/2) : k ∈ Z}
b. B = {1, {0}, {1} } d. D = {3z − 10 : z ∈ Z} f. F = {πx : x ∈ R} �

Exercise 2.6. Let X = {x, y, {x}, {x, y} } and Y = {x, {y} }. True or false?
a. x ∈ X ∩ Y c. x ∈ X ∪ Y e. x ∈ X \ Y g. x ∈ X∆Y
b. {y} ∈ X ∩ Y d. {y} ∈ X ∪ Y f. {y} ∈ X \ Y h. {y} ∈ X∆Y �

26A review of some aspects of classical (Riemann) integrals will be given in Chapter 3 (Calculus Revisited).
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Exercise 2.7. Let X = {1, 2, 3, 4} and let Y = {x, y}.
a. What is X × Y ? c. What is

∣∣X × Y ∣∣? e. Is (x, 3) ∈ X × Y ? g. Is 3 · x ∈ X × Y ?
b. What is Y ×X? d. What is

∣∣X × Y ∣∣? f. Is (x, 3) ∈ Y ×X? h. Is 2 · y ∈ Y ×X? �

Exercise 2.8. Let X = {8}. What is 2(2X)?

Exercise 2.9. Let A = {1, {1, 2}, 2, 3, 4} and B = {{2, 3}, 3, {4}, 5}. Compute the following.
a. A ∩B b. A ∪B c. A \B d. B \A e. A4B �

Exercise 2.10. Let A,X be sets such that A ⊆ X and let x ∈ X . Prove the following:
a. If a ∈ A then A = (A \ {a}) ] {a}.
b. If a /∈ A then A = (A ] {a}) \ {a}.
�

2.9.2 Other Exercises

Exercise 2.11. Let D := {(y1, y2) ∈ R2 : z2
1 + z2

2 = 1}. Let h := Z→ D be defined by
k 7→ h(k) :=

(
cos(kπ2 ), sin(kπ2 )

)
. Compute the preimage h−1{(0, 1), (1, 0)}.

Hint: What is h(k) for k = −4,−3, . . . , 3, 4? Draw a picture!

Solution: A: First, we compute h−1{(0, 1)}.

h−1{(0, 1)} = {k ∈ Z : h(k) = (0, 1)} =

{
k ∈ Z : cos

(
kπ

2

)
= 0, and sin

(
kπ

2

)
= 1

}
.

To find all k ∈ Z such that both cos
(
kπ
2

)
= 0 and sin

(
kπ
2

)
= 1, we abbreviate θ := kπ

2 and look for
all angles θ such that both cos(θ) = 0, and sin(θ) = 1. The answer:

θ =
π

2
+ 2nπ , for some integer n.

Going back to the original formulation of the problem, we must find all integers k such that

kπ

2
=

π

2
+ 2nπ =

1 + 4nπ

2
, for some n ∈ Z.

This is equivalent to k = 1 + 4n, for some n ∈ Z. Thus,

h−1{(0, 1)} = {4n+ 1 : n ∈ Z} .

B: Next, we compute h−1{(1, 0)}. We follow the same pattern.

h−1{(1, 0)} = {k ∈ Z : h(k) = (1, 0)} =

{
k ∈ Z : cos

(
kπ

2

)
= 1, and sin

(
kπ

2

)
= 0

}
.

To find all k ∈ Z such that both cos
(
kπ
2

)
= 1 and sin

(
kπ
2

)
= 0, we abbreviate θ := kπ

2 and look for
all angles θ such that both cos(θ) = 1, and sin(θ) = 0. The answer:

θ = 2nπ , for some integer n.
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Going back to the original formulation of the problem, we must find all integers k such that

kπ

2
= 2nπ =

4nπ

2
, for some n ∈ Z.

This is equivalent to k = 4n, for some n ∈ Z. Thus,

h−1{(1, 0)} = {4n : n ∈ Z} .

C: Since the preimage of a union is the union of the preimages,

h−1{(0, 1), (1, 0)} = {4n, 4n+ 1 : n ∈ Z} . �

56 Math 447 - Version 2025-02-20



Math 447 – MF Lecture Notes Student edition with proofs

2.10 Blank Page after Ch.2

This page is intentionally left blank!

57 Math 447 - Version 2025-02-20



Math 447 – MF Lecture Notes Student edition with proofs

3 Calculus Revisited

We list here some avanced calculus topics. With the exception of the formulation of some of this ma-
terial in dimensions arbitrary dimensions and the conditional convergence of series, all of it can be
found in [12] Stewart, J: Single Variable Calculus and [12] Stewart, J: Multivariable Calculus. How-
ever, the notation needs getting used to, and some of the material is explained from an unfamiliar
point of view that is more suitable for its application to probability theory.

3.1 Absolute Convergence of Series

You should be familiar with the next definition from your calculus class. See [12] Stewart, J: Single
Variable Calculus.

Definition 3.1 (Absolute Convergence).

We say that an infinite series
∑
aj(aj ∈ R) is absolutely convergent and also, that it con-

verges absolutely, if
∞∑
j=1

|aj | = |a1|+ |a2|+ |a3|+ · · · < ∞ , �

Theorem 3.1.

If the series
∑
aj(aj ∈ R) is absolutely convergent, then the following holds true:

(a) The series
∑
aj itself converges, i.e., there is −∞ < a <∞ such that

∞∑
j=1

aj = a,

(b) ANY rearrangement
∞∑
j=1

anj = an1 + an2 + · · · converges to the same limit as
∑
aj .

We speak of a rearrangement of a sequence (aj)n∈N (a series
∑
aj) if its members are reshuffled into a

sequence (bj)n∈N (a series
∑
bj) as follows: There are indices nj ∈ N such that

b1 = an1 , b2 = an2 , b3 = an3 , . . . ,

and those indices satisfy the following:
(1) They are distinct: i 6= j ⇒ ni 6= nj .
(2) They leave no gaps in the set N of all indices: For each k ∈ N there is j ∈ N such that k = nj . 27

PROOF: See your calculus book. �

27 ? We could have expressed (1) and(2) by stating that the assignment j 7→ nj is a bijection N→ N. (See Definition

2.19 (Surjective, injective and bijective functions) on p.34.)
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Theorem 3.2.

If the series
∑
aj(aj ∈ R) satisfies aj ≥ 0 for all j, then

• ANY rearrangement
∞∑
j=1

anj possesses the same limit, finite or infinite, as
∞∑
j=1

aj .

• In particular, if
∑
aj is not convergent, then

∞∑
j=1

anj =∞ for each rearrangement.

PROOF: ?

Case 1: The series has a finite limit. Then it converges absolutely, and the assertion follows from
Theorem 3.1.

Case 2: Otherwise, since aj ≥ 0 for all j, k 7→
k∑
j=1

aj and k 7→
k∑
j=1

anj both are nondecreasing and

nonnegative. By Theorem 2.3(a), both have a limit. Let a :=
∑
aj , bj := anj , b :=

∑
bj . Note that

a ≥ 0 and b ≥ 0, because aj ≥ 0 and bj ≥ 0 for all j.
Assume to the contrary that b 6= a. We assumed that

∑
aj is not convergent, i.e.,

a =
∑

aj =∞ .(???)

Since b 6= a, this means that 0 ≤ b 6= ∞. Thus, b ∈ R. Thus,
∑
bj is absolutely convergent. By

Theorem 3.1, each rearrangement
∑
bmi of

∑
bj has the same limit b. Since

∑
aj is a rearrangement

of
∑
bj , it has the same limit b <∞. However, by (?)(?)(?), this limit is∞.

In summary, the assumption a 6= b led us to a contradiction and we conclude that it is not true.
Thus, b = a =∞. In other words,

∑
anj =

∑
aj =∞. �

Remark 3.1. ? This remark might seem very strange to you. First, a definition.

A series
∑
aj is called conditionally convergent, if it is convergent but not absolutely

convergent.

This can be formulated as follows: There is some a ∈ R (thus, −∞ < a <∞) such that
∞∑
j=1

aj = a, but
∞∑
j=1
|aj | = ∞.

The following is known as Riemann’s rearrangement theorem: 28 Assume that the series
∑
aj is

conditionally convergent, but not absolutely convergent: Pick any −∞ ≤ b ≤ ∞. The terms aj can

be rearranged in such a way that the rearranged sequence, call it
∞∑
j=1

anj , converges to b. In other

words, you can jumble the terms such that the limit is π. Some other rearrangement yields 0 as the

limit, for yet another,
∞∑
j=1

anj = −
√
e30, ... �

28This was proved by the German mathematician Bernhard Riemann (1826-1866). The integral that is being taught in
calculus, the Riemann integral, also is named after him.
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Example 3.1 (Harmonic series). It is known from calculus that
∞∑
j=1

1

n
= ∞ (harmonic series) and that

∞∑
j=1

(−1)n

n
has a real limit.

Thus, the series
∑ (−1)n

n converges conditionally. �

Proposition 3.1.

(1) A series which only has finitely many nonzero terms converges absolutely.
(2) If |an| ≤ |bn| for all n and

∑
bn converges absolutely, then

∑
an converges absolutely.

PROOF: ?

PROOF of (1): Let the nonzero terms be an1 , an2 , . . . , ank ,. Then,
∞∑
n=1
|an| =

k∑
j=1
|anj | < ∞.

PROOF of (2): |an| ≤ |bn| for all n ⇒
∞∑
n=1
|an| ≤

∞∑
n=1
|bn| < ∞. �

Theorem 3.3.

Let S be some (abstract) nonempty set and f : S → R some real–valued function on S.
Assume that S∗ := {x ∈ S : f(x) 6= 0} is countable, i.e. S∗ = {x1, x2, · · · } for some finite or
infinite sequence x1, x2, · · · of elements of S and that at least one of the following two is true:

(a) f(xj) ≥ 0, for all j, (b) the series
∑
f(xj) is absolutely convergent.

• Then, ANY rearrangement
∞∑
j=1

f(xnj ) of the f(xj) possesses the same value as
∞∑
j=1

f(xj).

PROOF: If (a) is true, the assertion follows from Theorem 3.2 on p.58. If (b) is true, it follows from
Theorem 3.1 on p.58. �

Notation 3.1 (Notation for series that do not depend on the order of summation). Assume that
f, S, S∗ are as in Theorem 3.3 and that f satisfies (a) or (b) of that theorem. Then

S∗ = {x ∈ S : f(x) 6= 0}

is countable and thus, there are two cases.

(a) S∗ is finite, i.e., S∗ = {x1, x2, . . . , xn} for some suitable n. Since
n∑
j=1

f(xnj ) =

n∑
j=1

f(xj)

for each rearrangement xnj of the xj , we write
∑
x∈S∗

f(x) for this common value.

(b) S∗ is countably infinite, i.e., S∗ = {x1, x2, . . . }. Since
∞∑
j=1

f(xnj ) =

∞∑
j=1

f(xj)

for each rearrangement xnj of the xj , here too, we write
∑
x∈S∗

f(x) for this common value.
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Since f(x) = 0 for x ∈ (S∗){, the complement of S∗ in S and including additional terms of value
zero into a series does not impact its value, we also write

∑
x∈S

f(x) for
∑
x∈S∗

f(x).

Likewise, assume that I = {i1, i2, . . . } is a countable index set and (ai)i∈I is a family of real numbers
which is indexed by I . If ai ≥ 0 for all i or ai1 + ai2 + · · · is absolutely convergent (or both), then
rearranging the indices does not alter the value of the series and we can denote it by

∑
i∈I

ai.

To summarize,

(1) If the value of a series does not depend on the order of summation, there is no need

to indicate a specific order by writing, e.g.,
∞∑
i=1

· · · or
n∑
i=1

· · ·. Under these circum-

stances, we also use notation such as
∑
x∈...
· · · or

∑
i∈...
· · ·. �

Theorem 3.4.

Assume that J1, J2, . . . is a countable collection of disjoint subsets of N. and J := J1 ] J2 ] · · · .
Let

∑
j∈J1

aj ,
∑
j∈J2

aj , . . . be a corresponding collection of series such that

• aj ≥ 0, for all j ∈ J or •
∑
j∈J

aj is absolutely convergent.

Then ∑
j∈J1

aj +
∑
j∈J2

aj + · · · =
∑
j∈J

aj .

PROOF: Will not be given here. �

3.2 Integration – The Riemann Integral

Integration is of high importance in probability theory, because in many important cases the prob-

ability of an event is computed as an area
b∫
a
f(y)dy enclosed by the graph of a function u = f(y),

the horizontal y axis and the vertical lines u = a and u = b. More accurately, this is the case when
this event is associated with a “continuous random variable”. 29

A quick word about symbol names. Writing u = f(y), i.e., representing the argument by x and the
function value by y, is the standard notation of the WMS text. For now we will go back to the more
familiar notation y = f(x).

Introduction 3.1. Here is a quick overview of the definition and geometric meaning of the Riemann
Integral, the type of integral that you are familiar with from calculus. Integration will be discussed
in greater detail after this introduction, starting with Section 3.2.1 (The Riemann Integral of a Step
Function).

29see Chapter 10 (Continuous Random Variables).
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(A) Integrating a function y = f(x) of a single variable x:

An integral
β∫
α
f(x)dx was defined as the limit of Riemann sums. 30 Those are areas

(3.1)
n∑
j=1

f(aj) (βj − αj) ,

obtained when one partitions an interval [a, b] into subintervals

a = α0 < β0 = α1 < β1 = α2 < · · · < βn−1 = αn < βn = b ,

picks arguments aj ∈ [αj , βj ] and replaces the integrand x 7→ f(x) with a step function 31

(3.2) x 7→
n∑
j=1

f(aj)111]αj ,βj ](x) , αj ≤ aj ≤ βj .

Here,
x 7→ 111]αj ,βj ](x) =

{
1 if x ∈ ]αj , βj ], i.e., αj < x ≤ βj ,
0 else ,

is the indicator function 32 of the subinterval ]αj , βj ] of the interval ]a, b].

In other words, f is approximated by the constant value f(aj) on ]αj , βj ], and the area
βj∫
αj

f(x)dx of

f belonging to ]αj , βj ] is replaced by the area of a rectangle of width βj − αj and height f(aj).

(B) Now, consider the case of a real–valued function y = f(~x) which accepts R2–valued “random
vectors” ~x = (x1, x2) as arguments.
The onedimensional interval [α, β] is replaced with a 2–dimensional rectangle A = [α, β] × [γ, δ]
which is partitioned by horizontal and vertical grid lines into a finite number of subrectangles, let us
call themA1, A2, . . . , Ak. A point~aj = (xj , yj) in the plane is chosen from eachAj = [αj , βj ]×[γj , δj ].
The integral

(3.3)
∫∫
A

f(~x) d~x =

∫ β

α

∫ δ

γ
f(x1, x2) dx1dx2

is approximated by the Riemann sum

(3.4)
n∑
j=1

f(~aj) (βj − αj)(δj − γj) ,

obtained by replacing the integrand ~x 7→ f(~x) with the step function

(3.5) ~x 7→
n∑
j=1

f(~aj)111Aj (~x) , ~aj ∈ Aj = [αj , βj ]× [γj , δj ] ,

whch is equal to the constant f(~aj) on all of Aj .
The geometric meaning is this: For each j, he volume of the slab between A and the graph of f is
approximated by the volume of the quad formed by Aj at the bottom, the corresponding rectangle
{
(
x, y, f(~aj)

)
: (x, y) ∈ Aj} at the top, and the vertical rectangles that connect the two.

30Riemann sums will be defined and treated in more detail in section 3.2.2 (The Riemann Integral as the Limit of
Riemann Sums).

31Step functions will be defined and treated in more detail in section 3.2.1 (The Riemann Integral of a Step Function).
32see Definition 2.32 (indicator function for a set) on p.53.
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(C) The case of a real–valued function y = f(~x) where ~x = (x1, x2, x3) ∈ R3 is quite similar.
Now, the domain is a quad A = [α, β] × [γ, δ] × [η, ζ]. It is partitioned by “grid planes” parallel to
the planes {(x1, x2, x3) : x1 = 0}, {(x1, x2, x3) : x2 = 0} and {(x1, x2, x3) : x3 = 0}, into a finite
number of subquads, A1, A2, . . . , Ak. A point ~aj = (xj , yj , zj) in R3 is chosen from each

Aj = [αj , βj ]× [γj , δj ]× [ηj , ζj ] .

This time, the integral

(3.6)
∫∫∫
A

f(~x)d~x =

∫ β

α

∫ δ

γ

∫ ζ

η
f(x1, x2, x3)dx1dx2dx3

is approximated by the Riemann sums

(3.7)
n∑
j=1

f(~aj) (βj − αj) (δj − γj) (ζj − ηj) ,

which one obtains by replacing ~x 7→ f(~x) with step functions ~x 7→
n∑
j=1

f(~aj)111Aj (~x).

(D) The above can be generalized to functions defined on rectangles of arbitrary dimension d.
Since vectors of dimension d > 3 are beyond the scope of what is taught in a standard calculus
sequence, only the following is expected of you.

Try to recognize that and how the familiar cases d = 1, 2, 3 are special cases of what is now
explained for an arbitrary dimension d. Do not worry about anything else.

We assume that f : A→ R is defined on a d–dimensional rectangleA = [α1, β1]×· · ·× [αd, βd]. Since
A ⊆ Rd, the arguments of f have the form ~x = (x1, x2, . . . , xd). The (Riemann) integral of f over A,

(3.8)
∫∫
· · ·
∫

A

f(~x)d~x =

∫ β1

α1

∫ β2

α2

· · ·
∫ βd

αd

f(x1, x2, . . . , xd) dx1dx2 · · · dxd ,

is again defined as the suitable limit of Riemann sums. Those are constructed as follows.
A is partitioned into a finite collection of d–dimensional subrectangles, A1, A2, . . . , Ak. They are
parallel to the {~x : x1 = 0}, {~x : x2 = 0}, . . . , {~x : xd = 0}, “hyperplanes” and thus of the form

Aj = [α
(1)
j , β

(1)
j ]× [α

(2)
j , β

(2)
j ]× · · · × [α

(d)
j , β

(d)
j ] ,

for suitable real numbers α(j)
j , β

(j)
j such that α(j)

j < β
(j)
j for each j = 1, . . . , d.

Beware the notation! As you can see, we do the following: When we need to keep track of
both the index j = 1, . . . , k of the subrectangle Aj and the coordinate i = 1, . . . , d, then the
latter is written as a superscript!

For each Aj , we choose a point ~aj =
(
x

(1)
j , x

(2)
j , . . . , x

(d)
j

)
∈ Aj and approximate the integral by

the Riemann sum

(3.9)
n∑
j=1

f(~aj) (β
(1)
j − α

(1)
j )(β

(2)
j − α

(2)
j ) · · · (β(d)

j − α
(d)
j ) .

It is obtained by replacing ~x 7→ f(~x) with the step function ~x 7→
n∑
j=1

f(~aj)111Aj (~x). �
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Remark 3.2 (Stewart’s notation for multiple integrals). [12] Stewart, J: Multivariable Calculus. uses
notation different from these lecture notes for double and triple integrals:

These Lecture Notes Stewart’s book
d = 2

∫∫
D

f(~x) d~x =
∫∫
D

f(x1, x2) d(x1, x2)
∫∫
D

f(x, y) dA

d = 3
∫∫∫
E

f(~x)d~x =
∫∫∫
E

f(x1, x2, x3) d(x1, x2, x3)
∫∫∫
E

f(x, y) dV

Concerning the region of integration, you will see both
∫∫∫
E

· · · and
∫∫∫

E · · · , in this document. �

3.2.1 The Riemann Integral of a Step Function

When the Riemann integral is introduced as a means to compute the area under the graph of a
function, this first done for a step function, where this area is that of a finite list of rectangles.
Rectangles of arbitrary dimension d were already introduced in Example 2.22 on p.52.

Definition 3.2 (d dimensional rectangles). For a, b ∈ R, a ≺ b here denotes either a < b or a ≤ b.

Let a1 ≤ b1, a2 ≤ b2, . . . , ad ≤ bd, be d pairs of numbers (d ∈ N). We call the set

{~x = (x1, . . . , xd) ∈ Rd : a1 ≺ x1 ≺ b1, a2 ≺ x2 ≺ b2, . . . , ad ≺ xd ≺ bd}

a d–dimensional rectangle (simply rectangles, if there is no confusion about d).

Special cases are
(a) ]a1, b1[ × · · ·× ]ad, bd[ (aj ≺ xj ≺ bj means aj < xj < bj for all j: open rectangles),
(b) ]a1, b1 ] × · · ·× ]ad, bd ] (aj ≺ xj ≺ bj means aj < xj ≤ bj for all j:

half open rectangles, also called half closed rectangles),
(c) [ a1, b1[ × · · · × [ ad, bd[ (aj ≺ xj ≺ bj means aj ≤ xj < bj for all j:

half open rectangles, also called half closed rectangles),
(d) [ a1, b1 ] × · · · × [ ad, bd ] (aj ≺ xj ≺ bj means aj ≤ xj ≤ bj for all j: closed rectangles).

Usually, onedimensional rectangles are called intervals and 3 dimensional rectangles are called
quads or boxes. �

Example 3.2. As usual, we “identify” R1 with the real numbers line R.
Rectangles in Rd were defined in Example2.22 on p.52:
• Rectangles in R1 = R are intervals, e.g., A = [a, b], where a ≤ b.
• Rectangles in R2 are, e.g., A =]a1, b1]×]a2, b2], where a1 ≤ b1 and a2 ≤ b2.
• Rectangles in R3 are quads, e.g., A = [a1, b1]×]a2, b2]×]a3, b3[, where aj ≤ bj , for j = 1, 2, 3.

The last example demonstrates that “<” and “≤” need not be employed the same way for different
coordinates j: The rectangular braces face different directions for j = 1, 2, 3. �

The natural measure of an interval (a onedimensional rectangle) I with end points a < b, is it’s
length, b− a. Thus, if we write λ1 for this measure, then

λ1(I) = b− a .
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The natural measure of (2 dimensional) rectangles, such as R = [a1, b1]× [a2, b2] and
R′ =]a1, b1[×]a2, b2[, is their area, (b1 − a1)(b2 − a2). Thus, if we write λ2 for this measure, then

λ2(R) = λ2(R′) = (b1 − a1)(b2 − a2) .

The natural measure of a 3 dimensional rectangle, e.g., Q = ]a1, b1]× ]a2, b2]× ]a3, b3], is its volume.
Thus, if we write λ3 for this measure, then

λ3(Q) = (b1 − a1) (b2 − a2) (b3 − a3) .

those observations lead us to the following

Definition 3.3 (Lebesgue measure 33 of d dimensional rectangles). ?

Let a ≺ b again stand for either a < b or a ≤ b.

Let d ∈ N and aj , bj ∈ R such that aj ≤ bj , for j = 1, 2, . . . , d. Let

R := {~x = (x1, . . . , xd) ∈ Rd : a1 ≺ x1 ≺ b1, a2 ≺ x2 ≺ b2, . . . , ad ≺ xd ≺ bd}

be a d–dimensional rectangle. We call

(3.10) λd(R) := (b1 − a1) (b2 − a2) . . . (bd − ad)

the d–dimensional Lebesgue measure of R. We also simply speak of the Lebesgue mea-
sure of R, if there is no confusion about d).

We extend λd as follows.

• If aj < bj for all j and aj = −∞ and/or bj =∞ for at least one j, then λd(R) := ∞.
• If aj = bj for at least one j, then λd(R) := 0, even if not all aj and bj are finite.
• λd(∅) := 0.
• If R1, R2, . . . is a finite or infinite sequence of disjoint rectangles, i.e., Ri ∩ Rj = ∅

for i 6= j, then we define the Lebesgue measure of the union by ”σ–addititivity” as
follows:

(3.11) λd (R1 ]R2 ] · · · ) := λd(R1) + λd(R2) + · · · �

Remark 3.3.
(a) Note that λd(R) = 0 if and only if aj = bj for at least one j.

(b) Be careful when viewing a subset of Rd as one of Rm, where d < m. If, for example, one
“identifies” I := [0, 1] ⊆ R with I ′ := {(x, y) ∈ R2 : 0 ≤ x ≤ 1, y = 0} ⊆ R2, then λ1(I) = 1,
but λ2(I ′) = 0. (I ′ has area zero.) Moreover, λ2(I) and λ1(I ′) are nonsense expressions as far
as mathematics goes, since λd only is defined for subsets of Rd.

(c) You may not have peviously encountered (3.11), since it involves an infinite sequence of
sets and an infinite series. However, you are, for d = 1, 2, 3, familiar with the additivity of
measures,

33Named after the French mathematician Henri Léon Lebesgue (1875 – 1941)
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(3.12) λd (R1 ]R2 ] · · · ]Rk) := λd(R1) + λd(R2) + · · ·+ λd(Rk) .

This formula merely states that the combined length/area/volume of a finite collection of
items equals the sum of the lengths/areas/volumes of the individual items. �

(d) Of course, it needs proof that one can indeed extend the definition of Lebesgue measure
from a single rectangle to an arbitrary, infinite sequence of rectangles in such a manner, that
σ–additivity holds true.

Rectangles and their Lebesgue measure are at the basis of the theory of integration. You may want to
review Introduction 3.1 of this Chapter (Integration – The Riemann Integral) on p.61 while studying
the following material on integration.

Definition 3.4.

A function ϕ : Rd → R is called a step function if there is n ∈ N, a list of d–dimensional
rectangles A1, . . . , An, and a list of real numbers c1, . . . , cn, such that

(3.13) ϕ(~x) =

n∑
j=1

cj111Aj (~x).

We call

(3.14)
∫
ϕ(~x) d~x :=

∫
Rd
ϕ(~x) d~x :=

∫∫
· · ·
∫

Rd
f(~x) d~x :=

n∑
j=1

cj λ
d(Aj)

the (d dimensional) Riemann integral of the step function ϕ.

Here,
~x 7→ 111Aj (~x) =

{
1 if ~x ∈ Aj ,

0 else ,

is the indicator function 34 of the subset Aj of Rd. �

Remark 3.4. Fix k ∈ [1, n]Z. Note that the subset [0, ck]×Ak of Rd+1 is a d+ 1 dimensional rectangle
and thus has d+ 1 dimensional Lebesgue measure

λd+1([0, ck]×Ak) = ck · λd(Ak) .
Definition 3.4 of the Riemann integral of a step function is consistent with the depiction of the
Riemann integral given in Introduction 3.1 on p.61, since we can match up (3.14) with the Riemann
sums in all four cases (d = 1, d = 2, d = 3, general d) of the introduction.

(A) The case d = 1:
If a = α0 < β0 = α1 < β1 = α2 < · · · < βn−1 = αn < βn = b partitions of an interval [a, b], into
subintervals Ak = [αk, βk] for k = 0, . . . , n, and if one defines ck = f(ak) for some αk ≤ ak < βk,
then (3.13) matches (3.2) on p.62, and the right hand side of (3.14) matches (3.1) on p.62.

(B) The case d = 2:
If y = f(~x), where ~x = (x1, x2) is a function of two variables, A = [α, β]× [γ, δ] is partitioned into a
grid of subrectangles, Aj = [αj , βj ]× [γj , δj ], where j = 1, . . . , k, and if we set cj = f(~aj), for some
point ~aj ∈ Aj , then then (3.13) matches (3.5) on p.62, and the right hand side of (3.14) matches (3.4)
on p.62.

34see Definition 2.32 (indicator function for a set) on p.53.
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(C) The case d = 3:
Assume that y = f(~x), where ~x = (x1, x2, x3) ∈ R3, and that we integrate over a quad
A = [α, β] × [γ, δ] × [η, ζ], which is partitioned into a finite number of subquads, A1, A2, . . . , Ak of
the form

Aj = [αj , βj ]× [γj , δj ]× [ηj , ζj ] .

Further, assume that point ~aj = (xj , yj , zj) in R3 is chosen from each Aj . Then the right hand side
of (3.14) matches the Riemann sum (3.7) on p.63 and the step functions are identical.

(D) The case of general dimension d:
Finally, one also sees that the Riemann sum (3.9) on p.63 matches the right hand side of (3.14). �

Example 3.3. Here are two examples for d = 1.
(a) Let n ∈ N. Both

g(x) :=

n∑
j=1

j 111Aj (x) , Aj := [1− 1/2j−1, 1− 1/2j ] .

h(x) :=
n∑
j=1

j 111Bj (x) , Bj := ]1− 1/2j−1, 1− 1/2j ] .

are step functions. The Lebesgue measures of Aj and Bj occur in the computation of
∞∫
−∞

g(x) dx

and
∞∫
−∞

h(x) dx:

λ1(Aj) = λ1(Bj) =

(
1− 1

2j

)
−
(

1− 1

2j−1

)
=

2

2j
− 1

2j
=

1

2j
.

Thus, ∫ ∞
−∞

g(x) dx =

n∑
j=1

j · λ1(Aj) =

n∑
j=1

j

2j
=

n∑
j=1

j · λ1(Bj) =

∫ ∞
−∞

h(x) dx

(b) Let ψ(x) :=
∞∑
j=1

111Aj (x), with Aj as above. Since we have replaced finite sums with an infinite

series, ψ is not a step function. However, it is known from calculus that the integral of ψ can be
computed in the same fashion as that of g and h:∫ ∞

−∞
ψ(x) dx =

∞∑
j=1

1 · λ1(Aj) =
1

2

n∑
j=0

1

2j
=

1

2
· 1

1− 1/2
=

1/2

1/2
= 1 . �

Example 3.4. (d = 2 example.) Let n ∈ N. For i, j = 1, 2, . . . , n, let ci,j be real numbers and

g(~x) = g(x1, x2) :=

n∑
i=1

n∑
j=1

ci,j 111Ai,j (x1, x2) , Ai,j :=

[
i− 1

n
,
i

n

]
×
[
j − 1

n
,
j

n

]
.

Then g is a step function in R2. The Lebesgue measures of the Aj occur in the computation of the
integral of g:

λ2(Aj) =

(
i

n
− i− 1

n

)
·
(
j

n
− j − 1

n

)
=

1

n2

Thus, ∫∫
R2

g(~x) d~x =

∫ ∞
−∞

∫ ∞
−∞

g(x1, x2) dx1dx2 =
n∑
i=1

n∑
j=1

ci,j · λ2(Ai,j) =
n∑
i=1

n∑
j=1

ci,j
n2

. �
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Example 3.5. (d = 3 example.) Let n1, n2, n3 ∈ N. For i = 1, . . . , n1, j = 1, . . . , n2, k = 1, . . . , n3, let
ci,j,k be real numbers and

g(~x) = g(x1, x2, x3) :=

n1∑
i=1

n2∑
j=1

n3∑
k=1

ci,j,k 111Ai,j,k(x1, x2, x3) , Ai,j,k := ]a
(1)
i , b

(1)
i ]× ]a

(2)
i , b

(2)
i ]× ]a

(3)
i , b

(3)
i ] .

Thus, if we denote the 3 dimensional volume measure by λ3, then Ai,j,k is a quad with volume

λ3(Ai,j,k) = (b
(1)
i − a

(1)
i ) (b

(2)
i − a

(2)
i ) (b

(3)
i − a

(3)
i ) .

g is a step function and its integral is∫∫∫
R3

g(~x) d~x =

n1∑
i=1

n2∑
j=1

n3∑
k=1

ci,j,k · λ3(Ai,j,k) . �

3.2.2 The Riemann Integral as the Limit of Riemann Sums

3.2.2.1 The Riemann Integral in Dimension 1 ?

Given are a, b ∈ R such that a < b and a list of real numbers

(3.15) Π :=
(
y0, y1, . . . , yn; u∗1, u

∗
2, . . . , u

∗
n

)
,

such that

a = y0 < y1, < · · · < yn = b , and yj−1 ≤ u∗j ≤ yj , for each j = 1, 2, . . . , n.

The lengths yj − yj−1 are not assumed to be of equal size. We call

(3.16) ‖Π‖ := max {yj+1 − yj : j = 0, . . . , n− 1}

the mesh of Π. Note that ‖Π‖ only depends on the endpoints of the subintervals ]yj−1, yj ] but not
on the “sample points” 35 uj . Also note that the “subintervals” ]yj−1, yj ], j = 1, . . . , n are a partition
of the interval ]a, b] in the sense of Definition 2.10 on p.25.

You are familiar with the above and the next definition from your single variable calculus class.

Definition 3.5.

Let Π be defined as in (3.15), and let f : [a, b]→ R be a function on [a, b]. We call

RS(f ; Π) :=
n∑
j=1

f(uj)(yj − yj−1)

the Riemann sum of f with respect to Π, and we call∫ b

a
f(x)dx := lim

‖Π‖→0
RS(f ; Π)

the Riemann integral of f on [a, b], provided that this limit exists.

35It is generally accepted terminology to refer to uj as a sample point. We use quotes around this term in this chapter
on integration, because it is reserved in a course on probability for the elements of a probability space, also referred to as
a sample space. See Remark 1.2 on p.12
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It is very instructive to work through the following example of a function for which
∫ b
a f(x)dx does

NOT exist.

Example 3.6. Let A := Q ∩ [0, 1] be the set of all rational numbers in the unit interval, and

f(y) := 111A(y) =

{
1, if y ∈ A,
0, else .

Then
1∫
0

f(x)dx does not exist for the following reasons. Let y1, . . . , yn be an arbitrary list of numbers

such that 0 = y0 < y1 < y2 · · · < yn−1 < yn = 1. Since any interval with bounds α < β contains both
rational and irrational numbers, there are rational qj and irrational ij such that yj−1 < qj < yj and
yj−1 < ij < yj . Consider Π∗,Π∗, and their corresponding Riemann sums, defined as follows.

Π∗ :=
(
y0, . . . , yn; q1, . . . , qn

)
, RS(111A; Π∗) =

n∑
j=1

111A(qj)(yj − yj−1) ,

Π∗ :=
(
y0, . . . , yn; i1, . . . , in

)
, RS(111A; Π∗) =

n∑
j=1

111A(ij)(yj − yj−1) .

Since qj ∈ A and ij /∈ A for all j, 111A(qj) = 1 and 111A(ij) = 0 for all j. From this we obtain

(3.17) RS(111A; Π∗) = 1 and RS(111A; Π∗) = 0 .

Since all this is true for any n ∈ N and sets of real numbers 0 = y0 < · · · < yn = 1, one can build
partitions Π∗ and Pi∗ such that ‖Π∗‖ and ‖Π∗‖ both are arbitrarily close to zero.
For example, if yj = j/n for j = 0, 1, . . . , n, then ‖Π∗‖ = ‖Π∗‖ = 1/n. One sees from (3.17) that∫ b

a
111A(x)dx = lim

‖Π‖→0
RS(111A; Π) does not exist. �

Remark 3.5. Let Π be defined as in (3.15) on p.68, and let f : [a, b]→ R. Consider

ϕΠ(x) :=
n∑
j=1

f(uj)111[yj−1,yj ] .

Then ϕΠ is a step function in the sense of Definition 3.4 (for dimension d = 1), with integral∫
R
ϕΠ(x) =

n∑
j=1

f(uj)(yj − yj−1) .

See (3.14) on p.66. Observe that the equations

RS(f ; Π) =
n∑
j=1

f(uj)(yj − yj−1) =

∫
R
ϕΠ(x) and

∫ b

a
f(x)dx = lim

‖Π‖→0
RS(f ; Π)

imply that

(3.18)
∫ b

a
f(x)dx = lim

‖Π‖→0

∫
R
ϕΠ(x) . �
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3.2.2.2 The Riemann Integral in Dimension 2 ?

The notation becomes more complex if we integrate a function of two variables over a rectangle.
We write ~y =

(
y(1), y(2)

)
for a vector ~y ∈ R2, so its coordinates are written as superscripts.

Let ~a,~b ∈ R2 such that a(1) < b(1) and a(2) < b(2). Let

(3.19) Π :=
(
~y0, ~y1, . . . , ~yn; ~u(1, 1), ~u(1, 2), ~u(2, 1), ~u(2, 2), ~u(3, 1), . . . , ~u(n− 1, n), ~u(n, n)

)
be a list of vectors ~y(j), ~u(j1, j2) ∈ R2 with the following properties.
• The vectors ~y0, . . . , ~yn satisfy

a(1) = y
(1)
0 < y

(1)
1 < · · · < y(1)

n = b(1)

a(2) = y
(2)
0 < y

(2)
1 < · · · < y(2)

n = b(2) .
(3.20)

• The n+ 1 vectors ~yj generate, for each selection of indices j1, j2 such that 1 ≤ j1 ≤ n and
1 ≤ j2 ≤ n, the edges of a rectangle

R(j1, j2) := ]y
(1)
j1−1, y

(1)
j1

]× ]y
(2)
j2−1, y

(2)
j2

] ,

with area A(j1, j2) = (y
(1)
j1
− y(1)

j1−1) · (y(2)
j2
− y(2)

j2−1) .
(3.21)

The side lengths y(i)
j − y

(i)
j−1 are not assumed to be of equal size for any i and j.

• Each vector ~u(j1, j2), 1 ≤ j1 ≤ n, 1 ≤ j2 ≤ n, satisfies

(3.22) ~u(j1, j2) ∈ R(j1, j2) .

In other words, if ~u(j1, j2) =
(
u(j1, j2)(1), u(j1, j2)(2)

)
, then its coordinates satisfy

y
(1)
j1−1 ≤ u(j1, j2)(1) ≤ y

(1)
j1
,

y
(2)
j2−1 ≤ u(j1, j2)(2) ≤ y

(2)
j2
.

(3.23)

We measure the fineness of Π by the following two dimensional analogue of (3.16) on p.68.

(3.24) ‖Π‖ := max
{
y

(1)
j1
− y(1)

j1−1 , y
(2)
j2
− y(2)

j2−1 : j1, j2 = 1, . . . , n
}

Note the following.
• ‖Π‖ only depends on the side lengths of the subrectangles R(j1, j2) of (3.21), but not on the

“sample points” ~u(j1, j2).
• Those rectangles R(j1, j2) are a partition of the rectangle ]a(1), b(1) ]× ]a(2), b(2) ] in the sense

of Definition 2.10 on p.25.
• ‖Π‖ → 0 requires that both their horizontal and vertical lengths must approach 0.

You know the above and the next definition from multivariable calculus.

Definition 3.6. Let Π be defined as in (3.19), and letR denote the rectangle [ a(1), b(1) ] × [ a(2), b(2) ].
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Let f : R→ R ; ~y 7→ f(~y), be a real–valued function on R. We call

(3.25) RS(f ; Π) :=
n∑

j1=1

n∑
j2=1

f(~u(j1, j2)) (y
(1)
j1
− y(1)

j1−1) · (y(2)
j2
− y(2)

j2−1)

the Riemann sum of f with respect to Π, and we call

(3.26)
∫∫

R
f(~y) d~y := lim

‖Π‖→0
RS(f ; Π)

the Riemann integral of f on R, provided that this limit exists. �

Remark 3.6. Note that

ϕΠ(~y) =

n∑
j1=1

n∑
j2=1

f(~u(j1, j2))111
[y

(1)
j1−1,y

(1)
j1

]×[y
(2)
j2−1,y

(2)
j2

]
(~y)

is, for d = 2, a step function in the sense of Definition 3.4, with integral∫
R2

ϕΠ(~y) d~y =

n∑
j1=1

n∑
j2=1

f(~u(j1, j2)) (y
(1)
j1
− y(1)

j1−1) · (y(2)
j2
− y(2)

j2−1) ,

and that the equations (3.25) and (3.26) imply that

(3.27)
∫∫

R
f(~y) d~y = lim

‖Π‖→0

∫
R2

ϕΠ(~y) d~y . �

Example 3.7. Here is an example of a two dimensional partition of a rectangle into n2 = 9 subrect-
angles (i.e., n = 3).
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We write the vectors as column vector and square braces
rather than parentheses as delimiters. Let

~a = ~y0 =
[

1.2
−4.6

]
, ~y1 =

[
3.6
−1.3

]
, ~y2 =

[
4.0
0.5

]
, ~b = ~y3 =

[
6.8
4.2

]
.

These four vectors partition the rectangle ]1.2, 6.8 ]× ]−
4.6, 4.2] into a 3× 3 grid of subrectangles
R(1, 1) = ]1.2, 3.6 ]× ]− 4.6,−1.3], R(1, 2) = ]1.2, 3.6 ]× ]− 1.3, 0.5],
R(1, 3) = ]1.2, 3.6 ]× ]0.5, 4.2],

R(2, 1) = ]3.6, 4.0 ]× ]− 4.6,−1.3], R(2, 2) = ]3.6, 4.0 ]× ]− 1.3, 0.5],
R(2, 3) = ]3.6, 4.0 ]× ]0.5, 4.2],

R(3, 1) = ]4.0, 6.8 ]× ]− 4.6,−1.3], R(3, 2) = ]4.0, 6.8 ]× ]− 1.3, 0.5],
R(3, 3) = ]4.0, 6.8 ]× ]0.5, 4.2] .

Possible choices for the vectors ~u(j1, j2) are, e.g.,

~u(1, 1) =

[
2.1

−3.4

]
, ~u(1, 2) =

[
2.0

−1.1

]
, ~u(1, 3) =

[
2.8

0.8

]
,

~u(2, 1) =

[
3.8

−2.2

]
, ~u(2, 2) =

[
3.7

−0.5

]
, ~u(2, 3) =

[
3.8

2.8

]
,

~u(3, 1) =

[
5.2

−4.0

]
, ~u(3, 2) =

[
5.4

−0.4

]
, ~u(3, 3) =

[
4.1

4.1

]
, �

~a = ~y0 =
[

1.2
−4.6

]

~y1

~y2

~b = ~y3 =
[

6.8
4.2

]

R(1, 3)

~u(1, 3)

R(3, 2)

~u(3, 2)

3.1 (Figure). 2–dim Riemann sum.

3.2.2.3 The Riemann Integral in d Dimensions ? We do not discuss separately the Rie-
mann integral in d = 3 dimension and directly discuss the case of general d. We write

~y =
(
y(1), y(2), . . . , y(d)

)
,

so the d coordinates of the vector are written as superscripts.

Let ~a,~b ∈ Rd such that a(i) < b(i) for i = 1, 2, . . . , d. Let

(3.28) Π :=
(
~y0, ~y1, . . . , ~yn;

(
~u(j1, . . . , jd)

)
(j1,...,jd)∈J

)
be a list of vectors ~y(j) ∈ Rd and ~u(j1, . . . , jd) ∈ Rd as follows. 36

• The vectors ~y0, . . . , ~yn satisfy

(3.29) a(i) = y
(i)
0 < y

(i)
1 < · · · < y(i)

n = b(i) , for each coordinate i = 1, 2, . . . , d.

• J is the set of all “composite indices” (j1, . . . , jd) that satisfy
��� j1, j2, . . . , jd ∈ N (hence, (j1, . . . , jd) ∈ Nd )
��� 1 ≤ jk ≤ n for each k = 1, 2, . . . , d. (Thus, Π contains dn vectors ~u(j1, . . . , jd).)

• The n+ 1 vectors ~y0, . . . , ~yd generate, for each selection of indices (j1, j2, . . . , jd) ∈ J , the
edges of a d–dimensional rectangle 37

36 ? We have not given the order in which the vectors ~u(j1, . . . , jd) are listed
37See Example 2.22 on p.52.
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(3.30) R(j1, j2, . . . , jd) := ]y
(1)
j1−1, y

(1)
j1

]× ]y
(2)
j2−1, y

(2)
j2

] × · · · × ]y
(d)
jd−1, y

(d)
jd

] .

The side lengths y(i)
j − y

(i)
j−1 are not assumed to be of equal size for any i and j.

• For each (j1, j2, . . . , jd) ∈ J , the vector ~u(j1, j2, . . . , jd) satisfies

(3.31) ~u(j1, j2, . . . , jd) ∈ R(j1, j2, . . . , jd) .

In other words, if ~u(j1, j2, . . . , jd) =
(
u(j1, j2, . . . , jd)

(1), u(j1, j2, . . . , jd)
(2), . . . , u(j1, j2, . . . , jd)

(d)
)
,

then its d coordinates, u(j1, j2, . . . , jd)
(k), satisfy

(3.32) y
(k)
jk−1 ≤ u(j1, j2, . . . , jd)

(k) ≤ y
(k)
jk
, for k = 1, 2, . . . , d.

The fineness of Π has the following d–dimensional analogue of (3.16) on p.68. and of (3.24) on p.70.

(3.33) ‖Π‖ := max
{
y

(1)
j1
− y(1)

j1−1 , y
(2)
j2
− y(2)

j2−1 , . . . , y
(d)
jd
− y(d)

jd−1 : (j1, j2, . . . , jd) ∈ J
}
.

Note the following.

• ‖Π‖ only depends on the side lengths y(k)
jk
− y

(k)
jk−1 of the subrectangles R(j1, j2, . . . , jd) of

(3.30), but not on the “sample points” ~u(j1, j2, . . . , jd).
• Those rectangles R(j1, j2, . . . , jd) are a partition, in the sense of Definition 2.10 on p.25, of

the rectangle ]a(1), b(1) ]× ]a(2), b(2) ]× · · ·× ]a(d), b(d) ] on p.25.
• ‖Π‖ → 0 requires that the side lengths y(k)

jk
− y

(k)
jk−1 must approach 0, for each coordinate

k = 1, 2, . . . , d.

For dimension d = 3, you should be familiar with the above and the next definition from multivari-
able calculus and it is strongly suggested that you write on paper this definition and the subsequent
Remark 3.7 for d = 3.

Definition 3.7. Let Π be as in (3.28) and R := [ a(1), b(1) ] × [ a(2), b(2) × · · · × [ a(d), b(d) ].

Let f : R→ R ; ~y 7→ f(~y), be a real–valued function on R. We call

(3.34) RS(f ; Π) :=
n∑

j1,...,jd=1

f(~u(j1, j2, . . . , jd)) (y
(1)
j1
−y(1)

j1−1) · (y(2)
j2
−y(2)

j2−1) · · · (y(d)
jd
−y(d)

jd−1)

the Riemann sum of f with respect to Π, and we call

(3.35)
∫∫
· · ·
∫
R
f(~y) d~y := lim

‖Π‖→0
RS(f ; Π)

the Riemann integral aka proper Riemann integral of f on R, provided that this limit
exists.

In (3.34),
n∑

j1,...,jd=1
indicates that each summation variable j1, j2, . . . , jd takes each value 1, 2, . . . , n.

We have introduced the notion of a proper integral here, because later on we will also define im-
proper Riemann integrals. 38 �

38See Definition 3.8 (Improper Riemann integral) on p.75.
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Remark 3.7. Note that

ϕΠ(~y) :=
n∑

j1,...,jd=1

f(~u(j1, j2, . . . , jd))111
[y

(1)
j1−1,y

(1)
j1

]× [y
(2)
j2−1,y

(2)
j2

]
× · · · × [y

(d)
jd−1, y

(d)
jd

](~y)

is, for general d, a step function in the sense of Definition 3.4, with integral∫
Rd
ϕΠ(~y) d~y =

n∑
j1,...,jd=1

f(~u(j1, j2, . . . , jd)) (y
(1)
j1
− y(1)

j1−1) · (y(2)
j2
− y(2)

j2−1) · · · (y(d)
jd
− y(d)

jd−1) ,

and that the equations (3.34) and (3.35) imply that

(3.36)
∫∫
· · ·
∫

R

f(~y) d~y = lim
‖Π‖→0

∫
Rd
ϕΠ(~y) d~y . �

Example 3.8. Here is an example of a Riemann sum for d = 3 dimensions and n = 4. We write the
vectors as column vector and square braces rather than parentheses as delimiters. Let

~a = ~y0 =

 1.2

−4.6

3.0

 , ~y1 =

 3.6

−1.3

4.2

 , ~y2 =

4.0

0.5

5.6

 , ~y3 =

6.8

4.2

6.0

 , ~b = ~y4 =

8.7

9.2

7.7

 .
These five vectors partition the rectangle ]1.2, 6.8 ]× ]− 4.6, 4.2] into nd = 43 = 64 subrectangles,

R(1, 1, 1), R(1, 1, 2), R(1, 1, 3), R(1, 1, 4), R(1, 2, 1), . . . , R(4, 4, 3), R(4, 4, 4) .

Possible choices for the vectors ~u(j1, j2, j3) are, e.g.,

~u(1, 1, 1) =

 2.1

−3.4

3.8

 , ~u(1, 1, 2) =

 2.0

−1.1

5.0

 , ~u(1, 1, 3) =

 2.8

−2.1

5.7

 , ~u(1, 1, 4) =

 1.4

−2.2

6.9

 ,
~u(1, 2, 1) =

 1.4

−0.5

3.9

 , · · · · · · ··, ~u(4, 4, 3) =

7.5

8.2

5.7

 , ~u(4, 4, 4) =

7.0

6.3

6.3

 . �

3.3 Improper Integrals and Integrals Over Subsets

We defined separately, for dimensions d = 1, d = 2 and for general d, the Riemann integral
∫
R

f(~x)d~x

of a function f on a d dimensional rectangle R ⊆ Rd. See Definitions 3.5 on p.68, 3.6 on p.70 and 3.7
on p.73. We did so for didactic reasons since, strictly speaking, Definition 3.7 also includes the cases
d = 1 (functions of a real variable x) and d = 2. We will state the definition of Riemann integrability
only once, for general d.
But first, a quick reminder concerning improper integrals. That definition we only give for the
onedimensional case. 39

And now, the definition of Riemann integrability.

39 ? For multiple dimensions, d > 1, the definition of the improper Riemann integral (over all of Rd) is that

(3.37)
∫∫
· · ·
∫

Rd

f(~x) d~x := lim
a→∞

∫∫
· · ·
∫
[−a,a]d

f(~x) d~x ,

provided that this limit exists.
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Definition 3.8 (Improper Riemann integral).

Let f : [a,∞[→ R, g : ]−∞, b] → R, h : ]−∞,∞[→ R.
Their improper Riemann integrals are defined as follows:∫ ∞

a
f(x) dx = lim

b→∞

∫ b

a
f(x) dx ,∫ b

−∞
f(x) dx = lim

a→−∞

∫ b

a
f(x) dx .∫ ∞

−∞
f(x) dx = lim

a→−∞
lim
b→∞

∫ b

a
f(x) dx . �

(3.38)

And now, the definition of Riemann integrability.

Definition 3.9 (Riemann integrability).

(a) Let A ⊆ Rd be a d dimensional rectangle and ϕ : A → R, a real–valued function on
A.
We say that ϕ is Riemann integrable, if its proper Riemann integral, as specified (for
general d) in Definition 3.7 on p.73, exists and is finite.

(b) Let ψ be one of the functions f, g, h specified in Definition 3.8 (Improper Riemann
integral) above. We say that ψ is Riemann integrable, if its improper integral, as
specified in Definition 3.8 above, exists and is finite.

(c) If ϕ is as above and α, its proper Riemann integral exists, then we call α the (proper)
Riemann integral, even if α = ±∞ (and thus, ϕ is not Riemann integrable).

(c) If ψ is as above and β, its improper integral exists, then we call β the improper
Riemann integral of ψ, even if β = ±∞ (and thus, ψ is not Riemann integrable). �

Remark 3.8. ? The distinction between a function having a Riemann integral and being Rie-
mann integrable matches how one handles sequences xn of real numbers and infinite series

∑
an.

• Recall that, e.g., the sequence xn = −n does not converge to−∞. Rather, it diverges,
even though we say that it has the limit lim

n→∞
xn = −∞.

• For another example, consider the series
∑
n−1. We say that its limit is

∞∑
n=1

1

n
=∞

and that it diverges. We do not say that it converges to∞. �

Integration of functions over a subset utilizes indicator functions. See Definition 2.32 on p.53.

Definition 3.10.
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(A): Let R ⊆ Rd be a d dimensional rectangle, d ∈ N, and ∅ 6= A ⊆ R. Let f : A → R be a
function on A such that the function

(3.39) 111A f : R −→ R ~x 7→ 111A(~x)f(~x) =

{
f(~x) if ~x ∈ A,
0, else ,

possesses a Riemann integral. Then we call

(3.40)
∫∫
· · ·
∫

A

f(~x) d~x :=

∫∫
· · ·
∫

R

111A(~x) f(~x) d~x

the Riemann integral of f on (also, over,) the subset A.

We are not yet completely done with the case d = 1, since we also must consider improper integrals
of functions of a single variable. We do that now.

(B): Let I ⊆ R be an interval of infinite length, i.e., I is one of [a,∞[, ] −∞, b], ] −∞,∞[,
for suitable a, b ∈ R. Let ∅ 6= A ⊆ I and f : A→ R a function on A such that the function

(3.41) 111A f : I −→ R x 7→ 111A(x)f(x) =

{
f(x) ifx ∈ A,
0, else ,

possesses an improper Riemann integral. Then we call

(3.42)
∫
A
f(x) dx :=

∫
I

111A(x) f(x) dx

the Riemann integral of f on (also, over,) the subset A. �

Remark 3.9. We often use the following simplified notation for multivariable integrals:

• We also write
∫
A
f(~x) d~x for

∫∫
· · ·
∫
A
f(~x) d~x. �

Remark 3.10. ?

Here is a fine point which may have escaped your attention. Per se, both (3.39) and (3.41) depend
on the containing rectangle, R. However, one can show that the number

∫
R 111A(~x)f(~x)d~x does not

depend on R ⊇ A, and that the number
∫
I 111A(x)f(x)dx does not depend on I ⊇ A. �

Remark 3.11. Consider the formula (3.42) for the special case, that f(~x) = 1, for all ~x. You will find
in [12] Stewart, J: Multivariable Calculus. the following formulas that relate 2 dimensional integrals
of the constant function 1 to areas and 3 dimensional integrals of the constant function 1 to olume:

(3.43)
∫∫

A2

d~x = area of A2 and
∫∫∫

A3

d~x = volume of A3

Those integrals exist for very general sets A2 and A3. For example, A2 can be a a type 1 or type 2
region, as shown in the pictures below. 40 For more detail, see your multivariable calculus book.

40Source: University of Texas. The type 2 region picture does not extend far enough to the left. Otherwise one could
see that the region extends vertically from y = c to y = d.
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The areas of such type 1 and type 2 regions are computed according to the formulas

area of Type 1 region =

∫ b

x=a

∫ h(x)

y=g(x)
dy dx

3.2 (Figure). Type 1 region in R2.

area of Type 2 region =

∫ d

y=c

∫ h(y)

x=g(y)
dx dy

3.3 (Figure). Type 2 region in R2. �

The next theorem is one of the many reasons why integration is such an important tool in probability
theory and statistics.

Theorem 3.5.

Let f : Rd → R be a real–valued, nonnegative, and Riemann–integrable function on Rd. Let

RRR := {A ⊆ Rd : 111A is Riemann integrable } .

If
∫

Rd
f(~x) d~x = 1, then the set function P (A) :=

∫
A
f(~x) d~x satisfies Definition 1.2 on p.13

of a Probability measure on RRR, in the following sense:

• P (∅) = 0 • P (Rd) = 1 • 0 ≤ P (A) ≤ 1, for all A ∈RRR.

• σ–additivity: If An ∈RRR are disjoint and A :=
⊎
n∈N

An ∈RRR, then P (A) =
∑
n∈N

P (An).

PROOF: Will not be given here. We just mention that you will see the assertion of this theorem
restated in Corollary 4.2 on p.98 for Lebesgue integrals instead of Riemann integrals. �

Remark 3.12. A lot more will be said in later chapters about the following:
• It is not always possible to define a probability for all subsets of the probability space.
• This issue will mostly be of no concern to us. �

3.4 Series and Integrals as Tools to Compute Probabilities

3.4.1 Series and Sums

We repeat in the next remark the most important results of Section 3.1 (Absolute Convergence of
Series).
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Remark 3.13. In the next theorem we consider countable probability spaces (Ω, P ). Thus,
• either Ω is finite and can be written Ω = {ω1, ω2, . . . , ωk} for some suitable k ∈ N,
• or Ω is countably infinite and can be written Ω = {ωj : j ∈ N} for some suitable k ∈ N.

For what follows, recall Theorem 3.3 on p.60 and the subsequent Notation 3.1 (Notation for series
that do not depend on the order of summation):
Let a1, a2, · · · ∈ R such that aj ≥ 0 for all j. Then

• ANY rearrangement
∞∑
j=1

anj of the aj possesses the same value as
∞∑
j=1

aj .

• We are allowed to write
∞∑
j∈N

aj instead of
∞∑
j=1

aj .

We apply this as follows. Assume that Ω is countable and f is a nonnegative function on Ω. If

our aim is to compute
∞∑
j=1

f(ωj), then it does not matter in what order Ω has been arranged as a

sequence ω1, ω2, . . . . The value of
∞∑
j=1

f(ωj) is the same for any such sequencing of Ω and we can

write
∑
ω∈Ω

f(ω) rather than
∞∑
j=1

f(ωj) for that common value.

Since all subsets of Ω are countable, all of the above remains true for A ⊆ Ω in place of Ω.
Since finitely many terms can be summed in any order, all of the above also applies to finite Ω.
Thus, for finite A = {a1, . . . , an} ⊆ Ω or countably infinite A′ = {a′1, a′2, . . . } ⊆ Ω, we can write

(3.44)
∑
ω∈A

f(ω) =
n∑
j=1

f(aj) ,
∑
ω∈A′

f(ω) =
∞∑
j=1

f(a′j) .

Independence of the order in which a finite or infinite sequence of nonnegative is used in the for-
mulation of the next theorem, a simplified version (no “σ–algebra”) of Corollary 5.1(b) on p.111.
�

Theorem 3.6.

Let Ω be an arbitrary, nonempty, countable set. Let p : Ω −→ R be a function on Ω which satisfies

(3.45) • p(ω) ≥ 0 for all ω ∈ Ω, •
∑
ω∈Ω

p(ω) = 1 .

Then, ω 7→ p(ω) defines a probability measure P on Ω as follows.

(3.46) P (∅) := 0 ; P (A) :=
∑
ω∈A

p(ω)

PROOF: P (∅) = 0 is true by (3.46), and P (Ω) = 1 follows from the second assumption of (3.45).
σ–additivity can be shown by employing Theorem 3.4 on p.61. �

Remark 3.14. It follows from (3.46) that P ({ω}) = p(ω). Thus, for general ∅ 6= A ⊆ Ω,

(3.47) P (A) =
∑
ω∈A

P ({ω}) . �

78 Math 447 - Version 2025-02-20



Math 447 – MF Lecture Notes Student edition with proofs

All probability spaces that were discussed in Section 1.2 (A First Look at Probability) were finite.
For example, the outcomes of rolling three dice were modeled as the set Ω = [1, 2, . . . , 6]3, a set of
size 63 = 216, with equiprobable outcomes: P (ω) = 1/216. here are some examples of countably
infinite probability spaces.

Example 3.9. Let

p : N→ [0,∞[ ; j 7→ p(j) :=

(
2

3

)j−1(1

3

)
.

Thus, p(1) = 1
3 , p(2) = 2

3 ·
1
3 = 2

9 , p(3) = 4
9 ·

1
3 = 4

27 , . . .

Certainly, p(j) ≥ 0 for all j ∈ N. If we can show that
∞∑
j=1

p(j) = 1, then (3.46) defines a probability

measure on N. For convenience, let a := 2/3, b := 1/3. Then p(j) = baj−1. Since a + b = 1 and
∞∑
j=0

aj =
1

1− a
, ‘we obtain

∞∑
j=1

p(j) = b
∞∑
j=1

aj−1 = b
∞∑
j=0

aj = b · 1

1− a
=

b

b
= 1 .

We have shown that P (A) =
∑
j∈A

(
2
3

)j−1(1
3

)
defines a probability measure on N. We will learn in

Section 9.3 (Geometric + Negative Binomial + Hypergeometric Distributions) that P is a geometric
distribution with parameter 1

3 . This distribution is used, for example, to model the probabilities
pertaining to the number of times one must roll a die until a 5 or a 6 shows up for the first time. �

Example 3.10. Let a1, a2, . . . a sequence of nonnegative numbers such that c :=
∞∑
j=1

aj < ∞.

Let Ω be some countably infinite set which has been arranged into the (specific) sequence Ω =
{ω1, ω2, . . . }.

Let f : Ω→ [0,∞[ be defined by f(ωj) := aj . Unless
∞∑
j=0

aj = 1, the conditions of Theorem 3.6

are not met and f does not define a probability measure on Ω. However, p(ωj) := f(ωj)/c satisfies∑
j∈N

p(ωj) =
1

c
·
∑
j∈N

f(ωj) =
1

c
·
∑
j∈N

aj = 1 .

Thus, P (A) =
∑
ω∈A

p(ω) defines a probability measure on Ω. �

Example 3.11. Let c ∈ R and

p : [0,∞[Z→ [0,∞[ ; j 7→ p(j) := c · 1

4j j!
.

is there a value of c that makes A 7→ P (A) :=
∑

j∈A p(j) a probability measure on [0,∞[Z?
Since j is a nonnegative integer, p(j) > 0 for c > 0. Thus we are done if we can find c > 0 such that

(3.48)
∞∑
j=0

c

4j j!
= 1 .
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We find c as follows. c must satisfy (3.48). Thus

1

c
=

∞∑
j=0

1

4j j!
=

∞∑
j=0

(1/4)j

j!
= e1/4 .

It follows that if c = e−1/4, thenP (A) = e−1/4·
∑
j∈A

1
4j j!

defines a probability measure on the nonneg-

ative integers. It will be defined in Section 9.4 (The Poisson Distribution) as a Poisson distribution
with parameter 1

4 . This distribution is used, for example, to model the probabilities pertaining to
the number of occurences of a rather rare item within a unit. An example would be the number of
car accidents in a town (the rare occurrences) during a day (the unit). �

Example 3.12. A sample of the eye colors of 75 persons is taken. The frequencies are as follows.
brown 25
blue 15
black 20
green 5
other 10

Thus, the corresponding relative frequencies are obtained by dividing by the sample size.
brown 1/3
blue 1/5
black 4/15
green 1/15
other 2/15

Let Ω := { brown, blue, black, green, other }. Then p(brown) := 1/3, p(blue) := 1/5, . . . ,
p(other) := 2/15 satisfies (3.45); thus (3.46) defines a probability measure P on Ω.
Observe that this probablity measure is not about the true distribution of eye colors in the popula-
tion from which the sample was taken. It only tells us about the apportionment of eye colors in the
particular sample of 75 persons that we have taken.
For example, P{ blue or green } = 1/5 + 1/15 = 4//15 is the probability that a random
pick from the sample has blue or green eyes. The corresponding probability for a random pick
from the population could be different.
Evidently the procedure just described can be applied to any finite collection of frequencies. Note
however, that statisticians will not refer to the relative frequencies of sample data as probabilities.
41 They reserve that term for probability measures that defined for the model of reality they study.
They compare the relative frequencies of the sample to the corresponding probabilities of that model
and make a decision whether that model is or is not appropriate. �

We now switch focus from series to integrals as a tool to define probability measures.

41The major exception is if those sample data are used to define empirical probabilities. See Example 1.1 (Empirical
probability) on p.6.
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3.4.2 Integrals

Introduction 3.2. According to Theorem 3.5 on p.77, nonnegative, Riemann integrable functions

f(~x) on Rd that satisfy
∫

Rd
f(~x) d~x = 1, define probability measures by means of

(3.49) P (A) :=

∫
A
f(~x) d~x .

Here, we assume that A is Riemann integrable (i.e., its indicator function 111A(~x) is Riemann inte-
grable). We study some examples in this section. �

• Throughout this section, “P is a probability measure on Rd” does not imply that
A 7→ P (A) is defined for all A ⊆ Rd. Rather, it suffices that P (A) is defined for
Riemann integrable A.

Example 3.13. Show that
f(t) := 7 · 111[0,∞[(x)e−7t .

makes the assignment P (A) =
∫
A f(t)dt a probability measure.

Solution: We compute the Riemann integral∫ ∞
−∞

f(t) dt = 7

∫ ∞
0

e−7t dt = 7
−1

7
e−7t

]∞
0

=
−7

7
(0− 1) =

7

7
= 1 .

This shows that f(x) = 3 · 111[0,∞[(x) e−3x defines a probability measure via (3.2). �

Example 3.14. Let c ∈ R and
h(y) := c · 111[0,π](y) sin(y) .

(a) What value of c makes the assignment P (A) =
∫
A h(y)dy a probability measure?

(b) Compute P (]− 10π, π/2[).

Solution for (a): c must be chosen such that
∫

R h(y)dy = 1. We compute the Riemann integral∫ ∞
−∞

h(y) dy = c

∫ π

0
sin(y) dy = (−c) cos(y)

]π
0

= (−c)(−1 + 1) = 2c .

This expression equals 1 for c = 1
2 . Thus, f(y) = 111[0,∞[(y) sin(y)/2 defines a probability measure

via (3.2).

Solution for (b):

P (]− 10π, π[) =

∫ π/2

−10π
h(y) dy =

1

2

∫ π/2

0
sin(y) dy =

(
−1

2

)
cos(y)

]π/2
0

=
1

2
. �
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Example 3.15. Show that
g(x) := 111[0,∞[(x) · xe−x .

makes the assignment P (A) =
∫
A g(x)dx a probability measure.

Solution: We compute the Riemann integral∫ ∞
−∞

g(x) dx =

∫ ∞
0

xe−x dx .

Since lim
x→∞

xe−x = 0, integration by parts yields∫ ∞
0

xe−x dx = x
(
− e−x

]∞
0

)
− (−1)

∫ ∞
0

e−x dx = 0 +

∫ ∞
0

e−x dx = 1 .

This shows that g(x) := 111[0,∞[(x) · xe−x defines a probability measure via (3.2). �

Example 3.16. Let a ∈ R. Let B := [0,∞[×[0, π]× [0,∞[ and

f(~y) := f(y1, y2, y3) := a · 111B(~y) · (7/2) · e−7y1 · sin(y2) · y3e
−y3 .

What value of a makes the assignment P (A) =
∫
A f(~y)d~y a probability measure?

Solution: This example is easy if you have worked through the previous three examples. Let
g(~y) := f(~y)/a. (Note that we may assume a 6= 0. Otherwise f(~y) ≡ 0, and thus,

∫
R3 f(~y) = 0 6= 1.)∫

R3

g(~y) d~y =

∫∫∫
[0,∞[×[0,π]×[0,∞[

7e−7y1 · sin(y2)/2 · y3e
−y3 d~y

We apply Fubini’s Theorem (applied iteration) and obtain∫
R3

g(~y) d~y =

∫
[0,∞[

7e−7y1

[∫
[0,π]

sin(y2)

2

(∫
[0,∞[

y3e
−y3 dy3

)
dy2

]
dy1 .

By Example 3.15, this simplifies to∫
R3

g(~y) d~y =

∫
[0,∞[

7e−7y1

[∫
[0,π]

sin(y2)

2
· 1 dy2

]
dy1 .

By Example 3.14, this simplifies to∫
R3

g(~y) d~y =

∫
[0,∞[

7e−7y1 · 1 dy1 .

By Example 3.13, this simplifies to ∫
R3

g(~y) d~y = 1.

Thus, g itself is the function we are looking for! Since g(~y) := f(~y)/a, We must set a := 1. �

This concludes our review of Riemann integration. In the next chapter we will extend the Riemann
integral to a larger set of functions.
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4 Calculus Extensions

You will see the following advice repeated more than once in this document.

• Many results are formulated for general dimension d. If you find dealing with this
level of generality difficult, we suggest that you formulate the assertions for dimen-
sions 1, 2, 3 and see to it that you understand those special cases.

Introduction 4.1. We had announced at the end of the previous chapter that we will extend the
Riemann integral to a larger set of functions. Before embarking on this endeavor, let us review
some of the core properties of the Riemann integral that we would like to maintain for most if not
all members of this enlarged set of integrands.

(a) For step functions ϕ(~x) =
n∑
j=1

cj111Aj (~x), we defined
∫
ϕ(~x) d~x =

n∑
j=1

cj λ
d(Aj). See

Definition 3.4 on p.66.

(b) We defined
∫
f(~x) d~x for a general function f as the limit of step function integrals.

(Those step functions were Riemann sums. See Definition 3.7 on p.73.
(c) For subsets A ⊆ Rd, we defined

∫
A f(~x) d~x =

∫
111A(~x)f(~x) d~x by use of the indicator

function 111A See Definition 3.10 on p.75.

Note that the integrals
∫
f(~x) d~x obtained in (b) are proper Riemann integrals. Improper Riemann

integral are defined by means of additional limits.

The proper Riemann integral satisfies the following:

(d)
∫
A 0 d~x = 0, and f ≥ 0 ⇒

∫
A f(~x) d~x ≥ 0 (positivity)

(e) f ≤ g on A ⇒
∫
A f(~x) d~x ≤

∫
A g(~x) d~x (monotonicity)

(f)
∫
A

(
c1f(~x) + c2g(~x)) d~x = c1

∫
A f(~x) d~x+ c2

∫
A g(~x) d~x (linearity)

Assume that R = [α1, β1]× · · · × [αd, βd] is a d dimensional, closed and bounded rectangle, and that
the function f is defined onR. Under certain conditions, 42 the integral

∫
R f(~x) d~x can be computed

as an iterated integral, and the order of integration is unimportant: This is Fubini’s Theorem. 43

(g)
∫
R
f(~x) d~x =

∫ β1

α1

(∫ β2

α2

(
· · ·
∫ βd

αd

f(~x) dxd · · ·
)
dx2

)
dx1

=

∫ βj1

αj1

(∫ βj2

αj2

(
· · ·
∫ βjd

αjd

f(~x) dxjd · · ·

)
dxj2

)
dxj1 (Fubini)

holds true for any rearrangement j1, j2, . . . , jd of 1, 2, . . . , d. If we think of the innermost integral as
being evaluated first and the outermost integral as being evaluated last, (g) states that the order of
integration can be switched from dxddxd−1 · · · dx2dx1 to dxjddxjd−1

· · · dxj2dxj1 .
Be sure to understand this formula for d = 2 and d = 3. If d = 2, then there is only one rearrange-
ment of 1, 2 different from 1, 2, and that is 2, 1. Thus, (g) simplifies to

42f is bounded and has at most finitely many points of discontinuity
43Named after the Italian mathematician Guido Fubini (1879 – 1943)
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(h)
∫
R
f(x1, x2) d(x1, x2) =

∫ β1

α1

(∫ β2

α2

f(x1, x2) dx2

)
dx1 =

∫ β2

α2

(∫ β1

α1

f(x1, x2) dx1

)
dx2

If d = 3, then there already are five different ways to rearrange 1, 2, 3, giving you six ways to
compute

∫
R f(x1, x2, x3) d(x1, x2, x3) as an iterated integral. (What are they?)

Another important property of the Riemann integral is the following.
(i) If f is Riemann integrable and g(x) = f(x) except for finitely many arguments x,

then
∫
f(x)dx =

∫
g(x)dx.

Also, in certain situations, one can interchange the order of integration and taking limits. For ex-
ample, the sequence of functions fn : [0, 1] → R, fn(x) = xn, has as limit the function f(x) = 1111(x)
which equals 1 if x = 1 and 0, else. Note that

lim
n→∞

∫ 1

0
fn(x)dx = lim

n→∞

xn+1

n+ 1

]1

x=0
= 0 and

∫ 1

0
1111(x)dx =

∫ 1

1
dx = 0 .

In other words, it is true in this particular case, that

(j) lim
n→∞

∫ 1

0
fn(x)dx =

∫ 1

0

(
lim
n→∞

fn(x)
)
dx

Unfortunately, this is an area where the Riemann is seriously lacking. It is even possible that
• the sequence fn(x) converges to a function f(x) = lim

n→∞
fn(x) on some interval [a, b].

•
b∫
a
fn(x)dx exists for all n.

• Not only is
∫ b
a f(x)dx = lim

n→∞

∫ b
a fn(x)dx false, but

∫ b
a f(x)dx does not even exist.

Here is an example. It is known that the set Q of all rational numbers is countable, i.e., it can be
enumerated as a sequence. Thus, the subset A := Q ∩ [0, 1] also is countable and we can write
A = {qj : j ∈ N}, for suitable rational numbers q1, q2, . . . . Define

fn(x) := 111{q1,...,qn} =

{
1, ifx ∈ {q1, . . . , qn},
0, else ,

f(x) := 111A(x) =

{
1, if y ∈ {q1, q2, . . . },
0, else .

Clearly, f(x) = lim
n→∞

fn(x). Moreover,
1∫
0

fn(x)dx =
1∫
0

0dx = 0. See (i). However, we have seen in

Example 3.6 on p.69 that
1∫
0

f(x)dx does not exist.

We are now going to create an extension of the Riemann integral. It is called the Lebesgue integral
44 and we will see that
• its construction shows some parallels to steps (a) – (c);
• it possesses the very desirable properties (d) – (i);
• it will be much better behaved as far as (j) is concerned. �

4.1 Extension of Lebesgue Measure to the Borel sets of Rd

First, we extend Lebesgue measure which is, for dimensions d = 1, 2, 3, how we measure length,
area, volume, to larger collections of subsets of Rd. So far, λd only is defined for d dimensional
rectangles and, by σ–additivity, to countable, disjoint unions of such rectangles. See Definition

44That is again Henri Lebesgue, the mathematician after whom the Lebesgue measure is named.
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3.3 (Lebesgue measure) on p.65. Formulas (3.40) and (3.43) of Remark 3.11 on p.76 make the next
definition seem very natural.

Definition 4.1.

Let A ⊆ Rd. If it exists, we call the Riemann integral of the constant function 1 over A,

(4.1) λd(A) :=

∫∫
· · ·
∫

A

d~x =

∫∫
· · ·
∫

R

111A(~x) d~x , (R is a rectangle that contains A),

the d dimensional Lebesgue measure of A. �

The next theorem shows that Lebesgue measure can be extended beyond the sets of Definition 4.1
to an even larger collection of sets.

Theorem 4.1. ? There exists a set of subsets of Rd, we denote it Bd, and a function
(4.2) λd := Bd −→ R ∪ {∞} ; A 7→ λd(A) ,
in the abstract sense of Definition 2.17 (Function) on p.33, such that
(A) Bd satisfies the following:

If
∫∫
· · ·
∫
A
d~x exists, then A ∈ Bd, and λd(A) =

∫∫
· · ·
∫
A
d~x ,(4.3)

∅ ∈ Bd, and Rd ∈ Bd ,(4.4)

A ∈ Bd ⇒ A{ ∈ Bd ,(4.5)

An ∈ Bd for all n ∈ N ⇒
⋃
n∈N

An ∈ Bd, and
⋂
n∈N

An ∈ Bd .(4.6)

(B) λd satisfies the following:

A ∈ Bd ⇒ λd(A) ≥ 0, (positivity)(4.7)

λd(∅) = 0 ,(4.8)

A,B ∈ Bd and A ⊆ B ⇒ λd(A) ≤ λd(B) , (monotony)(4.9)

(An)n∈N ∈ Bd disjoint ⇒ λd
(⊎
n∈N

An

)
=
∑
n∈N

λd(An) . (σ–additivity)(4.10)

PROOF: Beyond the scope of this class. �

Definition 4.2 (Borel sets 45 ). ?

We call the elements of Bd the Borel sets of Rd. We also simply say that they are Borel. We
call B ∈ Bd Lebesgue Null, also, λd Null, if λd(B) = 0. �

45Named after the French mathematician and politician Émile Borel (full name: Félix Édouard Justin Émile Borel) (1871
– 1956)
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Remark 4.1. When we introduce σ–algebras in Section 5.1 (Probability Spaces), Bd turns out to be
the σ–algebra which is generated by the d–dimensional rectangles. See Definition 5.6 on p.114. �

Example 4.1. The following shows how to work with some of the formulas of Theorem 4.1.
(a) (4.4) states that Rd ∈ Bd. We could have omitted this part from Theorem 4.1, because it follows
from ∅{ = Rd and ��� (4.4) ∅ ∈ Bd and ��� (4.5) A ∈ Bd ⇒ A{ ∈ Bd

(b) Alternatively, Rd ∈ Bd follows from (4.6), since An := [−n, n]d is a rectangle, thus Borel, and⋃[
An : n ∈ N

]
= Rd.

(c) If ~a = (a1, . . . , ad) ∈ Rd, then the singleton {~a} is Borel, and λd{~a} = 0:
{~a} ∈ Bd, since {~a} = [a1, a1]× [a2, a2]× · · · × [ad, ad] is a rectangle and thus, Borel.
If that seems like cheating, one could also have expressed {~a} as an intersection

(4.11) {~a} =
⋂
n∈N

An , where
]
a1 −

1

n
, a1 +

1

n

[
× · · · ×

]
ad −

1

n
, ad +

1

n

[
of “proper” rectangles An ∈ Bd; thus, by (4.6), {~a} ∈ Bd. This proof is not as short, but (4.11) gives
a quick way to prove that λd{~a} = 0:
By λd(An) = 1/(2n)d and ∅ ⊆ {~a} ⊆ An and (4.9), we have 0 = λd(∅) ≤ λd{~a} ≤ 1/(2n)d for all n.
Since 1/(2n)d ↓ 0 as n→∞, λd{~a} = 0. �

Theorem 4.2. ?

All countable subsets of Rd are Lebesgue Null. In particular, they are Borel sets.

PROOF: Let B ⊆ Rd be countable. Then

B = {~b1,~b2, . . . } = {~b1} ] {~b2} ] · · ·

for some finite or infinite sequence ~bj . We have seen in Example 4.1(c) that the singletons are
Lebesgue Null sets. It follows from (4.6) that {~b1} ] {~b2} ] · · · is Borel and from (4.10) that it
is Lebesgue Null. �

Corollary 4.1. ?

(a) All finite subsets of Rd. In particular, all singleton sets {~x} (~x ∈ Rd), are Borel.
(b) adding and/or removing countably many points to/from a Borel set results in a Borel set.

PROOF of (a): Follows from Theorem 4.2 because finite sets are countable.

PROOF of (b): Let B ∈ Bd, U ⊆ Rd countable. Then U ∈ Bd by Theorem 4.2, because finite sets are
countable It follows from (4.6) that B ∪ U ∈ Bd and B ∩ U ∈ Bd. �

Remark 4.2. ? Only for this remark, let Rectd denote the set of all rectangles of Rd, and let

RiemIntd denote the set of all sets A in Rd such that 111A is Riemann integrable.
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(a) Note that Rectd ⊆ RiemIntd ⊆ Bd ⊆ 2Rd :
• Rectangles in Rd are elements of RiemIntd: Apply Definition 3.4 on p.66 with ϕ = 111A.
• Elements of RiemIntd are Borel sets: That is the assertion of (4.3) in Theorem 4.1.
• Bd ⊆ 2Rd : Borel sets are subsets of Rd, and 2Rd is the set of all subsets of Rd. 46

(b) (4.3) in Theorem 4.1 expresses that the extension of λd from Rectd to Bd is consistent with
formula (4.1) of Definition 4.1 on p.85, which extends λd from Rectd (only) to RiemIntd.

(c) There are Borel sets with infinite Lebesgue measure. For example, Rd ∈ Bd, and λd(Rd) =∞.
(d) All set inclusions in (a) are strict, i.e., we have Rectd ( RiemIntd ( Bd ( 2Rd :
• Rectd ( RiemIntd is true, because, e.g., the union of two disjoint rectangles R1 and R2, has

Riemann integral
∫∫
· · ·
∫
R1∪R2

d~x =
∫∫
· · ·
∫
R1

d~x+ =
∫∫
· · ·
∫
R2

d~x.
• For RiemIntd ( Bd, consider the set A := Q ∩ [0, 1]. Since A ⊆ Q is countable, A is Borel

by Theorem 4.2 on p.86. On the other hand, we have seen in Example 3.6 on p.69 that
the Riemann sums for 111A do not have a limit lim

‖Π‖→0
RS(111A; Π). Hence, A is not Riemann

integrable.
• The proof that Bd ( 2Rd , i.e., Lebesgue measure cannot be reasonably defined for all subsets

of Rd, is very sophisticated and cannot be given here. All sets of interest for this course are
Borel. This justifies the following:

Unless something different is explicitly stated, all sets B ⊆ Rd we deal that with in
this course may be assumed to be Borel Thus, λd(B) exists (but might be infinite).

Only completely weird and useless subsets of Rd are not Borel. �

4.2 The Lebesgue Integral

Definition 4.3 (Simple Function on Rd).

Let d, n ∈ N. Let A1, . . . , An be Borel sets of Rd. (Thus, λd(Aj) is defined for all Aj .) Further,
let c1, c2, . . . , cn be a corresponding set of non–negative real numbers. Let

(4.12) f : Rd −→ R ; ~x 7→ f(~x) :=

n∑
j=1

cj111Aj (~x)

Then we call f a simple function. �

Proposition 4.1. ?

(a) All step functions are simple functions.
(b) Not all simple functions are step functions.
(c) Not all simple functions possess a Riemann integral.

PROOF of (a): This is trivially true, since rectangles in Rd are Borel. See Remark 4.2(a).
46Recall Definition 2.9 (power set) on p.24.
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PROOF of (b): The setA := Q∩[0, 1] obviously cannot be written as a finite union of onedimensional
rectangles (intervals). Thus, x 7→ 111A(x) is not a step function. On the other hand, A is Borel as a
countable set. See Theorem 4.2. We set n = 1, c1 = 1, A1 = A and see that

111A(x) = 1 · 111A(x) =
1∑
j=1

cj · 111Aj (x),

is a simple function.

PROOF of (c): Again, let A := Q ∩ [0, 1]. We just have established that f := 111A is a simple function.
We also have seen in Example 3.6 on p.69 that the Riemann integral∫ b

a
f(x)dx = lim

‖Π‖→0
RS(f ; Π)

does not exist for this function. �

The next definition is very important and you must remember it.

Definition 4.4.

Let f(~x) =
n∑
j=1

cj111Aj (~x) be a simple function such that cj ≥ 0 for all j. Then we call

(4.13)
∫
fd λd :=

∫
f(~x)d λd(~x) :=

∫
f(~x)λd(d~x) :=

n∑
j=1

cjλ
d(Aj) .

the Lebesgue integral of the simple function f . �

Remark 4.3 (Construction of the Lebesgue integral). Compare the following to the construction of
the Riemann integral.

(a) All step functions are simple functions. (See Proposition 4.1(a) on p.87.)
(b) Lebesgue integral and Riemann integral are identical for step functions. (Compare

(3.14) on p.66 with (4.13) above. That bodes well for making them both identical for
at least all those functions which possess a proper Riemann integral. �

Remark 4.4. ? We just mentioned that Definition 4.4 mirrors Definition 3.4 on p.66 of the
Riemann integral of a step function. But note the following differences.

(a) The rectangles that appear in a step function have finite Lebesgue measure, whereas the
Borel sets of a simple function are allowed to have infinite Lebesgue measure.
That is precisely the reason for requiring in Definition 4.4 that cj ≥ 0 for all j: This condition

ensures that there is no occurrence of∞−∞ on the right side of
∫
fdλd =

n∑
j=1

cjλ
d(Aj).

(b) Since the Borel sets of a simple function need not be disjoint, there can be different choices

of n, cj , Aj that yield the same simple function f(~x) =
n∑
j=1

cj111Aj (~x). It can be shown that

they all result in the same number
n∑
j=1

cjλ
d(Aj). Thus, the expression for

∫
fdλd given in

(4.13) is well defined. �
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Remark 4.5. ? We obtained the Riemann integral for general functions from that of step func-
tions as limits ∫∫

· · ·
∫
R
f(~y) d~y := lim

‖Π‖→0
RS(f ; Π) ,

where the Riemann sums (3.35) (see p.73) are the Riemann integrals of step functions (defined on
d–dimensional rectangles, R). Those limits were obtained by dividing the domain into finer and
finer partitions.
We create the Lebesgue integral for more general functions f ≥ 0, by subdividing the codomain
rather than the domain into finer and finer partitions. We then approximate f by a sequence fn ↑ f
(i.e., fn(~x) ↑ f(~x) for all ~x), of simple functions fn with Lebesgue integral

∫
fndλ

d, given by (4.13).
This procedure for creating the functions fn is surprisingly simple: Fix n ∈ N, and define, for k ∈ N,

Ik,n :=

]
k − 1

2n
,
k

2n

]
.

Note that [0,∞[ = {0} ]
(⊎

[ Ik,n : k ∈ Z ]
)

partitions the codomain into small intervals. Let

Ak,n :=

{
~x ∈ Rd :

k − 1

2n
< f(~x) ≤ k

2n

}
(k = 1, . . . , 4n),

Note that ~x ∈ Ak,n ⇔ (k − 1)/2n < f(~x) ≤ k/2n. Next, we define

(4.14) fn(~x) :=

4n∑
k=1

k − 1

2n
· 111Ak,n(~x).

x

f(x)

k−1
2n
k−1
2n
k−1
2n

k
2n
k
2n
k
2n

k+1
2n
k+1
2n
k+1
2n

~x1~x1~x1 ~x2~x2~x2 ~x3~x3~x3 ~x3~x3~x3 ~x4~x4~x4 ~x5~x5~x5 ~x6~x6~x6 ~x7~x7~x7 ~x8~x8~x8 ~x9~x9~x9

The picture above demonstrates how the simple functions fn ↑ f are constructed. Observe that

fn(~x) =
k − 1

2n
on Ak,n =

{
~x ∈ Rd :

k − 1

2n
< f(~x) ≤ k

2n

}
.

(Here, Ak,n = ]~x1, ~x2]∪ ]~x4, ~x5]∪ ]~x6, ~x7]∪ ]~x8, ~x9].) Further, 0 ≤ f(~x) − fn(~x) ≤ 1
2n , for ~x ∈ Ak,n.

Let A0 := {~x ∈ Rd : f(~x) = 0}. Since f ≥ 0, (4.14) implies that fn(~x) = f(~x) = 0 on A0, we see that

0 ≤ f(~x)− fn(~x) ≤ 1

2n
, for ~x ∈ A0 ∪ A1,n ∪ A2,n ∪ · · · ∪ A4n,n .

Since 1 ≤ k ≤ 4n is equivalent to 0 ≤ (k − 1)/2n < k/2n ≤ 4n/2n = 2n, we obtain
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0 ≤ f(~x)− fn(~x) ≤ 1

2n
, for f(~x) ≤ 2n .

Finally, since f(~x) <∞ for all ~x ∈ Rd and 2−n → 0 and 2n →∞ as n→∞, we conclude that

fn(~x) ↑ f(~x) , for ~x ∈ Rd .

It is not difficult to show for two simple functions 0 ≤ ϕ ≤ ψ, that
∫
ϕdλd ≤

∫
ψdλd. Accordingly,

the sequence
∫
fndλ

d (those are real numbers!) is nondecreasing. Thus,∫
fn dλ

d ↑ lim
n→∞

∫
fn dλ

d = sup
n∈N

∫
fn dλ

d .47 (Not guaranteed to be finite.)

One can prove the following.
Let f, fn, f̃n : Rd → [0,∞[ as follows. fn and f̃n are two sequences of simple functions both of
which satisfy fn ↑ f and f̃n ↑ f . Then we have equal limits,

lim
n→∞

∫
fn dλ

d = lim
n→∞

∫
f̃n dλ

d .

This makes part (a) of the next definition possible. �

Recall Definition 2.15 (Absolute value, positive and negative part) on p.29 and the subsequent Re-
mark 2.9: Any real–valued function f (with arbitrary domain) can be written as the difference

f(x) = f+(x) − f−(x)

of the nonnegative functions

f+(x) = max
(
f(x), 0

)
, f−(x) = −min

(
− f(x), 0

)
.

Definition 4.5 (Lebesgue integral). ?

(a) Either let f : Rd → [0,∞[ be a nonnegative function on Rd, such that
• there is a nondecreasing sequence of simple functions, fn ≥ 0, satisfying fn ↑ f ;

Or let f : Rd → ]−∞, 0] be a nonpositive function on Rd, such that
• there is a nonincreasing sequence of simple functions, fn ≤ 0, satisfying fn ↓ f .

We define the Lebesgue integral of that nonnegative or nonpositive function f as

(4.15)
∫
f dλd := lim

n→∞

∫
fn dλ

d .

(b) Let f : Rd → R be a function on Rd such that
• both f+ and f− are limits of nondecreasing sequences of simple functions ≥ 0;

• at least one of
∫
f+dλd,

∫
f−dλd is finite. (According to (a), those integrals exist, but

neither of them was guaranteed to be finite.)

Then we define the Lebesgue integral of the function f as the expression

(4.16)
∫
f dλd =

∫
(f+ − f−) dλd :=

∫
f+ dλd −

∫
f− dλd .

47See Theorem 2.3 on p.50.
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(c) We call a real–valued function f Lebesgue integrable, if
∫
f dλd exists and is finite. �

Remark 4.6. ?

(a) We remind you that the sets A1, . . . , An that belong to a simple function,
n∑
j=1

cj111Aj

are not arbitrary subsets of Rn. Rather, they must be Borel sets.
(b) It is not hard to see that sums and differences of simple functions are simple func-

tions and that the following is true for real–valued functions f, g which are limits of
simple functions fn → f, gn → g on Rd (but not necessarily fn ↑ f and/or gn ↑ g):

• lim
n→∞

fn = f and lim
n→∞

gn = g ⇒ lim
n→∞

(fn ± gn) = f ± g.

(c) In particular, the functions f of Definition 4.5(b) are limits of simple functions, since
we assumed so for f+ and f−, and f = f+ − f−.

(d) Thus, all functions f for which we have defined their Lebesgue integral are limits of
sequences of simple functions.

(e)
∫
f+ dλd =∞ (thus,

∫
f− dλd <∞) ⇒

∫
f dλd =∞.∫

f− dλd =∞ (thus,
∫
f+ dλd <∞) ⇒

∫
f dλd = −∞.

(f) As far as integrability is concerned, we follow the same rule for the Lebesgue integral
as for the Riemann integral: It is not sufficient that the integral exists. Moreover, it
also must be finite. See Definition 3.9 (Riemann integrability) on p.75.

(g) The Lebesgue integral satisfies many important formulas. We will list them in The-
orem 4.5 on p.94, after we have defined how to integrate over subsets of Rd. �

Considering Remark 4.6(d), limits of simple functions deserve a special name.

Definition 4.6. ?

• We call simple functions, and real–valued functions that are limits of sequences of
simple functions, Borel measurable functions (or simply, Borel functions). �

Remark 4.7. ? Let fj be a sequence of simple functions and f(x) := lim
n→∞

fn(x). We mention in

passing that this limit f(x) is allowed to take values ±∞ for some or all x. We will generally gloss
over the issues that this might entail. �

The next theorem asserts that about anything that can be done with a countable collection of Borel
functions results again in a Borel function. Note that we have suppressed the arguments in the

functions listed there. For example, max(f1, f2) is the function ~x 7→ max(f1

(
~x), f2(~x)

)
, and

∞∑
j=1

fj is

the function ~x 7→
∞∑
j=1

fj(~x).
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Theorem 4.3. ? Assume that f1, f2, . . . are Borel functions, c1, c2, · · · ∈ R, B ∈ Bd.

Each of the following also is a Borel function:

• c1 (constant function) • c1f1 • f1 ± f2 • f1f2 • 111Bf1 • f1/f2 (if f2 6= 0) •
n∑
j=1

cjfj

• min(f1, f2) • max(f1, f2) • min
j=1,...,n

fj • max
j=1,...,n

fj • inf
j∈N

fj • sup
j∈N

fj �

If they exist (see the subsequent remark), the following also are Borel functions:

• lim
j→∞

fj •
∞∑
j=1

fj • min
j∈N

fj • max
j∈N

fj

PROOF: �

Remark 4.8. ? Theorem 4.3 (i) asserts that lim
j→∞

fj ,
∞∑
j=1

fj , min
j∈N

fj , max
j∈N

fj may not exist and

(ii) does not raise an issue with inf
j∈N

fj and sup
j∈N

fj . Let us take a look at both points.

(a) For x ∈ R and j ∈ N, let hj(x) := (−1)jx. Let fn(x) :=
n∑
j=1

hj(x) = −x+ x− x+ x . . . .

Thus, lim
j→∞

fj(x) does not exist for x 6= 0.

(b) For x ∈ R and j ∈ N, let fj(x) := (−1)jx. Then
∞∑
j=1

fj(x) = −x+ x− x+ x . . . . does not exist

for x 6= 0.
(c) For x ∈ R and j ∈ N, let fj(x) := 1/n. (Each function fj is constant in x.) Then inf

j∈N
fj(x) = 0,

but min
j∈N

fj(x) does not exist for any x.

(d) For x ∈ R and j ∈ N, let fj(x) := 1− 1/n. Then sup
j∈N

fj(x) = 1, but max
j∈N

fj(x) does not exist

for any x.

Examples (c) and (d) also illustrate why inf and sup are not a concern: Any sequence of real numbers
(and that’s what we have for fixed x) has an inf (might be −∞) and a sup (might be∞). �

Remark 4.9. We stated in Remark 4.2(d) on p.86 that »Only completely weird and useless sets are
not Borel« and that »All sets B ⊆ Rd we deal that with in this course may be assumed to be Borel.«
The same can be said about the Borel functions of Rd. This justifies the following.

Unless something different is explicitly stated, all real–valued functions defined on sub-
sets of Rd that we deal that with in this course may be assumed to be Borel. �

For the next theorem, recall that the product of a Borel set and a Borel function is a Borel function.
48

48see Theorem 4.3 on p.92
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Theorem 4.4. ? Lebesgue integrals satisfy the following.

Let B ∈ Bd and assume that f is a Borel function. Then

(a) If
∫
f dλd exists, then

∫
111B f dλ

d exists.

(b) If f is Lebesgue integrable, then 111Bf is Lebesgue integrable.

PROOF: �

This last theorem allows us to make the following definition. (NOT optional!)

Definition 4.7.

Let B ∈ Bd and assume that f is a Borel function on Rd for which the Lebesgue integral∫
fdλd exists. The Lebesgue integral of f on B or over B is defined by the expression

(4.17)
∫
B
f dλd :=

∫
B
f(~x)d λd(~x) :=

∫
B
f(~x)λd(d~x) :=

∫
111Bf dλ

d .

We say that Lebesgue integrable on B, if
∫
B f dλ

d exists and is finite. �

Fact 4.1. Let B ⊆ Rd and f : B → R, such that f and B are of any relevance for this course.

• If the Riemann integral
∫
B
f(~x) d~x exists, then the Lebesgue integral

∫
B
f dλd exists.

• Further,
∫
B
f(~x) d~x =

∫
B
f dλd.

• Accordingly, all the techniques one has learned in calculus to evaluate the Riemann integral
can be used to compute the Lebesgue integral. �

Be sure to master the following trivial example.

Problem 4.1. Evaluate the following Lebesgue integrals.

(1)
∫

[0,∞[
e−3tdλ1 (2)

∫
[2,5]

4x2y λ1(dy) (3)
∫

[1,2]×[2,5]
4x2y dλ2

Solution for (1): We compute the Riemann integral∫ ∞
0

e−3t dt =
−1

3
e−3t

]∞
0

=
−1

3
(0− 1) =

1

3
.

Solution for (2): Note how the notation
∫
· · ·λ1(dy) leaves no doubt that the integration variable is

y. We compute the Riemann integral∫ 5

2
4x2y dy =

4x2

2
· y2
]5

y=2
= 2x2 · 21 = 42x2 .

Solution for (3): We compute the 2 dimensional Riemann integral∫ 2

x=1

∫ 5

y=2
4x2y dy dx =

∫ 2

x=1

4x2

2
· y2
]5

y=2
dx =

∫ 2

1
42x2 dx =

42

3
· x3
]2

1
= 14 · 7 = 98 . �
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For the sake of completeness, we will give in Remark 4.11 on p.96 below an example of a function
which has a finite (but improper) Riemann integral which does not possess a Lebesgue integral,
since that one would be of the form∞−∞. This is related to the following proposition.

Proposition 4.2 (Integrability criterion). ? Let f be a Borel function and B a Borel set. Then

f is integrable on B ⇔
∫
B
|f | dλd <∞ ⇔ both

∫
B
f+ dλd <∞ and

∫
B
f− dλd <∞.

PROOF: �

You are familiar with (a) and (b) of the next theorem from the Riemann integral. (c) and (d) are the
properties that make the Lebesgue integral so much more powerful than the Riemann integral.

Theorem 4.5. Assume that f, g, f1, f2, . . . are Borel functions, c, c1, c2, · · · ∈ R, and B is a Borel set. Then
Lebesgue integrals on B satisfy the following.

(a) Positivity:
∫
B

0 dλd = 0; f ≥ 0 on B ⇒
∫
B
f dλd ≥ 0,

(b) Monotonicity: λd{~x ∈ B : f(~x) > g(~x)} = 0 ⇒
∫
B
f dλd ≤

∫
B
g dλd.

In particular, f ≤ g on B ⇒
∫
B
f dλd ≤

∫
B
g dλd,

and also, λd{~x ∈ B : f(~x) 6= g(~x)} = 0 ⇒
∫
B
f dλd =

∫
B
g dλd.

(c) Linearity I: f, g integrable on B ⇒
∫
B

(f ± g) dλd =

∫
B
f dλd ±

∫
B
g dλd

and also,
∫
B

(cf) dλd = c

∫
B
f dλd.

Linearity II: f1 . . . , fn integrable ⇒
∫
B

( n∑
j=1

fj

)
dλd =

n∑
j=1

cj

∫
B
fj dλ

d.

(d) Monotone Convergence: Assume that 0 ≤ f1 ≤ f2 ≤ · · · , 0 ≥ g1 ≥ g2 ≥ · · · .

Then
∫
B
fn dλ

d ↑
∫
B

(
sup
n∈N

fn

)
dλd and

∫
B
gn dλ

d ↓
∫
B

(
inf
n∈N

gn

)
dλd as n→∞.

(e) Dominated Convergence: Assume that

• lim
n→∞

fn exists, • |fn| ≤ g for all n ∈ N, •
∫
B
g dλd < ∞.

Then lim
n→∞

∫
B
fn dλ

d =

∫
B

(
lim
n→∞

fn

)
dλd as n→∞.

PROOF: �

Remark:
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Remark 4.10.
(a) We will refer to Theorem 4.5(d) as the monotone convergence theorem and to The-

orem 4.5(e) as the dominated convergence theorem for Lebesgue integrals.
(b) Clearly, the dominated convergence is about switching integrals and limits of a func-

tion sequence. Note that so is the monotone convergence theorem, since 49

• fn ↑ ⇒ sup
n∈N

fn = lim
n→∞

fn, • gn ↓ ⇒ inf
n∈N

gn = lim
n→∞

gn.

Thus, the monotone convergence formulas of Theorem 4.5 can be written∫
B
fn dλ

d ↑
∫
B

(
lim
n→∞

fn

)
dλd ; and

∫
B
gn dλ

d ↓
∫
B

(
lim
n→∞

gn

)
dλd , as n→∞.

(c) Note for the dominated convergence theorem, that |fn| ≤ g implies g > 0. �

Theorem 4.6 (Fubini’s theorem for Lebesgue integrals). ? Assume that f1, f2, . . . are Borel func-
tions, and B1, B2 are Borel sets. Then, for any rearrangement j1, j2, . . . , jd of 1, 2, . . . , d,∫

B1×B2×···×Bd
f dλd =

∫
B1

(∫
B2

(
· · ·
∫
Bd

f dλ1 · · ·
)
dλ1

)
dλ1

=

∫
Bj1

(∫
Bj2

(
· · ·
∫
Bjd

f dλ1 · · ·

)
dλ1

)
dλ1

(4.18)

This formula is technically correct, but let us supply all arguments and write, 50 e.g., λ1(dxj) for dλ1:

∫
B1×B2×···×Bd

f(~x)λd(d~x) =

∫
B1

(∫
B2

(
· · ·
∫
Bd

f(~x)λ1(dxd) · · ·
)
λ1(dx2)

)
λ1(dx1)

=

∫
Bj1

(∫
Bj2

(
· · ·
∫
Bj1

f(~x)λ1(dxjd) · · ·

)
λ1(dxj2)

)
λ1(dxj1) .

(4.19)

In particular, assume that each Bj is an interval [αj , βj ] or [αj , βj ] or [αj , βj ] or [αj , βj ], where αj ≤ βj .

If we adjust the notation to that of Riemann integrals and replace
∫
Bj

with
βj∫
αj

, λd(d~x) with d~x, and λ1(dxj)

with dxj , then (4.19) matches Fubini’s formula (4.1)(g) for Riemann integrals (see p.83).

Here is another version of Fubini’s theorem. It features “only” two vector– valued components.

49by Theorem 2.3 on p.50
50Recall that (4.4) on p.88 and (4.7) on p.93 give us a choice of notation∫

B

f dλd =

∫
B

f(~x)d λd(~x) =

∫
B

f(~x)λd(d~x)
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Assume that d, d1, d2 ∈ N, that d1 + d2 = d, that f : Rd → R is a nonnegative and/or λd–
integrable Borel function, and that B1 ∈ Bd1 and B2 ∈ Bd2 . For ~x = (x1, x2 . . . , xd1) and
~y = (y1, y2 . . . , yd2), let

(
~x, ~y
)

:= (x1, . . . , xd1 , y1, . . . , yd2). Then∫
B1×B2

f
(
~x, ~y
)
λd
(
d(~x, ~y)

)
=

∫
B1

(∫
B2

f
(
~x, ~y
)
λd2(d~y)

)
λd1(d~x)

=

∫
B2

(∫
B1

f
(
~x, ~y
)
λd1(d~x)

)
λd2(d~y) .

(4.20)

Even though there only are two integrations λd1(d~x) and λd2(d~y), (4.20) is more general than (4.19), because
the Borel sets B1, B2, and B1 ×B2 are no more cartesian products of onedimensional Borel sets.

PROOF: �

Remark 4.11. ? Here is a curiosity, an example of a function that a Riemann integral but not a

Lebesgue integral. Let f(x) := 111[0,∞[
sinx

x
. This function has the following properties.

(a) It has the following (improper) Riemann integrals:∫ ∞
0

f+(x) dx =

∫ ∞
0

f−(x) dx =

∫ ∞
0
|f(x)| dx = ∞ .

(b) The Lebesgue integral
∫

[0,∞[
f dλ1 does not exist.

(c) It has the (improper) Riemann integral
∫ ∞

0

sinx

x
dx =

π

2
.

PROOF of (a): 51 We will reference the following below:
(A) (2j + 1)π < x < 2jπ ⇒ sinx < 0 ⇒ f+(x) = 0,
(B) 2jπ < x < (2j + 1)π ⇒ sinx > 0 ⇒ f−(x) = 0,
(C)

∑
1/j = ∞ (harmonic series).∫ ∞

0
f+(x) dx =

∫ ∞
0

sin+ x

x
dx

(A)
=

∞∑
j=0

∫ (2j+1)π

2jπ

sinx

x
dx ≥

∞∑
j=0

∫ (2j+1)π

2jπ

sinx

(2j + 1)π
dx

=
∞∑
j=0

1

(2j + 1)π

∫ (2j+1)π

2jπ
sinx dx =

∞∑
j=0

1

(2j + 1)π
(− cosx)

](2j+1)π

2jπ

=
∞∑
j=0

2

(2j + 1)π
=

2

π

∞∑
j=1

1

2j − 1
≥ 2

π

∞∑
j=1

1

2j
=

1

π

∞∑
j=1

1

j

(C)
= ∞ .

51Source: Showing sin x
x

is NOT Lebesgue integrable on R≥0 .
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Similarly, ∫ ∞
0

f−(x) dx =

∫ ∞
0

sin− x

x
dx

(B)
=

∞∑
j=1

∫ 2jπ

(2j−1)π

sinx

x
dx ≥

∞∑
j=1

∫ 2jπ

(2j−1)π

sinx

2jπ
dx

=
∞∑
j=1

1

2jπ

∫ 2jπ

(2j−1)π
sinx dx =

∞∑
j=1

1

2jπ
(− cosx)

]2jπ

(2j−1)π

=

∞∑
j=1

2

2jπ
=

1

π

∞∑
j=1

1

j

(C)
= ∞ .

PROOF of (b): Since
∫
f+dλ1 =

∫
f−dλ1 =∞, we see from (a) that∫

fdλ1 =

∫
f+dλ1 −

∫
f−dλ1 = ∞−∞ .

Thus, the Lebesgue integral
∫
fdλ1 does not exist.

PROOF of (c): Will not be given. 52 �

Remark 4.12. The monotone convergence and dominated convergence theorems are very powerful
and you are encouraged to consider them when you want to compute the limit of a sequence of
integrals, lim

n→∞

∫
B fndλ

d, or the integral of the limit of a function sequence,
∫
B

(
lim
n→∞

fn
)
dλd.

However, you must always check whether the conditions are met!
Monotone convergence:
• Is fn(x) ≥ 0 for all n and all x ∈ B?
• Is the sequence

(
fn(x)

)
n

nondecreasing for all x ∈ B?
Dominated convergence:
• Does lim

n→∞
fn(x) exist for all x ∈ B?

• Is there x→ g(x) such that
∫
B
gdλd <∞ and |fn(x)| ≤ g(x) for all x ∈ B?

Equivalently: Let h(x) := supn|fn(x)|. Is
∫
B
hdλd <∞?) �

Problem 4.2. Neither monotone convergence nor dominated convergence can be applied for the
following sequences.

(a) Let fn(x) := 111[n,∞[(x). Note that fn ≥ 0 and fn ↓ (rather than fn ↑ ) on R.
Compute limn

∫
fn dλ

d and
∫

(limn fn) dλd.

(b) Let B := [0,∞[ and fn(x) := 111B(x)[e−x + (1/n)e−x/n]. Clearly, fn ≥ 0 on B.
Is it true that fn is nondecreasing? If h(x) = sup fn(x), is

∫
B hdλ

d <∞?

52A proof can be found in Socratic Q&A: Integration of sinx/x from 0 to infinity?. It uses techniques from complex
analysis and is beyond the scope of this course.
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Solution for (a):
(1) First, observe that fn(x) ↓ 0 for all x ∈ R:

This is obvious for x < 0, since then f(x) = 0 for all n.
Fix x ≥ 0 and observe that n > x ⇒ x /∈ [n,∞[⇒ fn(x) = 0. Thus, lim

n→∞
fn(x) = 0.

So we have lim
n→∞

fn(x) = 0 on R; thus,
∫ (

lim
n→∞

fn

)
dλ1 =

∫
0 dλ1 = 0.

(2) On the other hand,
∫
fn dλ

d =

∫ ∞
n

dx = ∞, for all n. Thus, lim
n→∞

∫
fn dλ

d = ∞.

The morale is that monotone convergence may not work for fn ≥ 0 if fn ↑ is replaced with fn ↓.

Solution for (b):
(1) If it is true that fn ↑, then the conditions for monotone convergence are met.

If it is true that
∫
B hdλ

d <∞, then the conditions for dominated convergence are met.

‘ ‘ Neither assertion can be true: We will show that ‘
∫ (

lim
n→∞

fn

)
dλd 6= ‘ lim

n→∞

∫
fn dλ

d. ‘

(2) e−x/n ≤ 1 on B ⇒ lim
n→∞

(1/n)e−x/n = 0 on B ⇒ lim
n→∞

fn(x) = 111Be
−x.

thus,
∫ (

lim
n→∞

fn

)
dλ1 =

∫ ∞
0

e−x dx = 1.

(3) Moreover, n ∈ N ⇒
∫
fn dλ

d =

∫ ∞
0

e−x dx +
1

n

∫ ∞
0

e−x/n dx = 1 + 1 = 2.

(4) We obtain from (2) and (3) that
∫ (

lim
n→∞

fn

)
dλd = 1 6= 2 = lim

n→∞

∫
fn dλ

d.

It follows that neither of the two assertions made in (1) can be true. �

Theorem 4.7.

Let f : Rd → R be a real–valued, Borel–measurable function on Rd. If f is nonnegative or Lebesgue
integrable (i.e.,

∫
|f |dλd <∞), then the set function

(4.21) Ψ : Bd −→ [0,∞], Ψ(A) :=

∫
A
f dλd

is σ–additive.

PROOF: ?

Will not be given here. We just mention that the proof for nonnegative f is based on the monotone
convergence theorem and that for integrable f is based on the dominated convergence theorem. �

Corollary 4.2.

98 Math 447 - Version 2025-02-20



Math 447 – MF Lecture Notes Student edition with proofs

Let f : Rd → R be a real–valued, nonnegative, and Borel–measurable function on Rd.

If
∫
fdλd = 1, then the set function

(4.22) P : Bd −→ [0,∞], P (A) :=

∫
A
f dλd

defines a probability measure on Rd.

PROOF: Clearly,

P (∅) =

∫
∅
f dλd =

∫
0 dλd = 0 .

By assumption,
∫
f dλd = 1. Finally, the σ–additivity of P follows from Theorem 4.7 �

Definition 4.8 (Support of a real–valued function). ?

Let Ω be some nonempty set and f : Ω→ [−∞,∞]. We call

(4.23) suppt(f) := {ω ∈ Ω : f(ω) 6= 0 }
the support of the function f . �

Remark 4.13. ? Since it is true for any function ϕ : Rd → [−∞,∞] and A ⊆ Rd that∫∫
· · ·
∫

A

ϕ(~x)d~x =

∫∫
· · ·
∫

A∩{~x :ϕ(~x)6=0}

ϕ(~x)d~x ,

we see by defining ϕ(~x) := f(~x)g(~x) for two arbitrary functions f, g : Rd → R, that∫∫
· · ·
∫

A

f(~x)g(~x)d~x =

∫∫
· · ·
∫

A∩ suppt(f)

f(~x)g(~x)d~x .

This can be helpful since it means that g only needs to be “well” behaved on the support of f . �

Remark 4.14. ? At this point we see the following when comparing the Lebesgue integral to

the Riemann integral: 53

• Both first assigned to functions ϕ =
n∑
j=1

cn111Bn the integral
n∑
j=1

cjλ
d(Bj):

��� For Riemann integrals: step functions ϕ with d dimensional rectangles Bj .
��� For Lebesgue integrals: simple functions ϕ (more general) with Borel sets Bj .

• For both, the integral for general functions was obtained by taking limits.
• For both, the integral

∫
B f · · · over a subset B was obtained by integrating 111Bf over Rd.

53Concerning the Riemann integral, see Introduction 4.1 on p.83.

99 Math 447 - Version 2025-02-20



Math 447 – MF Lecture Notes Student edition with proofs

• Both satisfy positivity, monotonicity, linearity.
• Both satisfy Fubini’s theorem (iterated integrals)
• The theorems for monotone and dominated convergence are the reason that the Lebesgue

integral satisfies limn

∫
B fndλ

d =
∫
B(limn fn)dλd under extremely general conditions. �
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5 The Probability Model

5.1 Probability Spaces

Introduction 5.1. In Section 1.2 (A First Look at Probability) we had arrived at Definition 1.2 (Prob-
ability measure - Preliminary Definition, version II; see p.13) of a probability measure P : A function
which assigns to events A (subsets of the probability space Ω) a probability P (A) that satisfies

• 0 ≤ P (A) ≤ 1 • P (∅) = 0
• σ–additivity: For any finite or infinite sequence of disjoint events

(
An
)
n∈N ,

(5.1) P
( ∞⊎
j=1

Aj

)
=

∞∑
j=1

P (Aj) .

In this chapter we will provide a solid mathematical foundation of the issues that were discussed
in Section 1.2 (A First Look at Probability). �

There is a catch to making σ–additivity a condition for probability measures. We had stated this in
a footnote of Remark 1.4 on p.14. The next example elaborates on why σ–additivity might have to
come with a trade–off.

Example 5.1. A point located somewhere at ]−∞, 0[ starts moving to the right at a constant velocity
and is stopped at random somewhere in the unit interval [0, 1] in the following sense: It is stopped
just as likely in the left half, [0, 1

2 ], as in the right half, [1
2 , 1]. More generally, for any n ∈ N, it is

stopped equally likely in each one of the intervals [k−1
n , kn ] (k = 1, 2, . . . , n).

• It should be obvious that the only reasonable probability measure on Ω := [0, 1] is the
Lebesgue measure λ1 (considered only on subsets of the unit interval): 54

(5.2) P : [0, 1]→ [0, 1] ; [α, β] 7→ P
(
[α, β]

)
:= λ1

(
[α, β]

)
= β − α , where 0 ≤ α ≤ β ≤ 1,

since it is the only one that assigns probabilities proportionate to interval length (including
P
(
[α, α]) = 0 for intervals of length zero) and also satisfies P (Ω) = 1.

Note that P
(
[α, β]

)
= λ1

(
[α, β]

)
implies the following: The probability measure P is

Lebesgue measure (considered only on subsets of the unit interval).

• Unfortunately, it has been proven that no σ–additive function that satisfies those properties
exists on the entire power set of [0, 1]. 55

The only way out of this dilemma without sacrificing σ–additivity is to relax the condi-
tion that P (A) must exist for ALL A ⊆ Ω and define P only on a subset of 2Ω. �

Remark 5.1. Example 5.1 above suggests that the definition of a probability measure A 7→ P (A)
should be adjusted as follows: It must be a function

P : F −→ [0, 1] , where F is a suitable subset of 2Ω,

54see Definition 4.1 on p.85
55Since P = λ1, this corresponds to not all subsets of R being Borel sets. See Remark 4.2(d) on p.86.
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such that

(5.3) • P (∅) = 0 • P (Ω) = 1 • P

( ∞⊎
k=1

Ak

)
=

∞∑
k=1

P (Ak) for disjoint A1, A2, · · · ∈ F.

Those probabilities only exist lf the underlying events belong to F. Accordingly, F should satisfy

(5.4) • ∅ ∈ F • Ω ∈ F •
∞⊎
k=1

Ak ∈ F, for all sequences of disjoint A1, A2, · · · ∈ F.

In addition, we would like to be able to assign a probability to the following events:

A1 ∪A2 ∪ · · · = the event that at least one of A1 or A2 or . . . happens,
A1 ∩A2 ∩ · · · = the event that each one of A1 and A2 and . . . happens,

A{ = Ω \A = the event that A does not happen.

To have a probability P (A), a subset A of Ω must belong to the domain of P . Thus, F should satisfy

A1, A2, · · · ∈ F ⇒ A1 ∪A2 ∪ · · · ∈ F ,(5.5)
A1, A2, · · · ∈ F ⇒ A1 ∩A2 ∩ · · · ∈ F ,(5.6)

A ∈ F ⇒ A{ ∈ F .(5.7)

We have found an answer to the question what properties F should have. It should satisfy (5.4),
(5.5), (5.6) (5.7). We can remove some redundancies from this set of conditions as follows.

(A) We can remove (5.6) for the following reason:

Let A1, A2, · · · ∈ F. It follows from (5.5) and (5.7) that (A1 ∪ A2 ∪ · · · ){ ∈ F. It follows from De
Morgan’s laws (Theorem 2.1 on p.40), that A1 ∩A2 ∩ · · · ∈ F. We have obtained (5.6).

(B) Disjoint unions are unions. Thus, by (5.5), A1, A2, · · · ∈ F ⇒
⊎
j Aj =

⋃
j Aj ∈ F . Also, ∅ ∈ F

implies with (5.7) that Ω ∈ F. Hence, all we need to keep from (5.4) is ∅ ∈ F.
To sum it up, the domain F of a probability measure P should satisfy ∅ ∈ F, (5.5), and (5.7). �

All the above leads to the definition of σ–algebras as suitable domains for probability measures.

Definition 5.1 (σ–algebra). Let Ω be a nonempty set and F ⊆ 2Ω 56 such that

(a) A ∈ F ⇒ A{ ∈ F .

(b) An ∈ F arbitrary ⇒
∞⋃
j=1

Aj ∈ F .

(c) ∅ ∈ F .

Then we call F a σ–algebra for Ω. (Also, a σ–algebra on Ω or asociated with Ω.)

F is also called a σ–field for Ω, but that is considered old–fashioned terminology. �

56thus, F is a collection of sets: A ∈ F ⇒ A ⊆ Ω (!)
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Proposition 5.1.

σ–algebras F satisfy the following.
(a) Ω ∈ F.
(b) Let n ∈ N and A1, . . . , An ∈ F. Then A1 ∪A2 ∪ · · · ∪An ∈ F. (finite union.)

(c) Let n ∈ N and A1, A2, · · · ∈ F. Let A =
n⋂
k=1

Ak and B =
∞⋂
k=1

Ak.

Then A ∈ F and B ∈ F. �

PROOF: ?

PROOF of (a): True, since Ω = ∅{ and complements of elements of F belong to F and ∅ ∈ F.
PROOF of (b): Since any finite list A1, . . . , An can be written as an infinite sequence

B1 = A1, B2 = A2, · · · , Bn = An, Bn+1 = Bn+2 = · = ∅

and since Bj ∈ F for each j ∈ N, it follows from Def.5.1(b) that
∞⋃
j=1

Bj ∈ F. Since

n⋃
j=1

Aj =
n⋃
j=1

Aj ∪ ∅ ∪ ∅ ∪ · ∪ ∅ =
∞⋃
j=1

Bj ,

it follows that
n⋃
j=1

Aj ∈ F. This proves (b).

PROOF of (c): According to De Morgan’s laws, any countable intersection can be written as the
(countable) union of its complements. Thus we automatically get from (A) and (B) that countable
intersections of a sequence in F belong to F.

Here is a detailed argument. For each j let Cj := A{j . Further, let C :=
n⋃
j=1

Cj and D :=
∞⋃
j=1

Cj .

Since each each Cj is the complement of a member of F, we have Cj ∈ F. Thus, D ∈ F by the
definition of F, and we have seen in part (b) of this proposition that C ∈ F

It follows from De Morgan’s laws that C{ = A and D{ = B.
Thus, both A,B belong to F as complements of elements of F. We have shown (c). �

Example 5.2. Let Ω := {a, b, c, d, e, f}. Let A1 := {a, b}, A2 := {c, d}, A3 := {e, f}. Then

F := { all unions involving A1, A2, A3 }

is a σ–algebra.
To see that this is true, note the following.

(a) For convenience, let J := {1, 2, 3} (the full set of indices j for the sets Aj)
(b) Ω = A1 ∪A2 ∪A3 =

⋃[
Aj : j ∈ J

]
∈ F. Also, by (2.34), ∅ ∈ F.

(c) Let A ∈ F. Then there is an index set JA ⊆ J such that A =
⋃[

Aj : j ∈ JA
]
.

J∗ := J \ JA ⇒ A{ = Ω \A =
[ ⋃
j∈J

Aj
]
\
[ ⋃
j∈JA

Aj
]

=
⋃
j∈J∗

Aj ∈ F.
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Examples are: ��� A = ∅ ⇒ JA = ∅ ⇒ J∗ = J ⇒
⋃
j∈J∗

Aj = Ω ∈ F. ��� A = {a, b, e, f}

⇒ JA = {1, 3}, J∗ = {2} ⇒
⋃
j∈J∗

Aj =
⋃

j∈{2}
Aj = A2 = A{, ⇒ A2 ∈ F.

(d) Let Bn ∈ F, n ∈ N. Let B :=
⋃
n∈N

Bn. Since Bn ∈ F, there is an index set Jn ⊆ J such that

Bn =
⋃
j∈Jn

Aj . Let J∗ :=
⋃
n∈N

Jn. Then J∗ ⊆ J = {1, 2, 3}(!!) and B =
⋃
n∈N

[ ⋃
j∈Jn

Aj
]

=
⋃
j∈J∗

Aj .

Thus, B is a union of the sets A1, A2, A3, thus, B ∈ F.

Examples: ��� B1 = B3 = B5 = . . . ,= A2; B2 = B4 = . . . ,= A3 ⇒
⋃
n∈N

Bn = A2 ∪A3 ∈ F.

��� B1 = A1 ∪A2; B2 = A1; B3 = A1 ∪A3; B4 = A1 ⇒ J∗ = I ⇒
⋃
n∈N

Bn = Ω ∈ F.

It follows from (d), (d), and (d), that F is a σ–algebra. �

Example 5.3. ?

Let A1 := {(x, y) ∈ R2 : x > 0, y > 0}, A2 := {(x, y) ∈ R2 : x > 0, y < 0},
A3 := {(x, y) ∈ R2 : x < 0, y > 0}, A4 := {(x, y) ∈ R2 : x < 0, y < 0},
A5 := {(x, y) ∈ R2 : x = 0 or y = 0}. Then

F := { all finite unions involving A1, . . . , A5 }

is a σ–algebra.
Note how similar this example is to Example 5.2.
• Here, A1, . . . , A5 is a partition of R2. There, A1, . . . , A3 is a partition of Ω.
• “all finite unions involvingA1, . . . , A5” means the same as “all unions involvingA1, . . . , A5”,

so both examples have matching definitions of F.
• Here, the full set of indices j for the sets Aj is J := {1, . . . , 5}.
• (In Example 5.2, J = {1, . . . , 3}.)
• We replace the set J = {1, . . . , 3} from Example 5.2 with J := {1, . . . , 5}.

With those adjustments, the proof that F is a σ–algebra is that of Example 5.2. �

Example 5.4. ?

For n ∈ Z, Let An :=]n− 1, n] = {x ∈ R : n− 1 < x ≤ n}. Then

F := { all countable unions involving An, n ∈ Z }

is a σ–algebra for R.
Again, note the similarity of this example to Example 5.2.
• Here, (An)n∈Z is a (countable) partition of R. There, A1, . . . , A3 is a partition of Ω.
• “all countable unions involving An, n ∈ Z” equals “all unions involving An, n ∈ Z”, since

there only are countably many Aj . Thus, both examples have matching definitions of F.
• Here, the full set of indices j for the sets Aj is J := Z. (In Example 5.2, J = {1, . . . , 3}.)
• We replace the set J = {1, . . . , 3} from Example 5.2 with J := Z.

We illustrate this by computing the complement of A :=
⋃[

A3n2−18n : n ∈ N
]
.
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• Let JA := {3n2 − 18n : n ∈ Z}, J∗ := Z \ JA. Then A =
⋃

j∈JA
Aj and A{ =

⋃
j∈J∗

Aj .

Thus, A{ ∈ F. �

Now, the general case.

Proposition 5.2. ?

Assume that (Aj)j∈J is a countable partition of a nonempty set Ω. In other words, the sets Aj are
mutually disjoint subsets of Ω,

⊎[
Aj : j ∈ J

]
= Ω, and the index set J is countable. Then

(5.8) F := { all unions involving some or all of the Aj }

is a σ–algebra for Ω.

PROOF:
(a) By definition of F, for each A ⊆ F there is an index set JA ⊆ J such that A =

⋃
j∈JA

Aj .

Since JA ⊆ J , JA is countable. Thus, F = { all countable unions involving Aj , j ∈ J }

(b) Ω =
⋃
j∈J

Aj is a countable union of elements of F. Thus, Ω ∈ F.

(c) By convention (2.34), ∅ =
⋃
j∈∅

Aj Thus, ∅ ∈ F.

(d) Let A ∈ F. Then there is an index set JA ⊆ J such that A =
⋃

j∈JA
Aj . Let J∗ := J \ JA.

Since J = JA ] J∗, Ω =
⊎
j∈J

Aj =
[ ⊎
j∈JA

Aj
]
]
[ ⊎
j∈J∗

Aj
]

= A ]
[ ⊎
j∈J∗

Aj
]
.

Thus, A{ is a union of elements of F. Thus, A{ ∈ F.

(e) For n ∈ N, let Bn ∈ F. Let B :=
⋃
n∈N

Bn. Since Bn ∈ F, there is Jn ⊆ J s.t. Bn =
⋃
j∈Jn

Aj .

Let J∗ :=
⋃
n∈N

Jn. Then J∗ ⊆ J and B =
⋃
n∈N

Bn =
⋃
n∈N

[ ⋃
j∈Jn

Aj
]

=
⋃
j∈J∗

Aj .

Thus, B is a union of sets Aj ∈ F, thus, B ∈ F.

It follows from (b) – (e) that F is a σ–algebra. �

Part (b) of the next example provides a counterexample!

Example 5.5. ?

Assume that (Aj)j∈J is an uncountable partition of Ω such that Aj 6= ∅ for all j. (Thus, not only the
index set J , but also Ω itself is uncountable.) Then

(a) F := { all unions involving Aj , j ∈ J } is a σ–algebra,
(b) E := { all countable unions involvingAj , j ∈ J } is not a σ–algebra.

Showing that (a) is not much different from, e.g., Example 5.2 on p.103 or the proof of Proposition
5.2 and left as an exercise.
Now we show (b). By Fact 2.1(c) on p.37, countable unions of countable sets are countable.

Let E ∈ E . By definition of E , there is some countable JE ⊆ J such that E =
⊎

j∈JE
Aj . Since JE is

countable and J is uncountable, JE ( J . Thus, J∗ := J \ JE 6= ∅. Since none of the Aj are empty,
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E∗ :=
⊎
j∈J∗

Aj 6= ∅. From J = JE ] J∗ we obtain Ω =
⊎
j∈J

Aj =
[ ⊎
j∈JE

Aj

]
]
[ ⊎
j∈JE

Aj

]
= E ] E∗.

We have seen that E∗ 6= ∅. Thus, E 6= Ω. All this has been obtained for an arbitrary E ∈ E . Thus,
Ω /∈ E . We conclude that E is not a σ–algebra. �

Definition 5.2 (Probability measures and probability spaces).

Given are a nonempty set Ω with a σ–algebra F ⊆ 2Ω and a function

P : F −→ [0, 1] ; A 7→ P (A) as follows.

(5.9) P (∅) = 0 , (5.10) P (Ω) = 1 ,

(5.11) (An)n∈N ∈ Fdisjoint ⇒ P
(⊎
n∈N

An

)
=

∞∑
n=1

P (An) =
∑
n∈N

P (An). (σ–additivity)

• We call P a probability measure or simply a probability
• The triplet (Ω,F, P ) is called a probability space.
• (Only) the elements of F are called events.
• We often call disjoint events mutually exclusive events.
• An event A is a P Null event, also, Null event, if P (A) = 0.

We suggest to reserve the term “probability” for the function value P (A) that belongs to a specific
event A, and always refer to P , i.e., the function A 7→ P (A), as a “probability measure”. �

Notation 5.1 (Sample spaces and sample points).

• We also call a probability space a sample space and an outcome a sample point.
• We also call Ω by itself (as opposed to the triplet (Ω,F, P )) a probability space or

sample space. Sometimes we refer to Ω as the carrier set or carrier of (Ω,F, P ).
• We like to write Ω for the carrier set, F for the σ–algebra and P for the probability

measure of a probability space, but different notation may be used. For example,
there may be a probability space (S,SSS , Q) and outcomes s or x or ~y (vector notation).

Remark 5.2. We noted in Section 1.2 (A First Look at Probability), that “sample space” is the statis-
tician’s terminology for a probability space. We will mostly use the term “probability space”, since
we usually think of a sample as a list of items that that has been picked in some random fashion
from an underlying “population”. We will consider probability spaces in this lecture where it would
require a huge stretch of the imagination to consider their elements as such samples. Note though
that there are occasions where the term “sample space” is preferable terminology.

You, my students, may choose whatever notation you prefer.

And more good news: We have introduced σ–algebras to properly deal with the issue that was
raised in Example 5.1 on p.101
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It won’t be long and we will on only few occasions deal with σ–algebras.
• Thus, we will usually refer to probability spaces (Ω, P ) and (S, P ).
• In particular, we will also revert to calling any subset of Ω an event. �

Remark 5.3. How do we interpret P
( ⊎
n∈N

An

)
=

∞∑
n=1

P (An) =
∑
n∈N

P (An) (formula (5.11) for

σ–additivity in the definition of a probability measure)? There are two issues.

(a) What is the meaning of
⊎
n∈N

An as opposed to
∞⊎
n=1

An?

(b) What is the meaning of
∑
n∈N

P (An), as opposed to
∞∑
n=1

P (An)? Does it really not matter in which

order we add the terms of an inifinite series?

The answer to (a) is easy. Unions are defined without any reference to an order “first A1, then A2,
then A3, . . . ”, since the definition of a ∈

⊎
n∈N

An is the existence of at least one index i0 such that

a ∈ Ai0 . No reference to an ordering is made. The only justification for the notation
∞⊎
n=1

An is that it

looks more familiar. By the way, what was said here about disjoint unions also applies to arbitrary
unions and to intersections.

Now, to (b). The series
∑
P (An) is absolutely convergent. 57 To see this, let A :=

∞⊎
n=1

An.

Clearly, P (An) ≥ 0 for all n. Moreover, by (σ–)additivity applied to A ]A{ = Ω,

P

( ∞⊎
n=1

An

)
= P (A) ≤ P (A) + P

(
A{
)

= P (Ω) = 1 < ∞ .

Since
∑
P (An) is absolutely convergent, it does indeed not matter how the terms An are arranged.

See Theorem 3.2 on p.58. �

In Section 1.2 (A First Look at Probability), we used throws of a die to illustrate the concepts of
random actions and their potential outomes. This motivated us to give a preliminary definition of a
probability measure as a function. Now that we have the final definition of a probability measure,
elt us study some more examples.

Example 5.6. We model k rolls of a fair die (k ∈ N) as follows. Let

Ω := {1, 2, 3, 4, 5, 6}k = {(a1, a2, . . . , ak) : aj = 1, 2, .., 6, where j = 1, 2, . . . , k} .

For example, let k = 5. then ω1 = (2, 6, 2, 1, 4) ∈ Ω. On the other hand, ω2 = (2, 6, 2, 9, 4) /∈ Ω, since
aj = 1, 2, . . . , 6 is not true for j = 4 (because a4 = 9).
Ω is a finite set, and you will learn later that its size is 6k. Thus, Ω = {ω1, ω2, . . . , ω6k}where, e.g.,

ω1 = (1, 1, . . . , 1, 1), ω2 = (1, 1, . . . , 1, 2), . . . , ω6k−1 = (6, 6, . . . , 6, 5), ω6k = (6, 6, . . . , 6, 6).

57See Definition 3.1 (Absolute Convergence) on p.58.
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Since the die is fair, each one of those 6k elements of Ω should have the same probability p := P ({ω})
for all ω ∈ Ω. Since P (Ω) = 1 and

Ω =
⊎[
{ω} : ω ∈ Ω

]
=

∞⊎
j=1

{ωj} .

is a union of a sequence of disjoint sets, we obtain from the σ–additivity of P (·) the following:

1 = P (Ω) =

6k∑
j=1

P{ωj} = 6kp ⇒ p =
1

6k
.

• So then, how does one define a probability measure P : F→ [0, 1]?
• And what is that σ–algebra F going to be?

To answer those questions, we define the function P : 2Ω → R as follows.

P (A) :=
|A|
|Ω|

=
|A|
6k

.(5.12)

Observe the following.
(1) A ⊆ Ω ⇒ 0 ≤ |A| ≤ |Ω| = 6k ⇒ 0 ≤ P (A) ≤ 1.
(2) The empty set has size |∅| = 0 and Ω has size |Ω| = 6k. Thus, P (∅) = 0 and P (Ω) = 1.
(3) Assume that A1, A2, . . . are disjoint subsets of Ω. Since Ω is finite, only finitely many Aj are

not empty. (THINK!)
(4) We rearrange that sequence such that its nonempty members will be A1, A2, . . . , Am, for

some suitable m.
(5) Then, A = A1 ]A2 ] · · · ]Am is a finite union. Disjointness of the Aj implies that

|A| = |A1| + |A2| + · · ·+ |Am| .

(6) By σ–additivity, P (A) = |A|/6k =
m∑
j=1

(|Aj |/6k) =
m∑
j=1

P (Aj) =
∑
all j

P (Aj)

For the last equation, observe that the omitted sets Am+1, Am+2, . . . were empty;
thus, P (Aj) = 0/6k = 0 for those j.

We obtain from (1) – (6) that P (A) = |A|/6k is a probability measure on 2Ω. �

Example 5.7. One easily sees the generalization of the last example to arbitrary finite sets:
Let Ω be a finite set of size N := |Ω| <∞. Let the function P : 2Ω → R be given as

P (A) :=
|A|
|Ω|

=
|A|
N

.(5.13)

Then everything stated in (1) – (6) of (a) remains valid if we replace 6k with N . This shows that P is
a probability measure on 2Ω. �
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Definition 5.3 (Equiprobability).

Let (Ω, P ) be a finite probability space, i.e., |Ω| < ∞. Let n := |Ω|. We say that P has
equiprobable outcomes and also, that P satisfies equiprobability, if

P
(
{ω}

)
=

1

|Ω|
(since then P{ω} is constant for all ω ∈ Ω). �(5.14)

Remark 5.4. The finiteness of Ω was crucial in the last two examples for the following reason.
If Ω is infinite and countable, then Ω = {ω1, ω2, . . . } can be written as an infinite sequence of
distinct(!) members. It is not possible to define a “uniform” probability measure on Ω as we did in
parts (a) and (b), i.e., a number p such that P (ωj) = p, for all j ∈ N. How so?

(1) p would have to be strictly positive: Otherwise,
P (Ω) =

∑
j P (ωj) = p+ p+ · · · ≤ 0, but we require P (Ω) = 1.

(2) Thus, p > 0. Thus, P (Ω) =
∑

j P (ωj) = p + p + · · · = ∞. However, we require
P (Ω) = 1.

�

Remark 5.5. We will see that the most important probability measures on the uncountable set R
satisfy P (x) = 0 for all x ∈ R. 58 That is no contradiction to σ–additivity and P (R) = 1, since
one cannot write the real numbers as a countable union R = {x1} ] {x1} ] {x2} ] · · · . Obviously,
it is no more possible in those cases to determine a probability measure on R by only listing the
probabilities P (x) of the atomar events {x} for all x ∈ R. Rather, P often is characterized by integrals

P ([a, b]) =
b∫
a
ϕ(t)dt. (And if this is the case, we obtain indeed P (x) =

x∫
x
ϕ(t)dt = 0 for all x.) �

Recall for the next theorem that we denote by An ↑ a nondecreasing sequence of events: i < J ⇒
Ai ⊆ Aj and by Bn ↓ a nondecreasing sequence of events: i < J ⇒ Bi ⊇ Bj . (See Definition 2.23
on p.36.)

Theorem 5.1 (Continuity property of probability measures). ?

Let (Ω,F, P ) be a probability space. If An, Bn ∈ F, then the following is true:

An ↑ ⇒ P (An) ↑ P

(⋃
n∈N

An

)
,(5.15)

Bn ↓ ⇒ P (Bn) ↓ P

(⋂
n∈N

Bn

)
.(5.16)

PROOF: We prove (5.15) as follows: Let A :=
∞⋃
j=1

Aj and

C1 := A1 , Cn+1 := An+1 \An (n ∈ N).

58Those probability measures are the so-called distributions of continuous random variables.
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Note that An ↑ ⇒ An =
n⋃
j=1

Aj and thus, Cn+1 := An+1 \

(
n⋃
j=1

Aj

)
.

According to Proposition 2.6 (Rewrite unions as disjoint unions) on p.41, the setsCj form a partition
of A and we have

An =
n⊎
j=1

Cj , A =
∞⊎
j=1

Cj ,

It follows from the σ–additivity of P that

P (A) = P

 ∞⊎
j=1

Cj

 =
∞∑
j=1

P (Cj) = lim
n→∞

n∑
j=1

P (Cj) = lim
n→∞

P

 n⊎
j=1

Cj

 = lim
n→∞

P (An) .

This proves (5.15). We use this result to prove (5.16) as follows.

Let B :=
∞⋂
j=1

Bj . For n ∈ N, let An := B{n. Further, let A :=
∞⋃
j=1

Aj . Then An ↑ and it follows from

De Morgan that

A{ =

 ∞⋃
j=1

Aj

{ =
∞⋂
j=1

A{j =
∞⋂
j=1

Bj = B .

We apply (5.15) and obtain

1 − P (Bn) = P (An) ↑ P

(⋃
n∈N

An

)
= 1 − P

(⋃
n∈N

An

){  = 1 − P (B) .

Thus, P (Bn) ↓ P (B) and this proves (5.16). �

Definition 5.4 (Discrete probability space).

Assume that the probability space (Ω,F, P ) satisfies the following:
(a) P ({ω}) is defined for all ω ∈ Ω. In other words, we ask that {ω} ∈ F for all ω ∈ Ω.
(b) There exists a countable subset A∗ of Ω such that

∑
ω∈A∗

P{ω} = 1

Then we call (Ω,F, P ) a discrete probability space. �

We will later on talk about discrete and continuous random variables, but note that there is no such
thing as a “continuous probability space”.

Remark 5.6. For the interpretation of the summation
∑
ω∈A∗

P{ω}we note the following.

(a) Either A∗ is finite and can be written A∗ = {ω1, ω2, . . . , ωn} for some suitable n.

Then
∑
ω∈A∗

P{ω} =
n∑
j=1

P{ωj}.
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(b) Or A∗ is infinite and can be written A∗ = {ωj : j ∈ N}. We reason as in Remark
5.3 on p.107 with {ωj} in place of Aj and see that the series

∑
P{ωj} is absolutely

convergent. Thus, the value of
n∑
j=1

P{ωj} does not depend on how the elements of

A∗ were sequenced and we can write
∑
ω∈A∗

P{ω} for that common value. �

In the next theorem we intentionally deviate from the standard notation (Ω,F, P ) for a probability
space, because it is typically applied to the codomain (rather than domain) of a random element.

Theorem 5.2.

Let (Ω′,F′, P ′) be a discrete probability space and A∗ ∈ F′ countable such that
∑

ω′∈A∗
P ′{ω′} = 1.

Then,
(a) A∗ ∈ F′.
(b) P ′(A∗) = 1 and thus, P ′

(
(A∗){

)
= 0.

(c) P ′(A) = P ′(A ∩A∗) for all A ∈ F′.
(d) P ′(A) =

∑
ω′∈A∩A∗

P ′{ω′} for all A ∈ F′.

(e) ? The formula P̃ (B) := P ′(B ∩ A∗) “extends” P ′ to a probability measure P̃ on

the entire power set 2Ω′ .

PROOF: ?

PROOF of (a): This is true, because {ω′} ∈ F′ for all ω′ and A∗ =
⊎

ω′∈A∗
{ω′} is a countable union of

elements of F′.

PROOF of (b): By definition,
∑

ω′∈A∗
P ′{ω′} = 1. Since A∗ =

⊎
ω′∈A∗

{ω′}, we obtain P ′(A∗) = 1.

Further, Ω′ = A ] (A∗){⇒ 1 = P ′(A∗) + P ′
(

(A∗){
)

= 1 + P ′
(

(A∗){
)

. Thus, P ′
(

(A∗){
)

= 0.

PROOF of (c): From 0 ≤ P ′
(
A ∩ (A∗){

)
≤ P ′

(
(A∗){

)
= 0, we obtain P ′

(
A ∩ (A∗){

)
= 0.

From A = [A ∩A∗] ]
[
A ∩ (A∗){

]
, we obtain P ′(A) = P ′ (A ∩A∗) + P ′

(
A ∩ (A∗){

)
= P ′ (A ∩A∗).

PROOF of (d): A ∩ A∗ is a subset of A∗, hence, countable. Thus, P ′(A ∩ A∗) =
∑

ω′∈A∩A∗
P ′{ω′}. We

obtain from (c) that P ′(A) =
∑

ω′∈A∩A∗
P ′{ω′}.

PROOF of (e): Tedious but easy, if one uses (c) and distributivity A∗ ∩
⊎
j
Aj =

⊎
j

(A∗ ∩Aj). �

Corollary 5.1.
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(a) If (Ω′,F′, P ′) be a discrete probability space, then P ′ is characterized by the probabilities
P ′{ω′} of the outcomes ω′.

(b) Let Ω′ be some arbitrary, nonempty set. Assume that
(
pj
)
j

is a finite or infinite sequence of
real numbers that satisfies
• pj ≥ 0 for all j and

∑
j pj = 1

Further, assume that
(
ω′j
)
j

is a corresponding sequence of distinct elements of Ω′, then
(
pj
)
j

defines a discrete probability space (Ω′, 2Ω′ , P ′) as follows.
• P ′(∅) := 0, P ′(A) :=

∑
j : ω′j∈A

pj , for A 6= ∅. �

PROOF: ? This follows from Theorem 5.2. The details are left to the reader. �

Remark: We mentioned in Remark 1.7 on p.17 the following for a random element
X : (Ω,F, P )→ (Ω′,F′): The formula

PX(A′) = P{X ∈ A′}, (A′ ∈ F′)

defines a probability measure on the subsets of Ω′ (on F′, to be precise), which we referred to as the
distribution of X under P . 59

Assume that Ω∗ has been sequenced as Ω∗ = {ω′1, ω′2, . . . . Let

pj := PX{ω′j} = P{X = ω′j}

Since ∑
j∈N

pj =
∑
j∈N

PX{ω′j} = PX(ω∗) = 1,

The assignment 60 ω′ 7→ pX(ω′) =

{
pj , if ω′ = ω′j ,

0, otherwise,

uniquely determines the distribution PX �

Remark 5.7. The probability spaces (Ω,F, P ) we will be faced with when doing computations for
practical applications belong to one of the following categories:

(a) (Ω,F, P ) is a discrete probability space. According to Theorem 5.2(e) on p.111, we
may choose F = 2Ω).

(b) Ω = R and P (A) is known (at a minimum) for intervals such as [a, b] or ]a, b] or [a, b[
or ]a, b[.

(c) Ω = Rn and P (A) is known (at a minimum) for n–dimensional rectangles such as
[a1, b1]× [a2, b2]× · · · × [an, bn] (cartesian products of onedimensional intervals!)

It is important that we can assign probabilities to Intervals in (c) and n–dimensional rectangles in
(d), for the following reason.

59The precise definition of a probability distribution will be given in in Definition 5.13 (Probability Distribution) on
p.124.

60later on referred to as the probability mass function (PMF) of X
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(c’) the most important probabilities P defined for sets in R come with a so called prob-
ability density function f : R→ [0,∞[ which assigns to an interval ]a, b] the proba-
bility

P
(
]a, b]

)
=

∫ b

a
f(u) du .

It seems plausible that the σ–algebra B for such P should contain all intervals ]a, b].

(d’) Likewise, the most important probabilities P defined for sets in Rn come with a
probability density function f : Rn → [0,∞[ which assigns to an n–dimensional
rectangle ]a1, b1]×]a2, b2]× · · ·×]an, bn] the probability

P
(

]a1, b1]×]a2, b2]× · · ·×]an, bn]
)

=

∫ bn

an

∫ bn−1

an−1

· · ·
∫ b1

a1

f(~u) d~u

=

∫ bn

an

∫ bn−1

an−1

· · ·
∫ b1

a1

f(u1, . . . , un) du1 du2 · · · dun−1 dun .

Accordingly, it is desirable that the σ–algebra Bn for such P contains all rectangles

]a1, b1]× ]a2, b2 ] × · · · × ]an, bn ] .

You may have Noticed that we could have worked with either of ]aj , bj [, [aj , bj [, [aj , bj ] instead of
]aj , bj ], since

∫ a
a ...da is always zero. However, it is more convenient to work with intervals that

are open on the left and closed on the right. We will see that when we deal with the so-called
cumulative distribution functions on R and Rn. �

Theorem 5.3. ? Let Ω be some arbitrary set and
(
Fi
)
i∈I a family of σ–algebras on Ω, i.e., Fi ⊆ 2Ω for

each i ∈ I . No assumption is made about the index set other than I 6= ∅. Thus, this family may consist of
finitely many σ–algebras or of entire sequence or even uncountably many σ–algebras.
• Let F :=

⋂
i∈I Fi, i.e., F = {A ⊆ Ω : A ∈ Fi for each index i}. Then F is a σ–algebra.

This can also be stated as follows. Any intersection of σ–algebras results in a σ–algebra.

PROOF: We show that (b) of Definition 5.1 (σ–algebra) on p.102 holds:

• An ∈ F for all n ⇒
∞⋃
j=n

An ∈ F .

So let An ∈ F for all n and let A :=
⋃
n∈N

An. Let i ∈ I . Since F ⊆ Fi, An ∈ Fi for all n.

Since Fi is a σ–algebra, A ∈ Fi. Since this is true for an arbitrary i ∈ I , A ∈
⋂
i ∈ IFi, i.e., A ∈ F.

The proofs of A ∈ F ⇒ A{ ∈ F and of ∅ ∈ F follow the same template and are left to the reader.
�

Theorem 5.4. ?

Let Ω be some arbitrary set and AAA ⊆ 2Ω. In other words, each element of AAA is a subset of Ω.
• There exists a minimal (i.e., smallest) σ–algebra that contains AAA .
• Further, this σ–algebra is uniquely determined by AAA . This allows us to name it σ{AAA }.
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PROOF: We obtain σ{AAA } as the intersection of all σ–algebras that contain AAA . According to Theorem
5.3, this intersection is a σ–algebra. �

Definition 5.5 (σ–algebra generated by a collection of sets). ? Let Ω be some nonempty set.

(a) Let AAA ⊆ 2Ω, i.e., the elements of AAA are subsets of Ω.
We call σ{AAA } the σ–algebra generated by AAA . If AAA is of the form AAA = {...}, we also
write σ{...} for σ{{...}}.

(b) Assume in addition that F is a σ–algebra for Ω and AAA ⊆ F. If σ{AAA } = F, we call AAA
a generator for F a.k.a. generator of F, and we say that AAA generates F.

Concerning notation:
• One also can write σ(AAA ) or σ[AAA ] for σ{AAA }.
• Given a family of subsets Ai ⊆ Ω, (i ∈ I), σ{Ai : i ∈ I} can also be written as

σ{Ai : i ∈ I} = σ
(
(Ai)i∈I

)
= σ

[
(Ai)i∈I

]
= σ

{
(Ai)i∈I

}
.

As usual, it is OK to omit the “i ∈ I” part if the meaning of I is unambiguous. �

Example 5.8. ? The simplest example possible is the computation of σ{A}, for some A ⊆ Ω.

• Since ∅ and Ω belong to any σ–algebra on Ω, ∅ ∈ σ{A} and Ω ∈ σ{A}.
• EEE ⊆ σ{EEE} is true for any EEE ⊆ 2Ω. Thus, {A} ⊆ σ{A}, i.e., A ∈ σ{A}.
• If A belongs to a σ–algebra, so does A{. Since A ∈ σ{A}, we also have A{ ∈ σ{A}.
• Thus, if AAA = {∅, A,A{Ω}, then {A} ⊆ AAA ⊆ σ{A}. Since AAA is a σ–algebra that contains
{A}, and σ{A} is minimal among those, we also haveAAA ⊇ σ{A}. Thus,AAA = σ{A}. �

The next definition is marked optional, but note that Borel sets will be mentioned frequently during
lecture. Matter of fact, we have already encountered them when we discussed Lebesgue integrals
in Chapter 4 (Calculus Extensions). See Definition 4.2 (Borel sets) on p.85 and Theorem 4.1, which
preceeds it. There Borel sets were introduced as some subset of 2Rd which is big enough to include
all Riemann integrable sets and satisfies (4.4)–(4.6), what we now recognize as the formulas that
define a σ–algebra.

Definition 5.6 (Borel σ–algebra). ? For d = 1, 2, . . . , we define

• Bd := σ{ d–dimensional rectangles },
• B := B1 = σ{ all intervals of real numbers }.

B and Bd are the Borel σ–algebras and their members are the Borel sets of R and Rd. �

Remark 5.8. (A) Consider the following sets of intervals of real numbers.
I1 := {]a, b] : a < b}, I2 := {[a, b] : a < b},
I3 := {]a, b[ : a < b}, I4 := {[a, b[ : a < b}, EEE := { ]−∞, c ] : c ∈ R }.

One can show that each one of those sets of intervals is big enough to generate the Borel sets of R:
B = σ(I1) = σ(I2) = σ(I3) = σ(I4).
(B) The above generalizes to d–dimensional space: Let
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I5 := {]a1, b1]×]a2, b2]× · · ·×]ad, bd] : a1 < b1, a2 < b2, . . . , ad < bd} ,
I6 := {[a1, b1]× [a2, b2]× · · · × [ad, bd] : a1 < b1, a2 < b2, . . . , ad < bd} ,
I7 := {]a1, b1[×]a2, b2[× · · ·×]ad, bd[: a1 < b1, a2 < b2, . . . , ad < bd} ,
I8 := {[a1, b1[×[a2, b2[× · · · × [ad, bd[: a1 < b1, a2 < b2, . . . , ad < bd} ,

one can show that Bd = σ(I5) = σ(I6) = σ(I7) = σ(I8).
(C) In the parlance of Definition 5.5 (σ–algebra generated by a collection of sets) on p.114, each one
of I1–I4 is a generator of the onedimensional Borel sets, and each one of I5–I8 is a generator of the
d–dimensional Borel sets. �

Fact 5.1. ? For the following, note that the sets I1, . . . ,I8 were defined in Example 5.8 on p.114.

(a) Let I denote one of the collections of half-open intervals, I1, I4. Let EEE := I ] R. Then any
function P0 : EEE → [0, 1] which satisfies P0(∅) = 0, P0(R) = 1 and σ–additivity on EEE :
En ∈ EEE disjoint such that E :=

⊎
n∈N
∈ EEE ⇒ P0(E) =

∑
n∈N

P0(En),

can be uniquely extended to a probability measure on B, the Borel sets of R.

(b) Let I denote one of the collections of d–dimensional rectangles I5, I8. Let EEE := I ∪ {Rd}.
Then any function P0 : EEE → [0, 1] which satisfies P0(∅) = 0, P0(Rd) = 1 and σ–additivity
on EEE : En ∈ EEE disjoint such that E :=

⊎
n∈N

En ∈ EEE ⇒ P0(E) =
∑
n∈N

P0(En),

can be uniquely extended to a probability measure on Bd, the Borel sets of Rd. �

Remark 5.9. Consider this a continuation of Remark 5.7. We can summarize it as follows.
There are essentially only two kinds of probability spaces (Ω,F, P ) we are interested in.

(a) There is a countable subset A∗ of Ω such that
∑
ω∈A∗

P ({ω}) = 1 (discrete probability spaces).

Then F = 2Ω , since the above allows us to define P (A) for arbitrary A ⊆ Ω as

P (A) =
∑

ω∈A∗∩A
P ({ω}) .

(b) Ω = R or Ω = Rn. Then F = the Borel sets.

We note once more that all subsets of Rd that crop up in applications are Borel. See, e.g., Remark 4.9
on p.92. That allows us to behave as if we are in situation (a), where P (A) is defined for all A ∈ 2Ω,
i.e., as if F = 2Ω. But then there is no more need to worry about F and we can and will henceforth,
with very few exceptions, do the following.

We will ignore that probability measures cannot always be given on the entire power set
2Ω. Accordingly, we will drop the σ–algebra F from (Ω,F, P ).

• We often will refer to probability spaces (or sample spaces) (Ω, P ),
rather than to probability spaces (Ω,F, P ). �
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Notational conveniences for probabilities:

If we have a set that is written as {. . . }, i.e., with curly braces as delimiters, then we may
write its probability as P{. . . } instead of P

(
{. . . }

)
. Specifically for singletons {ω}, it is OK

to write P{ω}.

The next theorem lists two important rules to determine probabilities.

Theorem 5.5 (WMS Ch.02.8, Theorem 2.6). If A and B are two events in a probability space (Ω, P ), then

Additive Law of Probability: P (A ∪B) = P (A) + P (B) − P (A ∩B) .(5.17)

Rule of the Complement: P
[
A{
]

= 1 − P [A] .(5.18)

PROOF of (5.17): We apply the σ–additivity of P as follows:
(1) A = (A \B) ] (A ∩B) and B = (B \A) ] (A ∩B)

⇒ P (A) + P (B) = P (A \B) + P (A ∩B) + P (B \A) + P (A ∩B)
(2) A ∪B = (A \B) ] (A ∩B) ] P (B \A)

⇒ P (A ∪B) = P (A \B) + P (A ∩B) + P (B \A)

Thus, from (1) and (2), P (A) + P (B) = P (A ∪B) + P (A ∩B).
It follows that P (A ∪B) = P (A) + P (B)− P (A ∩B).
PROOF of (5.18): Immediate from the σ–additivity of P and Ω = A ]A{. �

Remark 5.10. If the events A and B are mutually exclusive, i.e., A ∩ B = ∅, then P [A ∩ B] = 0 and
the additive law of probability simply is σ–additivity

P (A ]B) = P (A) + P (B) . �(5.19)

Remark 5.11. The additive law of probability is very easy to apply, since all you need is P (A), P (B)
and P (A ∩B).

Nevertheless it might be fastest to draw a Venn diagram. As-
sume you know that P (A) = 0.5, P (B) = 0.3, P (A ∩B) = 0.1.
Clearly, P (A \B) = P (A)− P (A ∩B) = 0.4
and P (B \A) = P (B)− P (A ∩B) = 0.2.
It is now immediate that P (A ∪ B) = 0.7 and we get for free
that P (A ∪B{) = 0.3.

A B
0.4 0.20.1

0.3

The additive law of probability has generalizations for the probability of the union of three or more
events.

Theorem 5.6 (Exclusion–Inclusion formula for 3 events). ?

If A1, A2, A3 are events in a probability space (Ω, P ), then
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P (A1∪A2 ∪A3) =
[
P (A1) + P (A2) + P (A3)

]
−
[
P (A1 ∩A2) + P (A1 ∩A3) + P (A2 ∩A3)

]
+ P (A1 ∩A2 ∩An) .

(5.20)

PROOF: We apply the additive law of probability to the sets A1 and A2 ∪A3 and obtain

P [A1 ∪A2 ∪A3] = P [A1] + P [A2 ∪A3] − P
[
A1 ∩ (A2 ∩A3)

]
.(A)

Next, we apply the additive law of probability to A2 and A3:

P [A2 ∪A3] = P [A2] + P [A3] − P [A2 ∩A3] .

We substitute that in (A) which then reads

P [A1 ∪A2 ∪A3] = P [A1] + P [A2] + P [A3] − P [A2 ∩A3] − P
[
A1 ∩ (A2 ∪A3)

]
.(B)

Since A1 ∩ (A2 ∪ A3) = (A1 ∩ A2) ∪ (A1 ∩ A3), (see (2.37) on p.41: distributivity of unions and
intersections), it follows from (B) that

P [A1 ∪A2 ∪A3] = P [A1] + P [A2] + P [A3] − P [A2 ∩A3] − P
[
(A1 ∩ (A2) ∪ (A1 ∩A3)

]
.(C)

Finally, we apply the additive law of probability to the sets A1 ∩A2 and A1 ∩A3:

P [A1 ∪A2 ∪A3] = P [A1] + P [A2] + P [A3] − P [A2 ∩A3]

−
(
P [A1 ∩A2] + P [A1 ∩A3] − P [A1 ∩A2 ∩A1 ∩A3]

)
= P [A1] + P [A2] + P [A3]

− P [A2 ∩A3] − P [A1 ∩A2] − P [A1 ∩A3] + P [A1 ∩A2 ∩A3] . �

Here is the general formula for any number of events.

Theorem 5.7 (Exclusion–Inclusion formula). ?

If A1, A2, · · · , An are events in a probability space (Ω, P ), then

P (A1∪A2 · · · ∪An) =
∑
i

P (Ai) −
∑
i<j

P (Ai ∩Aj)

+
∑
i<j<k

P (Ai ∩Aj ∩Ak) − · · · + (−1)n+1 · P (A1 ∩A2 · · · ∩An) .
(5.21)

PROOF: Will not be given here. �

Remark 5.12. This remark is preliminary.

Randomness specifically:
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(1) Random number generator of a statistics package: Generate a random a number 0 ≤ x < 1
with a precision of k decimals. We can have a big k, e.g., k = 25. For such a high precision
we can model the set of potential outcomes Ω as the continuum [0, 1[. For any interval
[a, b[⊆ [0, 1[, we would obtain that P ([a, b[), the probability that a number that falls into [a, b[
is generated, equals b − a. In other words, this “uniform” probability on [0, 1[ is λ1, the
Lebesgue measure on [0, 1[. Note that ([0, 1[, λ1) is not a discrete probability space.

(2) Roll a die: |Ω| = 6
(3) Roll a die 3 times: |Ω| = 63

(4) 20 coin tosses: |Ω| = 220 ≈ 106 since 210 = 1, 024 ≈ 103.

(5) 109 coin tosses: |Ω| = 2109 = 210·108 =
(
210
)108 ≈

(
103
)108

= 103·108

(6) A selection of n items from a population is a sample of size n. The “most random” action of
obtaining such a sample would be one where each subset of size n from that population is
selected with the same likelihood as any other. �

5.2 Conditional Probability and Independent Events

Definition 5.7 (Conditional probability).

Given are a probability space (Ω,FFF , P ) and two events A,B ∈FFF . We call

(5.22) P (A | B) :=


P (A ∩B)

P (B)
, if P (B) > 0 ,

undefined , if P (B) = 0 ,

(read: “probability of A given B” or “probability of A conditioned on B”) the conditional
probability of the event A, given that the event B has occurred. �

Theorem 5.8.

Given are a probability space (Ω,FFF , P ) and an event B ∈FFF such that P (B) > 0. Then

P (· | B) : F −→ [0, 1] ; A 7→ P (A | B)(5.23)

is another probability measure on (Ω,FFF ).

In other words, P (· | B) satisfies (5.9) – (5.11) of Definition 5.2 (Probability measures and probability spaces)
on p.106.

PROOF: First, it follows from ∅ ⊆ A ∩B ⊆ B that P (A ∩B)/P (B) ≥ 0 and P (A ∩B)/P (B) ≤ 1.
This shows that P (· | B) indeed takes values between 0 and 1.
PROOF of (5.9): Since P (∅ ∩B) = 0, P (∅ | B) = 0/P (B) = 0.
PROOF of (5.10): Since Ω ∩B = B, P (Ω | B) = P (Ω ∩B)/P (B) = P (B)/P (B) = 1.
PROOF of (5.11): Assume that (An)n∈N ∈ F is a sequence of disjoint events. Then, for i 6= j,

(Ai ∩B) ∩ (Aj ∩B) ⊆ Ai ∩Aj = ∅ .
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Thus, the sequence (An ∩B)n∈N also is mutually disjoint. Further, by (2.37) on p.41,⊎
n∈N

(B ∩An) = B ∩
⊎
n∈N

An .

It follows from this and the σ–additivity of P that

P

(⊎
n∈N

An | B

)
=
P
(
B ∩

⊎
n∈NAn

)
P (B)

=
P
(⊎

n∈N (B ∩An)
)

P (B)

=

∑
n∈N P (B ∩An)

P (B)
=
∑
n∈N

P (B ∩An)

P (B)
=
∑
n∈N

P (An | B) .

We have shown that P (· | B) is σ–additive and this proves (5.11). �

It is immediate from the definition of P (A | B) that

P (A ∩B) = P (A | B) · P (B) .

This formula is referred to by WMS as the multiplicative law of probability. It can be extended to
three events as follows.

Proposition 5.3. If (Ω,F, P ) is a probability space and A,B,C ∈ F, then

(5.24) P (A ∩B ∩ C) = P (A | B ∩ C) · P (B | C) · P (C) .

PROOF:

P (A ∩B ∩ C) = P (A | B ∩ C) · P (B ∩ C) . = P (A | B ∩ C) · P (B | C) · P (C) . �

The multiplicative law of probability generalizes to arbitrarily many sets as follows.

Proposition 5.4 (Multiplicative Law of Probability for n events).

If (Ω,F, P ) is a probability space, n ∈ N and A1, . . . , An ∈ F, then

P (A1 ∩A2 ∩ · · · ∩An) = P (A1 | A2 ∩ · · · ∩An) · P (A2 | A3 · · · ∩An) · · ·
· · ·P (An−2 | An−1 ∩An)P (An−1 | An)P (An).

(5.25)

PROOF:
It is easier to work with the reverse sequence An ∩ An−1 ∩ · · · ∩ A1 instead of A1 ∩ A2 ∩ · · · ∩ An.
Repeated use of P (U ∩ V ) = P (U | V )P (V ) with U = Aj and V = Aj−1 ∩ · · · ∩A1 yields

P (An ∩An−1 ∩ · · · ∩A1)

= P (An | An−1 ∩ · · · ∩A1)P (An−1 ∩ · · · ∩A1)

= P (An | An−1 ∩ · · · ∩A1)P (An−1 | An−2 · · · ∩A1)P (An−2 · · · ∩A1)

= .......................

= P (An | An−1 ∩ · · · ∩A1)P (An−1 | An−2 · · · ∩A1) · · ·P (A3 | A2 ∩A1)P (A2 | A1)P (A1). �
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Definition 5.8 (Two independent events).

Given are a probability space (Ω,FFF , P ) and two events A,B ∈FFF . We say that A and B are
independent if

(5.26) P (A ∩B) = P (A) · P (B) . �

Independence of three events is not defined as you may have guessed from that last definition.

Definition 5.9 (Three independent events). Given are a probability space (Ω,FFF , P ) and three events
A,B,C ∈FFF . We say that A,B and C are independent if

P (A ∩B ∩ C) = P (A) · P (B) · P (C) ,

P (A ∩B) = P (A) · P (B) ,

P (A ∩ C) = P (A) · P (C) ,

P (B ∩ C) = P (B) · P (C) . �

(5.27)

We can state (5.27) as follows. It must be true for any subsequence of events that the probability of
the intersection equals the product of the probabilities of the individual events.

Remark 5.13. It is possible to construct a probability measure P and events A,B,C such that
P (A ∩B ∩ C) = P (A) · P (B) · P (C) and P (A ∩B) 6= P (A) · P (B) �

Definition 5.9 shows us how to generalize independence to any number of events.

Definition 5.10 (Finitely many independent events).

Given are a probability space (Ω,FFF , P ), n ∈ N and events A1, A2, . . . , An ∈FFF . We say that
A1, A2, . . . , An are independent if, for ANY subselection of indices

1 ≤ j1 < j2 < · · · < jk ≤ n ,

it is true that

(5.28) P (Aj1 ∩Aj1 ∩Ajk) = P (Aj1) · P (Aj2) · P (Ajk) . �

Finally, we define independence for infinitely many events.

Definition 5.11 (Sequences of independent events).

Given are a probability space (Ω,FFF , P ) and a sequence of events A1, A2, · · · ∈ FFF We say
that this sequence is independent if, for ANY FINITE subselection of distinct indices
j1, j2, . . . , jk ∈ N, it is true that

(5.29) P (Aj1 ∩Aj2 ∩Ajk) = P (Aj1) · P (Aj2) · P (Ajk) . �
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Remark 5.14. Note that the number k in Definition 5.10 and Definition 5.11 is not fixed. �

We did not really define independence for any collection of infinitely many events, only for a se-
quence, i.e., a countable collection of events. The truly general case deals with families (see Defini-
tion 2.25 on p.38) of events

Definition 5.12 (Independence of arbitrarily many events). ?

Given are a probability space (Ω,FFF , P ) and a family
(
Ai
)
i∈I of events Ai ∈ FFF . Here I

denotes an arbitrary set of indices. We say that this family is independent if, for ANY
FINITE subselection of distinct indices i1, i2, . . . , ik ∈ I , it is true that

(5.30) P (Ai1 ∩Ai2 ∩Aik) = P (Ai1) · P (Ai2) · P (Aik) . �

The next theorem is marked optional, but it is just as easy to remember as the corollary that follows
it.

Theorem 5.9. ?

Given are a probability space (Ω,FFF , P ) and a family
(
Ai
)
i∈I of independent events Ai ∈FFF . Here

I denotes an arbitrary set of indices. Then we have the following:

If some or all of the Ai are replaced by their complement A{i , then the resulting family of events also
is independent.

In other words, for each i ∈ I , let Bi be either Ai or A{i . Then independence of
(
Ai
)
i∈I

implies that of
(
Bi
)
i∈I .

PROOF: Utilizes advanced probabilistic methods that are outside the scope of this course �

Note that the following corollary is NOT marked as optional!

Corollary 5.2.

Given are a (Ω,F, P ) is a probability space, n ∈ N and independent events A1, . . . , An ∈ F.
If some or all of the Ai are replaced by their complement A{i , then the resulting list of events also is
independent.

In other words, for each i = 1, 2, . . . , n, let Bi be either Ai or A{i . Then independence of A1, . . . , An

implies that of B1, . . . , Bn.

PROOF: ?

(A): The case n = 2 shows the essence of the proof: For convenience, let B := A{2. First, we show
that A1 and B are independent.

A1 = (A1 ∩A2) ] (A1 ∩B) ⇒ P (A1) = P (A1 ∩A2) + P (A1 ∩B)

= P (A1) · P (A2) + P (A1 ∩B)

⇒ P (A1 ∩B) = P (A1) ·
(
1− P (A2)

)
= P (A1) · P (B) .
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Thus, A1 and A{2 are independent. Since intersection is commutative (E ∩ E′ = E′ ∩ E), it follows
that A{1 and A2 also are independent.

Knowing that A{1 and A2 are independent, we can apply the proof above to those two independent
events and obtain that A{1 and A{2 are independent. This finishes the proof for n = 2

(B): For general n, let A1, . . . , An be independent. For convenience, let B := A1 ∩ · · · ∩An−1.
Since P (B ∩ An) = P (A1 ∩ · · · ∩ An) = P (A1) · · ·P (An) = P (B) · P (An), B and An are
independent. We have shown in (A) that B and A{n are independent, too.
We argue as in (A) and conclude from the commutativity of “∩” that replacing any Aj with its com-
plement, i.e., fixing an index j1 and defining Bj := Aj for j 6= j1 and Bj1 := A{j1 , that B1, . . . , Bn are
independent In other words, replacing just one event with it complement maintains independence.

We apply this to the events Cj := Bj for j 6= j2 and Cj2 := B{j2 , where we assume that j2 6= j1. The
result is that C1, . . . , Cn also are independent
At this point we know that replacing k = 1 or k = 2 events with their complements maintains
independence. We apply this to the events Dj := Cj for j 6= j3 and Dj3 := B{j3 , where we assume
that j2 /∈ {j1, j2. The result is that D1, . . . , Dn also are independent.
At this point we know that replacing k ≤ 3 events with their complements maintains independence.
We repeat the above with k = 4, then with k = 5, ....., then with k = n. This completes the proof. �

Next, we examine connections between conditional probabilities and independence.

Theorem 5.10.

Given are a probability space (Ω,FFF , P ) and two events A,B ∈FFF such that P (B) > 0. Then

A and B are independent ⇔ P (A | B) = P (A) .(5.31)

PROOF of “⇒”:
Since A and B are independent and P (B) > 0,

P (A | B) =
P (A ∩B)

P (B)
=

P (A) · P (B)

P (B)
= P (A) .

PROOF of “⇐”:
Since P (A | B) = P (A) and P (B) > 0,

P (A) · P (B) = P (A | B) · P (B) =
P (A ∩B)

P (B)
· P (B) = P (A ∩B) . �

Corollary 5.3.

If (Ω,FFF , P ) is a probability space and A,B ∈FFF such that P (A) > 0 and P (B) > 0. Then

A and B are independent ⇔ P (A | B) = P (A) ⇔ P (B | A) = P (B) .(5.32)

PROOF: Obious �
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5.3 Random Elements and their Probability Distributions

Introduction 5.2. We continue with an observation we made in the introduction 2.3 to Section 2.5
(Preimages, p.41). There,
• Ω = {1, 2, . . . , 6}2 and ~ω = (ω1, ω2) represents a potential (two–number) outcome of two

rolls of a fair die, i.e., P ({~ω}) = 1/|Ω| = 1/36.
• We defined the function Y : Ω → Ω′ := {2, 3, 4, . . . , 11, 12}; ~ω 7→ Y

(
~ω
)

:= ω1 + ω2, which
associates with ~ω = (ω1, ω2) the sum of the two rolls.

• This function lead to a probability measure P ′ on Ω′ by means of formula (2.39):

B ⊆ Ω′ ⇒ P ′(B) = P{~ω ∈ Ω : Y
(
~ω
)
∈ B} .

Observe that the set Ω′ has been transformed into a probability space, (Ω′, P ′)).
• With preimage notation and the notational shortcuts of Remark 2.4 on p.45, this can also be

written as
P ′(B) = P

(
Y −1(B)

)
= P{Y ∈ B} .

These formulas can be written for an arbitrary probability space (Ω, P ), an arbitrary nonempty set
Ω′, and an arbitrary function Y : Ω → Ω′. Actually, that so only because we disregard the role of
σ–algebras and measurability. 61 �

The next theorem and the subsequent definitions are very important.

Theorem 5.11.

Let (Ω, P ) be a probability space, Ω′ a nonempty set, and Y : Ω→ Ω′ a function. Then the formula

(5.33) PY (B) := P{Y ∈ B} (B ⊆ Ω′)

defines a probability measure on Ω′.

PROOF: ? It follows from {Y ∈ ∅} = ∅ and {Y ∈ Ω′} = Ω, that

PY (∅) = P (∅) = 0 and PY (Ω′) = P (Ω) = 1 .

Let B ⊆ Ω′. From (2.46) on p.45, we obtain

PY (B{) = P{Y ∈ B{} = P
(
Y −1(B{)

)
= P

(
[Y −1(B)]{

)
= 1 − P

(
Y −1(B)

)
= 1 − PY (B) .

To prove σ–additivity of PY , we apply (2.45) to the index set N of a sequence of disjoint subsets
B1, B2, . . . of Ω′. Let B := B1 ]B2 ]B3 ] ·. Then

PY (B) = P
(
Y −1

⊎
j∈N

Bj

) = P

⋃
j∈N

Y −1(Bj)


61For measurability, see the optional section ?? (Advanced Topics – Measurable Functions)
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By (2.47), the sets Y −1(Bj) are disjoint. Thus,

PY (B) = P

⊎
j∈N

Y −1(Bj)

 =
∑
j∈N

P
(
Y −1(Bj)

)
=
∑
j∈N

PY (Bj) .

This proves σ–additivity. �

Definition 5.13 (Probability Distribution).

Let (Ω, P ) be a probability space, Ω′ a nonempty set, and Y : Ω → Ω′ a function. Then the
probability measure PY on Ω′ of Theorem 5.11, given by

PY (A′) := P{Y ∈ A′} = P
(
Y −1(A′)

)
(A′ ⊆ Ω′) ,(5.34)

is called the probability distribution or just the distribution of Y with respect to P . Very
often the probability space (Ω, P ) is fixed for a long stretch. We then simply talk about the
probability distribution of Y , without referring to P . �

Definition 5.14 (Random Variables and Random Vectors). Let (Ω, P ) be a probability space and let
n ∈ N.

Let B ⊆ R. A function
Y : Ω −→ B ; ω 7→ Y (ω)

is called a random variable (in short, r.v. or rv,) on (Ω,F, P ). Let B′ ⊆ Rn. A function

~X =
(
X1, X2, . . . , Xn

)
: Ω −→ B′ ; ω 7→ ~X(ω) =

(
X1ω), . . . , Xn(ω

)
is called a random vector on (Ω,F, P ).
If there is a countable subset B∗ = {y1, y2, . . . } of B such that

∑
j PY {yj} = 1 (i.e.,

P{Y /∈ B∗} = 0 ), we call Y a discrete random variable. Likewise, if there is a countable
subset B′∗ of B′ such that P{ ~X /∈ B′∗} = 0, we call ~X a discrete random vector.

Note that random variables and vectors which have a countable range are discrete. �

Remark 5.15. In many instances the exact nature of the codomain B of a random variable Y is
unimportant. Of course it must be a set of numbers, i.e., B ⊆ R, and it must be big enough to
accommodate all function values Y (ω), i.e., Y (ω) ⊆ B. 62 Thus, here is some good news.

We often will just say something like “Let Y be a random variable on Ω” or, “Let Y be a
discrete random vector on Ω” and not even mention the codomain of Y . �

Not all interesting functions on a probability space take values in R or Rn. Here is an example.

62It only matters when we need the inverse function ω = Y −1(y) of y = Y (ω). (Do not confuse inverse function and
preimage, just because they use the same symbol Y −1!) Then Y −1(y) must make sense for all y ∈ B and that requires
that B is minimal: B = Y (Ω). The same thought also applies to random vectors.
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Example 5.9. The following describes a (unnecessarily complicated) way to simulate n tosses of a
fair coin. Le Let Ω := [0, 1[, where we represent the real number ω ∈ Ω as a decimal 0.d1d2d3 with
inifinitely many decimal digits. If necessary, we append infinitely many zeroes to the right. For
example, we write 0.25000 . . . for the number 1/4. We write H for Heads and T for Tails and define
the following function on (Ω, P ).

~X : Ω→ {H,T}n

• X1(ω) = H if d1 is even, T else.
• X2(ω) = H if d2 is even, T else.
• · · · · · · · · · · · · · · · · · · · · · · · ·
• Xn(ω) = H if dn is even, T else.

Since P ~X(~x) = 1/2n for each ~x ∈ {H,T}n, each combination of a total of n Heads and Tails has the
same chance to occur. That is our understanding of a fair coin. �

Considering that last example, it seems awkward not to call a function Ω→ Ω′ from a probability
space (Ω, P ) to a set Ω′ a random variable only because its function values are not numbers. We
give a name to such functions of randomness.

Definition 5.15 (Random element).

Let (Ω,F, P ) be a probability space and Ω′ a nonempty set.
We call a function X : Ω→ Ω′ a random element, also: a random item, on Ω. �

Remark 5.16. We can phrase Theorem 5.11 on p.123 and the subsequent Definition 5.13 as follows.
All random elements X on a probability space (Ω,F, P ) have a distribution

PX(B) = P{X ∈ B} = P
(
X−1(B)

)
(B ⊆ Ω′). �

For a collection AAA of subsets of Ω, σ{AAA} denotes the minimal σ–algebra that contains AAA. 63 In
particular, given random elements X,Xi : (Ω, P ) → Ω′, (i ∈ I), we can consider the sets of
preimages

(5.35) AAA1 := {X−1(A′) : A′ ⊆ Ω′} AAA2 := {X−1
i (A′) : A′ ⊆ Ω′, i ∈ I}

and the σ–algebras that are generated by those collections of preimages,AAA1 andAAA2. The σ–algebras
are so important that they have their own notation.

Definition 5.16 (σ–algebra generated by random elements 64 ). ? Let (Ω, P ) be a probability
space.

(a) Let X : (Ω, P )→ Ω′ be a random element on (Ω, P ). We call

(5.36) σ{X} := σ{X−1(A′) : A′ ⊆ Ω′}

the σ–algebra generated by the random element X .

63See Definition 5.5 (σ–algebra generated by a collection of sets). on p.114
64A more mathy version of this is Definition 6.4 (Advanced Definition of σ–algebra generated by random elements) in

the optional Chapter 6 (Advanced Topics – Measure and Probability). See p.143.
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(b) Let Xi : (Ω, P )→ Ω′, i ∈ I be a family of random elements on (Ω, P ). We call

(5.37) σ
{

(Xi)i∈I
}

:= σ{Xi : i ∈ I} := σ{X−1
i (A′) : A′ ⊆ Ω′, i ∈ I}

the σ–algebra generated by the family of random elements (Xi)i∈I .

Concerning notation:
• As usual, it is OK to omit the “i ∈ I” part if the meaning of I is unambiguous.
• The square braces of σ{. . . } can be replaced with square braces or parentheses.

For example, σ{Yn : n = 1, . . . , 10} = σ(Yk : k = 1, . . . , 10), and σ{U} = σ[U ].

• But BEWARE: When we work on the applications side and X is a random variable,
i.e., an R–valued random element, it is very common practice do write σ(X) or σ[X]
for the so called standard deviation of X . 65 There are alternate notations such as σX
for this standard deviation, but WMS uses σ(X) frequently. I try to stick with curly
braces for σ–algebras generated by random elements and/or sets. �

Example 5.10. Let H := Heads, T := Tails, Ω′ := {H,T}, and F′ := 2Ω′ = {∅, {H}, {T},Ω′}.
For j ∈ {1, 2}, let

Xj : (Ω,F, P )→ Ω′; ω 7→ Xj(ω)

denote two flips of a coin. The reader should verify that

σ{X1, X2} =
{
∅, Ω, {X1 = H}, {X1 = T}, {X2 = H}, {X2 = T},
{X1 = H,X2 = H}, {X1 = H,X2 = T}, {X1 = T,X2 = H}, {X1 = T,X2 = T}

}
.

By the way, this his is the set of all finite unions that can be obtained from the partition

Ω = {X1 = H,X2 = H} ] {X1 = H,X2 = T}, ]{X1 = T,X2 = H}, ]{X1 = T,X2 = T}

of Ω. �

Example 5.11. ? The simplest examples for Definition 5.16 (σ–algebra generated by random
elements) are given by random elements that only take one or two function values.
(a): Let X(ω) = c′ for all ω ∈ Ω, i.e., X is constant on Ω. There are only two types of of sets B′ ⊆ Ω′.
Either c′ ∈ B′ or c′ /∈ B′.

(a) Let X(ω) = c′ for all ω ∈ Ω, i.e., X is constant on Ω. There are only two types of of sets
B′ ⊆ Ω′. Either c′ ∈ B′ or c′ /∈ B′.
• c′ ∈ B′ ⇒ X−1(B) = Ω, • c′ /∈ B′ ⇒ X−1(B) = ∅.
Thus, σ{X} = σ{∅,Ω}. Since {∅,Ω} itself is a σ–algebra, we obtain that σ{X} = {∅,Ω}.

(b) Let A ⊆ Ω. Consider the random variable 111A, the indicator function of A. There are four
types of of sets B′ ⊆ Ω′.
• 0 ∈ B′, 1 ∈ B′ ⇒ X−1(B) = Ω, • 0 ∈ B′, 1 /∈ B′ ⇒ X−1(B) = A{,
• 0 /∈ B′, 1 ∈ B′ ⇒ X−1(B) = A, • 0 /∈ B′, 1 /∈ B′ ⇒ X−1(B) = ∅.
Thus, σ{X} = σ{∅, A,A{Ω} = {∅, A,A{Ω} (since {∅, A,A{Ω} already is a σ–algebra). �

65See Definition 9.3 (Variance and standard deviation of a random variable) on p.195
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Remark 5.17. ? We compare Example 5.11(b) with Example 5.8 on p.114 and see the following:

Let A ⊆ Ω. Then A and 111A, the indicator function of A, generate the same σ–algebra

σ{A} = σ{111A} = {∅, A,A{Ω} . �

Since an element x of the domain of a function f (an argument) is assigned to only one function
value y = f(x), one should expect that a function of a discrete random element should again be
discrete. This is the assertion of the next proposition and the corollary that follows it.

Proposition 5.5. ?

• Let X : (Ω, P )→ Ω′ be a random element and g : Ω′ → R.
• Let Z be the random variable ω 7→ Z(ω) := g

(
X(ω)

)
.

• Let B∗ ∈ Ω′ such that PX(B∗) = 1 and let C∗ := {g(x) : x ∈ B∗} be
the direct image g(B∗) of B∗ under g. (See Definition 2.28 on p.46.)

Ω Ω′

R

X

gZ = g ◦X

Then PZ(C∗) = 1.

PROOF: Let

A1 := {ω ∈ Ω : Z(ω) /∈ C∗} = {ω ∈ Ω : g
(
X(ω)

)
/∈ C∗} .(A)

Then ω̃ ∈ X−1(B∗) ⇔ X(ω̃) ∈ B∗ ⇒ Z(ω̃) = g
(
X(ω̃)

)
∈ g(B∗) = C∗(B)

Here, “⇔” follows from the definition of X−1. From (A) + (B) we see that A1 ∩X−1(B∗) = ∅.

(C) Thus, A1 ⊆
[
X−1(B∗)

]{.
Since P

[
X−1(B∗)

]
= PX(B∗) = 1 (by definition of B∗) ,(D)

we obtain from (C) that P (A1) = 0 and then, from (A), that

PZ(C∗) = P{ω ∈ Ω : Z(ω) ∈ C∗} = P (A{1) = 1 . �(E)

Corollary 5.4. Let X : (Ω, P ) → Ω′ be a random element and g : Ω′ → R. Further, let Z be the random
variable g ◦X : ω 7→ Z(ω) = g

(
X(ω)

)
. In other words, Z is the composition of g with X . Then

(a) If ω 7→ X(ω) only assumes finitely many (distinct) values x1, . . . , xn, then ω 7→ Z(ω) only
assumes finitely many values z1, . . . , zm (and m ≤ n).

(b) If ω 7→ X(ω) only assumes an infinite sequence of (distinct) values (xj), then ω 7→ Z(ω)
assumes a countable set of function values. (This set forms a finite or infinite sequence. (See
Definition 2.24 (Countable and uncountable sets) on p.37).

(c) If X is a discrete random element, then Z = g(X) is a discrete random variable.
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PROOF of (a): ? The potential function values of Z are

z′1 := g(x1), z′2 := g(x2), . . . , z′n := g(xn)

If g is not injective, there may be duplicate z′j which must be removed. Thus, Z assumes at m
distinct values for some suitable m ≤ n. We rename them z1, . . . , zm.

PROOF of (b): ? The potential function values of Z the members of the sequence z′j = g(xj),
where j ∈ N. Removing the duplicates leaves us with a finite or infinite subsequence of distinct
items zj and those form the countable set of all function values of Z.

PROOF of (c): ? Since X is discrete, there is a countable set B∗ ⊆ Ω′ such that PX(B∗) = 1.

We have seen in the proof of (b) that a function g transports countably many arguments b∗ into
countably many function values c∗ = g(b∗). Thus, the set C∗ := {g(b∗) : b∗ ∈ B∗} is countable.
It follows from Proposition5.5 on p.127 that PZ(C∗) = 1. Since C∗ is countable, Z is discrete. �

Remark 5.18. If Q(E) = 1 for some probability measure Q and some event E on some probability
space, then Q(F ) = 0 for all events F ⊆ E{. That does not necessarily make it impossible for F to
happen, but it would be so improbable, we do not take this possibility into account. A good way to
think about the probability measure Q in relation to E is that Q “lives” on E.
This situation happens twice in the context of Proposition 5.5 on p.127.

(1) On the probability space (Ω′, PX): PX(B∗) = 1. (Here, Q = PX , and E = B∗).
(2) On the probability space (R, PZ): PZ(C∗) = 1. (Here, Q = PZ = Pg◦X , and E = C∗).

Considering that C∗ = g(B∗), Proposition 5.5 states the following:
(3) If PX lives on B∗ then PZ = Pg◦X lives on g(B∗).

We improve on (3) by showing that the distribution of g◦X under the probability measure P equals
the distribution of g under the probability measure PX , In short, we will show that

(4) Pg◦X =
(
PX
)
g

, i.e., Pg◦X(C) =
(
PX
)
g
(C), for all arguments C ⊆ R.

To prove (4), note that for any probability space (Ω̃, P̃ ), random element X̃ : Ω̃ → Ω̃′, and B ⊆ Ω̃′,
the expression {X̃ ∈ B} merely is a notational convenience for the preimage of B under X̃ :

{X̃ ∈ B} = X̃−1(B) = {ω̃ ∈ Ω̃ : X̃(ω̃) ∈ B} .
Thus, by (5.34) on p.124, P̃

X̃
(B) = P̃

[
X̃−1(B)

]
. It follows that

Pg◦X(C) = P
[

(g ◦X)−1(C)
]

(with P̃ = P, X̃ = g ◦X,B = C ),(5.38)

PX
(
g−1(C)

)
= P

[
X−1

(
g−1(C)

) ]
(with P̃ = P, X̃ = X, B = g−1(C) ),(5.39)

(PX)g(C) = PX
[
g−1(C)

]
(with P̃ = PX , X̃ = g, B = C ).(5.40)

Also recall (2.50) on p.46 for the preimage of the composition of functions:

(5.41) (g ◦X)−1(B) = X−1
(
g−1(B)

)
.

We have everything in place to show that (4) is true. Let C ⊆ R. Then

Pg◦X(C)
(5.38)
= P

[
(g ◦X)−1(C)

] (5.41)
= P

[
X−1

(
g−1(C)

) ] (5.39)
= PX

[
g−1(C)

]
.

(5.40)
= (PX)g(C) .

We have shown (4). �
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Remark 5.19. Consider the following of a philosophical rather than mathematical nature. Not all
mathematicians agree with it.
I like to think of a probability space (Ω, P ) as a seat of randomness in the following sense. Some
all–powerful supreme being or supreme force of nature, let’s call it SB , decides to pick “this”
particular ω0 ∈ Ω. As a result, all random elements X,Y, ~Z, . . . that have Ω as domain are invoked
with ω0 as argument, resulting in the outcomes X(ω0), Y (ω0), ~Z(ω0), . . . . With this interpretation it
makes a lot of sense to talk about functions on (Ω, P ) as random elements since, when we interpret
ω ∈ Ω as “randomness”,

x = X(ω) simply means that x is a function of randomness.

Only SB knows what ω0 will be picked. But if we know, say, the distribution PY of a certain
random variable Y , then we can at least quantify the likelihood that SB is going to chose an ω
such that 17.8 ≤ Y (ω) ≤ 21.3. It is PY ([17.8, 21.3]) = P{17.8 ≤ Y ≤ 21.3}. �

Example 5.12. Often it only is the distribution PX of a random element

X : (Ω, P ) −→ (Ω′, PX)

with values in a set Ω′ that matters. Accordingly, only the set Ω′ and the probability measure PX on
that set are specified by the problem. On the other hand, there are infinitely many different choices
of the probability space (Ω, P ) plus the random element X which result in thatsame probability
measure on Ω′. We illustrate that with two more settings for the modeling of the distribution of
n tosses of a fair coin on the space {H,T}n. See Example 5.9 on p.125. We fix n = 3 since the
resulting specific example illustrates all essential points. (a), (b) and (c) give three different choices
of a probability space (Ω, P ) and a random element X on that probability space, such that for each
one of (a), (b) and (c),

(1) Ω′ = {H,T}3,

(2) (Ω, P ) and X : (Ω, P ) −→ Ω′ are constructed such that PX , the distribution of X on Ω′, is
that of a fair coin: PX{ω′} = 1/8, for each one of the 8 outcomes ω′ ∈ Ω′.

(a) Let Ω1 := {0, 1}3 with the probability measure P{(a, b, c)} = 1/|Ω1| = 1/8.

Let ~X1 : Ω1 → {H,T}3 be the random element that changes each 1 into an H and each 0 into a T .
For example, ~X1(1, 0, 1) = (H,T,H) and ~X1(0, 0, 1) = (T, T,H).
Then P ~X1

is the same probability measure as P ~X of (2), since both assign the number 1/8 to each
element of {H,T}3.
(b) Let Ω2 := {H,T}3 with the probability measure P{(a, b, c)} = 1/|Ω2| = 1/8. (Same as in (a),
except that now a, b, c represent either of H or T rather than 0 or 1.)

Let the random element ~X2 : Ω2 → {H,T}3 be the identity (also, identity function) on Ω2. That
is the “do nothing” function which assigns each element of a set to itself, i.e., ~X2(ω) = ω for all
ω ∈ Ω2. For example, H,T,H) = (H,T,H) and ~X1(T, T,H) = (T, T,H).
Clearly, P ~X2

also assigns probability P ~X2
({ω}) = 1/8 to each element of {H,T}3.

(c) Let Ω3 := {H,T}3 × {1, 2, 3, 4} with the probability measure P{(a, b, c, d)} = 1/|Ω3| = 1/32.
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Let ~X3 : Ω3 → {H,T}3 be the function defined as ~X3(a, b, c, d) := (a, b, c). We compute the
distribution P ~X3

for the outcomes (a, b, c) of the probability space ({H,T}3, P ~X3
) as follows.

(a, b, c) ∈ ~X3 ⇒ P ~X3
{(a, b, c, d)} = P{ ~X3 = (a, b, c, d)}

= P{(a, b, c, 1), (a, b, c, 2), (a, b, c, 3), (a, b, c, 4)} = 4(1/32) = 1/8 .

We have have obtained in this example and Example 5.9 on p.125 the probability P ′ which models
three tosses of a fair coin, i.e., P ′{(a, b, c)} = 1/8 for each (a, b, c) ∈ {H,T}3, as the distribution
of four different random elements, ~X (see Example 5.9), ~X1, ~X2, ~X3, which were defined on four
different probability spaces. This clearly demonstrates that we have multiple choices of probability
spaces and random items to model a distribution. You will hopefully agree that ~X1 and ~X2 are
much better choices than ~X and ~X3. �

The next remark lists the different types of probability.

Remark 5.20 (Types of probability). ? We have encountered the following types of probability:

• The empirical probability of an event A is the relative frequency of its occurrence in the
long run: if an experiment is performed n times and the event A is observed nk times,
P (A) = lim

k→∞
nk/k. See Example 1.1 on p.6.

• Equiprobability: The probability space consists of a finite number N of outcomes and each
outcome {ω} is assigned the same probability, {ω} = 1/N . Other names for this probability
are theoretical probability, Laplace probability. See Definition 5.3 on p.109.

• The subjective probability of an event reflects an individual’s personal judgment or own
experience about whether it is likely to occur. Subjective probability contains no formal
calculations and only reflects the subject’s opinions and past experience. 66 An example
would be a student’s assessment that her/his probability of getting an A or A- is between
0.75 and 0.9.

• Axiomatic probability: This is an abstract mathematical construct: the function values P (A)
of a probability measure P : Ω → R which obeys certain rules such as σ–addititivity. See
Definition 5.2 on p.106. The axiomatic definition of probability is by far the most general
and includes all of the other definitions presented here. �

5.4 Independence of Random Elements

Introduction 5.3. According to Definition 5.8 (Two independent events) on p.120, two eventsA and
B are independent if

(5.42) P (A ∩B) = P (A) · P (B) .

The justification for doing so comes from (5.32) on p.122: If P (A) > 0 and P (B) > 0, then

A and B are independent ⇔ P (A | B) = P (A) ⇔ P (B | A) = P (B) .

66Source: Investopedia: Subjective Probability: How it Works, and Examples.
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This formula is a good characterization of independence, since it states that there is no dependency
between A and B in the sense that conditioning of one event on the other has no effect. We ex-
tended (5.42) to define independence of an arbitrary collection (Ai)i∈I of events in Definiton 5.12
(Independence of arbitrarily many events) 121 as follows:
ANY FINITE subselection of distinct indices i1, i2, . . . , ik ∈ I must satisfy

(5.43) P (Ai1 ∩Ai2 ∩Aik) = P (Ai1) · P (Ai2) · P (Aik) .

It has been proven extremely fruitful from an application oriented perspective to model the inde-
pendence of random elements on the above framework, by demanding the independence of the
events that are associated with those random elements.
What are those events? It turns out that they are the elements of the σ–algebras

(5.44) σ{Xi} = σ{X−1
i (A′i) : A′i ⊆ Ω′} ,

where σ{Xi} is the σ–algebra generated by the random element Xi. 67 If we accept this, the ap-
propriate way to define the independence of two random elements X1, X2, defined on a common
probability space (Ω,F, P ), should be

P (A1 ∩A2) = P (A1) · P (A2) , for all A1 ∈ σ{X1} and A2 ∈ σ{X2}.

Further, the independence of an arbitrary family, (Xi)i∈I , of random elements on (Ω,F, P ), should
be defined as follows: ANY FINITE subselection of distinct indices i1, i2, . . . , ik ∈ I must satisfy

(5.45) P (Ai1 ∩Ai2 ∩ · · · ∩Aik) = P (Ai1) · P (Ai2) · · ·P (Aik) , if Aij ∈ σ{Xij}, and j = 1, 2, . . . , k.

One can show the following. 68 If X : (Ω, P )→ Ω′ is a random element, then

(5.46) σ{X} = {X−1(A′) : A′ ⊆ Ω′} .

We recall that alternate notation for {X−1(A′) is {X ∈ A′ and obtain from (5.46) that

(5.47) A ∈ σ{X} ⇔ A = {X ∈ A′}, for some suitable A′ ⊆ Ω′ .

We rewrite (5.45) with the relevant events for the random elements Xi expressed as in (5.47) and
arrive at the formal definition of the independence of those random elements. �

Definition 5.17 (Independence of arbitrarily many random elements).

Given are a probability space (Ω,FFF , P ) and a family
(
Xi

)
i∈I of random elements on Ω.

Here, I denotes an arbitrary set of indices. We say that this family is independent if, for
ANY FINITE subselection of distinct indices i1, i2, . . . , ik ∈ I and j = 1, 2, . . . , k,

P{Xi1 ∈A′i1 , Xi2 ∈ A′i2 , . . . , Xik ∈ A
′
ik
}

= P{Xi1 ∈ A′i1} · P{Xi2 ∈ A′i2} · · ·P{Xik ∈ A
′
ik
} , for all A′ij ⊆ Ω′. �

(5.48)

67See Definition 5.16(a) (σ–algebra generated by random elements) on p.125.
68See Chapter 6 (Advanced Topics – Measure and Probability), Theorem 6.5(a) on p.144.
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Example 5.13. Let H := Heads, T := Tails, Ω′ := {H,T}, and F′ := 2Ω′ = {∅, {H}, {T},Ω′}.
For j ∈ {1, 2}, let

Xj : (Ω,F, P )→ Ω′; ω 7→ Xj(ω)

denote two flips of a coin. The reader should verify that

σ{X1} =
{
∅, Ω, {X1 = H}, {X1 = T}

}
,

σ{X2} =
{
∅, Ω, {X2 = H}, {X2 = T}

}
.

To show the independence of X1 and X2, we must verify, for example, that

P
(
{X1 = T} ∩ {X2 = H}

)
= P{X1 = T} · P{X2 = H} .

This is true, since P{X1 = T,X2 = H} = 1/4 and P{X1 = T} = P{X2 = H} = 1/2. The other
cases are dealt with just as easily. �

We modify the last example so it will be about an uncountable collection of independent random
elements.

Example 5.14. Let H := Heads, T := Tails, Ω′ := {H,T}, and F′ := 2Ω′ = {∅, {H}, {T},Ω′}.
For 0 ≤ t ≤ 1, let

Xt : (Ω,F, P )→ Ω′; ω 7→ Xt(ω)

denote the flip of a fair coin at time t. Let t ∈ [0, 1]. By the same reasoning as in Example 5.13, we
obtain

σ{Xt} =
{
∅, Ω, {Xt = H}, {Xt = T}

}
.

To show the independence of (Xt)0≤t≤1, we must verify that, for any selection of times,

0 ≤ t1 < t2 < · · · < tk ≤ 1 ,

it is true that, for any j = 1, . . . , k and for any choice of either ωtj = H or ωtj = T ,

P
(
{Xt1 = ωt1} ∩ · · · ∩ {XtkS = ωtk} = P{Xt1 = ωt1} · · · P{Xtk = ωtk} .

It is intuitive clear (and can be proven with combinatorial methods), that both sides are equal to

1

2
· 1

2
· · · 1

2
=

1

2n
.

Thus, the throws are independent. �

Definition 5.17 (Independence of arbitrarily many random elements) applies to the most general
kind of random elements. It turns out that the equations (5.48) need not be verified for all A′ij ⊆ Ω′,
if all random elements are discrete.

Fact 5.2. ? [Independence of discrete random elements]
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Assume that the random elements Xi of Definition 5.17 are discrete and that Ω′∗ ⊆ Ω′ is countable
and satisfies P{Xi ∈ Ω′∗} = 1. Then it suffices to show that (5.48) is satisfied for events of the form
{Xij = ω′}, where ω′ ∈ Ω′∗. In other words, it suffices to verify the following.

• For ANY FINITE subselection of distinct indices i1, i2, . . . , ik ∈ I and j = 1, 2, . . . , k,

(5.49) P{Xi1 = ω′i1 , . . . , Xik = ω′ik} = P{Xi1 = ω′i1} · · ·P{Xik = ω′ik}
is satisfied for all ω′ij ∈ Ω′∗.

From this general case, we obtain the case I = 1, 2 as follows.

Independence of two random elements, X1, X2: For all ω′, ω̃′ ∈ Ω′∗,

(5.50) P{X1 = ω′, X2 = ω̃′} = P{X1 = ω′} · P{X2 = ω̃′} .

For I = 1, 2, 3, we obtain

Independence of three random elements, X1, X2, X3:
(1) For all subselections i1 < i2 of k = 2 elements of {1, 2, 3} (there are 3 such subselections)

and for all ω′i1 , ω
′
i2
∈ Ω′∗,

(5.51) P{Xi1 = ω′i1 , Xi2 = ω′i2} = P{Xi1 = ω′i1} · P{Xi2 = ω′i2} ,

(2) For k = 3 (i.e., i1 = 1, i2 = 2, i1 = 3) and for all ω′1, ω
′
2, ω
′
3 ∈ Ω′∗,

P{X1 = ω′1, X2 =ω′2, X3 = ω′3}
= P{X1 = ω′1} · P{X2 = ω′2} · P{X3 = ω′3} .

(5.52)

For I = 1, 2, . . . , n, we obtain

Independence of n random elements, X1, X2, . . . , Xn:
For EACH k = 2, 3, . . . , n− 1, n, the following must be true: For all subselections
i1 < · · · < ik of k elements of {1, . . . , n} and for all ω′ij ∈ Ω′∗, (1 ≤ j ≤ k),

(5.53) P{Xi1 = ω′i1 , . . . , Xik = ω′ik} = P{Xi1 = ω′i1} · · ·P{Xik = ω′ik} .

For I = N, we obtain

Independence of an infinite sequence X1, X2, . . . , of random elements:
For EACH k = 2, 3, 4, . . . , the following must be true: For all subselections
i1 < · · · < ik of k elements of N and for all ω′ij ∈ Ω′∗, (1 ≤ j ≤ k),

(5.54) P{Xi1 = ω′i1 , . . . , Xik = ω′ik} = P{Xi1 = ω′i1} · · ·P{Xik = ω′ik} .

Remark 5.21. ?

Note that the Xij in Fact 5.2 are distinct: If j 6= m then Xij 6= Xim . In contrast, each ω′ij can take on
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any value ω′ ∈ Ω′∗

• For example, let I = N and Xi represents the ith roll of a die, and Ω′ = Ω′∗ = {1, 2, . . . , 6}.
Let i1 = 5, i2 = 8, i3 = 9, i4 = 14. Then one of the 64 equations (5.54) to be checked is for
ωi1 = 4, ωi2 = 1, ωi3 = 4, ωi4 = 4.

• If we choose another selection of 4 indices, e.g., i1 = 8, i2 = 13, i3 = 89, i4 = 1477, Then
another 64 equations (5.49) must be checked.

If that looks like bad news, it gets worse:
• For any k ∈ N, there are, of course, infinitely many ways to pick integers 0 < i1 < · · · < ik.

Thus, infinitely many equations (5.54) must be checked.
So, what is good for? The answer is as follows. It is often easier to prove, for general k and
0 < i1 < · · · < ik, that (5.54) holds true. An example follows this remark. �

Example 5.15. Let the random variables Y1, Y2, . . . denote an infinite sequence of rolls of a fair die.
Is that an independent sequence of random variables?

Solution:
Before we start, let us agree that the answer to that question better be yes, since the outcome of the
kth roll is in no way influenced by those of the other rolls.
What are the domain (Ω,F, P ) and codomain (Ω′,F′) for the random variables Yj? The obvious
choice for the codomain is Ω′ = {1, 2, . . . , 6} and F′ = 2Ω′ . As usual, we leave (Ω,F, P ) unspecified.
Note however, that we know the following about P : Let y ∈ Ω′, i.e., y ∈ {1, . . . , 6}. Since P{Yj = y}
denotes the probability of Yj(ω) resulting in the outcome y, it follows that

(5.55) P{Yj = y} =
1

6
.

These probabilities are the only ones that occur in (5.50), and we are able to work with that formula.
So let k ∈ N and i1 < i2 < · · · < ik be an arbitrary selection of k indices.
• Since there are 6 possible outcomes yi1 for Yi1 ,
• and each of those can be combined with 6 possible outcomes yi2 for Yi2 ,
• and each of those combined outcomes can be combined with 6 possible outcomes yi3 for Yi3 ,
• .....................................
• and each of those combined outcomes can be combined with 6 possible outcomes yik for Yik ,

there are 6k outcomes {Yi1 = yi1 , Yi2 = yi2 , . . . , Yik = yik}, and each one of those is as likely to
happen as any other. Thus,

(5.56) P{Yi1 = yi1 Yi2 = yi2 , . . . , Yik = yik} =
1

6k
.

By (5.55), P{Yij = yij} = 1/6, for j = 1, 2, . . . , k. Thus,

(5.57) P{Yi1 = yi1} · P{Yi2 = yi2} · · ·P{Yik = yik} =
1

6k
.

Since (5.56) and (5.57) have matching right sides, (5.50) of Fact 5.2 is satisfied. This shows that
Y1, Y2, . . . form an independent sequence of random variables. �

We noted in Fact 5.2 (Independence of discrete random elements) the following.
If the random elements are discrete, the conditionA′ij ⊆ Ω′ in (5.48) of Definition 5.17 (Independence
of arbitrarily many random elements) only needs to be satisfied for specific A′ij :

A′ij = {Xij = ω′} , where ω′ ∈ Ω′ satisfies P{Xij = ω′} > 0.
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An analogous situation exists if all random elements are random variables, except that the single-
tons {ω′} ⊆ R will be replaced with intervals. (Recall that Ω′ = R for random variables!)

Fact 5.3. ? [Independence of random variables]

Assume that the random elements Xi of Definition 5.17 are random variables. Then it suffices to
show that (5.48) is satisfied for events of the form {Xij ∈ ] −∞, βij ] }, for all βij ∈ R. In other
words, it suffices to verify the following.

• For ANY FINITE subselection of distinct indices i1, i2, . . . , ik ∈ I and j = 1, 2, . . . , k,

(5.58) P{Xi1 ≤ βi1 , . . . , Xik ≤ βik} = P{Xi1 ≤ βi1} · · ·P{Xik ≤ βik} ,
is satisfied for all βij ∈ R.

From this general case, we obtain the case I = 1, 2 as follows.

Independence of two random variables, Y1, Y2: For all β1, β2 ∈ R,

(5.59) P{Y1 ≤ β1, Y2 ≤ β2} = P{Y1 ≤ β1} · P{Y2 ≤ β2} .

For I = 1, 2, 3, we obtain

Independence of three random variables, Y1, Y2, Y3:
(1) For all subselections i1 < i2 of k = 2 elements of {1, 2, 3} (there are 3 such subselections)

and for all βi1 , βi2 ∈ R,

(5.60) P{Yi1 ≤ βi1 , Yi2 ≤ βi2} = P{Yi1 ≤ βi1} · P{Yi2 ≤ βi2} ,

(2) For k = 3 (i.e., i1 = 1, i2 = 2, i1 = 3) and for all β1, β2, β3 ∈ R,

P{Y1 ≤ β1, Y2 ≤β2, Y3 ≤ β3}
= P{Y1 ≤ β1} · P{Y2 ≤ β2} · P{Y3 ≤ β3} .

(5.61)

For I = 1, 2, . . . , n, we obtain

Independence of n random variables, Y1, Y2, . . . , Yn:
For EACH k = 2, 3, . . . , n− 1, n, the following must be true: For all subselections
i1 < · · · < ik of k elements of {1, . . . , n} and for all βij ∈ R, (1 ≤ j ≤ k),

(5.62) P{Yi1 ≤ βi1 , . . . , Yik ≤ βik} = P{Yi1 ≤ βi1} · · ·P{Yik ≤ βik} .

For I = N, we obtain

Independence of an infinite sequence Y1, Y2, . . . , of random variables:
For EACH k = 2, 3, 4, . . . , the following must be true: For all subselections
i1 < · · · < ik of k elements of N and for all βij ∈ R, (1 ≤ j ≤ k),

(5.63) P{Yi1 ≤ βi1 , . . . , Yik ≤ βik} = P{Yi1 ≤ βi1} · · ·P{Yik ≤ βik} .
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The next definition is extremely important, since the notion of a “random sample” uses it.
We give a special name to collections of random elements that are independent and also share the
same probability distribution.

Definition 5.18 (iid families).

Let (Xi)i∈I be a family of random elements Xi : (Ω, P )→ Ω′. We speak of an independent
and identically distributed family, aka iid family of random elements, if

(1) the Xi are independent,
(2) they all have the same distribution:

PXi(B) = PXj (B) , for all i, j ∈ I and all B ⊆ Ω′.

Note that this can also be written

P{Xi ∈ B} = P{Xj ∈ B} , for all i, j ∈ I and all B ⊆ Ω′.

In the special case of a sequence X1, X2, . . . of iid random elements we speak of an iid
sequence of random elements. �
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6 Advanced Topics – Measure and Probability ?

6.1 Random Variables as Measurable Functions

Introduction 6.1. The definition of the distribution PX of a random element X : (Ω, P ) → Ω′ was
based on Theorem 5.11. (See p.123). It asserts that the formula

(6.1) A′ 7→ PX(A′) = P{X ∈ A′} = P
[
X−1(A′)

]
, A′ ⊆ Ω′,

defines a probability measure on all subsets of Ω′.

A. This is fine for the applications, since we decided to ignore σ–algebras whenever possible. We
can do so when practical applications are involved, since we deal with one of the following two
situations when doing computations (see Remark 5.7 on p.112):

(1) Either PX discrete and there will be no issues with defining PX(A′) for all A′ ∈ Ω′; in this
case we work with F′ = 2Ω′ .

(2) Or X is a random variable or random vector, i.e., Ω′ = R or Ω′ = Rd. Then practical compu-
tations always involve setsB′ ∈ Rd for which the Riemann integral

∫∫
· · ·
∫
B′ d~x exists. Since

this necessitates that B′ is Borel, we can work with F′ = Bd. As we previously mentioned,
only very strange and nonsensical subsets of Rd are not Borel and we may as well act as if
PX(B′) exists for all B′ ∈ Rd.

In summary, it is OK to assume for the applications that the domain of A′ 7→ P (A′) is 2Ω′ , the entire
power set of Ω′. There is no need to restrict ourselves to a potentially smaller σ–algebra F′ ⊆ 2Ω′ .

B. All that having been said, let us now consider the mathematical aspects of probability theory.
What if we cannot make the assumption that all sets are events, i.e., can be assigned a probability?
We have to consider this issue for both the domain Ω and the codomain Ω′ of the random element
X . Accordingly, we need a σ–algebra F as the domain of A 7→ P (A), and another σ–algebra F′ as
the domain of A′ 7→ PX(A′). In other words, we have to consider X as a function

X : (Ω,F, P ) −→ (Ω′,F′, PX) .

Of course, some conditions to ensure that F, P,F′, X compatible may have to be imposed. (The
distribution PX does not play a part here, since it is completely determined by the other four items.)
To understand what such conditions should be, consider the following.
• F is given, as part of the original probability space (Ω,F, P ).
• As we saw in (1) and (2), there also is not much leeway as far as F′ is concerned.

So what conditions must X satisfy that it has a distribution PX , defined at least on F′?
• The distribution of X is given by PX(A′) = P{X ∈ A′} = P

(
f−1(A′)

)
. (See (6.1).)

Accordigly, the answer is as follows: P{X ∈ A′}must exist at least for all A′ ∈ F′

• That can only happen if X satisfies {X ∈ A′} = X−1(A′) ∈ F, whenever A′ ∈ F′ �

Based on those introductory remarks, we introduce the concept of measurability. Since it has per se
nothing to do with probabilities, we switch the function symbol to f .

Definition 6.1 (Measurable functions). ?
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(a) Let Ω be a nonempty set and F a σ–algebra on Ω. We call the pair (Ω,F) a measurable
space. (This is not worthwhile remembering, but the remainder of this definition is.)

(b) Let f : (Ω,F) −→ (Ω′,F′) be a function which has measurable spaces both as
domain and codomain. We call this function measurable with respect to F and F′,
a.k.a. (F,F′)–measurable, if

(6.2) A′ ∈ F′ ⇒ f−1(A′) ∈ F .

(c) If f is Rd–valued, in particular if f is real–valued, and if we refer to f as being
F–measurable or Borel measurable, then it is implied that F′ = Bd, the Borel
σ–algebra of Rd. �

Next comes a straight translation of Definition 4.3 (Simple Function on Rd) on p.87.

Definition 6.2 (Simple Function on Ω). ?

Let (Ω,F) be a measurable space, n ∈ N, A1, . . . , An ∈ F. Further, let c1, c2, . . . , cn be a
corresponding set of real numbers. Let

(6.3) f : Ω −→ R ; ω 7→ f(ω) :=

n∑
j=1

cj111Aj (ω)

Then we call f a simple function. We say that f is in standard form, if the numhers cj are
distinct, i.e., ci 6= cj , for i 6= j. �

Remark 6.1. ? Assume that f is a simple function f =
n∑
j=1

cj111Aj on (Ω,F).

(a) It is not assumed that the numbers cj are distinct. In that case, {f = cj} = f−1{cj} does
not equal Aj . Assume for example, that c3 = c5 = c16 and that all other cj are different from
c3. Then {f = c3} = A3 ]A3 ]A5 ]A16. Note that, since Ak ∈ F for all k, {f = cj} ∈ F.

(b) Let B ∈ B1. Let J := {j : cj ∈ B} be the set of all indices j such that cj ∈ B. Then

f−1(B) =
⊎
j∈J

Aj . Thus, f−1(B) ∈ F, for all B ∈ B1.

In other words, all simple functions are (F,B1)–measurable. �

Proposition 6.1. ?

Let f =
n∑
j=1

cj 111Aj be a simple function. Then f has a representation in standard form.

This standard representation is

(6.4) f(ω) =

k∑
i=1

di111{f=di}(ω) , with distinct numbers d1, . . . , dk.
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PROOF: Since there are only finitely many terms cj111Aj , the range of f 69 is a finite list,
f(Ω) = {d1, . . . , dk} . of distinct numbers d1, . . . , dk.

Regardless of the nature of the cj and Aj , f(ω) = α ⇔ ω ∈ f−1{α}, for any α ∈ R. Thus,
f(ω) = di ⇔ ω ∈ f−1{di} ⇔ f(ω) = di · 111f−1{di} .

Since the di are distinct, the sets f−1{di} are disjoint. Thus,

f(ω) = di ⇒ di · 111f−1{di}(ω) =

k∑
m=1

dm · 111f−1{dm}(ω) .

Since the right–hand side does not depend on i and each ω ∈ Ω satisfies f(ω) = di for some

i = 1, . . . , k, we conclude that f(ω) =
k∑

m=1

dm · 111f−1{dm}(ω), for all ω ∈ Ω. �

The next theorem is a straight translation of Theorem 6.1 on p.139.
It asserts that about anything that can be done with a countable collection of real–valued, Borel
measurable functions results again in a Borel measurable function. Note that we have sup-
pressed the arguments in the functions listed there. For example, max(f1, f2) is the function

ω 7→ max(f1

(
ω), f2(ω)

)
, and

∞∑
j=1

fj is the function ω 7→
∞∑
j=1

fj(ω).

Theorem 6.1. ? Assume that f1, f2, . . . are Borel measurable functions, c1, c2, · · · ∈ R, B ∈ F.

Each of the following also is a Borel measurable function:

• c1 (constant function) • c1f1 • f1 ± f2 • f1f2 • 111Bf1 • f1/f2 (if f2 6= 0) •
n∑
j=1

cjfj

• min(f1, f2) • max(f1, f2) • min
j=1,...,n

fj • max
j=1,...,n

fj • inf
j∈N

fj • sup
j∈N

fj �

If they exist (see the subsequent remark), the following also are measurable functions:

• lim
j→∞

fj •
∞∑
j=1

fj • min
j∈N

fj • max
j∈N

fj

PROOF: �

The next theorem will be key in later extending integration with respect to Lebesgue measure to a
class of measures so general that it includes all probability measures.

Theorem 6.2. ? Let (Ω,F) be a measurable space.

Let f : (Ω,F) −→ [0,∞[ be a nonnegative, (F,B1)–measurable function. Then there exists a
sequence 0 ≤ f1 ≤ f2 ≤ · · · of simple functions such that fn ↑ f as n→∞. In other words,

lim
n→∞

fn(ω) = f(ω), for all ω ∈ Ω.

69See Definition 2.17 (Function) on p.33.
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PROOF: This proof can be found in greater detail in Remark 4.5 on p.89.
Fix n ∈ N, and define, for k ∈ N,

Ik,n :=

]
k − 1

2n
,
k

2n

]
.

Note that [0,∞[ = {0} ]
(⊎

[ Ik,n : k ∈ Z ]
)

partitions the codomain into small intervals. Let

Ak,n :=

{
ω ∈ Ω :

k − 1

2n
< f(ω) ≤ k

2n

}
(k = 1, . . . , 4n),

Note that ω ∈ Ak,n ⇔ (k − 1)/2n < f(ω) ≤ k/2n. Next, we define

(6.5) fn(ω) :=

4n∑
k=1

k − 1

2n
· 111Ak,n(ω).

Remark 4.5 contains a picture which demonstrates how the simple functions fn ↑ f are constructed.
Observe that

fn(ω) =
k − 1

2n
on Ak,n =

{
ω ∈ Ω :

k − 1

2n
< f(ω) ≤ k

2n

}
.

Further,
0 ≤ f(ω) − fn(ω) ≤ 1

2n
, for ω ∈ Ak,n.

Let A0 := {ω ∈ Ω : f(ω) = 0}. Since f ≥ 0, (6.5) implies that fn(ω) = f(ω) = 0 on A0, we see that

0 ≤ f(ω)− fn(ω) ≤ 1

2n
, for ω ∈ A0 ∪ A1,n ∪ A2,n ∪ · · · ∪ A4n,n .

Since 1 ≤ k ≤ 4n is equivalent to 0 ≤ (k − 1)/2n < k/2n ≤ 4n/2n = 2n, we obtain

0 ≤ f(ω)− fn(ω) ≤ 1

2n
, for f(ω) ≤ 2n .

Finally, since f(ω) <∞ for all ω ∈ Ω and 2−n → 0 and 2n →∞ as n→∞, we conclude that

fn(ω) ↑ f(ω) , for ω ∈ Ω . �

Measurability will only be useful if it helps to construct distributions on (Ω′,F′. The next theorem,
a modified version of Theorem 5.11 on p.123, shows that such is the case.

Theorem 6.3. ?

Let (Ω,F, P ) be a probability space, (Ω′,F′) a measurable space, and

X : (Ω,F, P ) −→ (Ω′,F′, PX) .

an (F,F′)–measurable function. Then the formula

(6.6) PX(A′) := P{X ∈ A′} (A′ ∈ F′)

defines a probability measure on F′.
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PROOF: Very similar to that of Theorem 5.11. The fact that F and F′ are σ–algebras guarantees that
all sets A in the proof that need P (A) defined are indeed elements of F, and all sets A′ in the proof
that need PX(A′) defined are indeed elements of F′.

First, we establish that all probabilities required exist, i.e., that F′ contains all relevant subsets of Ω′.
Assume fo the following that ′A,B′, A′1, A

′
2, · · · ∈ F′, with Aj pairwise disjoint and B′ =

⊎
j A
′
j .

• Since F′ is a σ–algebra, ∅ ∈ F′ and Ω′ ∈ F′. Thus, both PX(∅) and PX(Ω′) exist.
• Since F′ is a σ–algebra, A′{ ∈ F′. Thus, PX

(
A′{
)

exists.
• Since F′ is a σ–algebra, B′ ∈ F′. Thus, PX(B′) exists.

The remainder of the proof is word for word the same as that of Theorem 5.11.
It follows from {X ∈ ∅} = ∅ and {X ∈ Ω′} = Ω, that

PX(∅) = P (∅) = 0 and PX(Ω′) = P (Ω) = 1 .

From (2.46) on p.45, we obtain

PX
(
A′{) = P{X ∈ A′{} = P

(
X−1(A′{)

)
= P

(
[X−1(A′)]{

)
= 1 − P

(
X−1(A′)

)
= 1 − PX(A′) .

We apply (2.45) to the sequence of disjoint subsets A′1, A
′
2, . . . of Ω′ and obtain

PX(B′) = P
(
X−1

⊎
j∈N

A′j

) = P

⋃
j∈N

X−1(A′j)


By (2.47), the sets X−1(A′j) are disjoint. σ–additivity now follows from

PX(B′) = P

⊎
j∈N

X−1(A′j)

 =
∑
j∈N

P
(
X−1(A′j)

)
=
∑
j∈N

PX(A′j) . �

Remark 6.2. ?

(a) Note that every probability space (Ω,F, P ) is a measurable space.
(b) A key property of random elements X , in particular random variables and random vectors,

is that they induce a distribution PX(A′) = P{X ∈ A′} on the codomain. This is so essen-
tial, that measurability becomes part of the definition of a random element in basically all
graduate level texts on probability, since there one does not gloss over the role of σ–algebras
and measurability like we do in this course. �

We amend the definition of random elements accordingly.

Definition 6.3 (Advanced level definition of random variables and random elements). ?

Only for the remainder of this chapter 6.1 (Advanced Topics – Measurable Functions), we modify
Definitions 5.14 on p.124 and 5.15 on p.125 as follows.

141 Math 447 - Version 2025-02-20



Math 447 – MF Lecture Notes Student edition with proofs

Given are a probability space (Ω,F, P ), a measurable space (Ω′,F′), d ∈ N, and (F,F′–
measurable

X : (Ω,F, P ) −→ (Ω′,F′) .

(a) We call X a random element.
(b) If (Ω′,F′) = (R,B)), we also call X a random variable.
(c) If (Ω′,F′) = (Rd,Bd)), we also call X a random vector. �

The material covered so far in this section should leave no doubt that understanding how preimages
relate to σ–algebras is very impportant. We now turn our attention to σ–algebras.

Remark 6.3. ?

We repeat here some findings and definitions from earlier chapters.
(a) Given are a function f : Ω→ Ω′ and an arbitrary family of setsA′i ⊂ Ω′, i ∈ I . By Proposition

2.7 (p.44) and Theorem 2.2 (45), the preimages
(
f−1(Bi)

)
i∈I satisfy the following.

��� f−1(∅) = ∅ ��� f−1(Ω′) = Ω ��� Bi ⊆ Bj ⇒ f−1(Bi) ⊆ f−1(Bj)

��� f−1(
⋂
i∈I

Bj) =
⋂
j∈J

f−1(Bj) ��� f−1(
⋃
i∈I

Bj) =
⋃
j∈J

f−1(Bj) ��� f−1(B{i ) =
(
f−1(Bi)

){
��� Bi ∩Bj = ∅ ⇒ f−1(Bi) ∩ f−1(Bj) = ∅; thus, f−1( partition of Ω′) = partition of Ω

(b) The intersection of an arbitrary collection of σ–algebras is a σ–algebra. (Theorem 5.3 on
p.113)

(c) LetAAA ⊆ 2Ω. By (b), σ{AAA} =
⋂[

F̃ : F̃ ⊇AAA and F̃ is a σ–algebra
]

is a σ–algebra: the smallest
one that containsAAA. It is the σ–algebra generated byAAA. See Definition 5.5 on p.114

(d) σ{Bd} = σ{ all d–dimensional rectangles } constitutes the Borel sets of Rd. �

Theorem 6.4. ?

Let Ω be a nonempty set and let EEE ,EEE1 and EEE2 be three collections of subsets of Ω. Then

EEE1 ⊆ EEE2 ⇒ σ(EEE1) ⊆ σ(EEE2) ,(6.7)
σ
(
σ(EEE)

)
= σ(EEE) ,(6.8)

σ(EEE1) ⊇ EEE2 and σ(EEE2) ⊇ EEE1 ⇒ σ(EEE1) = σ(EEE2) .(6.9)

PROOF of (6.7):
Any σ–algebra G that contains EEE2 also contains EEE1. Thus more sets are intersected in

σ(EEE1) =
⋂
{G : G ⊇ EEE1 and G is a σ–algebra for Ω}.

than in
σ(EEE2) =

⋂
{G : G ⊇ EEE2 and G is a σ–algebra for Ω}.

It follows that σ(EEE1) ⊆ σ(EEE2).

PROOF of (6.8):
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Since EEE ⊆ σ(EEE), we obtain from (6.7) (already proven) that σ(EEE) ⊆ σ
(
σ(EEE)

)
. Now we show “⊇”:

(1) Let DDD := {F̃ : F̃ ⊇ σ(EEE) and F̃ is a σ–algebra }. Note that σ(EEE) ∈ DDD . Thus, {σ(EEE)} ⊆ DDD .
(2) It is true in general that UUU 1 ⊆UUU 2 ⇒

⋂
[U : U ∈UUU 1] ⊇

⋂
[U : U ∈UUU 2].

(3) By (1), UUU 1 := {σ(EEE)} ⊆ UUU 2 =: DDD .
Thus, by (2), σ(EEE) =

⋂
[U : U ∈UUU 1] ⊇

⋂
[U : U ∈UUU 2] = σ

(
σ(EEE)

)
.

Thus, σ(EEE) ⊇ σ
(
σ(EEE)

)
. That concludes the proof of (6.8).

PROOF of (6.9):

(1) σ(EEE1) ⊇ EEE2
(6.7)⇒ σ

(
σ(EEE1)

)
⊇ σ(EEE2)

(6.8)⇒ σ(EEE1) ⊇ σ(EEE2).

(2) σ(EEE2) ⊇ EEE1
(6.7)⇒ σ

(
σ(EEE2)

)
⊇ σ(EEE1)

(6.8)⇒ σ(EEE2) ⊇ σ(EEE1).

It follows from (1) and (2) that σ(EEE1) = σ(EEE2). �

We now use that last theorem to prove some of the assertions made in Remark 5.8 on p.114.

Example 6.1. Consider the following subsets of the real numbers.
B = { the Borel sets of R} = σ{ all intervals of R },
I1 := { ]a, b] : a < b }, I2 := { [a, b] : a < b },
I3 := { ]a, b[ : a < b }, I4 := { [a, b[ : a < b }, EEE := { ]−∞, c ] : c ∈ R }.

Then B = σ(I1) = σ(I2) = σ(I3) = σ(I4) = σ(EEE).
For example, to prove that I2 = I3, it suffices according to Theorem 6.4 to show that

any closed interval [a, b] belongs to I3, any open interval ]a, b[ belongs to I2.

Since σ(I3) contains all countable intersections of sequences in I3 and σ(I2) contains all countable
unions of sequences in I2, this follows from

[a, b] =
⋂
n

]
a− 1

n
, b+

1

n

[
and ]a, b[ =

⋃
n

[
a+

1

n
, b− 1

n

]
.

As another example, we show that σ(B) = σ(EEE). Note that

]a, b] = ]−∞, b ]∩ ]−∞, a ] , (a, b ∈ R).

Thus, I1 ⊆ σ(EEE). Since also EEE ⊆ I1, it follows that I1 = σ(EEE). �

In Definition 5.16 (σ–algebra generated by random elements) on p.125, we discussed the σ–algebras

σ{X} = σ{X−1(A′) : A′ ⊆ Ω′} ,
σ
{

(Xi)i∈I
}

= σ{Xi : i ∈ I} = σ{X−1
i (A′) : A′ ⊆ Ω′, i ∈ I} ,

for random elementsX and families of random elements (Xi)i∈I with domain (Ω, P ) and codomain
Ω′. See (5.36) and (5.37). This was done without taking into account the role of σ–algebras on Ω
and Ω′. Note that P does not appear in the formulas that define those σ–algebras. Accordingly,
probability measures will not appear in the replacement definition that follows.

Definition 6.4 (Advanced Definition of σ–algebra generated by random elements). ?

We define for a function f and a family of functions (fi)i ∈ I ,
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f, fi : Ω −→ (Ω′,F′), i ∈ I :

(6.10) σ{f} := σ{f−1(A′) : A′ ∈ F′}

(6.11) σ
{

(fi)i∈I
}

:= σ{fi : i ∈ I} := σ{f−1
i (A′) : A′ ∈ F′, i ∈ I}

(a) We call σ{f} the σ–algebra generated by the function f .
(b) We call σ

{
(fi)i∈I

}
the σ–algebra generated by the family of functions (fi)i∈I . �

Remark 6.4. ?

(a) No assumption was made about (F,F′)–measurability for obvious reasons. After all, there
may not even be a σ–algebra F.

(b) We cannot call those functions random elements, because there is no probability measure.
(c) Note that the only difference between (5.36) and (5.37) on the one hand, and (6.10) and

(6.11) on the other hand, is as follows: We have replaced A′ ⊆ Ω′ with A′ ∈ F′. Hence, both
definitions are identical if F′ denotes 2Ω′ , the biggest σ–algebra that exists on Ω′.

(d) If F′ is very small, then σ{f} and σ
{

(fi)i∈I
}

also might be very small.
In the extreme case, consider F′ := {∅,Ω′}, the smallest σ–algebra for Ω′. Since g−1(∅) = ∅
and g−1(Ω′) = Ω for ALL functions g : Ω→ Ω′, we obtain

σ{f} = σ
{

(fi)i∈I
}

= {∅,Ω} . �

The next theorem shows that formula (6.10) (the definition of the σ–algebra generated by a single
function) simplifies to

σ{f} = {f−1(A′) : A′ ∈ F′} .

Theorem 6.5. ?

Given is a function f with measurable spaces (Ω,F) as domain and (Ω′,F′) as codomain:

f : (Ω,F) −→ (Ω′,F′) .

No assumption is made about (F,F′)–measurability. Then
(a) σ{f} = {f−1(A′) : A′ ∈ F′}. In particular, {f−1(A′) : A′ ∈ F′}is a σ–algebra for Ω.
(b) f is (F,F′)–measurable ⇔ σ{f} ⊆ F.
(c) We can strengthen assertion (b) as follows: Let EEE ′ be a generator of F′. Then

f is (F,F′)–measurable ⇔ {f−1(E′) : E′ ∈ EEE ′} ⊆ F.

PROOF: We write AAA for the set {f−1(A′) : A′ ∈ F′}.
PROOF of (a): The assertions of Remark 6.3(a) on p.142 show that AAA is a σ–algebra.
It follows that AAA = σ{AAA }. Moreover, σ{f} = σ{AAA }, by definition of σ{. . . }. Thus, σ{f} = AAA .
PROOF of (b): This follows from the definition of measurable functions.
PROOF of (c), “⇒⇒⇒”: Assume that f is measurable. Then f−1(A′) ∈ F, for all A′ ∈ F′.
Since EEE ′ ⊆ F′, it follows that f−1(E′) ∈ F, for all E′ ∈ EEE ′.
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PROOF of (c), “⇐⇐⇐”: This is not as easy as the “⇐⇐⇐” direction. First, we show that

(6.12) GGG′ := {G′ ⊆ Ω′ : f−1(G′) ∈ F}

is a σ–algebra for Ω′. We only show G′ ∈ GGG′ ⇒ G′{ ∈ GGG′ and leave the remainder as an exercise.

So let G′ ∈ GGG′. By (6.12) (the definition of GGG′), f−1(G′) ∈ F. Since F is a σ–algebra,
(
f−1(G′)

){ ∈ F.

By Remark 6.3(a),
(
f−1(G′)

){
= f−1

(
G′{
)
. Thus, f−1

(
G′{
)
∈ F, i.e., G′{ ∈ GGG′.

The proof that GGG′ satisfies the other properties of a σ–algebra is just as straightforward.
Now let us prove that {f−1(E′) : E′ ∈ EEE ′} ⊆ F ⇒ f is (F,F′)–measurable.
So assume that {f−1(E′) : E′ ∈ EEE ′} ⊆ F. By (6.12), each E′ ∈ EEE ′ belongs to GGG′, i.e., EEE ′ ⊆ GGG′.
It follows that σ{EEE ′} ⊆ σ{GGG′}. Since EEE ′ generates F′ and GGG′ is a σ–algebra, we obtain that F′ ⊆ GGG′.

Thus, A′ ∈ F′ ⇒ A′ ∈ G′
(6.12)⇒ f−1(A′) ∈ F. This proves that f is (F,F′)–measurable. �

Definition 5.17 on p.131 stated the independence of an arbitrary family (Xi)i∈I of random elements.
It is not mathematically precise, since the role of σ–algebras is not considered there. Now, that the
concept of measurability has been made available, we can rewrite that definition in its precise form.
For the following, recall Definition 6.3 (Advanced level definition of random variables and random
elements) on p.141.

Definition 6.5 (Independence of arbitrarily many random elements – advanced definition). ?

Given are a probability space (Ω,F, P ), a measurable space (Ω′,F′), and a family of random
elements,

Xi : (Ω,F, P ) −→ (Ω′,F′) (i ∈ I).

We say that this family is independent if, for ANY FINITE subselection of distinct indices
i1, i2, . . . , ik ∈ I and j = 1, 2, . . . , k,

P{Xi1 ∈A′i1 , Xi2 ∈ A′i2 , . . . , Xik ∈ A
′
ik
}

= P{Xi1 ∈ A′i1} · P{Xi2 ∈ A′i2} · · ·P{Xik ∈ A
′
ik
} , for all A′ij ∈ F′. �

(6.13)

Remark 6.5. ? Convince yourself that the only difference between (6.15) and (5.48) is this:

“A′ij ⊆ F′” has been replaced with the (easier to satisfy) condition “A′ij ⊆ Ω′”. �

For completeness’ sake, we give the definition of independence of a family of sets. Note that there
will be no more codomain (Ω′,F′), because there will be no more functions Xi on (Ω,F, P ). The sets
Aij ∈ EEE ij given there will be subsets of Ω!

Definition 6.6 (Independence of a family of sets of measurable sets). ?
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Given are a probability space (Ω,F, P ), and a family

EEE i ⊆ F (i ∈ I).

We say that this family is independent if, for ANY FINITE subselection of distinct indices
i1, i2, . . . , ik ∈ I and j = 1, 2, . . . , k, and for any choices Aij ∈ EEE ij ,

(6.14) P{Ai1 ∩Ai2 ∩ · · · , ∩Aik } = P (Ai1) · P (Ai2) · · ·P (Aik) , for all Aij ∈ EEE ij . �

Definition 6.7 can be expressed in terms of Definition 6.6 as follows.

Proposition 6.2. ?

Given are a probability space (Ω,F, P ), a measurable space (Ω′,F′), and a family of random elements,

Xi : (Ω,F, P ) −→ (Ω′,F′) (i ∈ I).

Then,

The family (Xi)i ∈ I is independent ⇔ the family σ{Xi}i∈I is independent.

PROOF: In Definition 6.6, set EEE i := σ{Xi}. �

Remark 6.6. ? What we discuss now about functions is a very general phenomenon in mathe-
matics. So let us switch briefly the notation to that of general mathematics. Let

X
f−→ Y ; x 7→ y = f(x) ,

be a function f with domain X and codomain Y . One can consider Y as being in forward direction

and X in backward direction of the function arrow
f−→.

(a) Let SSS X be some mathematical structure on X , the domain of f . Assume that f can be used
to generate a corresponding mathematical structure, SSS Y , on Y , the codomain of f . Since
SSS Y was created from SSS X by “pushing forward” that structure from X to Y by means of f ,
mathematicians will speak of SSS Y as the push–forward of SSS X by f .

(b) Let S̃SS Y be some mathematical structure on Y , the codomain of f . Assume that f can be used
to generate a corresponding mathematical structure, S̃SS X , on X , the domain of f . Since
S̃SS X was created from S̃SS Y by “pulling back” that structure from Y to X by means of f ,
mathematicians will speak of S̃SS X as the pull–back of S̃SS Y by f .

Here is a very good example of a push–forward. Let X : (Ω,F, P ) → (Ω′,F′) denote a random
element. The probability measure P certainly is a mathematical structure on Ω, the domain of X .
• The function X pushes P forward to the distribution PX of X , a probability measure on

(Ω′,F′), by means of the formula PX(A′) = P{X ∈ A′}, A′ ∈ F′.
PX certainly is a mathematical object of Ω′, the codomain of X .

For the following example of a pull–back, let f : Ω→ (Ω′,F′). Here, Ω is some nonempty set, and
(Ω′,F′) denotes a measurable space. Note that he σ–algebra F′ will be very important here!
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• The function f pulls F′ back to σ{f}, a σ–algebra on Ω, by means of the formula 70

σ{f} = σ{f−1(A′) : A′ ∈ F′} .

How does the above relate to a pull–back, as discussed in (b)? The σ–algebra F′ is a mathematical
structure on Ω′, the codomain of f . This function pulls F′ back to a σ–algebra σ{f} on Ω. This
σ–algebra certainly is a mathematical object of Ω, the domain of f .
As an aside, one would also refer to σ

{
(fi)i∈I

}
as the pull-back of F′ by means of a family (fi)i∈I

of functions fi : Ω→ (Ω′,F′). �

It is definitely OK to skip this next remark.

Remark 6.7. ?

Like σ–algebras, measurability is a theoretical concept that aids in the development of probability
theory as a mathematical theory. Such concepts are tools that help understand why the practical
things taught here about solving applications oriented problems yield the intended results. This in
turn helps to see various items as connected rather than unrelated, and that in turn makes it easier
to remember the applications oriented material and use it in situations that are not an obvious fit
for any of the cookbook recipes.
That having been said, measurability will not be an issue in this course! �

Definition 5.17 on p.131 concerning the independence of an arbitrary family (Xi)i∈I of random
elements) is not mathematically precise, since the role of σ–algebras is not considered there. Now,
that the concept of measurability has been made available, we can state that definition in its precise
form.

Definition 6.7 (Independence of arbitrarily many random elements – precise definition). ?

Given are a probability space (Ω,FFF , P ) and a family
(
Xi

)
i∈I of random elements on Ω.

Here, I denotes an arbitrary set of indices. We say that this family is independent if, for
ANY FINITE subselection of distinct indices i1, i2, . . . , ik ∈ I and j = 1, 2, . . . , k,

P{Xi1 ∈A′i1 , Xi2 ∈ A′i2 , . . . , Xik ∈ A
′
ik
}

= P{Xi1 ∈ A′i1} · P{Xi2 ∈ A′i2} · · ·P{Xik ∈ A
′
ik
} , for all A′ij ⊆ Ω′. �

(6.15)

6.2 Measures

This chapter is very selective and incomplete at this point in time. Additions will be made
as time allows.

Introduction 6.2. There is so much commonality between Lebesgue measure and probability mea-
sures that it justifies an overarching term, that of a measure. Many results that hold true for both
Lebesgue measure and a probability measure also are true for measures. �

70See Definition 6.4 (Advanced Definition of σ–algebra generated by random elements) on p.143.

147 Math 447 - Version 2025-02-20



Math 447 – MF Lecture Notes Student edition with proofs

Based on those introductory remarks, we introduce the concept of an abstract (i.e., general) measure.

Definition 6.8 (Abstract measures). ?

Let (Ω,F) be a measurable space. A measure on F is an extended real–valued function

µ : F→ [0,∞]; A 7→ µ(A) such that

µ(∅) = 0 ,(6.16)
A,B ∈ F and A ⊆ B ⇒ µ(A) ≤ µ(B) , (monotony)(6.17)

(An)n∈N ∈ Fdisjoint ⇒ µ
(⊎
n∈N

An

)
=
∑
n∈N

µ(An) . (σ–additivity)(6.18)

• The triplet (Ω,F, µ) is called a measure space
• We call any set N ⊆ Ω with measure zero a µ Null set.

• We call µ a discrete measure if there is a countable A∗ ∈ F such that µ
(
A∗{

)
= 0.

We then call (Ω,F, µ) a discrete measure space
• We call µ a finite measure on F if µ(Ω) <∞.
• We call µ a σ–finite measure on F if one can find a sequence An ∈ F such that

µ(An) <∞ and Ω =
⋃
nAn.

Footnotes for measurable spaces, 71 extended real numbers, 72 and µ–null sets. 73 �

Do not confuse measurable spaces (Ω,F) and measure spaces (Ω,F, µ)!

Remark 6.8. ?

(a) Lebesgue measure λd is a measure on Bd, and (Rd,Bd, λd) and (R,B, λ1) are mea-
sure spaces. Note that λd is infinite, since λd(Rd) =∞.
On the other hand, λd is σ–finite, sinceKn := [−n, n]d ↑ Rd and λd(Kn) = (2n)d <∞.

(b) A probability measure is a finite measure. Probability spaces are measure spaces.
(c) A measure µ is a probability measure ⇔ µ(Ω) = 1. �

Example 6.2. ? Let A ∈ Bd and B(A) := {B ∈ Bd : B ⊆ A}. Consider

λd
∣∣∣
A

: B(A)→ [0,∞]; B 7→ λd
∣∣∣
A

(B) := λd(B) .

Then (A,B(A), λd
∣∣∣
A

) is a measure space. Note that λd
∣∣∣
A

is the restriction of the function

λd : Bd → [0,∞] to the subset B(A) of Bd.
71See Definition 6.1 (Measurable functions) on p.137.
72See Definition 2.14 (Extended real numbers) on p.28.
73Strictly speaking any set N such that N ⊆ A and µ(A) = 0 is said to be µ Null. We ignore such fine points.
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For example, let A := {~x = (x1, x2) ∈ R2 : x2
1 + x2

2 ≤ 25}. Let B := [−1, 2]× ]1, 3[.

Then λ2
∣∣∣
A

(B) = λ2(B) = 6.

It is customary to call λd
∣∣∣
A

the Lebesgue measure on A, to write λd for λd
∣∣∣
A

, and to call B(A) the
Borel sets of A. �

Example 6.3. ? Let Ω be a nonempty, countable set. Let g : Ω → [0,∞] be an arbitrary
function (satisfying 0 ≤ g(ω) ≤ ∞ for all ω). We associate with g the function

(6.19) µ : 2Ω −→ [0,∞] ; A 7→ µ(A) :=
∑
ω∈A

g(ω) .

Then µ defines a measure on 2Ω. We can see this as follows.
Clearly, µ(∅) = 0. Let A ⊆ B ⊆ Ω and C := B \A.. Since B = A ] C and g ≥ 0, we obtain
(6.20) µ(B) =

∑
ω∈B

g(ω) =
∑

ω∈A]C
g(ω) = =

∑
ω∈A

g(ω) +
∑
ω∈C

g(ω) = µ(A) + µ(C) ≥ µ(A) .

Key in (6.22) is that the disjointness of A and C allowed us to write
∑

ω∈A]C
=
∑
ω∈A

+
∑
ω∈C

.

To prove σ–additivity, we use that same trick for a disjoint sequence Aj ⊆ Ω and A :=
⊎
j Aj :

µ(A) =
∑

ω ∈]jAj

g(ω) =
∑
j∈N

∑
ω∈Aj

g(ω) =
∑
j∈N

µ(Aj) . �

Example 6.4. ? Let Ω be a nonempty, countable set. Let

EEE :=
{
{ω} : ω ∈ Ω

}
= { all singleton sets of Ω } .

Let µ0 : EEE → [0,∞] be an arbitrary function on EEE (satisfying 0 ≤ µ0{ω} ≤ ∞ for all ω ∈ Ω). We
associate with µ0 the function

(6.21) h : Ω −→ [0,∞] ; ω 7→ h(ω) := µ0{ω} .

We have seen in Example 6.4, with g(ω) := h(ω), that µ(A) :=
∑
ω∈A

h(ω) defines a measure on 2Ω.

Of course there will be some relationship between µ0 and µ. It is as follows.

(6.22) µ{ω} =
∑

ω′∈{ω}

h(ω′) = h(ω)
(6.21)
= µ0{ω} .

In other words, µ is the unique extension of the function µ0 to a measure on 2Ω. �

Example 6.5. ? In examples 6.3 and 6.4 It was not all that important that Ω itself be countable.
All that is needed that there is a countable set A∗ ⊆ Ω as follows.

(a) in Example 6.3: g(ω) = 0 for ω /∈ A∗;
(b) in Example 6.4: µ0{ω} = 0 for ω /∈ A∗.

The reason is that adding zeroes has no effect: If A ⊆ Ω, then
∑
ω∈A

=
∑

ω∈A∩A∗
.

(c) The existence of such countable A∗ is equivalent to the measure µ being discrete.
That applies to both (a) (i.e., Example 6.3) and (b) )i.e., Example 6.4). �
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Remark 6.9. ?

The measure µ of Example 6.5 is a discrete probability measure
⇔ g of (6.19) satisfies

∑
ω∈A∗ g(ω) = 1

⇔ µ0 of (6.22) satisfies
∑

ω∈A∗ µ0{ω} = 1

Thus, it is easy to derive Theorem 5.2 on p.111 and Corollary 5.1 from Examples 6.3–6.5. �

Next, we consider what happens in Example 6.5 if g(ω) = 111A∗(ω) = 1, for ω ∈ A∗, and 0, else. Then

µ(A) =
∑

ω∈A∩A∗
1 = |A ∩A∗|

In other words, µ(A) counts how many elements of A∗ fall into A.

Definition 6.9 (Counting measure). ?

Let (Ω,F) be a measurable space, A∗ 6= ∅ a countable subset of Ω
(a) We call the measure Σ∗ on F, defined by

Σ∗(A) := |A ∩A∗|

the counting measure on F with respect to A∗.
(b) In particular, if Ω ⊆ R and A∗ = N, we call Σ∗ the standard counting measure on F.
(c) If no reference to a σ–algebra is made, we set F := 2Ω. �

Example 6.6. ? Here are some examples for the counting measure.

(a) (Ω,F) = (R, 2R), A∗ = N: ��� Σ∗([3, 5]) = 3 ��� Σ∗(]3, 5[) = 1 ��� Σ∗([−π, e]) = 2
��� Σ∗([−π, e] ∪ {−8, 2, 3, 3.5, 4, }) = 4.

(b) (Ω,F) = (R, 2R), A∗ = Z: ��� Σ∗([3, 5]) = 3 ��� Σ∗(]3, 5[) = 1 ��� Σ∗([−π, e]) = 6
��� Σ∗([−π, e] ∪ {−8, 2, 3, 3.5, 4, }) = 9.

(c) Given the measurable space (R3,B3) and ~a = (1, 0, 5), let δ~a be the counting measure
on {~a}. The symbols need not be Ω,F, A∗,Σ∗!

��� δ~a(R3) = δ~a([0.8, 1]×]− 1, 1[×{5, 9}) = δ~a(~a) = 1 ��� δ~a

((
[0, 5]3

){)
= 0

��� B ∈ B3 ⇒ δ~a(B) = 111B(~a) = 1 if ~a ∈ B and 0 otherwise.
(d) We generalize (c) as follows. Given an arbitrary set Ω and ω0 ∈ Ω, let δω0 be the

counting measure on {ω0}. No σ–algebra F was mentioned, so F = 2Ω. Then

��� A ⊆ Ω ⇒ δω0(A) = 111A(ω0), i.e., δω0(A) =

{
1, if ω0 ∈ A ,
0, if ω0 /∈ A .

Since δω0(Ω) = 1, δω0 is a probability measure on 2Ω. It often is referred to as the
unit mass at ω0. �

Here are two not very useful measures which are easy to understand.

Example 6.7. ?

150 Math 447 - Version 2025-02-20



Math 447 – MF Lecture Notes Student edition with proofs

One can easily verify that the following set functions µ1 and µ2 define measures on an arbitrary
nonempty set Ω with an arbitrary σ–algebra F.

µ1(A) := 0 for all A ∈ F, zero measure or Null measure(6.23)
µ2(∅) := 0; µ(A) := ∞ if A 6= ∅.(6.24)

Keep the second example in mind when you work with non–finite measures. �

Remark 6.10. ?

(1) We emphasize that the only difference between (general) measures and probability mea-
sures is that the latter must assign a measure of one to the entire space Ω.

(2) Many things that apply to probabilities can be extended to general measures, and this
will matter to us even if we are only interested in probability spaces, since will see in the
context of the expectation E[Y ] of a random variable Y , that assignments of the form

A 7→ E[X · 111A] where A ∈ F and 111A(ω) :=

{
1 if ω ∈ A ,
0 if ω /∈ A ,

i.e., 111A is the indicator function of A, define a measure on (Ω,F).
(3) A measure space can support many different measures: If µ is a measure on F and α ≥ 0

then αµ : A 7→ αµ(A) also is a measure on F. �

The following generalizes Fact 5.1 on p.115 from probability measures to σ–finite measures (and
thus to all reasonable measures).

Fact 6.1. ? For the following, note that the sets I1, . . . ,I8 were defined in Example 5.8 on p.114.

• Let I = I5 or I = I8. Let the function µ0 : I→ [0,∞[ (so E ∈ I ⇒ µ0(E) <∞) satisfy
µ0(∅) = 0, µ0(Rd) = 1 and σ–additivity on I: En ∈ I disjoint such that
E :=

⊎
n∈N

En ∈ I ⇒ µ0(E) =
∑
n∈N

µ0(En).

Then µ0 can be uniquely extended to a measure on Bd, the Borel sets of Rd.

• One can drop the requirement that µ0(A) <∞ for all A ∈ I, but then the extension µ is no
more guaranteed to be unique.

• Note that for d = 1, the following sets are equal: I5 = I1, I8 = I4, B
1 = B. �

Here is a simple consequence of the monotone convergence theorem for Lebesgue integrals.

Theorem 6.6. ?

Let f : Rn → R be nonnegative and Borel–measurable. Then the set function

(6.25) µ : Bd −→ [0,∞], µ(A) :=

∫
A
f dλd

defines a measure on Bd.
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PROOF: We must show that
(1) µ(A) ≥ 0 for A ∈ Bd,
(2) µ(∅ = 0),
(3) If A,B ∈ Bd and A ⊆ B, then µ(A) ≤ µ(B),
(4) If Aj ∈ Bd are mutually disjoint (j ∈ N), then µ

(⊎
j Aj

)
=
∑
j∈N

µ(Aj).

Since 111∅ = 0, 111∅ · f = 0. Thus

µ(∅) =

∫
111∅ · f dλd =

∫
0 dλd = 0.

This proves (2). To show (1) and (3), we will use the monotonicity of the Lebesgue integral: 74

111A · f ≥ 0 on Rd ⇒ 0 =

∫
0 dλd ≤

∫
111A · f dλd = µ(A). This proves (1).

A ⊆ B ⇒ 111A · f ≤ 111B · f on Rd ⇒ µ(A) =

∫
111A · f dλd ≤

∫
111B · f dλd = µ(B).

This proves (3). It remains to prove σ–additivity. Let

Bn :=
⊎
j≤n

Aj , B :=
⊎
j∈N

Aj =
⋃
j∈N

Bj , gn := 111Bn f, g := 111B f .

We claim that

0 ≤ gn ↑ g as n→∞, i.e., 0 ≤ gn(~x) ↑ g(~x), for each ~x ∈ Rd.(6.26)

(A) First, let ~x /∈ B.
Then 111Bn(~x) = 111B(~x) = 0 ⇒ gn(~x) = g(~x) = 0, for all n, it follows that gn(~x) = g(~x).

(B) Now we assume that ~x ∈ B.
Since B =

⋃
nBn, ~x ∈ Bn0 for some index n0. Since Bn ↑, ~x ∈ Bj for all j ≥ n0.

Thus gj(~x) = g(~x) for all j ≥ n0. Of course, n0 will vary with ~x, but that is OK.
We have shown for both cases (A) and (B) that gn(~x) = g(~x) for large enough n.
Moreover, Bn ↑ implies gn = 111Bn ↑. We have shown that gn(~x) ↑ g(~x) for all ~x.
Finally, note that 111Bn ≥ 0 and f ≥ 0 ⇒ gn = 111Bnf ≥ 0. We have shown (6.26).
We apply the definitions of gn and g to (6.26) and obtain

0 ≤ 111⊎[Aj :j≤n]f = 111Bn f = gn ↑ g = 111B f = 111⊎[Aj :j∈N]f .

We apply the monotone convergence property of Lebesgue integrals, 75 and obtain

(6.27)
∫

111⊎[Aj :j≤n]f dλ
d ↑

∫
111⊎[Aj :j∈N]f dλ

d =

∫
⊎

[Aj :j∈N]
f dλd = µ

( ⊎
j∈N

Aj

)
.

Since the Aj are disjoint, 111⊎[Aj :j∈N] =
∑
j≤n

111Aj . By Linearity II of Lebesgue integrals 76 plus (6.27),

74see Theorem 4.5(b) on p.94
75see Theorem 4.5(d) on p.94
76see Theorem 4.5(c) on p.94
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n∑
j=1

µ(Aj) =

n∑
j=1

∫
f · 111Aj dλd =

∫ ( n∑
j=1

f · 111Aj
)
dλd =

∫
111⊎[Aj :j≤n]f dλ

d ↑ µ
( ⊎
j∈N

Aj

)
.

We have shown that µ also is σ–additive. It follows that µ is a measure. �

The next theorem corresponds to Theorem 5.1 on p.109. But note the additional requirement
µ(B1) <∞ for the case of nonincreasing sequences of measurable sets. It makes (6.29) significantly
different from the corresponding formula (5.16) for probability measures.

Theorem 6.7 (Continuity property of measures). ?

Let (Ω,F, µ) be a measure space. If An, Bn ∈ F, then the following is true:

An ↑ ⇒ P (An) ↑ µ

(⋃
n∈N

An

)
,(6.28)

Bn ↓ and µ(B1) <∞ ⇒ P (Bn) ↓ P

(⋂
n∈N

Bn

)
.(6.29)

PROOF: The proof of (6.28) is very similar to that of thm-x:prob-meas-continuity-prop:eqn01 (for
probability measures) and left as an exercise.
Proof of (6.29) – Outline: Modify the proof of (5.16) as follows:

• Replace all complements U{ with set differencesB1 \ U .
• Use the relation µ(U) +µ(B1 \U) = µ(B1) <∞ instead of P (U) +P (U{) = 1. �

Proposition 6.3. Let (Ω,F, µ) be a measure space and (Ω′,F′) a measurable space.

Let f : Ω→ Ω′ be (F,F′) measurable. Then the set function

µf : F′ → [0,∞];A′ 7→ µ{f ∈ A′} = µ{ω ∈ Ω : f(ω) ∈ A′}(6.30)

defines a measure on (Ω′,F′). Moreover, if µ is a probability measure on F, i.e., µ(Ω = 1), then µf
is a probability measure on F′.

PROOF: ? µf (∅) = 0, since f−1(∅) = ∅, and µ is a measure.

We show here in detail that µf is monotone: A′ ⊆ B′ ⇒ µf (A′) ≤ µf (B′), for all A′, B′ ∈ F′.
According to Proposition 2.7 on p.44, A′ ⊆ B′ implies f−1(A′) ⊆ f−1(B′). Since µ is a measure, this
implies µ

(
f−1(A′)

)
≤ µ

(
f−1(B′), i.e., by definition of µf , µf (A′) ≤ µf (B′)

The proof that µf (
⊎
nBn) =

∑
n µf (Bn) for any disjoint sequence Bn ∈ F′, is just as simple, since

the order of taking preimages and unions can be switched. See Theorem 2.2 (f−1 is compatible with
all basic set ops) on p.45. �

Definition 6.10 (Image measure). ?

153 Math 447 - Version 2025-02-20



Math 447 – MF Lecture Notes Student edition with proofs

(1) We call the measure µf of Proposition 6.3 the image measure of µ under f or the
measure induced by µ and f .

(2) We now switch notation from f and µ to the more customary X and P for the sake
of clarity. In the case of a random element X on a probability space (Ω,F, P ) with
codomain (Ω′,F′), we call the image measure PX of P under X which is, according
to (6.30), given by

(6.31) PX(B) := P{X ∈ B} = P{ω ∈ Ω : X(ω) ∈ B}, (B ∈ B1)

the probability distribution or simply the distribution of X . �

Remark 6.11. ? Except for the added measurability conditions (which you may ignore if you
like), the definition above of a probability distribution matches that of Definition 5.13 (Probability
Distribution) on p.124. �

6.3 Abstract Integrals

This chapter is very selective and incomplete at this point in time. Additions will be made
as time allows.

Introduction 6.3. In Chapter 4 (Calculus Extensions) we introduced the Lebesgue integral,
∫
fdλd,

as an extension of the Riemann integral,
∫
f(~x)d~x, to a larger class of integrands. In practice, all

functions one deals with are Riemann integrable. What then is the purpose of the Lebesgue integral
as an alternate definition?
The answer is that the Lebesgue integral allows the mathematician to prove certain assertions that
are of huge practical importance. We mention the monotone convergence property. 77 It was used
to show that A 7→

∫
A fdλ

d defines a measure, 78 but it also is useful in practical applications that
require computing certain integrals.
Only a fairly limited amount of changes in that theory is needed to define integrals

∫
fdµ of real

valued functions f with respect to an abstract measure µ.

Even though all definitions, theorems, and remarks make extensive use of σ–algebras, they
can be ignored by the student who is not interested in understanding the proof. The reasons
have been stated more than once already:
• All sets A that occur in practice can be assigned a measure µ(A), in particular, a

probability P (A) or Lebesgue measure λd(A).
• No matter what kind of measurable space (Ω,F) is considered one can act as if F) =

2Ω, the collection of all subsets of Ω. �

The next definition corresponds to Definition 4.4 on p.88.

77see Theorem 4.5(d) on p.94
78see Theorem 6.6 on p.151
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Definition 6.11 (Abstract integral for simple functions). ? Let (Ω,F, µ) be a measure space 79

Let n ∈ N, A1, . . . , An ∈ F, c1, . . . , cn ∈ [0,∞[. Let

f : (Ω,F, µ) −→ R; f(ω) =
n∑
j=1

cj111Aj (ω) .

The abstract integral aka integral of the simple function f with respect to µ is

(6.32)
∫
fdµ :=

∫
f(ω)dµ(ω) :=

∫
f(ω)µ(dω) :=

n∑
j=1

cjµ(Aj) . �

Proposition 6.4. ?

Let (Ω,F, µ) be a measure space. Let f, gn, hn : (Ω,F, µ) −→ R be nonnegative, (F,B1)measurable
functions. Assume further that the functions gn and hn are simple. Then the following is true:

(6.33) If gn ↑ f and hn ↑ f , then lim
n→∞

∫
gndµ = lim

n→∞

∫
hndµ .

PROOF: �

By Theorem 6.2 on p.139, any nonnegative and (F,B1)measurable function f can be approximated
from below by a sequence of nonnegative, simple functions fn. There potentially is a huge number
of such function sequences, but the previous proposition shows that lim

n→∞

∫
fndµ does not depend

on the particular approximating sequence. This enables us to make the next definition, which is the
counterpart of Definition 4.5 (Lebesgue integral) on p.90

Definition 6.12 (Abstract integral for measurable functions). ?

(a) Let (Ω,F, µ) be a measure space, f, fn : (Ω,F, µ) −→ R (F,B1)measurable, and assume
that the functions fn are simple and • either 0 ≤ fn ↑ f • or 0 ≥ fn ↓ f . Then

(6.34)
∫
fdµ := lim

n→∞

∫
fndµ

is called the abstract integral aka integral of f with respect to µ. �

(b) Let (Ω,F, µ) be a measure space and f : (Ω,F, µ) −→ R (F,B1)measurable, such that
• both f+ and f− are limits of nondecreasing sequences of simple functions ≥ 0;

• at least one of
∫
f+dµ,

∫
f−dµ is finite. (According to (a), those integrals exist, but

neither of them was guaranteed to be finite.)

Then we define the abstract integral aka integral of f with respect to µ, as the expression

(6.35)
∫
f dµ =

∫
(f+ − f−) dµ :=

∫
f+ dµ −

∫
f− dµ .

79see Definition 6.8 (Abstract measures) on p.148
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(c) We call a real–valued function f µ–integrable, if
∫
f dµ exists and is finite. �

Remark 6.12. ? Note that
∫
fdµ may be infinite, even for simple and bounded f .

As an example, let Ω := {0},F =
{
∅, {0}

}
, µ the measure defined by µ(∅) = 0 and µ({0}) =∞. 80

Since 0 · ∞ = 0, 81
∫
fdµ = f(0) · µ{0} =


∞, if f(0) > 0 ,

−∞, if f(0) < 0 ,

0, if f(0) = 0 .

Accordingly, some care must be exercised when defining the integral for functions which can take
both positive and negative values. �

Assumption 6.1.

Unless explicitly stated otherwise, we assume the following for the remainder of this chap-
ter (Chapter 6 (Advanced Topics – Measure and Probability)).
• The underlying measurable space is (Ω,F).
• The underlying measure is µ.
• “measurable” means “(F,B1)measurable”. �

Here are some simple examples for integrals
∫
Y dP =

∫
Y (ω)P (dω) of a random variable Y with

respect to a probability measure P .
We state again that you may assume that the probabilities of all events exist and therefore can ignore
the σ–algebras.

Example 6.8. Assume that Y : (Ω,F, P )→ R is a random variable on a probability space (Ω,F, P )
which only takes finitely many distinct values, c1, . . . , cn, i.e., Y (ω) ∈ {c1, . . . , cn}, for all ω ∈ Ω.
Note the following. If cj ≥ 0 for all j, then such Y is a simple function in standard form, in the
sense of Definition 6.2 (Simple Function on Ω) on p.138, since

Y (ω) = cj ⇔ ω ∈ {Y = cj} = Y −1{cj}. Thus, Y =
n∑
j=1

cj 111Aj , with Aj = {Y = cj}.

(a) If cj ≥ 0 for all j, then (6.32) directly applies and∫
Y dP =

n∑
j=1

cjP (Aj) =

n∑
j=1

cjP{Y = cj} .

(b) Otherwise, [1, . . . , n]Z = J1 ] J2, where j ∈ J1 ⇒ cj ≥ 0, and j ∈ J2 ⇒ cj < 0.
Convince yourself that Y + =

∑
j∈J1

cj 111{Y=cj}, and Y − =
∑
j∈J2

(−cj)111{Y=cj}. Thus,

∫
Y dP =

∫
Y +dP −

∫
Y −dP =

∑
j∈J1

cjP{Y = cj} −
∑
j∈J2

(−cj)P{Y = cj} =

n∑
j=1

cjP{Y = cj} .

80see Example 6.7 on p.150
81see Remark 2.8 (Extended real numbers arithmetic) on p.28
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(c) In particular, assume that Y represents the toss of a fair coin which is marked 0 on one
side and 1 on the other. Then 82

Y = 0 · 111{Y=0} + 1 · 111{Y=1} = 111{Y=1} .

Thus,
∫
Y dP =

∫
1 · 111{Y=1}dP = 1 · P{Y = 1} = 0.5 . �

Example 6.9. Assume that Y : (Ω,F, P )→ R is a random variable on a probability space (Ω,F, P )
which only takes countably many distinct values, c1, c2, . . . . We also assume that cj ≥ 0, for all j.

Then Y =
∞∑
j=1

cj 111{Y=cj} . Thus, Yn :=
n∑
j=1

cj 111{Y=cj} ↑ Y .

By Example 6.8(a),
∫
YndP =

n∑
j=1

cjP{Y = cj} .

By Definition 6.12 (Abstract integral for measurable functions) on p.155,
∫
Y dP = lim

n→∞

∫
YndP .

Thus, as expected,
∫
Y dP =

∞∑
j=1

cjP{Y = cj} .

For example, assume that cj = j and P (Aj) = (1/2)j , for all j ∈ N. 83 Then
∫
Y dP =

∞∑
j=1

j

(
1

2

)j
.

In Section 9.3 (Geometric + Negative Binomial + Hypergeometric Distributions) we will learn that
Y has a geom(1/2) distribution. Also, the proof of Theorem 9.12 in that section (see p.200) shows

that
∞∑
j=1

j

(
1

2

)j
= 2. Thus,

∫
Y dP = 2. �

Here are some simple examples for integrals with respect to discrete measures.

Example 6.10. Assume that f : (Ω,F, µ)→ R is a measurable function on a measure space (Ω,F, µ)
which only takes finitely many distinct values, c1, . . . , cn, i.e., f(ω) ∈ {c1, . . . , cn}, for all ω ∈ Ω. Such
f is a simple function in standard form.

(a) If cj ≥ 0 for all j, then (6.32) directly applies and∫
fdµ =

n∑
j=1

cjµ(Aj) =

n∑
j=1

cjµ{f = cj} .

(b) Otherwise, 1, . . . , k]Z = J1 ] J2, where j ∈ J1 ⇒ cj ≥ 0, and j ∈ J2 ⇒ cj < 0.
Since f+ =

∑
j∈J1

cj 111{f=cj}, and f− =
∑
j∈J2

(−cj)111{f=cj},

∫
fdµ =

∫
f+dµ −

∫
f−dµ =

∑
j∈J1

cjµ{f = cj} −
∑
j∈J2

(−cj)µ{f = cj} =
n∑
j=1

cjµ{f = cj} . �

82We will call Y in Definition 9.4 (Bernoulli trials and variables) on p.197 a 0–1 encoded Bernoulli trial

83Then P (Ω) =
∞∑
j=1

(
1

2

)j
= 1 (geometric series). We see that indeed the measure P is a probability measure.
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Example 6.11. Assume that f : (Ω,F, µ)→ R only takes countably many distinct values, c1, c2, . . . .
We also assume that cj ≥ 0, for all j.

Then f =

∞∑
j=1

cj 111{Y=cj} . Thus, fn :=

n∑
j=1

cj 111{f=cj} ↑ f .

By Example 6.10(a),
∫
fndµ =

n∑
j=1

cjµ{f = cj} .

By Definition 6.12 (Abstract integral for measurable functions) on p.155,
∫
fdµ = lim

n→∞

∫
fndµ .

Thus, as expected,
∫
fdµ =

∞∑
j=1

cjµ{f = cj} . �

Example 6.12. Assume that A∗ = {ω1, ω2, . . . } is a countable subset of a set Ω and Σ∗ is the counting
measure on 2Ω with respect to A∗: µ{ωj} = 1 for all j, and µ

(
A∗{

)
= 0.

Let f : (Ω,F, µ)→ R such that f(ωj) ≥ 0 for all j, and f(ω) = 0 for ω /∈ A∗. For all j, let cj := f(ωj).

(a) If cj 6= 0 for only finitely many j, say, cj = 0 for j > n, then f =
n∑
j=1

cj111{ωj} is simple.

Thus, ∫
f dΣ∗ =

n∑
j=1

cj Σ∗{ωj} =
n∑
j=1

cj

(b) Otherwise (cj 6= 0 for infinitely many j), fn :=
n∑
j=1

cj111{ωj} ↑ f , and

∫
f dΣ∗ =

∞∑
j=1

cj Σ∗{ωj} =

∞∑
j=1

cj

We see that abstract integrals with respect to counting measure simply becomes summation. �

The next theorem and subsequent definition correspond to Theorem 4.4 and Definition 4.7. See
pages 93 and 93.

Theorem 6.8. ? abstract integrals satisfy the following.

Let A ∈ F and assume that f is (F,B1)measurable. Then

(a) If
∫
f dµ exists, then

∫
111A f dµ exists.

(b) If f is µ–integrable, then 111Af is µ–integrable.

PROOF: �

This last theorem allows us to make the following definition.
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Definition 6.13. ?

Let A ∈ F and assume that f is a measurable function on (Ω,F, µ), for which the abstract
integral

∫
fdµ exists. The abstract integral of f on A or over A is defined by the expression

(6.36)
∫
A
f dµ :=

∫
A
f(ω)dµ(ω) :=

∫
A
f(ω)µ(dω) :=

∫
111Af dµ .

We say that f is µ–integrable on A, if
∫
A f dµ exists and is finite. �

The next proposition and subsequent theorem correspond to Proposition 4.2 (Integrability criterion)
on p.94 and Theorem 4.5 on p.94.

Proposition 6.5 (Integrability criterion). ? Let f be a measurable function and A ∈ F. Then

f is integrable on A ⇔
∫
A
|f | dµ <∞ ⇔ both

∫
A
f+ dµ <∞ and

∫
A
f− dµ <∞.

PROOF: �

Theorem 6.9. ? Assume that f, g, f1, f2, . . . are measurable functions, c, c1, c2, · · · ∈ R, and A ∈ F.
Then µ–integrals on A satisfy the following.

(a) Positivity:
∫
A

0 dµ = 0; f ≥ 0 on A ⇒
∫
A
f dµ ≥ 0,

(b) Monotonicity: µ{ω ∈ A : f(ω) ≥ g(ω)} = 0 ⇒
∫
A
f dµ ≤

∫
A
g dµ.

In particular, f ≤ g on A ⇒
∫
A
f dµ ≤

∫
A
g dµ,

and also, µ{ω ∈ A : f(ω) 6= g(ω)} = 0 ⇒
∫
A
f dµ =

∫
A
g dµ.

(b) Linearity I: f, g integrable on A ⇒
∫
A

(f ± g) dµ =

∫
A
f dµ±

∫
A
g dµ

and also,
∫
A

(cf) dµ = c

∫
A
f dµ.

Linearity II: f1 . . . , fn integrable ⇒
∫
A

( n∑
j=1

fj

)
dµ =

n∑
j=1

cj

∫
A
fj dµ.
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(d) Monotone Convergence: Assume that 0 ≤ f1 ≤ f2 ≤ · · · , 0 ≥ g1 ≥ g2 ≥ · · · .

Then
∫
A
fn dµ ↑

∫
A

(
sup
n∈N

fn

)
dµ and

∫
A
gn dµ ↓

∫
A

(
inf
n∈N

gn

)
dµ as n→∞.

(e) Dominated Convergence: Assume that

• lim
n→∞

fn exists, • fn ≤ g for all n ∈ N, •
∫
A
g dµ < ∞.

Then lim
n→∞

∫
A
fn dµ =

∫
A

(
lim
n→∞

fn

)
dµ as n→∞.

PROOF: �

Remark 6.13. ? We recall Fubini’s Theorem for Lebesgue integrals (Theorem 4.6 on p.95):

Let d1, d2 ∈ N and d := d1 + d2. Let A1 ∈ Bd1 and A2 ∈ Bd2 . Note that

(1) Rd = Rd1+d2 = Rd1×Rd2 , (2) A1×A2 ∈ Bd1×Bd2 , (3) λd(A1×A2) = λd1(A1)·λd2(A2) .

Let f : Rd → R, i.e., f : Rd1 × Rd2 → R, be Borel measurable and λd–integrable. Then∫
B1×B2

f
(
~x, ~y
)
λd
(
d(~x, ~y)

)
=

∫
B1

(∫
B2

f
(
~x, ~y
)
λd2(d~y)

)
λd1(d~x)

=

∫
B2

(∫
B1

f
(
~x, ~y
)
λd1(d~x)

)
λd2(d~y) .

(6.37)

One can show the following relation for the Borel σ–algebras Bd1 ,Bd2 , and Bd1+d2 :

(6.38) Let Bd1 ⊗Bd2 := σ{A1 ×A2 : A1 ∈ Bd1 , A2 ∈ Bd2} . Then Bd1 ⊗Bd2 = Bd1+d2 .

Since “×” occurs in (3), it seems reasonable to replace the symbol λd with the symbol λd1 × λd2 :

(3a) λd(A1 ×A2) = λd1 × λd2(A1 ×A2) = λd1(A1) · λd2(A2) .

This, with (1) (2) and (6.38), means that

(6.39) (Rd, Bd, λd) = (Rd1 × Rd2 , Bd1 ⊗Bd2 , λd1 × λd2) .

The general setting for Fubini’s Theorem is obtained as follows. Let

(Ω1, F1, µ1), (Ω2, F2, µ2)

be two measure spaces with σ–finite measures µ1 and µ2. 84 We replace
(a) (Rd1 , Bd1 , λd1) with the measure space (Ω1, F1, µ1),

(Rd2 , Bd2 , λd2) with the measure space (Ω2, F2, µ2),
(b) the cartesian product Rd1 × Rd2 with the cartesian product Ω1 × Ω2,
(c) the definition of Bd1 ⊗Bd2 in (6.38) with the definition

(6.40) F1 ⊗ F2 := σ{A1 ×A2 : A1 ∈ F1, A2 ∈ F2} ,
84σ–finiteness is a very technical condition. It means that one can find two sequences An ∈ F1 and Bn ∈ F2 such that

µ(An) <∞ andµ(Bn) <∞ for all n, and Ω1 =
⋃
nAn, Ω2 =

⋃
nBn. See Definition 6.8 (Abstract measures) on p.148.
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(d) the “product measure” λd1 × λd2(A1 ×A2) = λd1(A1) · λd2(A2) with the measure

(6.41) µ1 × µ2 : F1 ⊗ F2 −→ [0,∞] ; A1 ×A2 7→ µ1 × µ2(A1 ×A2) := µ1(A1) · µ2(A2) .

Here, A1 ∈ F1 and A2 ∈ F2. Thus, (6.41) defines µ1 × µ2(A) only for measurable rectangles,
A1×A2. However, one can show that µ1×µ2 can be extended to a measure on all of F1⊗F2,
and that this extension is unique. �

Definition 6.14 (Product measure space). ? The following is based on Remark 6.13.

Let (Ω1,F1, µ1) and (Ω1,F1, µ1) be measure spaces with σ–finite measures µ1, µ2. Let

(6.42) F1 ⊗ F2 := σ{A1 ×A2 : A1 ∈ F1, A2 ∈ F2} .

Let µ1 × µ2 : F1 ⊗ F2 −→ [0,∞] be the measure which is uniquely determined by

(6.43) µ1 × µ2(A1 ×A2) = µ1(A1) · µ2(A2) , for A1 ∈ F1 and A2 ∈ F2.

We call the measure space (Ω1 × Ω2,F1 ⊗ F2, µ1 × µ2) the product measure space aka
product space of the factors (Ω1,F1, µ1) and (Ω1,F1, µ1), F1⊗F2 the product σ–algebra of
the factors F1 and F2, and µ1 × µ2 the product measure of the factors µ1 and µ2.

There are alternate ways to denote integrals with respect to µ1 × µ2.

∫
fdµ1 × µ2 =

∫
f(ω1, ω2) dµ1 × µ2(ω1, ω2)

=

∫
f(ω1, ω2)µ1 × µ2

(
d(ω1, ω2)

)
=

∫
f(ω1, ω2)µ1 × µ2(dω1, dω2)

(6.44)

See (6.32) and (6.36). �

Theorem 6.10 (Fubini’s theorem for abstract integrals). ?

Let (Ω1,F1, µ1) and (Ω1,F1, µ1) be measure spaces with σ–finite measures µ1, µ2. Let

f : (Ω1 × Ω2,F1 ⊗ F2, µ1 × µ2) −→ R; (ω1, ω2) 7→ f(ω1, ω2), be F1 ⊗ F2–measurable.

Assume that f is nonnegative and/or (µ1 × µ2)–integrable, and that A1 ∈ F1, A2 ∈ F2. Then∫
A1×A2

f dµ1 × µ2 =

∫
A1

(∫
A2

f dµ2

)
dµ1

=

∫
A2

(∫
A1

f dµ1

)
dµ2 .

(6.45)

When we supply the arguments, ω1 and ω2, (6.45) reads
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∫
A1×A2

f
(
ω1, ω2

)
µ1 × µ2

(
d(ω1, ω2)

)
=

∫
A1

(∫
A2

f
(
ω1, ω2

)
µd2(dω2)

)
µd1(dω1)

=

∫
A2

(∫
A1

f
(
ω1, ω2

)
µd1(dω1)

)
µd2(dω2) .

(6.46)

PROOF: �

Remark 6.14. ? One can defined product measure spaces

(Ω1 × · · · × Ωn,F1 ⊗ · · · ⊗ Fn, µ1 × · · · × µ2)

and Fubini’s theorem for more than two factors. �

6.4 The ILMD Method

Introduction 6.4. ?

The abstract integral was defined or computed in the following stages:

(2) For simple functions f(ω) =
n∑
j=1

cj111Aj (ω), we defined
∫
fdµ =

n∑
j=1

cjµ(Aj) .

(3) For any nonnegative (measurable) function f , choose simple functions 0 ≤ fn ↑ f .

By monotone convergence,
∫
fdµ = lim

n→∞

∫
fndµ.

(4) For arbitrary (measurable) f = f+− f− such that
∫
f+dµ <∞ or

∫
f−dµ <∞,

we defined
∫
fdµ =

∫
f+dµ −

∫
f−dµ .

Note that replacing f and fn with f111A and fn111A, A ∈ F, also covers
∫
A · · · dµ.

Why is (1) missing? We reserve that case for particularly simple simple functions, the indicator
functions. We could have preceded Definition 6.11 (Abstract integral for simple functions) on p.155,
which handles (2), by the following.

(1) For A ∈ F, define
∫

111Adµ = µ(A) .

This section describes a general method for proving statements that are about integrals. �

Remark 6.15 (The ILMD Mehod). ? If one wants to prove a theorem in which integration plays

a central role, the following procedure, which we call the ILMD method, 85 often is successful.
85When googling the phrase “ILMD Mehod”, the author found the following result:
• The Improved Local Mean Decomposition (ILMD) is employed to decompose remanufacturing cost time

series data into several components with smooth, periodic fluctuation and use this as input.
So be sure to explain the term when you use it in discussions with others! Other authors use different terms. For

example, [11] Shreve, Steve: Stochastic Calculus for Finance II: Continuous-Time Models refers to the ILMD method as
the “Standard Machine”.
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I Prove the statement for integrands which are I ndicator functions 111A(ω).
L L inearity of the integral (Theorem 6.9(b) on p.159 often extends the result to simple

functions at little or no cost.
M M onotone convergence (Theorem 6.9(c) on p.159 often extends the result to non-

negative integrands at little or no cost.
D Writing f as the D ifference of two nonnegative functions, e.g., f = f+ − f−,

extends the result to general integrands. This might prove more difficult than the
preceding two steps, since expressions of the form∞−∞must be avoided. �

The proof of the next theorem demonstrates the usefulness of ILMD. We state again that you can
ignore the σ–algebras and assume that every function is measurable and µ(A) is defined for every
set A.

Theorem 6.11 (Integrals under Transforms). ? Let (Ω,F, µ) be a measure space and let (Ω′,F′) be a
measurable space. Assume that f : Ω → Ω′ is (F,F′)–measurable. and g : Ω′ → R is (F′,B1)–measurable.
µf denotes the image measure of µ under f on F′. It was defined in Definition 6.10 on p.153 as

µf (A′) = µ{f ∈ A′} = µ
(
f−1(A′)

)
.

If g ≥ 0 or g ◦ f is integrable then

(6.47)
∫
g ◦ f dµ =

∫
g dµf , i.e.,

∫
Ω
g
(
f(ω)

)
dµ(ω) =

∫
Ω′
g(ω′) dµf (ω′) .

PROOF:
Step 1. Assume that g = 111A′ for some A′ ∈ F′. Note that

111A′
(
f(ω)

)
= 1 ⇔ f(ω) ∈ A′ ⇔ ω ∈ f−1(A′) .

Thus,∫
Ω

111A′
(
f(ω)

)
dµ(ω) =

∫
Ω

111f−1(A′)(ω) dµ(ω) = µ
(
f−1(A′)

)
= µf (A′) =

∫
Ω′

111A′(ω
′) dµf (ω′).

This proves (6.47) for g = 111A′ .

Step 2. Let g ≥ 0 be a simple function g =
n∑
j=1

cj111A′j (n ∈ N, cj ≥ 0, Aj ∈ F). It then follows from the

linearity of the integral and what we obtained in step 1, that∫
Ω
g ◦ f dµ =

n∑
j=1

cj

∫
Ω

111A′j ◦ f dµ =

n∑
j=1

cj

∫
Ω′

111A′j dµf =

∫
Ω′
g dµf .

Step 3. Assume that g is a nonnegative, (F′,B1)–measurable function. Let (gn)n be a sequence of
simple functions such that gn ↑ g. By Step 2 and the monotone convergence property,∫

Ω
g ◦ f dµ = lim

n→∞

∫
Ω
gn ◦ f dµ = lim

n→∞

∫
Ω′
gn dµf =

∫
Ω′
g dµf .
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Step 4. Since the proof is finished for g ≥ 0, we may From now on assume that g ◦ f is µ–integrable,
i.e., both

∫
(g ◦ f)+dµ < ∞ and

∫
(g ◦ f)−dµ < ∞. We have shown in step 3 that the nonnegative

functions g+ ◦ f and g− ◦ f satisfy∫
Ω
g+ ◦ f dµ =

∫
Ω′
g+ dµf ,

∫
Ω
g− ◦ f dµ =

∫
Ω′
g− dµf ,(6.48)

We also have

(g+ ◦ f)(ω) = g+
(
f(ω)

)
=
[
g
(
f(ω)

)]+
=
[
(g ◦ f)(ω)

]+
= (g ◦ f)+(ω),

(g− ◦ f)(ω) = g−
(
f(ω)

)
=
[
g
(
f(ω)

)]−
=
[
(g ◦ f)(ω)

]−
= (g ◦ f)−(ω).

(6.49)

It follows that ∫
Ω
|g ◦ f | dµ =

∫
Ω

(g ◦ f)+ dµ +

∫
Ω

(g ◦ f)− dµ

(6.49)
=

∫
Ω

(g+ ◦ f) dµ +

∫
Ω

(g− ◦ f) dµ

(6.48)
=

∫
Ω′
g+ dµf +

∫
Ω′
g− dµf .

All quantities here are finite since
∫

(g ◦ f)+dµ < ∞ and
∫

(g ◦ f)−dµ < ∞. We thus may subtract
and obtain ∫

Ω
g ◦ f dµ =

∫
Ω′
g+ dµf −

∫
Ω′
g− dµf . �

We also use the ILMD method to prove the next theorem.

Theorem 6.12. ?

Let (Ω,F, µ) be a measure space and let f be a nonnegative, real–valued, Borel–measurable function
on (Ω,F, µ). Let ν be the measure defined by

(6.50) ν(A) :=

∫
A
f dµ

(see Theorem 6.6 on p.151). Further, let ϕ be a real–valued, Borel–measurable function on Ω, such
that ϕ ≥ 0 or ϕ is ν–integrable. Then

(6.51)
∫
A
ϕdν =

∫
A
ϕ · f dµ, i.e.,

∫
A
ϕ(ω) ν(dω) =

∫
A
ϕ(ω) f(ω)µ(dω); A ∈ F .

PROOF:
Step 1. We prove formula (6.51) for indicator functions. Assume that ϕ = 111B for some B ∈ F. Then∫

A
ϕdν =

∫
111A111B dν =

∫
111A∩B dν = ν(A ∩B)

=

∫
A∩B

f dµ =

∫
111A111Bf dµ =

∫
A

111Bf dµ =

∫
A
ϕf dµ .
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Thus, (6.51) holds for ϕ = 111B .
Step 2. linearity of the integral allows to extend the formula from indicator functions to simple

functions ϕ =
n∑
j=1

cj111Aj (n ∈ N, cj ≥ 0, Aj ∈ F).

Step 3. Assume that ϕ is a nonnegative, F − −B1 measurable function. 0 ≤ ϕn ↑ ϕ a sequence of
simple functions. By the monotone convergence property, (6.51) is true for ϕ.
Step 4. Since the proof is done for ϕ ≥ 0, we now assume that ϕ = ϕ+ − ϕ− is ν–integrable. By
linearity, the integral of a difference is the difference of the integrals. We obtain∫

A
ϕdν =

∫
A
ϕ+ dν −

∫
A
ϕ− dν

Step 3
=

∫
A
ϕ+ · f dµ −

∫
A
ϕ− · f dµ

=

∫
A

(ϕ+ − ϕ−) · f dµ =

∫
A
ϕ · f dµ . �

6.5 Expectation and Variance as Probability Measure Integrals

Introduction 6.5. ?

We have defined the abstract integral
∫
Y dP for random variables Y defined on any kind of prob-

ability space, (Ω,F, P ). We will attach some meaning to this expression as an average of sorts, and
why it will be called the expected value aka expectation of Y . We will also do this for the variance of
Y . This characteristic of Y is defined as the integral

∫
g ◦ Y dP =

∫
g
(
Y (ω)

)
P (dω), where g : R→ R

is the function g(y) = (y −
∫
Y dP )2. �

Definition 6.15 (Expected value of a random variable).

Let Y be a random variable on a probability space (Ω, ,P ).
(a) We call

(6.52) E[Y ] :=

∫
Y dP

the expected value, also expectation or mean of Y .
(b) We call

(6.53) V ar[Y ] := E
[
(Y − E[Y ])2

]
=

∫
(Y − E[Y ])2 dP

the variance, of Y .
(c) We call SD[Y ] := σY :=

√
V ar[Y ] The standard deviation of Y . �

Remark 6.16. ? Some notes on notation.
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• It is OK to write E(Y ), V ar(Y ), SD(Y ) for E[Y ], V ar[Y ], SD[Y ]. This could even be a very
good idea if to have an expression with nested brackets and use alternating delimiters to
make it easier to “unpack” that expression.

• The use of σ(Y ) and σ[Y ] rather than subscripting σY is discouraged since this might lead to
confusion with σ{Y }, the σ–algebra generated by Y . By the way, this is the reason why this
author chose σ{Y } rather than σ(Y ), a symbol that is quite popular to denote the σ–algebra
generated by Y . �

You may recall from integral calculus the following mean value theorem. If f is (Riemann) inte-
grable on [a, b] and α, β ∈ R such that α ≤ f(x) ≤ β for a ≤ x ≤ b, then there is α ≤ γ ≤ β such
that

γ =
1

b− a

∫ b

a
f(t)dt =

1

λ1[a, b]

∫
[a,b]

fdλ1 .

The meaning is intuitively clear, at least if f ≥ 0. We rewrite this equation∫ b

a
f(t)dt = γ · (b− a)

and we see that γ is determined by having the area between the graph of f , the horizontal axis, and
the vertical lines through a and b equal to the area of a rectangle of width b−a and height γ−0 = γ.
In that sense,

∫
[a,b] fdλ

1
/
λ1[a, b] is a good middle value or mean for the values that f can take.

Remark 6.17. ? We can generalize what we just mentioned to any measure µ instead of λ1 and
set A ∈ Ω instead of an interval [a, b] ⊆ R Assuming that 0 < µ(A) <∞,

1

µ(A)

∫
A
fdµ

is a good middle value for f . In particular, if we have a probability measure P , a random variable
Y , and the event A = Ω, then

1

P (Ω)

∫
Ω
Y dP = E[Y ]

is a good mean value for the random variable Y .

Remark 6.18. ? Let us assume that Y is a discrete random variable. In other words, there is a

countable set B∗ ⊆ R such that PY (B∗) = P
(
Y −1(B∗)

)
= 1). See, e.g., Proposition 5.5 on p.127. For

y ∈ B∗, let Ay := {Y = y}. Then Y (ω) =
∑
y∈B∗

y111Ay(ω), for ω ∈ A∗ :=
⊎

y∈B∗
Ay.

Since P
(
(A∗){

)
= 0,

∫
Ω · · · dP =

∫
A∗ · · · dP . We just saw that Y =

∑
y∈B∗

y111Ay on A∗. Thus,

(6.54) E[Y ] =

∫
Y dP =

∫ ( ∑
y∈B∗

y111Ay

)
=
∑
y∈B∗

yP
(
Y −1{y}

)
=
∑
y∈B∗

yPY {y} .

Let g : R→ R be a Borel function which is nonnegative or such that
∫
g ◦ Y dP <∞.

Since PY
(
(B∗){

)
= 0 and g(ỹ) =

∑
y∈B∗

111{y}(ỹ), for ỹ ∈ B∗, we see that
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(6.55)
∫
g dPY =

∫
B∗
g dPY =

∫ ( ∑
y∈B∗

g(y)111{y}

)
dPY .

We apply Theorem 6.11 (Integrals under Transforms) on p.163 to We obtain

(6.56) E[g ◦ Y ] =

∫
g ◦ Y dP =

∫
g dPY =

∫ ( ∑
y∈B∗

g(y)111{y}

)
dPY

(6.55)
=

∑
y∈B∗

g(y)PY {y} .

In particular, if g(y) = (y − E[Y ])2,

(6.57) V ar[Y ] =

∫
(Y − E[Y ])2dP =

∑
y∈B∗

(y − E[Y ])2PY {y} . �

Remark 6.19. ? In Chapter 10 (Continuous Random Variables), a continuous random variable
Y on a probability space (Ω,F, P ) will be defined as one which possesses a “density”. A density
for Y is a Borel function

fY : R −→ R; y 7→ fY (y) ,

which, for all intervals ]a, b], satisfies

PY (]a, b]) = P{a < Y ≤ b} =

∫ b

a
fY (y) dy =

∫
]a,b]

fY dλ
1 . and thus, PY (B) =

∫
]a,b]

fY dλ
1 ,

Since the distribution PY is uniquely determined by those values PY (]a, b]), it is the measure

PY : B1 → [0, 1] ; B 7→ PY (B) =

∫
B
fY dλ

1 , (B ∈ B1) .

By Theorem 6.12 on p.164,

(6.58)
∫
g dPY =

∫
g · f dλ1 =

∫ ∞
−∞

g(y)fY (y) dy .

We apply Theorem 6.11 (Integrals under Transforms) on p.163 and obtain

(6.59) E[g ◦ Y ] =

∫
g ◦ Y dP =

∫
g dPY

(6.58)
=

∫ ∞
−∞

g(y)fY (y) dy . �
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7 Combinatorial Analysis

In many important cases we find ourselves in the situation of Example 5.6 on p.107, where we have
a finite probability space (Ω, P ), in which each outcome ω ∈ Ω as equal probability

P{ω} =
1∣∣Ω∣∣

and thus, for each event A ⊂ Ω,

P (A) =

∣∣A∣∣∣∣Ω∣∣ .
Hence, all we need to determine P (A), is the knowledge of how to count the elements of Ω and of
A. Combinatorial analysis, also called combinatorics, , is a branch of mathematics that provides us
with tools to accomplish that task.

7.1 The Multiplication Rule

The first result is known under names such as the basic principle of counting ([8] Ross, Sheldon M.:
A First Course in Probability, 3rd edition) and the mn rule (WMS text).

Theorem 7.1 (Multiplication rule).

(A) Assume that two actions A and B are performed such that
• the first one has m outcomes, {a1, a2, . . . , am},
• the second one has n outcomes {b1, b2, . . . , bn} for each outcome of the first one.

• Then the number of combined outcomes (ai, bj) is mn.

(B) Generalization. Assume that k actions A1, . . . , Ak are performed such that
··· action A1 has n1 outcomes, {a(1)

1 , a
(1)
2 , . . . , a

(1)
n1 },

··· action A2 has n2 outcomes, {a(2)
1 , a

(2)
2 , . . . , a

(2)
n2 } for each outcome of A1,

··· action A3 has n3 outcomes, {a(3)
1 , a

(3)
2 , . . . , a

(3)
n3 } for each combined outcome (x1, x2), where

x1 is one of the A1–outcomes and x2 is one of the A2–outcomes,
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

··· action Ak has nk outcomes, {a(k)
1 , a

(k)
2 , . . . , a

(k)
nk } for each combined outcome (x1, x2, xk−1),

where each xj is one of the Aj–outcomes, i.e., xj is one of a(j)
1 , . . . , a

(j)
nj .

• Then there are n1 · n2 · · ·nk combined outcomes (x1, x2, . . . , xk).
Here, each xj is one of the nj outcomes a(j)

1 , . . . , a
(j)
nj of Aj .

PROOF: We identify the actions with their outcomes, i.e., we define

Aj = {a(j)
1 , . . . , a(j)

nj }, for j = 1, 2, . . . , k.

Now, the multiplication rule merely states that
∣∣A1×A2× · · ·×An

∣∣ =
∣∣A1

∣∣ · ∣∣A2

∣∣ · · · ∣∣An∣∣, and this
is true according to (2.61) on p.52. �
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Example 7.1 (Ross-prob-thy-3ed Example 2c). How many 7–digit license plates can be created if the
first three are letters (CAPS) and the lst four are digits?
Answer: 263 · 104 = 175, 760, 000 �

Example 7.2 (Ross-prob-thy-3ed Example 2e). How many different 7–digit license plates can be
created if the first three are letters (CAPS) and the last four are digits and none of those symbols can
be repeated?
Answer: 26 · 25 · 24 · 10 · 9 · 8 · 7 = 78, 624, 000 �

Example 7.3. How many 7–digit license plates can be created if the first three are letters (CAPS) and
the last four are digits and none of the letters can be repeated, but the digits can be repeated?
Answer: 26 · 25 · 24 · 104 = 26 · 600 · 104 = 15, 600 · 104 = 15, 600, 000. �

Example 7.4 (Ross-prob-thy-3ed Example 2d). If
∣∣Ω∣∣ = n, how many different functions ψ : Ω →

{0, 1}, i.e., how many functions on Ω that can only take the values 0 and 1, do exist?
Answer: If Ω = {ω1, ω2, . . . , ωn}, then
• we have 2 choices for the ψ(ω1) selection.
• For each choice of ψ(ω1), there are 2 choices for the ψ(ω2) selection.
• For each choice of those ψ(ω1)andψ(ω2), there are 2 choices for the ψ(ω3) selection.
• - - - - - - - - - - - - - - - - - - - - - - -
• For each choice of ψ(ω1), . . . , ψ(ωn−1), there are 2 choices for the ψ(ωn) selection.

So we have a total of 2 · 2 · · · 2 = 2n selections. �

Example 7.5. If
∣∣Ω∣∣ = n, how many subsets of Ω, including ∅ and Ω, do exist?

Answer: If Ω = {ω1, ω2, . . . , ωn}, any subset A ⊆ Ω can be uniquely represented by an element
~d = ~d(A) = (d1, d2, . . . , dn) of {0, 1}n as follows:
• dj = 1 ⇔ ωj ∈ A and dj = 0 ⇔ ωj /∈ A.

The assignment F : A 7→ ~d(A) between the subsets of Ω and {0, 1}n is injective:

• If A′ ⊆ Ω such that ~d(A) = ~d(A′), then ω ∈ A⇔ ω ∈ A′, i.e., A = A′.

F also is surjective: if ~d(d1, d2, . . . , dn) ∈ {0, 1}n, then

• B := {ωj : dj = 1} (a subset of Ω) which satisfies F (A) = ~d.
Thus, F is a bijection. We illustrate this with the following example. Let Ω := {ω1, ω2, ω3, ω4}.
• A1 = {ω2, ω3} ⇒ F (A1) = (0, 1, 1, 0). Also, F−1(0, 1, 1, 0) = {ωj : dj = 1} = {ω2, ω3} = A1.

• A2 = {ω4} ⇒ F (A2) = (0, 0, 0, 1). Also, F−1(0, 0, 0, 1) = {ωj : dj = 1} = {ω4} = A2

Since F is a bijection, there are as many subsets of Ω as there are vectors
~d(A) = (d1, d2, . . . , dn) of zeros and ones of length n. And how many are those?
• we have 2 choices for d1: either d1 = 0 or d1 = 1.
• For each of those choices: either d2 = 0 or d2 = 1.
• - - - - - - - - - - - - - - - - - - - - - - -
• For each of those 2n−1 choices

[
dj = 0 or dj = 1 (j = 1, 2, . . . , n − 1)

]
: either dn = 0 or

dn = 1.
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Thus, we have 2 · 2 · · · 2 = 2n choices. �

7.2 Permutations

Definition 7.1 (WMS Ch.02.6, Definition 2.7 - Permutation).

An ordered arrangement of r distinct objects is called a permutation of size r. The number
of ways of ordering n distinct objects taken r at a time will be designated by the symbol Pnr .
�

Theorem 7.2 (WMS Ch.02.6, Theorem 2.2).

Pnr = n(n− 1)(n− 2) · (n− r + 1) =
n!

(n− r)!
.(7.1)

Here, n! (“n factorial”) is defined as follows.

n! =

{
n(n− 1) · · · 2 · 1 , if n ∈ N ,

1 , if n = 0 .
(7.2)

PROOF: We can consider each permutation as the result of the following actions A1, . . . , Ar.
• A1 is the selection of the first item. Since all n items are available for selection, A1 has n

outcomes.
• A2 is the selection of the second item. Since one item was already selected and duplicates

are not allowed, only n− 1 items are available for selection. Thus, A2 has n− 1 outcomes.
• - - - - - - - - - - - - - - - - - - - - - - -
• Ar is the selection of item r. Since r − 1 items have been previously selected and duplicates

are not allowed, only n− (r − 1) = n− r + 1 items are available for selection. Thus, Ar has
n− r + 1 outcomes.

It follows from the multiplication rule that there are n(n− 1) · · · (n− r + 1) different ways to select
r items without repeating a selection, i.e., of obtaining a permutation of size r of those n items. �

Problem 7.1 (WMS Ch.02.8, Example 2.8). The names of 3 employees are to be randomly drawn,
without replacement, from a bowl containing the names of 30 employees of a small company. The
person whose name is drawn first receives $100, and the individuals whose names are drawn sec-
ond and third receive $50 and $25, respectively. How many sample points are associated with this
experiment?

Solution: Because the prizes awarded are different, the number of sample points is the number of
ordered arrangements of r = 3 out of the possible n = 30 names. Thus, the number of sample
points in S is

P 30
3 =

30!

27!
= (30)(29)(28) = 24, 360 . �
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Example 7.6. Jenny has collected 20 post cards, all of them different:
• 4 from France, • 2 from Peru, • 8 from Japan, • 6 from Kenia.

She wants to place them into 4 numbered boxes according to their country of origin.

(A) Jenny considers two arrangements different if, say, Esteban’s card takes a different spot in the
Peru box, but she does not care whether the Peru cards end up in box #1 or #2 or #3 or #4. How
many different arrangements are possible?
Answer:
• 4 choices for France card #1,
• 3 choices for France card #2 (into the same box),
• 2 choices for France card #3 (into the same box),
• 1 choice for France card #4 (into the same box).

• Thus, there are 4! choices for the France cards.
• For each one of those 4! choices we obtain in a similar manner that there are 2! choices for

Peru.
• For each one of those 4! · 2! choices we obtain in a similar manner that there are 8! choices

for Japan.
• For each one of those 4! · 2! · 8! choices we obtain in a similar manner that there are 6! choices

for Kenia.
Thus, 4! · 2! · 8! · 6! different arrangements are possible.

(B) As before, Jenny considers two arrangements different if, say, Esteban’s card takes a different
spot in the Peru box. But this time it also matters in which box a country’s cards are placed.. How
many different arrangements are possible now?
Answer: There are 4! permutations of the 4 boxes. This amounts to 4! rearrangements of each choice
made in (A). Thus, 4! · 2! · 8! · 6! · 4! arrangements are possible. �

7.3 Combinations, Binomial and Multinomial Coefficients

In Example 7.5 on p.169, a simple application of the multiplication rule showed the following:
If Ω is a set of finite size, then its powerset 2Ω (i.e., the set of all subsets of Ω), has size

∣∣2Ω
∣∣ = 2|Ω|.

A related question would be the following:
• How many subsets of Ω have size k?

Examining how many permutations of size k can be obtained from the elements ω1, ω2, . . . , ωn might
not be a bad idea, since permutations of distinct items remain free of duplicates, just as we require
for (sub–)sets. But rearrangements of the order in which the elements ωn1 , ωn2 , . . . , ωnk of such a
subset lead to different permutations although the subset remains the same, since the order of the
elements of a set is disregarded.
Thus, we must divide Pnk , the number of permutations of size k of the elements of Ω, by the number
of rearrangements that one can obtain from a given set of its members. Since that number is P kk = k!,
we have obtained the following result.

Theorem 7.3.
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Let 0 ≤ k ≤ n. A set of size n has
n!

k!(n− k)!
.

subsets of size k.

PROOF: There are Pnk = n(n − 1) · · · , (n − k + 1) permutations of size k that can be obtained from
the n (distinct!) elements ω1, ω2, . . . , ωn of Ω. Let A := {ωn1 , ωn2 , . . . , ωnk} be such a permutation.
There are P kk = k! rearrangements of ωn1 , ωn2 , . . . , ωnk . Since order does not matter in sets (and their
subsets), each one of those k! permutations forms one and the same set A.
To say this differently, the number Pnk was obtained by counting each size k subset k! times.
Thus, we must divide Pnk by P kk to obtain the number of subsets of size k. We obtain

Pnk
P kk

=
n(n− 1) · · · (n+ k − 1)

k!
=

n(n− 1) · · ·
(
n− (k − 1)

)
k!

· (n− k)!

(n− k)!
=

n!

k!(n− k)!
.

This proves the theorem. �

Selections of size k from a collection of n distinct objects disregarding the order in which those k
items were selected (as is the case when selecting a subset of size k from a set of size n ≥ k,) are so
important when counting is involved that they deserve a name of their own. For the following see
also WMS Ch.02.6, Definition 2.8.

Definition 7.2 (Number of combinations).

We call the number of selections of size k from a collection of n distinct items when the
order in which those k items were selected is ignored, the number of combinations of n
objects taken k at a time. We write

(
n
k

)
for this number. �

Remark 7.1.
(a) Some texts also use the symbol Cnk instead of

(
n
k

)
. This is considered outdated terminology.

(b) We emphasize that both are true:
(
n
k

)
= number of selections of size k from n distinct items when disregarding order
= number of subsets of size k of a set of size n. �

Theorem 7.4.

Given are n items of which n1 are alike, n2 are alike, . . . , nr are alike (n1 + · · ·+ nr = n).
Then the number of distinguishable arrangements of those n items is(

n

n1, n2, . . . nr

)
=

n!

n1!n2! · · · nr!
.

PROOF:
• We tag the group 1 items as x(1)

1 , x
(1)
2 , . . . , x

(1)
n1 ,

• the group 2 items as x(2)
1 , x

(2)
2 , . . . , x

(2)
n2 ,

• - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
• the group r items as x(r)

1 , x
(r)
2 , . . . , x

(r)
nr ,
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to make all n items artificially distinguishable. We have learned that there are n! permutations.
When we only keep the superscripts that indicate the group but we remove the subscripts, since in
truth items belonging the same group cannot be distinguished, there will be a lot less arrangements
that are distinct.
To fix the ideas, assume that group 2 has 4 members and we have an arrangement

Arr #1: ? ? ? x
(2)
3 ? ? ? ? ? x

(2)
2 x

(2)
4 ? ? ? ? x

(2)
1 ? ?

and that we have another arrangement

Arr #2: ? ? ? x
(2)
1 ? ? ? ? ? x

(2)
4 x

(2)
2 ? ? ? ? x

(2)
3 ? ?

where all items that do not belong to group 2 (the ones marked “?”) occupy the same column in
both arrangements. To put it differently, we obtained Arr #2 from Arr #1 by permuting the items in
group 2 and leaving all other items in place.
In total there are n2! = 4! = 24 such permutations. Let us consider one of them as special. For
example, this one,

Arr #5: ? ? ? x
(2)
1 ? ? ? ? ? x

(2)
2 x

(2)
3 ? ? ? ? x

(2)
4 ? ?

where the group 2 items are arranged, left to right, in increasing order of their subscripts.
We go through all n! permutations and discard all those where the group 2 items are ordered dif-
ferently from x

(2)
1 , x

(2)
2 , x

(2)
3 , x

(2)
4 .

Then only
n!

n2!
arrangements remain,

but for those the artificial distinction which was introduced by the subscipts is gone in group 2.
We repeat the above procedure to those survivors, but for group 1. We discard all those where the
group 1 items are not ordered x(1)

1 , x
(1)
2 , . . . , x

(1)
n1 .

Then only
n!

n2!n1!
arrangements remain,

but for those the artificial distinction which was introduced by the subscipts is gone in groups 1 and
2.
We keep going with the remaining groups.

Then only
n!

n1!n2! · · ·nr!
arrangements remain,

but for those the artificial distinction which was introduced by the subscipts is gone in all r groups.
It follows that there are n! /(n1!n2! · · ·nr!) different arrangements if we cannot distinguish the items
belonging to the same group. �

Example 7.7. How many distinct permutations are there of the word SHANANANANA
Answer: We designate Groups 1–4 according to the letters S, H, A, N.
Then n1 = n2 = 1, n3 = 5, n4 = 4. Further, n = 1 + 1 + 5 + 4 = 11. Thus, there are

11!

5! · 4! · 1! · 1!
=

11 · 10 · 9 · 8 · 7 · 6
4 · 3 · 2

=
11 · 10 · 9 · 8 · 7 · 6

3 (4 · 2)
= 11 · 10 · 9 · 7 · 2 = 13, 860

distinguishable arrangements of the word SHANANANANA. �
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Definition 7.3 (Multinomial coefficients).

The numbers (
n

n1 n2 · · ·nr

)
=

n!

n1!n2! · · ·nr!
.(7.3)

that appear in Theorem 7.4 are called multinomial coefficients. If r = 2, then there is some
integer 0 ≤ k ≤ n such that n1 = k and n2 = n− k. We write(

n

k

)
:=

n!

k!(n− k)!
for

(
n

k, n− k

)
(7.4)

and speak of binomial coefficients. Convention: We define
(
n
k

)
:= 0 for k > n. �

Example 7.8. For the variables A,H,N, S, what is the coefficient of (A+H +N + S)11 for

5 factors A, 1 factor H , 4 factors N , 1 factor S?

Answer: For nA = 5, nH = 1, nN = 4, nS = 1 the coefficient is

(7.5)
(

11

5, 1, 4, 1

)
=

11!

5! · 1! · 4! · 1!
= 13, 860 .

There is a connection to Example 7.7 on p.173. One of the 13, 860 products obtained by multiplying
the factors listed in (7.5) is S ·H ·A ·N ·A ·N ·A ·N ·A ·N ·A.
• It has the following in common with the other 13, 859 products: They all consist of 5 symbols

A, 1 symbol H , 4 symbols N , 1 symbol S.
• The other 13, 859 products differ from S ·H · A · N · A · N · A · N · A · N · A as follows: At

least one of the 11 positions contains a different symbol
Thus, if we identify S · H · A · N · A · N · A · N · A · N · A with the word “SHANANANANA”,
we found out that there are exactly

(
11

5,1,4,1

)
= 13, 860 different words that can be formed from the

letters found in “SHANANANANA”. That is the same result as that in Example 7.7! �

The next theorem explains the appropriateness of the previous definition.

Theorem 7.5.

Let r, n ∈ N such r ≤ n and x1, x2, . . . xr ∈ R. Then

(
x1 + x2 + · · ·+ xr

)n
=

∑
n1,...,nr≥0
n1+···+nr=n

(
n

n1, n2, . . . nr

)
xn1

1 xn2
2 · · ·x

nr
r .(7.6)

In particular, if r = 2, we obtain the binomial theorem:

(
x1 + x2

)n
=

n∑
j=0

(
n

j

)
xj1 x

n−j
2 .
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PROOF:
First, we show that the case n = 2 follows from 7.6.
Since n1, n2 ≥ 0 and n1 +n2 = n ⇒ 0 ≤ n1 ≤ n and n2 = n−n1, writing j for n1 yields the binomial
theorem formula.

To prove the first formula, We start by "multiplying out" the product(
x1 + x2 + · · ·+ xr

)n
=
(
x1 + x2 + · · ·+ xr

)(
x1 + x2 + · · ·+ xr

)
· · ·
(
x1 + x2 + · · ·+ xr

)
and obtain in the resulting expansion terms of the form

a1 · a2 · · · an such that each factor aj is either x1 or x2 ... or xr.

In the following we consider the sizes n1, n2, . . . , nr as fixed
Note that it is not possible to obtain two selections

~a =
(
a1, a2, . . . , an

)
and ~b =

(
b1, b2, . . . , bn

)
such that aj = bj for all j.

The reason: We multiply out the n factors
(
x1 + · · ·xr

)
in such a way that for no two of the resulting

products we picked the same variable xi in each one of those n factors
(
x1 + · · ·xr

)
But then the following is true if we consider such a selection as a word a1a2 . . . an where each lettter
is one of x1 or x2 ... or xr. Any two of those words are distinguishable even though some or all of
the letters xi can occur multiple times.

For example, if n = 7, n1 = 2, n2 = 3, n3 = 2 and we write X for x1, Y for x2, Z for x3, we
have this situation.
The word Y XZZY Y X is formed only once. But of course, we obtain other words with the
same sizes nj , e.g. the rearrangement ZY XZY XY which is distinguishable from the first
word.

Thus, in the general case, there are as many terms in the expansion of
(
x1+x2+· · ·+xr

)n containing
each symbol xj exactly nj times as there are distinguishable “words” that contain each xj exactly
nj times. According to Theorem 7.4, there are(

n

n1, n2, . . . nr

)
=

n!

n1!n2! · · · nr!
.

such terms. Since this is the number of times the product xn1
1 xn2

2 · · ·xnrr occurs in the expansion of(
x1 + x2 + · · ·+ xr

)n, it follows that(
x1 + x2 + · · ·+ xr

)n
=

∑
n1,...,nr≥0
n1+···+nr=n

(
n

n1, n2, . . . nr

)
xn1

1 xn2
2 · · ·x

nr
r . �

Theorem 7.6.

Given are n distinct items and r distinct bins of fixed sizes n1, n2, . . . , nr such that n1+· · ·+nr = n.
Then the number of distinguishable placements of the n items into those r bins, when disregarding
the order in which the items were placed into any one of those bins, is(

n

n1, n2, . . . nr

)
=

n!

n1!n2! · · · nr!
.
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The proof is given after the following example which will help clarify how to interpret Theorem 7.6.

Example 7.9. Given are a list of n = 7 items and r = 3 bins as follows.
• The 7 items are a, b, c, d, e, f, g.
• Bin 1 has size 2, bin 2 has size 3, bin 3 has size 2 (thus n = 2 + 3 + 3 = 7).
• Arr #1: bin 1 has b, c, bin 2 has e, a, g, bin 3 has f, d
• Arr #2: bin 1 has c, b, bin 2 has a, g, e, bin 3 has d, f
• Arr #3: bin 1 has b, d, bin 2 has a, g, e, bin 3 has c, f
• Then Arr #1 and Arr #2 are considered the same since each bin contains the same items.

Only their order is different.
• On the other hand, both Arr #1 and Arr #2 both are considered different from Arr #3 since,

e.g., bin 1 contains item d for #3, but bin 1 does not contain item d for the other two arrange-
ments. �

PROOF of Theorem 7.6:
The proof is very similar to that of Theorem 7.4, so we keep the discussion brief.
• For each one of the n! permutations of all n items, there are n1! − 1 others which possess

the same n1 elements in bin 1, only differently ordered, but have exactly the same item at
each other of the remaining n − n1 spots. Removing those duplicates leaves us with n!/n1!
arrangements.

• Of those n!/n1! arrangements, there are n2!−1 others which possess the same n2 elements in
bin 2, only differently ordered, but have exactly the same item at each other of the remaining
n− n1 − n2 spots. Removing those duplicates leaves us with n!/(n1!n2!) arrangements.

• - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
• Having removed the duplicates from bins 1 through k−1, we are left with n!

n1!···nk−1
arrange-

ments. For each one of those there are nk!− 1 others which possess the same nk elements in
bin k, only differently ordered. Removing those duplicates leaves us with n!

n1!···nk arrange-
ments.

• For any two surviving arrangements the following is true: There is at least one bin that does
not contain the same elements (possibly rearranged) for both those arrangements.

to make all n items artificially distinguishable. We have learned that there are n! permutations.
When we only keep the superscripts that indicate the group but we remove the subscripts, since in
truth items belonging the same group cannot be distinguished, there will be a lot less arrangements
that are distinct.
To fix the ideas, assume that group 2 has 4 members and we have an arrangement

Arr #1: ? ? ? x
(2)
3 ? ? ? ? ? x

(2)
2 x

(2)
4 ? ? ? ? x

(2)
1 ? ?

and that we have another arrangement

Arr #2: ? ? ? x
(2)
1 ? ? ? ? ? x

(2)
4 x

(2)
2 ? ? ? ? x

(2)
3 ? ?

where all items that do not belong to group 2 (the ones marked “?”) occupy the same column in
both arrangements. To put it differently, we obtained Arr #2 from Arr #1 by permuting the items in
group 2 and leaving all other items in place.
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In total there are n2! = 4! = 24 such permutations. Let us consider one of them as special. For
example, this one,

Arr #5: ? ? ? x
(2)
1 ? ? ? ? ? x

(2)
2 x

(2)
3 ? ? ? ? x

(2)
4 ? ?

where the group 2 items are arranged, left to right, in increasing order of their subscripts.
We go through all n! permutations and discard all those where the group 2 items are ordered dif-
ferently from x

(2)
1 , x

(2)
2 , x

(2)
3 , x

(2)
4 .

Then only
n!

n2!
arrangements remain,

but for those the artificial distinction which was introduced by the subscipts is gone in group 2.
We repeat the above procedure to those survivors, but for group 1. We discard all those where the
group 1 items are not ordered x(1)

1 , x
(1)
2 , . . . , x

(1)
n1 .

Then only
n!

n2!n1!
arrangements remain,

but for those the artificial distinction coming from the subscipts is gone in groups 1 and 2.
We keep going with the remaining groups....

In the end only
n!

n1!n2! · · ·nr!
arrangements remain,

but for those the artificial distinction which was introduced by the subscipts is gone in all r groups.
It follows that there are n! /(n1!n2! · · ·nr!) different arrangements if we cannot distinguish the items
belonging to the same group. �

Proposition 7.1.

(A) There are
(
n− 1

r − 1

)
distinct integer–valued vectors ~x =

(
x1, x2, . . . , xr

)
such that

x1 + x2 + · · ·+ xr = n and xi > 0, i = 1, . . . , r .

(B) There are
(
n+ r − 1

r − 1

)
distinct integer–valued vectors ~y =

(
y1, y2, . . . , yr

)
such that

y1 + y2 + · · ·+ yr = n and yi ≥ 0, i = 1, . . . , r .

PROOF of (A):
Each such equation corresponds to an arrangement of n symbols ⊗ which denote the numbers
1, 2, . . . , n in sequence, and r − 1 bars | which are places in-between those symbols, in such a way,
that no two bars are adjacent. For example, the arrangement

• • | • • • • | • • •
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expresses the equation 2 + 4 + 3 = 9. In the general case, one or zero bars can be placed in the n− 1
gaps between the n bullets:

• ⊗ • ⊗ • ⊗ • ⊗ • ⊗ • ⊗ • · · · ⊗ • ⊗ •(A)

Thus, there are as many different integer equations as there are ways to select r − 1 of those n − 1
gaps for the r − 1 bars. This number is

(
n−1
r−1

)
.

FIRST PROOF of (B):

An equation
r∑
j=1

yj = n; yj ≥ 0 of part (B) becomes an equation
r∑
j=1

xj = n+ r;xj > 0 of part (A), by

setting xj := yj + 1.

In reverse, equation
r∑
j=1

xj = n+ r;xj > 0 of part (A) becomes an equation
r∑
j=1

yj = n; yj ≥ 0 of part

(B), by setting yj := xj − 1.

We have shown in (A) that there are
(
n+r−1
r−1

)
different equations of the form

r∑
j=1

xj = n + r;xj > 0.

Thus, there also that many of the form
r∑
j=1

yj = n; yj ≥ 0. This proves (B).

ALTERNATE PROOF of (B): We add two more placeholders ⊗ for the separating bars. One to the
left of the leftmost bullet and another to the right of the rightmost bullet. The condition yj ≥ 0
instead of xj > 0 implies that each one of those placeholders can be occupied by as few as zero bars
and as many as all r−1 bars. To put it differently, any combination of bullets and bars is admissible.
We create a tagged list of n + r − 1 distinct placeholders for both bullets and bars and select r − 1
of them for the bars. Obviously, the order of the bars does not matter. Thus there are

(
n+r−1
r−1

)
such

selections. �

Consider the issue of distributing n indistinguishable items into r distinct bins where binj contains
0 ≤ nj ≤ n items and the nj are allowed to vary for different selections. (Of course, n1+· · ·+nr = n.)
Then each such selection corresponds to an integer vector ~n = (n1, . . . , nr) which is a solution of the

equation
r∑
j=1

nj = n;nj ≥ 0.

If we demand in addition that each bin contains at least one item, then each such selection corre-

sponds to an integer vector ~n = (n1, . . . , nr) which is a solution of the equation
r∑
j=1

nj = n;nj > 0.

We obtain from Proposition 7.1 the following.

Proposition 7.2.

(A) There are
(
n− 1

r − 1

)
ways to select n indistinguishable items into r distinct bins such that each

bin contains at least one item.

(B) There are
(
n+ r − 1

r − 1

)
ways to select n indistinguishable items into r distinct bins.

PROOF: This follows from from Proposition 7.1. �
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Example 7.10. Mother Jones’ cookies and the stars & bars examples:
• How many ways are there to give 10 cookies to 4 kids if each one gets at least one cookie?

A: There are
(

10−1
4−1

)
= (9 · 8 · 7)/(3 · 2 · 1) = 84 ways.

• How many ways are there to separate 6 stars by two bars into three parts, if one or more of
those parts may contain zero stars? A: There are

(
6+3−1

3−1

)
= (8 · 7)/(2 · 1) = 28 ways. �

Here is another example that employs binomial coefficients.

Example 7.11 (Ross-prob-thy-3ed Example 4c). Given are n antennas of which d are defective. They
will be arranged in a linear order and will relay signals. This chain will not function if two or more
defective items are placed next to each other.
How many ways are there to arrange the antennas so that we obtain a functioning arrangement?
Answer: We denote the n − d working antennas by the ⊗ symbol, separate them by bullets • and
add one • each to the left of the leftmost and to the right of the rightmost.

• ⊗ • ⊗ • ⊗ • ⊗ • ⊗ • ⊗ • · · · ⊗ • ⊗ •

Then the functioning relays are precisely those where one or zero defective antennas are placed at
each one of those • spots. Each such placement corresponds to a selection of size d of those n−d+1
bullets: The selected spots will get a defective antenna and nothing will happen to the others.

Thus, there are
(
n− d+ 1

d

)
functioning arrangements. �

Problem 7.2. A lottery is held among N participants. There are K drawings in which a prize is
given away. (K < N). In each drawing, each participant has an equal chance of obtaining the prize.
(Thus, it is possible, though unlikely, that one single person walks away with allK prizes.) Amanda
is one of the participants. What is the probability that she will walk away with exactly k prizes? Of
course, (k ≤ K).

Solution:
(a) There are N different selections for drawing #1.
(b) Each one of those hasN selections for drawing #2. Thus, there areN2 different ways

to distribute the first two prizes
(c) Each one of those N2 has N selections for drawing #3. Thus, there are N3 different

ways to distribute the first 3 prizes .....
(d) ..... Thus, there are NK different ways to distribute all K prizes .....

It follows that the sample space Ω has sizeNK . Since all drawings are done at random, all outcomes
ω ∈ Ω are equally likely. Thus, P{ω} = 1/(NK) for all ω. Note that an outcome ω ∈ Ω is of the form

ω = (i1, i2, . . . , iK) : prize 1 goes to person i1, . . . prize K goes to person iK(???)

• Let A := { Jane gets exactly k prizes }.
Assume that the outcomes ω and ω′ are as follows:
• ω: participant i1 gets prize j1 and i2 gets prize j2
• ω′: participant i1 gets prize j2 and i2 gets prize j1
• There is no difference how other K − 2 prizes were awarded.
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Even though order matters, we only are able to distinguish the outcomes ω and ω′ if j1 and j2 are
given to different persons. Otherwise all K slots of both ω and ω′ are identical, i.e., ω = ω′.
Thus, there are (only) as many different ways to give k of the K prizes to Jane as there are ways to
select k of K items DISREGARDING ORDER. That number is

(
K
k

)
.

Next, consider that each one of those
(
K
k

)
ways of designing k of theK slots of an outcome ω to Jane

must be complemented by filling each one of the remaining K − k slots with one of the other N − 1
participants. This time we CANNOT DISREGARD ORDER. See the discussion above concerning
the outcomes ω and ω′.
• We repeat the reasoning of (a) – (d) to N − 1 instead of N choices for those K − k

instead of k drawings and see that there are (N − 1)K−k possible selections.
• The eventA consists all outcomes obtained by matching any one of those (N−1)K−k

selections wih any one of the
(
K
k

)
ways of allocating k prizes to Jane.

• By the multiplication rule, |A| =

(
K

k

)
(N − 1)K−k.

• Since all outcomes are equally likely, P (A) =
|A|
|Ω|

=

(
K

k

)
(N − 1)K−k

NK
. �

We summarize the results of Theorem 7.4, Theorem 7.6, Proposition 7.1, and Proposition 7.2.

Remark 7.2. The multinomial coefficients(
n

n1 n2 · · ·nk

)
=

n!

n1!n2! · · ·nk!
.

of Definition 7.3 appear in the following settings:

• Distinct selections of n items of which n1 are alike, n2 are alike, ..., nk are alike.
Example: different rearrangements of the word “BANANA”.

• They are coefficients in the expansion of
(
x1 + x2 + · · ·xk

)n.
• Selections of n distinct items into k distinct bins of fixed sizes n1, . . . , nk, disregard-

ing order within each bin. That is the WMS definition in their Theorem 2.3 of Ch.02.6.
�
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8 More on Probability

This chapter corresponds to material found in WMS ch.2

8.1 Total Probability and Bayes Formula

Theorem 8.1 (Total Probability and Bayes Formula 86 ).

Assume that {B1, B2, . . . } is a partition of Ω and that A ⊆ Ω. such that P (Bj) > 0 for all j. Then

P (A) =

∞∑
j=1

P (A | Bj)P (Bj) .(8.1)

P (Bj | A) =
P (A | Bj)P (Bj)
∞∑
i=1

P (A | Bi)P (Bi)

. (Bayes formula)(8.2)

Note that the above also covers finite partitions {B1, B2, . . . , Bk} of Ω: apply the formulas with

Bk+1 := Bk+2 := · · · := 0 .

PROOF: Since (Bj)j partitions Ω (A ∩Bj)j partitions A. Thus, A =
⊎
j(A ∩Bj) . Thus,

P (A) =
∞∑
j=1

P (A ∩Bj) . =
∞∑
j=1

P (A | Bj)P (Bj) .

This proves (8.1). To prove (8.2), we apply to its right–hand side the already proven (8.1). We obtain

P (A | Bj)P (Bj)
∞∑
i=1

P (A | Bi)P (Bi)

=
P (A | Bj)P (Bj)

P (A)
=

P (A ∩Bj)
P (A)

= P (Bj | A) . �

When working with conditional probabilities, in particular when one wants to apply the Bayes for-
mula, it often is convenient to work with tree diagrams. This is demonstrated in the next example.

Problem 8.1. It has been established that 40% of all jobs for college graduates are in the technology
sector. Of those college graduates who work in technology, one quarter enjoys listening to classical
music. Of those college graduates who hold other kinds of jobs, one out of three enjoys listening to
classical music.

(a) What is the probability that Pedro neither works in technology, nor listens to classical music?
(b) Harry works in technology. How likely is it that he does not listen to classical music?
(c) Jane says that she likes classical music. What is the probability that she works in technology?

Solution: We use the following abbreviations:
T: Works in technology O: “Other”: does not work in technology
L: Listens to classical music N: Does not listen to classical music

86Thomas Bayes (1702 - 1761) was an English clergyman and mathematician.
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The information available to us is sufficient to draw the following tree diagram:

ΩΩΩ

TTT

OOO

P (T ) = 4/10P (T ) = 4/10P (T ) = 4/10

P (O) = 6/10P (O) = 6/10P (O) = 6/10

LLL P (L ∩ T ) = 1/10P (L ∩ T ) = 1/10P (L ∩ T ) = 1/10

NNN P (N ∩ T ) = 3/10P (N ∩ T ) = 3/10P (N ∩ T ) = 3/10

LLL P (L ∩O) = 2/10P (L ∩O) = 2/10P (L ∩O) = 2/10

NNN P (N ∩O) = 4/10P (N ∩O) = 4/10P (N ∩O) = 4/10

P (L | T ) = 1/4P (L | T ) = 1/4P (L | T ) = 1/4

P (N | T ) = 3/4P (N | T ) = 3/4P (N | T ) = 3/4

P (L | O) = 1/3P (L | O) = 1/3P (L | O) = 1/3

P (N | O) = 2/3P (N | O) = 2/3P (N | O) = 2/3

A line segment that connects two nodes indicates conditioning of the right side on the left side. For
example, the node that connects T and N signifies that the event N is conditioned on the event
T . P (L | T ), the corresponding conditional probability, is attached to the line segment. Note
that this is also true for the two line segments that emanate from Ω, since P (T ) = P (T | Ω) and
P (O) = P (O | Ω) Note that T and O partition Ω and the same is true for L and N .
Tree diagrams can be very convenient because the probability of an intersection is obtained by
multiplying the two probabilities to the left. For example, P (T ∩N) = (4/10)(3/4) = 3/10.

Not all the notation is necessary to work with such a diagram. Here is a pared down version:

T: 4/10

O: 6/10

1/10

3/10

2/10

4/10

L: 1/4

N: 3/4

L: 1/3

N: 2/3

Let us now discuss the answers to the three problems posed above
(a) What is the probability that Pedro neither works in technology, nor listens to classical music?

• This is the ordinary (no conditioning) probability P (O ∩N) = 4/10.
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(b) Harry works in technology. How likely is it that he does not listen to classical music?
•We are conditioning on the event T and want to compute P (N | T . The diagram shows that
P (N | T ) = 3/4.

(c) Jane says that she likes classical music. What is the probability that she works in technology?
•We are asking for the conditional probability P (T | L).

This is a reverse conditioning (Bayes formula problem. The tree diagram makes it easy to find all
the probabilities involved:
• P (T | L) = P (T ∩ L)/P (L).
• P (T ∩ L) = 1/10 and P (L) = P (O ∩ L) + P (T ∩ L) = (2 + 1)/10 = 3/10.
• Thus, P (T | L) = (1/10)/(3/10) = 1/3.

We continue with some general remarks concerning tree diagrams.

It should be clear how to generalize such diagrams.
One can condition at each stage on more than just two
events. For example, Let us assume the following.
In stage 1, we “condition” Ω on Ω = A1 ]A2 ]A3,
In stage 2, we condition A2 on Ω = B1 ] B2 ] B3 ] B4.
If

P (A2) = 0.4 ,

then the resulting tree fragment is to the right.

0.08

0.20

0.12

B1 : 0.2

B2 : 0.5

B3 : 0.3

Because Ω =
⊎
j Bj , it is always true that∑

j

P (Bj | Ak) =

∑
j P (Bj ∩Ak)
P (Ak)

=
P (Ak)

P (Ak)
= 1

Thus, the sum of the conditional probabilities over all line segment that emanate from a given node
is 1. In the tree excerpt above: that node is Ak = A2 and the sum of the conditional probabilities is

P (B1 | A2) + P (B2 | A2) + P (B3 | A2) = 0.2 + 0.5 + 0.3 = 1 . �

8.2 Sampling and Urn Models With and Without Replacement

The following definition is PRELIMINARY and will be amended in Definition 8.2 (Sampling as a
Random element) below (see p.185).

Definition 8.1.
(a) We call the action of picking n items x1, x2, . . . , xn from a collection of N items a

sampling action of size n. Aternatively, we also use the phrases sampling process
and sampling procedure. Here, n ∈ N and N ∈ N or N =∞.

(b) We call the specific outcome of such a sampling action (the list x1, x2, . . . , xn) a real-
ization of that sampling action. �

(c) In yet another instance of notational abuse, both the sampling action and an outcome
of this action (a realization) will be referred to as a sample of size n if this does not
lead to any confusion. Note that we had mentioned this previously in Example 1.5
on p.12. �
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Example 8.1. Each of the following can be considered samples.
(a) Drawing blindfolded a ball from an urn that containsN balls n = 5 times in a row recording

each time the outcome and then replacing the ball (putting it back).
(b) Drawing blindfolded n = 5 balls from an urn that contains N balls in one fell swoop, i.e.,

not replacing any of the balls
(c) Rolling a die twice in a row and recording the outcome.
(d) Selecting in a random fashion n = 2, 000 persons from all persons eligible to vote without

replacement, i.e., we want a sample of n distinct voters. Note thatN is huge when compared
to n.

(e) Same as (d), but we only record their voting preference, their annual income and their age
and discard all other data.

(f) Same as (e), but we only record their annual income.
(g) The random numbers generator of a computer creates a sample of n numbers such that they

are uniformly distributed on the interval [0, 1]. 87 (Computers can do that!)
Since there are infinitely many such numbers and the computer can generate any one of
them, 88 N =∞.

(h) A factory mass–produces an item, e.g., screws, at a huge rate per hour. Quality control
randomly picks n = 50 every hour and checks for defective items. Since the number N of
screws from which the sample is obtained is so huge, one can, for all practical purposes, act
as if N =∞. (This will considerably simplify the mathematics involved in computing, e.g.,
the probability that such a sample contains 5 or more defective items) if the rate of defectives
is supposed to be 3.5%.

(i) We write down the numbers 1, 2, . . . , 10. Such deterministic sampling is very boring for
a course called “Probability Theory”, because no randomness is involved. Nevertheless,
Definition 8.1 encompasses determininistic sampling. �

Remark 8.1.
(a) We only are interested in samples that involve randomness. In other words, if there is a set

U such that xj ∈ U for all j, our sample can be modeled, for fixed n, as a random element
~X : (Ω, P )→ Un. Since deterministic samples can be interpreted as functions of ω which do
not vary with ω, i.e., as constant random elements, they too are covered by Definition 8.1.

(b) Since the “population” from which each item xj = Xj(ω) is sampled is the set U from (a), it
is possible to implement Ω := UN as the carrier set of the probability space (Ω, P ). In other
words, we could narrow things down to ~X : (UN , P ) → Un. Matter of fact, you will be as
specific as you can when trying to find the formula or just the particular number that solves
a given problem.

(c) But there are advantages to refer to an unspecified probability space (Ω, P ) when dealing
with the general theory. A good example are the theorems and definitions about expectation
and variance in MF Chapter 9 (Discrete Random Variables and Random Elements) where
going into specific settings would hinder rather than help the understanding. �

Here is the promised amended version of Definition 8.1.
87“uniformly distributed” means that the proportion of numbers xj that fall within the interval 0 ≤ a < b ≤ 1 is

(approximately) b− a.
88in theory, since there is no such thing as “infinitely many”) in our physical reality
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Definition 8.2 (Sampling as a Random element). Let (Ω, P ) be a probability space. Let U 6= ∅ be a
collection of N items (N ∈ N or N =∞), which we can think of as the “population of interest”. Let
n ∈ N (so n <∞), such that n ≤ N .

(a) Let ~X : (Ω, P ) −→ Un be a random element with codomain Un. If we interpret ~X
as the action of picking n items

~x = x1, x2, . . . , xn = ~X(ω) = X1(ω), X2(ω), . . . , Xn(ω)

from U , then we call ~X a sampling action of size n. Aternatively, we also use the
phrases sampling process and sampling procedure.

(b) We call a specific outcome (the list ~x = (x1, x2, . . . , xn)) a realization of that sam-
pling action. See Example 1.5 on p.12.

(c) Both the sampling action and an outcome of this action (a realization) are called a
sample of size n if the context makes it clear what is being discussed.

(d) If there is a specific ~x∗ ∈ Un such that P{ ~X = ~x∗} = 1, (this certainly is the case if
~X(ω) = ~x∗ for all ω ∈ Ω), then we call both the sampling action ~X and the realization
~x∗ a deterministic sample. �

Remark 8.2.
(a) You may wonder about the difference between a Un–valued random element and a sample

of n items which are picked from a population U . The answer: Mathematically speaking,
there is no difference whatsoever. It is the interpretation that matters!

(b) Going back to using the terms probability space and sample space interchangeably, this
author likes to think not of (Ω, P ), but only of (Un, P ~X) as a sample space. The reason is that
the latter hosts the potential outcomes of the sampling action ~X . (And yes, the probability
measure P ~X on that sample space is the distribution of ~X).

(c) Do those individual sample picks Xj happen with or without replacement? In other words,
can the same x ∈ U be picked more than once or are for a fixed ω all outcomes distinct? The
answer: The definition does not say. This must always be explicitly stated or known from
the context.

(d) Consider items (d) and (h) of Example 8.1. If N � n, then the computational differences
between selecting the sample with or without replacement are so small that we can assume
sampling with replacement even if the sampled items are not returned to the population
after each pick. This often simplifies the computational effort involved. �

Remark 8.3. We switch focus to the role of proper randomization when picking a sample.
(a) Picking a small size sample that allows us to make inferences to the population from which

it was drawn can require a lot of thought. The budget available for collecting that sample is
often limited and will limit the methods available. Of course, a smaller sample will cost less
than a bigger one if the procedure to collect the data is the same in both cases.
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We fix n ∈ N. What will make the sample representative of the population, i.e.
•what guarantees that the composition of the sample mirrors that of the population?

It certainly will not help if the sample has, e.g., 90% students, whereas the population of
interest only has 20%. So we fix that by establishing quota and requiring the proportion of
students to be 20%. Of course, there is also the ethnic composition of the population that we
want mirrored in the sample. And there is income distribution, gender and 5, 000 or more
attributes for which we want to maintain close to identical proportions in the sample.

(b) Clearly, a practical limit to the number of ways a (hopefully small) sample can be partitioned
into “strata” is reached quickly. So we must look for an alternative way to obtain a sample
that is not biased in favor of value vvv, say “is male” of attribute AAA (here: gender), when
compared to the proportion in the population. And we need this for all important vvv andAAA.

(c) The solution is to make the sample selection as random as possible:
•We pick the first item at random, i.e., with the same chance 1

N ,
• Then we pick #2 at random from the remaining N − 1,
• Then we pick #3 at random from the remaining N − 2,
• .... Finally, we pick #n at random from the remaining N − n+ 1 items.
Doing so ensures that any collection ~x = (x1, . . . , xn) has the same chance of being selected
as any other collection ~x′ = (x′1, . . . , x

′
n). By the way, we know that probability:

• If we do not worry about the order in which the n distinct items were selected,
then there are

(
N
n

)
different selections and that probability is 1/

(
N
n

)
.

• If order does matter and we deal with permutations, then the answer is 1/PNn .
The degree of randomness obtained by following this procedure prevents any kind of gross
distortion (bias) in the sample.

(d) Would the requirement of (c) that each collection of n items have the same chance to be
drawn as any other such collection be the same as simply asking that each item in the popu-
lation have the same probability, 1/N , of being selected? The answer is NO as Example 8.2
below will show. �

Example 8.2. We have a population of N = 600 students. 100 of them are freshmen, 100 of them
are sophomores, 100 of them are juniors, 100 of them are seniors, 100 of them are first year graduate
students, the others are second year graduate students.
A sample of n = 100 will be selected as follows. A fair die is rolled. If the outcome is 1, all freshmen
will be selected, On a 2, all sophomores will be selected, ..... On a 6, all second year graduate
students will be selected.
• In the resulting sample each student has the same probability 1/6 of being selected.
• But only 6 of the possible

(
600
100

)
possible outcomes have a non–zero chance (of 1/6 each) of

being selected: Those where each student belongs to the same group as all the others! �

There is a special name for samples which are collected as outlined in Remark 8.3(c).

Definition 8.3 (Simple Random Sample).
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(a) We call a sampling action of size n (n ∈ N) from a population of sizeN <∞ a simple
random sampling action, in brief, an SRS action, if there are no duplicates allowed
(i.e., we sample without replacement) and each of the potential outcomes has equal
chance of being selected.

(b) As in Definition 8.2 (Sampling as a Random element), we call both an SRS action and
a realization of this action a simple random sample of size n. (Briefly, an SRS.) �

The generic sounding term “random sample” has a very specific meaning in statistics.

Definition 8.4 (Random Sample).

(a) We call a sampling action of size n (n ∈ N) from a population of size N < ∞ a
random sampling action, if the picks are independent of each other. See Chapter
5.4 (Independence of Random Elements) for the definition of independent random
elements.

(b) As in Definition 8.2 (Sampling as a Random element), we call both a random sam-
pling action and a realization of this action a random sample of size n. �

SRS amounts to sampling according to Remark 8.3(c). When abstracting from the specifics, this
boils down to being blindfolded and selecting, WITHOUT REPLACEMENT, n well shuffled balls
from an urn containing N numbered balls.
On the other hand, random samples are obtained when those balls are drawn from the urn WITH
REPLACEMENT.
Some authors use the scenario of tickets in a box rather than balls in an urn.

Definition 8.5 (Urn models).

(a) An urn model without replacement describes a mechanism by which a blindfolded
person selects a fixed number of balls from an urn in which the balls have been well
mixed. Note that the resulting realizations will contain no duplicates.

(b) An urn model with replacement describes a mechanism by which a blindfolded
person selects a fixed number of balls from an urn as follows.
(1) The balls are well mixed.
(2) A ball is picked and the outcome is recorded.
(3) The ball is put back into the urn.
(4) Steps (1) through (3) are repeated until all n balls have been selected. �

More material may be added to this section at a later time.
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9 Discrete Random Variables and Random Elements

This chapter corresponds to material found in WMS ch.3

Remark 9.1. There was no need for a specific arrangement x1, x2, . . . of the countably many x that
satisfy pX(x) > 0 in the series

∑
x s.t. pX(x)>0

pX(x):

• pX(xj) ≥ 0 for all j ensures that the value of the series
∑
pX(xj) does not depend on the

particular order in which the numbers pX(xj) are added. See Theorem 3.2 on p.58. See
also Remark 5.3 on p.107, in which this issue was addressed.

However, going forward, there will be series
∑
aj that do not necessarily satisfy aj ≥ 0 for all j.

An important example for this will be the expected value, E[Y ] =
∑

y:pY (y)>0

y · PY (y), of a discrete

random variable Y . See p.190 below, Definition 9.2 (Expected value of a discrete random variable).
Accordingly, the blanket assumption that follows this remark will prove very convenient. �

Assumption 9.1 (All series are absolutely convergent).

We assume the following for the entire remainder of these lecture notes.
• Unless explicitly stated otherwise, all sequences are either known to be absolutely

convergent or assumed to be absolutely convergent.
In particular, if pX(x) is the probability mass function of a discrete random elementX which
takes values in a set Ω′, g : Ω′ → R is a real–valued function, and ω′n is a sequence in Ω′,
then we assume that the series

∑
g(ω′n)pX(ω′n) is absolutely convergent. �

9.1 Probability Mass Function and Expectation

We start with a trivial observation.

Proposition 9.1. A real–valued function of a random element is a random variable.

PROOF: Let X : (Ω, P ) → Ω′ be a random element on a probability space (Ω, P ) and g : Ω′ → R
be a real–valued function. Then ω 7→ g

(
X(ω)

)
is a real–valued function of ω, hence it is a random

variable. �

Definition 9.1 (Probability mass function).

For a discrete random element X on (Ω, P ), define

p(x) := pX(x) := PX{x} = P{X = x} .(9.1)

We call pX the probability mass function (WMS: probability function ) for X . We also
write PMF for probability mass function. �
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Theorem 9.1.

If pX is the probability mass function of a discrete random element X , then

0 ≤ pX(x) ≤ 1; for all x(9.2) ∑
x s.t. pX(x)>0

pX(x) = 1(9.3)

Proof: See WMS ch.3. �

Remark 9.2. Assume that pX(x) is the probability mass function of a discrete random element X
with values in a set Ω′. Then there exists a countable set Ω∗ ⊆ Ω′ such that PX(Ω∗) = 1. Thus, the
probability mass function pX(·) of X satisfies

pX(x) = 0 for all x ∈ (Ω∗){.

Let g : Ω′ → R be a real–valued function. Clearly,

g(x) · pX(x) = 0 for all x ∈ (Ω∗){.

Ω∗ being countable means that Ω∗ = {x1, x2, . . . } for some finite or infinite sequence xj . The fol-
lowing is trivial in the finite case, so we confine ourselves to the infinite case, Ω∗ = {xj : j ∈ N}.
For j ∈ N, let aj := g(xj)pX(xj). By Assumption 9.1 on p.188, the series

∑
aj is absolutely conver-

gent. Hence, its value does not depend on the ordering of the elements of Ω∗. Thus, we are justified
to write ∑

x∈Ω∗

g(x)pX(x) rather than
∞∑
j=1

g(xj)pX(xj) .
89

We go a step further. Since g(x)pX(x) = 0 for x /∈ Ω∗, we can omit “x ∈ Ω∗” and write either of the
following:∑

x

g(x)pX(x) =
∑
x∈Ω′

g(x)pX(x) =
∑
x∈Ω∗

g(x)pX(x)

=
∑

x: pX(x)>0

g(x)pX(x) =
∑

pX(x)>0

g(x)pX(x) =

∞∑
j=1

g(xj)pX(xj) .
(9.4)

Choosing g(x) = 1, we can express probabilities involving X as follows. If B ⊆ Ω′, then

P{X ∈ B} = PX(B) =
∑
x∈B

pX(x) =
∑

x∈Ω∗∩B
pX(x) =

∑
x∈B,pX(x)>0

pX(x) . �(9.5)

Problem 9.1. Johnny may choose 2 cookies from a plate with 4 chocolate cookies and 3 oatmeal
cookies We write CC for chocolate cookies and OC for oatmeal cookies. Johnny has no preference
and picks two cookies at random.

89See Remark 3.13 on p.78.
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Let Y := number of CC chosen by Johnny. Find the PMF pY (y) for Y .

Solution:
Note that you were not given the domain (sample space) (S, P ) of the random variable Y . There is
no need to specify it completely. It suffices to know that, since Johnny can choose 2 of the 7 cookies
in
(

7
2

)
ways,

(1) |S| =

(
7

2

)
=

7 · 6
2!

= 21. Since selection was at random, P{s} =
1

21
for all s ∈ S.

The codomain can be any set of numbers that contains 0, 1, 2, because pY (y) = P{Y = y} = 0 for all
other numbers y. Thus, our task is to compute pY (0), pY (1), pY (2).

(2) Each selection of y CCs comes with a selection of 2− y OCs

Thus, there are
(

4

y

)
·
(

3

2− y

)
ways to select y CCs and 2− y OCs. (y = 0, 1, 2.)

(3) pY (0) =

(
4
0

)
·
(

3
2

)
21

=
3

3 · 7
=

1

7
,

pY (1) =

(
4
1

)
·
(

3
1

)
21

=
4 · 3
3 · 7

=
4

7
,

pY (2) =

(
4
2

)
·
(

3
0

)
21

=
(4 · 3)/2

3 · 7
=

2

7
. �

Whereas a PMF is defined for any discrete random element Y , the next definition needs that the
values of Y are numbers.

Definition 9.2 (Expected value of a discrete random variable).

Let Y be a discrete random variable with probability mass function pY (y). Then

E[Y ] :=
∑
y

y pY (y) =
∑
y

y P{Y = y} ,

is called the expected value, also expectation or mean of Y . �

Remark 9.3.

A strict definition of E[Y ] would explicitly require that the sum
∑
y
y · pY (y) is absolutely

convergent, i.e., ∑
y

|y|pY (y) < ∞ .

The reason: Only absolute convergence of a series guarantees that its value does not depend
on the order in which the terms are added. As in WMS and according to Assumption 9.1
on p.188, we will quietly asssume that absolute convergence is satisfied for all random
variables for which the expected value is used. �
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Proposition 9.2. ? Let A1, A2, . . . , An a list of mutually disjoint events in a probability space (Ω, P ).
Let y1, y2, . . . , yn ∈ R. Then

E

 n∑
j=1

yj111Aj

 =
n∑
j=1

yjP (Aj) .(9.6)

PROOF: Let Y :=
n∑
j=1

yj111Aj ; let A :=
n⊎
j=1

. We may assume that A = Ω, since we can add the zero

term 0 · 111A{ to Y if A{ 6= ∅.
We further may assume that all numbers y1, . . . , yn are distinct for the following reason. Assume for
example, that yn1 = yn2 = ynk = y′ and that this is the complete list of indices nj such that ynj = y′.
We define A′ := An1 ]An2 ] · ]Ank . Since

k∑
j=1

ynj111Anj =
k∑
j=1

y′ · 111Anj = y′
k∑
j=1

111Anj = y′ · 111Anj
⊎
···
⊎
Ank

= y′ · 111A′ ,

we can replace those terms with duplicate y′–values with the single term y′ · 111A′ .
We repeat this procedure with all y–values, even if they occur even once. This way we can write

Y =
m∑
j=1

y′i111A′i , where Ω =
m⊎
i=1

A′i and all y′i are distinct.(9.7)

In such a representation of Y , the distinctness of the y′i implies that

Y (ω) = y′i ⇔ ω ∈ A′i ⇔ {Y = y′i} = A′i .

In particular, P{Y = y′i} = P (A′i). Thus,

E[Y ] = E

[
m∑
i=1

y′i111A′i

]
=
∑
y

y′P{Y = y′} =
m∑
i=1

y′iP{Y = y′i} =
m∑
i=1

y′iP (A′i) .(9.8)

In the last step of the proof we bring back the duplicate y–values. As above, we assume that
yn1 = yn2 = ynk = y′i and A′i := An1 ]An2 ] · ]Ank . Then

y′iP (A′i) = y′i P

 k⊎
j=1

Anj

 = y′i

k∑
j=1

P (Anj ) =
k∑
j=1

ynjP (Anj ) .

We substitute this result in (9.8) and obtain E[Y ] =
m∑
i=1

k∑
j=1

ynjP (Anj ) .

Since
m∑
i=1

is the summation over all complete groups of equal y–values and each
k∑
j=1

sums over all

items in that group, that double sum equals
n∑
j=1

yjP (Anj ). Thus, E[Y ] =
n∑
j=1

yjP (Anj ) .

This proves the proposition. �
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Theorem 9.2.

Let Y be a discrete random variable and g : R → R; y 7→ g(y) be a real-valued function. Then the
random variable g ◦ Y : ω 7→ g

(
Y (ω)

)
has the following expected value:

E[g(Y )] =
∑
all y

g(y) pY (y) =
∑
all y

g(y)P{Y = y} .(9.9)

PROOF: We give the proof asuming that Y takes only finitely many distinct values y1, y2, . . . , yn. 90

Let {z1, z2, . . . , zm} denote the set of all distinct function values g(yi), i = 1, . . . , n. In general, m ≤ n
rather thanm = n, because is possible for one or more of the arguments y to have the same function
value g(y).
For j = 1, . . . ,m, let

Ij := { i ∈ [1, n] : g(yi) = zj }

denote the set of all those indices i such that g assigns yi to the same function value zj . Note that
(1) each Ij contains at least one index.
(2) The index sets Ij form a partition of the indices i for the arguments yi of g:

[1, n] = I1 ] I2 ] · · · ] Im .(A)

For i = 1, . . . , n and j = 1, . . . ,m, let

Bi := {Y = yi} = {ω ∈ Ω : Y (ω) = yi} ; Cj := {Z = zj} = {ω ∈ Ω : Z(ω) = zj} .(B)

Since ω ∈ Cj ⇔ Z(ω) = zj
(B)⇔ Y (ω) = yi for some i ∈ Ij ⇔ ω ∈

⊎
i∈Ij

Bi, it follows that

Cj =
⊎
i∈Ij

Bi .(C)

We have for Y and Z the representations

Z(ω) =
m∑
j=1

zj111{Z=zj}(ω) =
m∑
j=1

zj111Cj (ω)
(C)
=

m∑
j=1

zj111⊎
i∈Ij

Bi(ω) =
m∑
j=1

zj
∑
i∈Ij

111Bi(ω) .(D)

Here the last equation holds because the indicator function of a disjoint union is the sum of the
indicator functions. That is a triviality which has been noted in (2.67) on p.54.
Since g(yi) = const = zj for all i ∈ Ij , we can rewrite that last sum as

Z(ω) =
m∑
j=1

∑
i∈Ij

g(yi)111Bi(ω)
(A)
=

n∑
i=1

g(yi)111Bi(ω) .(E)

90As an aside, note that y 7→ g(y) need not be defined for all y ∈ R. It suffices that the domain of g contains
Y (Ω) = {Y (ω) : ω ∈ Y (Ω)}. (The range of the function Y ; see Definition 2.17 on p.33.)
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We conclude from (D) and (E) that E[Y ] = E

[
n∑
i=1

g(yi)111Bi

]
.

Finally, we apply Proposition 9.2 on p.191 and obtain, since Bi = {Y = yi},

E[Y ] =

n∑
i=1

g(yi)P (Bi) =

n∑
i=1

g(yi)P{Y = yi} . �

ALTERNATE PROOF – based on Ch. 6 (Advanced Topics – Measure and Probability):
(9.9) is formula (6.54) of Remark 6.18 on p.166. �

The following corresponds to WMS Theorems 3.4 and 3.5.

Theorem 9.3.

Let c ∈ R, Y be a discrete random variable and g1, g2, gn : R→ R be a list of n real-valued functions.
Then

E[c] = c and E[cY ] = cE[Y ] ,(9.10)
E[cgj(Y )] = cE[gj(Y )] .(9.11)

Further, the random variable

n∑
j=1

gj ◦ Y : Ω −→ R; ω 7→
n∑
j=1

gj
(
Y (ω)

)
has the following expected value:

E

 n∑
j=1

gj ◦ Y

 =
n∑
j=1

E[gj ◦ Y ] .(9.12)

PROOF: Let Z denote the random variable Z = c : ω 7→ c, then

P{Z = z} =

{
1, if y = c,

0, if y 6= c.

Thus, E[Z] =
∑

z:PZ{z}>0

z · PZ{z} = c · 1 = c . This proves the first half of (9.10).

For the proof of the second half, note that c = 0 implies cY = 0. Thus, E[cY ] = cE[Y ] becomes
E[0] = 0, and we covered that case already. So we may assume that c 6= 0.

Let Y ′ := cY and y′ := cy. Then Y ′(ω) = y′ ⇔ Y (ω) = y′

c . Thus, P{Y ′ = y′} = P{Y = y′

c }. Thus,

E[cY ] = E[Y ′] =
∑
y′

y′ · P{Y ′ = y′} =
∑
y′

y′ · P{Y =
y′

c
}

=
∑
y

c · y
′

c
· P{Y =

y′

c
} = c ·

∑
y

y · P{Y = y} = c · E[Y ] .
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This proves the second half of (9.10). We apply this formula with gj(Y ) in place of Y and (9.11)
follows.
Finally, we apply Theorem 9.4 with gj ◦ Y in place of Yj . 91 This results in (9.12). �

ALTERNATE PROOF – based on Ch. 6 (Advanced Topics – Measure and Probability):
Since expectations E[Y ] are abstract integrals

∫
Y dP (see Definition 6.15 (Expected value of a ran-

dom variable) on p.165, all assertions follow from Theorem 6.9 on p.159. �

The following cannot be found in the WMS text.

Theorem 9.4.

Let Y1, Y2, . . . , Yn : Ω→ R be discrete random variables which all are defined on the same probability
space (Ω, P ) (n ∈ N). Then the random variable

n∑
j=1

Yj : Ω −→ R; ω 7→
n∑
j=1

Yj(ω)

has the following expected value:

E

 n∑
j=1

Yj

 =

n∑
j=1

E[Yj ] .(9.13)

In other words, the expectation of the sum is the sum of the expectations.

PROOF: ? There are finite or infinite sequences xi, yj ∈ R as follows. Let Ai := {X = xi} and

Bj := {Y = yj}. Then the Ai are disjoint, the Bj are disjoint, and A∗ := (
⊎
iAi)

{, , B∗ :=
(⊎

j Bj

){
have probability zero. We may assume that X(ω) = 0 for ω ∈ A∗ and Y (ω) = 0 for ω ∈ B∗, since
that does not change any assertions that are based on probabilities, such as the taking of expected
values: Being able to discard the expressions

⊎
iAi and

⊎
j Bj considerably simplifies the proof.

For example, this assumption allows us to write, without having to exclude any ω ∈ Ω,

X(ω) =
∑
i

xi111{X=xi}(ω) , Y (ω) =
∑
j

yj111{Y=yj}(ω) .(A)

If P{X = 0} > 0, then we include 0 as one of the xi and if P{Y = 0} > 0, then we include 0 as one
of the yj . We do so even though 0 ·111{X=0} = 0 ·111{Y=0} = 0 contributes nothing to those sums, since
then

Ai := {X = xi} , Bj := {Y = yj}j , Ci,j := Ai ∩Bj

form partititions
⊎
iAi =

⊎
j Bj =

⊎
i,j Ci,j = Ω of Ω. Moreover, for each i, j,

Ai =
⊎
k

Ci,k and Bj =
⊎
k

Ck,j ,

which implies 111Ai =
∑
k

111Ci,k and 111Bj =
∑
k

111Ck,j .
(B)

91The proof of that theorem does not make use of this current one.
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Since X
(A)
=
∑
i

xi111Ai
(B)
=
∑
i,j

xi111Ci,j Y
(A)
=
∑
j

yj111Bj
(B)
=
∑
i,j

yj111Ci,j

and thus, X + Y =
∑
i,j

xi111Ci,j +
∑
i,j

yj111Ci,j =
∑
i,j

(xi + yj)111Ci,j ,

tt follows from Prop.9.2 on p.191, that

E[X] =
∑
i,j

xiP (Ci,j) , E[Y ] =
∑
i,j

yjP (Ci,j) , E[X + Y ] =
∑
i,j

(xi + yj)P (Ci,j) .(C)

We conclude the proof as follows:

E[X + Y ]
(C)
=
∑
i,j

(xi + yj)P (Ci,j) =
∑
i,j

xiP (Ci,j) +
∑
i,j

yjP (Ci,j)
(C)
= E[X] + E[Y ] . �

ALTERNATE PROOF – based on Ch. 6 (Advanced Topics – Measure and Probability):
Since expectations E[Y ] are abstract integrals

∫
Y dP (see Definition 6.15 (Expected value of a ran-

dom variable) on p.165, this follows from the linearity of the
∫
. . . dP . See Theorem 6.9 on p.159.

Remark 9.4.
(1) The last theorem encompasses all variants of Theorem 9.3. For example, (9.12) fol-

lows with Yj = gj ◦ Y .
(2) The reason that many texts on an undergraduate probability theory do not list this

theorem is that the proof, though elementary, is very tedious and requires working
with the PMF of the random element ~Y = (Y1, . . . , Yn), given by

p~Y (~y) = P{Y1 = y1, . . . , Yn = yn} �

Variance and standard deviation of a random variable indicate how strongly its distribution is con-
centrated around its expected value.

Definition 9.3 (Variance and standard deviation of a random variable).

Y be a random variable. The variance of Y is defined as the expected value of (Y −E[Y ])2.
In other words,

V ar[Y ] := σ2
Y := E

[
(Y − E[Y ])2

]
.(9.14)

We call SD(Y ) := σY :=
√
V ar[Y ] The standard deviation of Y . �

Theorem 9.5.

If Y is a discrete random variable, then

V ar[Y ] = E
[
Y 2
]
−
(
E[Y ]

)2
.
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PROOF:

V ar[Y ] = E[(Y − E[Y ])2] = E(Y 2 − 2(E[Y ] · Y ) + (E[Y ])2

= E(Y 2) − (2E[Y ])E[Y ] + (E[Y ])2 = E(Y 2) − (E[Y ])2 . �

Theorem 9.6.

Let Y be a discrete random variable and a, b ∈ R. Then

V ar [aY + b] = a2V ar[Y ] .(9.15)

In other words, shifting a random variable by b, leaves its variance unchanged and multiplying it by
a constant multiplies its variance by the square of that constant.

PROOF: We prove this by first showing that, for random variables Y and Y ′,

V ar[aY ] = a2V ar[Y ] and V ar[Y ′ + b] = V ar[Y ′]

The assertion then follows from replacing Y ′ with aY .
We obtain from (9.10) that

V ar[aY ] = E[a2Y 2]−
(
E[aY ]

)2
= a2E[Y 2]−

(
aE[Y ]

)2
= a2

(
E[Y 2]− (E[Y ])2

)
= a2V ar[Y ] .

To prove that V ar[Y ′ + b] = V ar[Y ′], we observe that for any random variable Z and constant a,
E[Z + a] = E[Z] + E[a] = E[Z] + a. Thus,

V ar[Y ′ + b] = E
[(

(Y ′ + b)− E[Y ′ + b]
)2]

= E
[(

(Y ′ + b)− (E[Y ′] + b)
)2]

= E
[(
Y ′ − E[Y ′]

)2]
= V ar[Y ′] . �

Remark 9.5. Since
√
a2 = −a for negative numbers a,

σ(aY ) = |a|σ(Y ) . �(9.16)

The following cannot be found in the WMS text.

Theorem 9.7 (Bienaymé formula).

Let Y1, Y2, . . . , Yn : Ω → R be independent discrete random variables which all are defined on the
same probability space (Ω, P ) (n ∈ N). Here we take the naive definition of independence: The
outcomes of any Yk are not influenced by the outcomes of the other Yj . We will give a formulation of
independence in terms of probabilities in a later chapter. Then

V ar

 n∑
j=1

Yj

 =

n∑
j=1

V ar[Yj ] .(9.17)

In other words, for independent random variables, the variance of the sum is the sum of the variances.
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PROOF: Will be given later as part of Corollarycor-x:uncorrel-bienayme-447 (Bienaymé formula for
uncorrelated variables) on p.261. �

Remark 9.6. The independence is necessary, otherwise there are counterexamples:
If Y1 = Y2 = Y for some random variable Y , then

V ar[Y + Y ] = V ar[2Y ] = 4V ar[Y ] 6= V ar[Y ] + V ar[Y ] . �

9.2 Bernoulli Variables and the Binomial Distribution

Definition 9.4 (Bernoulli trials and variables).

A Bernoulli trial. is a random element with only two outcomes, such as
��� S (success) or F (failure) ��� T (true) or F (false) ��� Y (Yes) or N (No) ��� 1 or 0

• We call p := P{X = success } the success probability
and q := 1− p = P{X = failure } the failure probability of the Bernoulli trial.

• If a Bernoulli trial X has outcomes 1 and 0, then we call X a Bernoulli variable or a
0–1 encoded Bernoulli trial.

• A Bernoulli sequence is an iid sequence (Def. 5.18 on p.136) of Benoulli trials. �

Remark 9.7.
(a) The entire distribution of a Bernoulli trial is determined by the value of its success probability.
(b) Note that the definition of a Bernoulli sequence (Xj)j implies that

(1) the Xj are independent
(2) each Xj has the same success and failure probabilities. We write p and q for those numbers.

(c) Unless stated otherwise, we interpret the value 0 of a 0–1 encoded Bernoulli trial as failure and
the value 1 as success. �

Theorem 9.8 (Expected value and variance of a 0–1 encoded Bernoulli trial).

Let X be a 0–1 encoded Bernoulli trial with p := P{X = 1}. Then

E[X] = p and V ar[X] = pq .(9.18)

PROOF:
E[X] = 0q + 1 · p = p.
For the variance, V ar[X] = E[X2] − (E[X])2 = E[X2] − p2. Further,

E[X2] = 02 · q + 12 · p = p.

Hence, V ar[X] = p− p2 = p(1− p) = pq. �
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Definition 9.5 (Binomial Distribution).

Let n ∈ N and 0 ≤ p ≤ 1. Let Y be a random variable with probability mass function

pY (y) =

(
n

y

)
py qn−y .(9.19)

Then we say that Y has a binomial distribution. with parameters n and p or, in short, a
binom(n, p) distribution. We also say that Y is binom(n, p). �

Remark 9.8. How does one see that pY of (9.19) satisfies pY (y) ≥ 0 for all y and
∑

y pY (y) = 1, i.e.,
it really is a probability mass function?
• pY (y) ≥ 0 is true, since p, q,

(
n
y

)
≥ 0.

• We apply the binomial theorem (see Theorem 7.5) to (p+ q)n and obtain

1 = 1n = (p+ q)n =

n∑
j=0

(
n

j

)
pjqn−j . �

Theorem 9.9.

Let X1, X2, Xn be a Bernoulli sequence of size n with success probability p. Let Y be the number of
successes in that sequence, i.e., Y (ω) = number of indices j such that Xj(ω) = S.
• Then Y is binom(n, p).

PROOF: Clearly,

Y (ω) = y ⇔

{
Xj(ω) = S for y indices j,
Xj(ω) = F for n− y indices j.

Let ~x :=
(
x1, . . . , xn

)
a vector that consists of y components S and n− y components F . For such an

arrangement ~x of y successes and n− y failures, let n1, n2, ny denote the indices for which Xnj = S
and m1,m2,mn−y those indices for which Xmj = F . Further, let A(~x) denote the event

A(~x) := {X1 = x1 , X2 = x2, . . . , Xn = xn} .

Then independence of the Bernoulli trials Xj and thus, of the events {Xj = xj}, yields

P
(
A(~x)

)
= P

(
{X1 = x1} ∩ · · · ∩ {Xn = xn}

)
= P{X1 = x1} · P{X2 = x2} · · ·P{Xn = xn}

= P{Xn1 = S} · · ·P{Xny = S} · P{Xm1 = F} · · ·P{Xmn−y = F} = py · qn−y .(A)

There are as many different vectors ~x with y successes and n− y failures as there are ways to form
different lists of size n consisting of y items S and n− y items F . That number is

(
n
y

)
.

We observe that the events A(~x) and A(~x′) are disjoint for different ~x and ~x′, since this means that
there is at least one index jsuch that either xj = S and x′j = F or the other way around.
Let us assume that xj = S and x′j = F . If ω ∈ A(~x), then Xj(ω) = S But then ω /∈ A(~x′), since then
Xj(ω) would have to be F . Thus, A(~x) ∩ A(~x′) = ∅. The case that xj = F and x′j = S is handled in
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the same fashion. Since

{Y = y} =
⊎
~x

A(~x)

where ~x assumes all
(
n
y

)
arrangements of y successes and n− y failures, it follows that

P{Y = y} =
∑
~x

A(~x)P
(
A(~x)

(A)
=

(
n

y

)
pyqn−y .

This last expression equals the PMF of a binom(n, p) distribution and this concludes the proof. �

Theorem 9.10 (Expected value and variance of a binom(n, p) variable).

Let Y be a binom(n, p) variable. Then

E[Y ] = n p and V ar[Y ] = n pq .(9.20)

PROOF: Let X1, . . . , Xn be an iid list of 0–1 encoded Bernoulli trials with p := P{X = 1}. Let

Y ′ :=
n∑
j=1

Xj . according to Theorem 9.8, Theorem 9.4 on p.194, and, since the Xj are independent,

Theorem 9.7 (Bienaymé formula) on p.196,

E[Y ′] =
n∑
j=1

E[Xj ] = n p and V ar[Y ′] =
n∑
j=1

V ar[Xj ] = n p q.

Further, Y ′ = y ⇔ exactly y of the Xj have outcome y. Thus, Y ′ denotes the number of successes
of those Bernoulli trials. Acccording to Theorem 9.9 on p.198, Y ′ has a binom(n, p) distribution.
Since expected value and variance of a discrete random variable are determined by its PMF,
E[Y ] = E[Y ′] = n p and V ar[Y ] = V ar[Y ] = n p q. �

9.3 Geometric + Negative Binomial + Hypergeometric Distributions

Definition 9.6 (Geometric distribution).

A random variable Y is said to have a geometric distribution with parameter 0 ≤ p ≤ 1 or,
in short, a geom(p) distribution, if its probability mass functions is as follows:

pY (y) = qy−1 p , for y = 1, 2, 3, . . . . �(9.21)

Theorem 9.11. LetX1, X2, · · · : (Ω, P )→ {S, F} be an infinite Bernoulli sequence with success probability
0 ≤ p ≤ 1.
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Let T (Ω, P )→ N be the random variable

T (ω) :=

{
smallest integer k > 0 such that Xk(ω) = S if such a k exists,
∞ , else.

• Then T is geom(p).

PROOF: Since T (ω) = n ⇔ X1(ω) = X2(ω) = Xn−1(ω) = F and Xn(ω) = S and the
independence of the Xi implies that the events {X1 = F}, {X2 = F}, {Xn−1 = F}, {Xn = S}, are
independent, we obtain

P{X1 = F, X2 =F,Xn−1 = F,Xn = S} = P{X1 = F} ∩ · · · {Xn−1 = F} ∩ {Xn = S}
= P{X1 = F} · P{X2 = F} · · ·P{Xn−1 = F} · P{Xn = S} = qn−1 p . �

9.1 (Figure). PMF for geom(0.5).
9.2 (Figure). CDF for geom(0.5).

Remark 9.9. In Theorem ?? we wrote T (ω) rather than the usual Y (ω) for the following reason. If
we interpret the index j of the Bernoulli trial Xj as the point in time when the jth trial takes place,
then ω 7→ T (ω) represents a random time, the time at which the first success happens. �

Theorem 9.12 (WMS Ch.03.5, Theorem 3.8).

If Y is a geom(p) random variable, then

E[Y ] =
1

p
, and V ar[Y ] =

q

p2
.

PROOF:
A: Expectation E[Y ]:
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One can obtain the derivative of the series
∞∑
y=1

qy by differentiating it term–by==term. Since

d

dq
qy = yqy−1 ,

it follows that

d

dq

 ∞∑
y=1

qy

 =
∞∑
y=1

yqy−1 .(A)

We use (A) as follows.

E(Y ) =

∞∑
y=1

ypY (y) =

∞∑
y=1

yqy−1p = p

∞∑
y=1

yqy−1 (A)
= p

d

dq

 ∞∑
y=1

qy


= p

d

dq

(
q

1− q

)
= p

1 · (1− q) − q(−1)

(1− q)2
= p

1

p2
=

1

p
.

B: Variance V ar[Y ]: 92

[6] Kargin, Vladislav: BU Lecture Notes for the Introduction to Probability Course
We compute the variance by again interchanging differentiation and summation. It follows from

d2

dq2
qy = y(y − 1)qy−2 ,

that

d2

dq2

 ∞∑
y=1

qy

 =
∞∑
y=2

y(y − 1)qy−2 =
1

pq

∞∑
y=2

y(y − 1)qy−1 · p .(B)

We use (B) as follows.

E[Y (Y − 1)] =
∞∑
y=1

y(y − 1)pY (y) =
∞∑
y=2

y(y − 1)qy−1p = pq
∞∑
y=2

y(y − 1)qy−2

(B)
= pq

d2

dq2

 ∞∑
y=2

qy

 = pq · d
2

dq2

 ∞∑
y=0

qy

 = pq · d
2

dq2

(
1

1− q

)

= pq · d
dq

(
−1

(1− q)2

)
= pq · 2

p3
=

2q

p2
. �

Since V ar[Y ] = E[Y 2]−
(
E[Y ]

)2
= E[Y 2]− (1/p)2, we conclude that

V ar[Y ] =
(
E[Y 2] − E[Y ]

)
−
(

1

p

)2

+ E[Y ] = E[Y (Y − 1)] −
(

1

p

)2

+
1

p

=
2q

p2
− 1

p2
+

p

p2
=

2q − (1− p)
p2

=
q

p2
�

92Source: [6] Kargin, Vladislav: BU Lecture Notes for the Introduction to Probability Course
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Definition 9.7 (Negative binomial distribution). ?

A random variable Y has a negative binomial distribution with parameters p and r if

(9.22) pY (y) =

(
y − 1

r − 1

)
prqy−r , where r ∈ N, y = r, r + 1, r + 2, . . . , 0 ≤ p ≤ 1 . �

This last definition has been marked as ? , so you are not expected to recall pY from memory.
In contrast, the next theorem is NOT optional.

Theorem 9.13. LetX1, X2, · · · : (Ω, P )→ {S, F} be an infinite Bernoulli sequence with success probability
0 ≤ p ≤ 1.
Let t1 < t2 < · · · be the subsequence of those indices at which a success happens. In other words,

Xn(ω) =

{
S = success if n is one of t1, t2, . . . ,
F = failure , else.

Two points to note:
• There will be different subsequences t1, t2, . . . for different arguments ω ∈ Ω. In other words, we

are dealing with a sequence of random variables(!)

t1 = T1(ω), t2 = T2(ω), t3 = T3(ω), . . .

• It is possible that we are dealing with an ω for which there are only 18 successes in the entire
(infinite) sequence X1(ω), X2(ω), . . . . In this case, we define T19(ω) = T20(ω) = · · · =∞.
More generally, if r ∈ N and the sequence X1(ω), X2(ω), . . . has less than r successes, we define

Tr(ω) := ∞ .

Now that we have defined Tr = Tr(ω), we are ready to state the theorem.

• The random variable Tr has a negative binomial distribution with parameters p and r.

PROOF: We define the following events.
• A := {Tr = t } = { success #r happens at time t }
• B := { there are r − 1 successes before t }
• C := {Xt = success } = { there is a success at t }

Note that B only depends on the random variables X1, . . . , Xt−1 and C only depends on Xt.
Since theXt are independent,B and C are independent. Thus, P (B∩C) = P (B) ·P (C). Moreover,
A = B ∩ C, since a moment’s reflection shows that
• success #r happens at time t ⇔ there are r − 1 successes before t and a success happens at t.

Thus, P (A) = P (B) · P (C). From all the above, it follows that

P{Tr = t } = P (A) = P (B) · P (C) = P (B) · P{Xt = success } .(???)
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Since the number of successes up to time t − 1follows a binom(t − 1, p) distribution and Xt is
Bernoulli with success probability p, we see that

P (B) =

(
t− 1

r − 1

)
pr−1 q(t−1)−(r−1) =

(
t− 1

r − 1

)
pr−1 qt−r and P{Xt = success } = p .

It follows from (???) that

pTr(t) = P{Tr = t } =

(
t− 1

r − 1

)
pr−1 qt−r · p =

(
t− 1

r − 1

)
pr qt−r .

This matches (??)f Definition 9.7 (Negative binomial distribution) on p.202 if we replace Tr with Y
and t with y. �

Remark 9.10. If we think of the indices n of the sequence Xn as points in time, we can interpret the
random variables T1, T2, . . . as follows.

• Tr is the time of the rth success in the underlying Bernoulli sequence Xn. �

Theorem 9.14. ?

If the random variable Y is negative binomial with parameters p and r,

E[Y ] =
r

p
and V ar[Y ] =

r(1− p)
p2

.

PROOF: Not given here. �

Definition 9.8 (Hypergeometric distribution).

A random variable Y has a hypergeometric distribution with parameters N , R and n if its
PMF is

(9.23) pY (y) =

(
R
y

)(
N−R
n−y

)(
N
n

) ,

where the nonnegative integers N,R, n and y are subject to the following conditions:
• y ≤ n • y ≤ R • n− y ≤ N −R �

Remark 9.11. For the following you should review Section 8.2 (Sampling and Urn Models With and
Without Replacement).
The hypergeometric distribution provides the mathematical model for drawing SRS samples of size
n from a population of size N where each item in that population is classified as either S (success)
or F (failure).
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In contrast to the scenarios involving the binomial, geometric and negative binomial distributions,
those n picks X1, X2, . . . , Xn do NOT constitute a Bernoulli sequence since SRS sampling is sam-
pling without replacement and the Xj will neither be independent nor have the same success prob-
ability across all j.
Rather, we must model this kind of sampling with an urn model without replacement. See Defini-
tion 8.5 (Urn models) on p.187. It simplifies matters greatly that we are only interested in success
or failure of each sample pick, since this means that we can model our population as N well–mixed
balls in an urn, of which R are labeled S and the remaining N − R are labeled F . Picking the
SRS sample of size n from the population then is modeled by picking a sample of size n without
replacement from that urn. �

Theorem 9.15.

• Given is an urn wich contains N well–mixed balls of two colors, Red and Black. We assume
that R are Red and thus, the remaining N −R are Black.

• A sample of size n is drawn without replacement from that urn, according to Definition
8.5(a).

Let the random variable Y denote the number of Red balls in that sample. Then Y is hypergeometric
with parameters N , R and n. In other words, its PMF is

pY (y) =

(
R
y

)(
N−R
n−y

)(
N
n

) .

PROOF: We give here a very skeletal proof. For more detail consult WMS Chapter 3.7.
We are not interested in the order in which those Red balls were picked, so our probability space Ω
will be that of all combinations of size n that can be selected from N balls. Thus,

|Ω| =

(
N

n

)
.

pY (y) is the probability of selecting exactly y Red balls in the sample of size n Such a selection is
obtained by partitioning theN balls into the heap of allR red balls, the heap of allN−R Black balls
and then proceding as follows.
Conceptually we pick one of the

(
R
y

)
possible selections of y items from the R red balls and then

complementing it with one of the
(
N−R
n−y

)
possible selections of the remaining n − y items from the

N − R black balls. By Theorem 7.1 (multiplication rule of combinatorial analysis) on p.168, there
are

(
R
y

)
·
(
N−R
n−y

)
such selections. It follows that

pY (y) = P{Y = y} =

(
R
y

)
·
(
N−R
n−y

)(
N
n

) .

It follows that Y is hypergeometric with parameters N , R and n. �

Theorem 9.16 (WMS Ch.03.7, Theorem 3.10). ?
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Let Y be a hypergeometric random variable with parameters N , R and n. Then

(9.24) E[Y ] =
nR

N
and V ar[Y ] = n

(
R

N

)(
N −R
N

)(
N − n
N − 1

)
.

PROOF: We reproduce here the plausibility argument given by WMS in their “proof” of WMS
Theorem 3.10.
Since we consider picking an R–item as a success, the above formulas read with p := R

N and q =
1− p = N−R

N as follows:

E[Y ] = n · p and V ar[Y ] = n · p · q
(
N − n
N − 1

)
.

Except for the factor (N − n)/(N − 1)

those are expectation and variance of the binom(n,R/n) distribution. Note for the

correction factor
N − n
N − 1

, that lim
N→∞

N − n
N − 1

= 1 .

This reflects the fact that, if N is huge in comparison to n, drawing from an urn with or without
replacement yields, up to a rounding error, the same probabilities. �

9.4 The Poisson Distribution

We start out with the simple observation that ex =
∞∑
j=0

xj

j! for any x ∈ R.

Proposition 9.3. Let λ > 0. Then the function p(y) := e−λ λy

y! defines a probability mass function on
[0,∞[Z= {0, 1, 2, . . . }.

PROOF: Obviously, p(y) ≥ 0 for all y.

To show that
∑

y p(y) = 1, we apply the formula ex =
∞∑
j=0

xj

j! , which is true for any x ∈ R, with

x = λ and j = y. �

This simple proposition enables us to make the following definition.

Definition 9.9 (Poisson variable).

Let Y be a random variable and λ > 0. We say that Y has a Poisson probability distribution
with parameter λ, in short, Y is poisson(λ), if its probability mass function is

pY (y) =
λy

y!
e−λ , for y = 0, 1, 2, . . . , �

We follow WMS Chapter 3.8 to show what phenomena can be modeled by a Poisson variables
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Proposition 9.4. Given is some event of interest, E.
(1) We define a random variable Y which counts how often E happen in a “unit”. We leave it open

whether this unit is a time interval (maybe a minute or a year) or a subset of d–dimensional space
(d = 1, 2, 3). Let us write A for that unit.

• Example: Y is the number of car accidents that happen in Binghamton during a day (unit of time),
• Example: Y is the number of typos on a randomly picked page of these lecture notes (“page” is a

twodimensional unit – square inches).
(2) Given n ∈ N, we subdivide the unit (A) into n parts of equal size. Let

~X(n) := X
(n)
1 , X

(n)
2 , X(n)

n ,

where X(n)
j = the number of times that E happens in subunit j.

• Assume that for all big enough, FIXED n,
� the X(n)

j are independent
� for each j, P{X(n)

j = 0 or 1} = 1: E (i.e., the event of interest) happens at most once in such
a small subunit
� pn := P{X(n)

j = 1} is constant in j (j = 1, 2, . . . , n)
� λ := n ·pn is constant in n: For large enough k, kpk = (k+1)pk+1 = (k+2)pk+2 = · · · = λ.

Given these assumptions, the following is true:

(a) The random variable Y (n) := X
(n)
1 +X

(n)
2 + · · · ,+X(n)

n is binom(n, pn) for large n.
(b) The binom(n, pn) probability mass functions pY (n) converge to that of a poisson(λ) variable:

(9.25) lim
n→∞

pY (n)(y) = lim
n→∞

(
n

y

)
pyn(1− pn)n−y = e−λ · λ

y

y!
, for y = 0, 1, 2, . . . ,

PROOF: We follow WMS:
Recall that λ = npn. Thus,

(
n

y

)
pyn(1− pn)n−y =

n(n− 1) · · · (n− y + 1)

y!

(
λ

n

)y (
1 − λ

n

)n−y
=
λy

y!

(
1 − λ

n

)n n(n− 1) · · · (n− y + 1)

ny

(
1 − λ

n

)−y
=

(
λy

y!

)(
1 − λ

n

)n(
1 − λ

n

)−y (
1 − 1

n

)(
1 − 2

n

)
· · ·
(

1 − y − 1

n

)
.

(?)

From calculus we obtain lim
n→∞

(
1 − λ

n

)n
= e−λ. Further,

lim
n→∞

(
1 − λ

n

)−y
= lim

n→∞

(
1 − 1

n

)
= lim

n→∞

(
1 − 2

n

)
= · · · = lim

n→∞

(
1 − y − 1

n

)
= 1 .

We take limits in (?) and obtain

lim
n→∞

(
n

y

)
pyn(1− pn)n−y =

(
λy

y!

)
e−λ . �
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Theorem 9.17 (WMS Ch.03.8, Theorem 3.11).

A poisson(λ) random variable has expectation and variance λ. In other words,

(9.26) E[Y ] = V ar[Y ] = λ .

A. PROOF of E[Y ] = λ:

E(Y ) =
∑
y

ypY (y) =

∞∑
y=0

y
λye−λ

y!
. =

∞∑
y=1

y
λye−λ

y!
= λ

∞∑
y=1

λy−1e−λ

(y − 1)!
.

In the last equation we used y!/y = (y − 1)!. We write k = y − 1 for the index variable and obtain

E(Y ) = λ
∞∑
k=0

λke−λ

k!
= λ

∞∑
k=0

p(k) ,

where p(k) = λke−λ

k! is the PMF of a poisson(λ) random variable. Thus,
∞∑
k=0

p(k) = 1 and it follows

that E[Y ] = λ.

B. PROOF of V ar[Y ] = λ:

Observe that y2e−λ
λy

y!
= e−λ · y

2λλy−1

y!
= (λe−λ)

yλy−1

(y − 1)!
= (λe−λ)

1

(y − 1)!

d

dλ
(λy)

We interchange summation and differentiation and obtain

E[Y 2] =
∞∑
y=0

y2e−λ
λy

y!
=

∞∑
y=1

y2e−λ
λy

y!
= (λe−λ)

∞∑
y=1

d

dλ

(
λ · λy−1

(y − 1)!

)

= (λe−λ)
d

dλ

λ ∞∑
y=1

λy−1

(y − 1)!

 = (λe−λ)
d

dλ

λ ∞∑
y=0

λy

y!

 .

Since
∞∑
y=0

λy

y! = eλ, this implies E[Y 2] = (λe−λ) d
dλ

(
λeλ
)

= λe−λ(eλ + λeλ) = λ + λ2.

We use E[Y 2] = λ+ λ2 together with E[Y ] = λ, which we proved in part A. We obtain

V ar[Y ] = E[Y 2] − (E[Y ])2 = (λ + λ2) − λ2 = λ . �

We refer to the WMS text for examples of random variables with a Poisson distribution.

9.5 Moments, Central Moments and Moment Generating Functions

Unless something different is stated, Y is a random variable Y : (Ω, P ) → R on some probability
space (Ω, P ).

µ = E[Y ], σ2 = V ar[Y ], σ =
√
V ar[Y ] ,

denote expectation, variance and standard deviation of Y .
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Definition 9.10 (kth Moment).

If Y is a random variable and k ∈ N,

µ′k := E[Y k](9.27)

is called the kth moment of Y . µ′k also is referred to as the kth moment of Y about the
origin. �

Note in particular that the first moment of Y is the expectation of Y and that

µ′2 = V ar[Y ] + E[Y ]2.

Another useful moment of a random variable is one taken about its mean.

Definition 9.11 (kth Central Moment).

If Y is a random variable and k ∈ N,

µk := E[(Y − E[Y ])k] = E[(Y − µ)k](9.28)

is called the kth central moment of Y aka the kth moment of Y about its mean. �

Proposition 9.5 (The moments determine the distribution). ?

Under fairly slight assumptions the following is true for two random variables Y1 and Y2.

If E[Y k
1 ] = E[Y k

2 ] for k = 1, 2, 3, . . . , then PY1 = PY2 .

In other words, the distribution of a random variable is uniquely determined by its moments.

PROOF: Beyond the scope of these lecture notes. �

Next we associate with a random variable Y which is a function ω 7→ Y (ω) a function t 7→ mY (t)
of a real variable t. It allows us to generate all moments µ′k of Y by computing its kth derivative at
t = 0. Since mY (t) determines in this way all moments of Y and since those in turn determine PY ,
93 mY (t) uniquely determines the entire distribution of Y .

Definition 9.12 (Moment–generating function).

Let Y be a random variable for which one can find δ > 0 (no matter how small), such that

m(t) := mY (t) := E
[
etY
]

is finite for |t| < δ .(9.29)

Then we say that Y has moment–generating function, in short, MGF, mY (t). �

93See Proposition 9.5
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Theorem 9.18. The following is WMS Ch.03.9, Theorem 3.12.

Let Y be a random variable with MGF mY (t) and k ∈ N. Then its kth moment is obtained as the
kth derivative of mY (·), evaluated at t = 0:

µ′k = m(k)(0) =
dkm(t)

dtk

∣∣∣
t=0

.(9.30)

PROOF: We write m(t) for mY (t). From the series expansion ex =
∞∑
k=0

xk

k! , we obtain

m(t) = E
[
etY
]

= E

[ ∞∑
k=0

tkY k

k!

]
=

∞∑
k=0

tk

k!
E
[
Y k
]

=
∞∑
k=0

tk

k!
µ′k

= 1 + tµ′1 +
t2

2!
µ′2 +

t3

3!
µ′3 + · · · .

Taking derivatives repeatedly,

m(1)(t) = µ′1 +
2t

2!
µ′2 +

3t2

3!
µ′3 + · · · ⇒ m(1)(0) = µ′1 + 0 + 0 + · · · ,

m(2)(t) = µ′2 +
2t

2!
µ′3 +

3t2

3!
µ′4 + · · · ⇒ m(2)(0) = µ′2 + 0 + 0 + · · · ,

.................................................................

m(k)(t) = µ′k +
2t

2!
µ′k+1 +

3t2

3!
µ′k+2 + · · · ⇒ m(k)(0) = µ′k + 0 + 0 + · · ·

In summary,
m(1)(0) = µ′1 , m(2)(0) = µ′2 , . . . , m(k)(0) = µ′k . �

Technical note: The existence of the MGF of Y allowed us to compute the derivative of a series as
the sum of the derivatives.

You find the next proposition as Example 3.23 in WMS Ch.3.9.

Proposition 9.6. ? If Y is a poisson(λ) random variable (λ > 0), its MGF is

mY (t) = eλ(et−1) .(9.31)

PROOF: For this proof, we abbreviate (A) λ̃ := λet.

Note that the Taylor expansion ex =
∞∑
j=0

xj

j!
yields, with x and j replaced by λ̃ and y,
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(B) eλ̃ =
∞∑
y=0

λ̃y

y!
.

Then, mY (t) = E
(
etY
)

=
∞∑
y=0

etyp(y) =
∞∑
y=0

ety
λye(−λ)

y!

=
∞∑
y=0

(et)yλy
e−λ

y!
=

∞∑
y=0

(
λet
)y
e−λ

y!

(A)
= e−λ

∞∑
y=0

λ̃y

y!

(B)
= e−λeλ̃

(A)
= e(−1)λeλe

t
= eλ(−1+et) = eλ(et−1) . �

• The subsection titled “The Tchebysheff Inequality” which was at this location has
been integrated into subsection 10.8 (Inequalities for Probabililities)

9.6 Exercises for Ch.9

Exercise 9.1. If the random variable Y has expectation E[Y ] = −2 and standard deviation σY = 2,
what is E

[
(Y + 3)2

]
?

Answer: Since E[Y 2] = V ar[Y ] + (E[Y ])2 = (σY )2 + (−2)2 = 8,

E
[
(Y + 3)2

]
= E[Y 2] + 6E[Y ] + 9 = 8 − 12 + 9 = 5 �

Exercise 9.2. If the random variable Y has the PMF

pY (−2) = 0.13, pY (0) = 0.24, pY (1) = 0.18, pY (2) = 0.45 ,

(a) compute E[Y ]
(b) compute V ar[Y ]
(c) compute σY

Answer (the numeric computations might have errors):
(a) E[Y ] =

∑
y y · pY (y) = (−2)(0.13) + 0(0.24) + 1(0.18) + 2(0.45) = 0.82

(b) V ar[Y ] =
∑

y(y − E[Y ])2 · pY (y)

= (−2− 0.82)2(0.13) + (0− 0.82)2(0.24) + (1− 0.82)2(0.18) + (2− 0.82)2(0.45) = 1.8276

(c) σY =
√
V ar[Y ] =

√
1.8276 ≈ 1.3513888

Exercise 9.3. Let Y be a 0–1 encoded Bernoulli variable with P{Y = 1} = p.
(a) Compute its MGF
(b) Use the MGF method to compute the nth moment

about the origin, E[Xn]
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Answer:

MY (t) = E
[
etY
]

= e0t · q + e1t · p = q + pet(a)

(b) The derivatives of MY (t) are

M ′Y (t) = (q + pet)′ = pet ,M ′Y (t) = (pet)′ = pet, . . . , M
(n)
Y (t) = pet, . . . ,

Thus, E[Y n] = µ′n = M
(n)
Y (0) = pe0 = p for all n.

(c) We use the results of (b) to compute the variance:

V ar[Y ] = E[Y 2] − (E[Y ])2 = µ′2 − (µ′1)2 = p − p2 = (1− p)p = pq �

Exercise 9.4. Let Y be a binom(n, p) variable. Use the MGF method to verify that E[Y ] = np and
V ar[Y ] = npq.

Answer: Since the PMF of Y is pY (y) =
(
n
y

)
pyqn−y,

MY (t) = E
[
etY
]

=

n∑
y=0

ety
(
n

y

)
pyqn−y =

n∑
y=0

(
n

y

)(
et
)y
pyqn−y

=

n∑
y=0

(
n

y

)(
pet
)y
qn−y =

(
pet + q

)n
Here we obtained the last equation by applying the binomial theorem,

(a+ b)n =
n∑
j=0

(
n

j

)
ajqn−j ,

with a = pet and b = q.

MY (t)′ = npet(pet + q)n−1 ,

MY (t)′′ = npet(pet + q)n−1 + n(n− 1)(pet)2(pet + q)n−2 .

Thus,

E[Y ] = MY (0)′ = np ,

E[Y 2] = MY (0)′′ = np+ n(n− 1)p2 .

It follows that

V ar[Y ] = E[Y 2] − (E[Y ])2 =

E[Y 2] = MY (0)′′ = np+ n(n− 1)p2 − n2p2 = npq . �
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10 Continuous Random Variables

10.1 Cumulative Distribution Function of a Random Variable

The material found in this section does not make any references to continuous random variables.

Definition 10.1 (Cumulative Distribution Function).

Let Y denote any random variable (it need not be discrete). The distribution function
of Y , also called its cumulative distribution function or CDF (cumulative distribution
function), is defined as follows.

F (y) := FY (y) := P{Y ≤ y} for y ∈ R . �(10.1)

Problem 10.1. Let Y be a binom(2, 1/4) random variable, i.e., n = 2 and p = 1/4. Compute FY (y).
Solution: The probability mass function for Y is

pY (y) =

(
2

y

)(
1

4

)y (3

4

)2−y
.

Thus,

pY (0) =
9

16
, pY (1) = 2

(
1

4

)(
3

4

)
=

6

16
. pY (2) =

1

16
.

It follows that
• y < 0 ⇒ FY (y) = PY (∅) = 0.
• 0 ≤ y < 1 ⇒ FY (y) = pY (0) = 9/16.
• 1 ≤ y < 2 ⇒ FY (y) = pY (0) + pY (1) = 15/16.
• y ≥ 2 ⇒ FY (y) = pY (0) + pY (1) + pY (2) = 1.

Note that FY is constant on intervals A of R if pY (a) = 0 for all a ∈ A. �

Theorem 10.1 (Properties of a Cumulative Distribution Function).

If FY (y) is the cumulative distribution function of a random variable Y , then
(1) FY (−∞) = lim

y→−∞
P (Y ≤ y) = 0.

(2) FY (∞) = lim
y→∞

P (Y ≤ y) = 1.

(3) FY (y) s a nondecreasing function of y. In other words, if y1 < y2, then FY (y1) ≤ FY (y2)
See Definition 2.23 on p.36.

(4) y 7→ FY (y) is right continuous at all arguments y, i.e., F (y) = F (y+) for all y.

PROOF:
The proof of (1) and (2) follows from
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It follows from −∞ < Y (ω) <∞ that⋂
y∈R

{Y ≤ y} =
⋂
n∈N

{Y ≤ −n} = ∅

⋃
y∈R

{Y ≤ y} =
⋃
n∈N

{Y ≤ n} = Ω

We apply Theorem 5.1 (Continuity property of probability measures) on p.109 and obtain

FY (−∞) = lim
n→∞

P

⋂
y∈R

{Y ≤ y}

 = P (∅) = 0 ,

FY (∞) = lim
n→∞

P

⋃
y∈R

{Y ≤ y}

 = P (Ω) = 1 .

Obvious from P ≥ 0 and y1 < y2 ⇒ {Y ≤ y2} = {Y ≤ y2} ] {y1 < Y ≤ y2}, since this implies

F (y2) = P{Y ≤ y2} = P{Y ≤ y1} + P{y1 < Y ≤ y2} ≥ P{Y ≤ y1} = F (y1) . �

Remark 10.1. Right continuity of F , i.e., F (y) = F (y+) for all y, means the following: If y is ap-
proached from the right by a sequence yn such as yn = y + 1

n or yn = y(1 + e−n), then

lim
n→∞

F (yn) = F (y) . �

10.2 Continuous Random Variables and Probability Density Functions

Definition 10.2 (Continuous random variable).

We call a random variable Y with distribution function FY (y) continuous, if FY (y) is con-
tinuous, for all arguments y. �

Proposition 10.1. Let Y be a continuous random variable with CDF FY (y). Then its distribution gives zero
probability to all singletons {a}(a ∈ R). Also, it gives the same probability to an interval with endpoints
−∞ < a < b <∞, regardless whether a and/or b do or do not belong to that interval. In other words,

a ∈ R ⇒ P{Y = a} = PY {a} = 0 ,(10.2)

−∞ < a < b <∞ ⇒ P{a < Y < b} = P{a ≤ Y < b}
= P{a < Y ≤ b} = P{a ≤ Y ≤ b} .

(10.3)

PROOF: Since {a} ⊆ ]a− 1
n , a] and ]a− 1

n , a] = ]−∞, a] \ ]−∞, a− 1
n ] (set difference),

P{Y = a} ≤ P{a− 1

n
< Y ≤ a} = P{Y ≤ a} − P{Y ≤ a− 1

n
} = FY (a) − FY

(
a− 1

n

)
.
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FY is continuous at a. In particular, FY is continuous from the left at a. Thus,

lim
n→∞

FY

(
a− 1

n

)
= FY (a) .

It follows that P{Y = a} = FY (a)− FY (a) = 0. This proves (10.2).
This result, plus additivity of probability measures, plus

[a, b] = ]a, b[]{a} ] {b} , [a, b] = [a, b[]{b} , [a, b] = ]a, b] ] {a} ,

show that (10.3) holds. �

A lot more can be done with a CDF that is not only continuous but has a continous derivative. We
make the following blanket assumption.

Assumption 10.1 (All continuous random variables have a differentiable CDF). Unless explicitly
stated otherwise, all continuous random variables are assumed to satisfy the following:

The first derivative dFY
dy of FY exists and is continuous except for, at most, a finite number

of points in any finite interval.

All cumulative distribution functions for continuous random variables that we deal with in this
course satisfy this assumtion. �

This last assumption allows us to make the following definition.

Definition 10.3 (Probability density function).

Let Y be a continuous random variable with CDF FY (y). For all arguments y where the
derivative F ′Y (y) = dFY (y)

dy exists, we define

f(y) := fY (y) :=
dFY (y)

dy
.

We call fY the probability density function or, in short, the PDF of the continuous random
variable Y . �

Theorem 10.2.

Let Y be a continuous random variable with CDF FY (y) and PDF fY (y).

(1) If a, b ∈ R and a < b, then

(10.4) P{a < Y ≤ b} = FY (b)− FY (a) =

∫ b

a
f(y)dy .

(2) fY (y) ≥ 0 for −∞ < y <∞.

(3)
∞∫
∞
fY (y)dy = 1.

214 Math 447 - Version 2025-02-20



Math 447 – MF Lecture Notes Student edition with proofs

PROOF: (1) is the fundamental theorem of calculus. Of course, we interpret
b∫
a
f(y)dy as follows.

Assume that some of the points y at which f ′Y (y) does not exist fall within the interval [a, b]. Our
assumption guarantee that there are only finitely many such y, say,

a ≤ y1 < y2 < · · · yk ≤ b .

Then, by the definition of integrals,

b∫
a

f(y)dy =

y1∫
a

f(y)dy +

y2∫
y1

f(y)dy + · · ·+
b∫

yk

f(y)dy .

(2) and (3) are obvious. �

The following is the reverse of Theorem 10.2.

Theorem 10.3. Let ψ : R→ R satisfy the following:

(1) ψ is integrable:
b∫
a
ψ(x)dx exists for a < b.

(2) ψ(x) ≥ 0 for −∞ < x <∞.

(3)
∞∫
∞
ψ(x)dx = 1.

• Then, Q{a < Y ≤ b} :=
∫ b
a ψ(x)dx defines a probability measure Q on Ω.

PROOF: ?

The only property that is not immediate is the σ–additivity ofQ. That property is satisfied according
to Theorem 3.5 on p.77. (Also, from Corollary 4.2 on p.98). �

Remark 10.2. We combine (10.3) and (10.4) and obtain the following for a continuous random vari-
able Y with PDF fY (y): If a, b ∈ R and a < b, then

P{a < Y < b} = P{a ≤ Y ≤ b} = P{a ≤ Y < b}

= P{a < Y ≤ b} =

∫ b

a
f(y)dy . �

(10.5)

The next definition applies to any random variable, be it continuous or discrete or neither. It is
based on the following elementary observation.

Remark 10.3. ? Assume that Y is a random variable with CDF FY (y). For 0 < p < 1, let

Ap := {α ∈ R : FY (α) ≥ p} .

Note that the function y 7→ FY (y) is nondecreasing.
• It is obvious that

[
α < α′ and FY (α) ≥ p

]
⇒ FY (α′) ≥ p.

• In other words,
[
α < α′ and α ∈ Ap

]
⇒ α′ ∈ Ap.

• In other words, Ap is an interval that stretches all the way to +∞: There must be some real
number β such that Ap = ]β,∞[ or Ap = [β,∞[. 94

94and that number is β = inf(Ap) See Definition 2.29 (Minimum, maximum, infimum, supremum) on p.48
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We see that β ∈ Ap and thus, Ap = [β,∞[, as follows. Let βn := β + 1
n .

• Since βn ∈ Ap, FY (βn) ≥ p. Since FY is right continuous, 95 FY (β) = lim
n→∞

FY (βn).

• Thus, FY (β) ≥ p. Thus, β ∈ Ap Thus, Ap = [β,∞[.
• Since Ap = {α ∈ R : FY (α) ≥ p} and Ap = [β,∞[, β is the smallest element of Ap, i.e.,

β = min{α ∈ R : FY (α) ≥ p} .
The number β is uniquely determined by p. This allows us to denote it by the symbol φp. �

Definition 10.4 (pth quantile).

Let Y denote any random variable and 0 < p < 1. Let φp be the number derived in the
previous remark, i.e.,

φp = min{α ∈ R : FY (α) ≥ p}(10.6)

We call φp the pth quantile and also the 100pth percentile of Y .
Moreover, we call φ0.25 the first quartile, φ0.5 the median, and φ0.75 the third quartile, of
the random variable Y . �

Remark 10.4. How does the definition of the 100pth percentile given above correspond to the one
experienced in everyday life: the number yp that divides a list of numeric observations into 100p%
of the data being ≤ yp and the remaining data being above yp? The connection is as follows.
• Assume that ~y = (y1, y2, . . . , yK) is the list of observations. It may contain duplicates.
• We remove the duplicates and N ≤ K distinct values ω1, ω2, . . . , ωN remain.
• We define Ω := {ω1, ω2, . . . , ωN} and P{ωj} :=

nj
K

(we divide by K, not by N !), where

nj = number of times that ωj occurs in the original list, ~y.
• σ–additivity extends P from the simple events {ωj} to all events of Ω.
• Since φp is defined in terms of the CDF FY of a random variable Y , we define the following

“dummy” random variable on (Ω, P ): ω 7→ Y (ω) := ω 96

For example, if the sorted‘ list of observations is ~y = (0, 2, 2, 2, 3, 4, 4, 6, 6, 6, 6, 7, 8, 8, 8), then
• K = 15, Ω = {0, 2, 3, 4, 6, 7, 8}, N = 7,
• P{0} = 1

15 , P{2} = 3
15 , P{3} = 1

15 , P{4} = 2
15 , P{6} = 4

15 , P{7} = 1
15 , P{8} = 3

15 .
• Thus, FY (3) = (1 + 3 + 1)/15 = 5/15, and FY (4) = (1 + 3 + 1 + 2)/15 = 7/15

Thus, φ7/15 = min{y : φ(y) ≥ 7/15} = 4.
• Also, the percentage of observations with a score of 4 or less is 700/15 ≈ 46.667%.

Hence, a score of 4 corresponds to the 46.667th percentile of ~y. �

95See Remark 10.1 on p.213.
96This method is more frequently employed in reverse: Given is a function y 7→ F (y) on the real numbers which

satisfies the assumptions of Theorem 10.1 (Properties of a Cumulative Distribution Function) on p.212 and the subsequent
Remark 10.1: F is nondecreasing, right–continuous, F (−∞) = 0, F (∞) = 1. We then define Ω := R and, for ]a, b] ⊆ Ω,
P (]a, b]) := F (b) − F (a). σ–additivity extends this to a probability measure on all Borel sets of Ω (i.e., of R). Now we
define the random variable Y on (Ω, P ) via Y (y) := y. Its CDF FY matches F , since,

FY (y) = P{Y ≤ y} = P (]−∞, y]) = F (y) − F (−∞) = F (y) .

In other words, Any function F that conforms to Theorem 10.1 and Remark 10.1 can be represented as the CDF FY of an
appropriate random variable Y .
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Example 10.1. Given the toss of a fair coin, let Y (ω) = 1 if Heads and Y (ω) = 0 if Tails come up.
Then Y has PMF pY (0) = pY (1) = 1/2 and its CDF is as follows:
•FY (y) = 0 for y < 0, •FY (y) = 0.5 for 0 ≤ y < 1, •FY (y) = 1 for y ≥ 1.

We now easily compute φp for any 0 < p < 1 by separately considering the cases
0 < p < 1

2 : FY (α) ≥ p ⇔ α ≥ 0. Thus, φp = 0.
p = 1

2 : FY (α) ≥ 1
2 ⇔ α ≥ 0. Thus, φ1/2 = 0.

1
2 < p < 1: FY (α) ≥ p ⇔ α ≥ 1. Thus, φp = 1.

Note that there are only two different φp values across all 0 < p < 1: Either φp = 0 or φp = 1

This example also demonstrates that

min{α ∈ R : FY (α) ≥ p}
cannot be replaced with the simpler expression

min{α ∈ R : FY (α) = p} :

The set {α ∈ R : FY (α) = p} is empty for 0 < p < 1 unless p = 0.5, meaning that the minimum does
not even exist! �

The issues encountered in that last example do not occur if FY (y) is a continuous function of y.

Proposition 10.2.

Let Y be a continuous random variable with CDF FY (y). Then

φp = min{α ∈ R : FY (α) = p} .(10.7)

PROOF: The continuity of FY ensures that the sets

Bp := {α ∈ R : FY (α) = p}

are not empty. The result follows from the fact that the function FY is nondecreasing. Further details
are omitted. �

Remark 10.5. For a continuous random variable Y with PMF pY (y), quantiles have the following
geometric meaning:
• The pth quantile is that value on the horizontal(!) axis which splits the area under the PMF

into 100 · p% to the left and 100(1− p)% to the right. In particular,
• the median splits the area under the PMF into two halves.
• the first quartile splits the area under the PMF into 25% to the left and 75% to the right.
• the third quartile splits the area under the PMF into 75% to the left and 25% to the right. �

We also use functional notation φ(p) for φp, since this makes what follows easier to understand.

Proposition 10.3. 97

97Formula (10.8) of this proposition states that φ is a left inverse of the injective function FY .
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Let Y be a random variable with an injective CDF FY (y). (Note that it is not assumed that FY is
continuous.) Then

φ
(
FY (y)

)
= y for all y ∈ R(10.8)

PROOF:
Let p := FY (y). Since FY is nondecreasing, its injectivity means that

y1 < y < y2 ⇒ FY (y1) < FY (y) < FY (y2)(10.9)

We infer that α < y does not satisfy FY (α) ≥ FY (y) = p. Since (see 10.6 on p.216)

φ
(
FY (y)

)
= min{α ∈ R : FY (α) ≥ φ

(
FY (y)

)
} ,(10.10)

it follows from (10.10) that φ
(
FY (y)

)
< y is not possible. Thus, φ

(
FY (y)

)
≥ y.

On the other hand, α = y does satisfy FY (α) ≥ FY (y) = p and we just have seen that y is the
smallest possible of those α. We apply (10.10) once more and conclude that φ

(
FY (y)

)
= y. �

Proposition 10.4.

Let Y be a random variable with a bijective CDF FY : R
∼−→]0, 1[. Then FY (y) and φ(p) are inverse

to each other, i.e.,

φ
(
FY (y)

)
= y for all y ∈ R and FY

(
φ(p)

)
= p for all 0 < p < 1 .(10.11)

PROOF:
The equation φ

(
FY (y)

)
= y was shown in Proposition 10.3. Thus, it only remains to be shown

that

FY
(
φ(p)

)
= p for all 0 < p < 1 .(10.12)

We observe that the bijective and nondecreasing function FY is strictly increasing and continuous.
It is easy to see that FY is strictly increasing: Note that y1 < y2 ⇒ FY (y1) ≤ FY (y2) because FY is
nondecreasing. Injectivity prohibits FY (y1) = FY (y2). Thus, FY is strictly increasing.
It is harder to see that FY is continuous:
• If there was a point of discontinuity y0 ∈ R for FY , then FY being nondecreasing and right–

continuous would mean that FY (y0−) = lim
y<y0,y→y0

FY (y) < FY (y0).

• Also, FY nondecreasing ⇒ FY (y) ≤ FY (y0−) for y < y0 and FY (y) ≥ FY (y0) for y ≥ y0.
• Thus, no y ∈ R and p ∈ ]FY (y0−), FY (y0)[ satisfies FY (y) = p, contradicting surjectivity of FY .

Since FY is continuous, we obtain from Proposition 10.2 on p.217 that

φ(p) = min{α ∈ R : FY (α) = p} .(10.13)

In particular, φ(p) is an element of the set {α ∈ R : FY (α) = p}. Thus, φ(p) satisfies FY
(
φ(p)

)
= p.

We have shown (10.12). We noted previously that the proposition follows. �
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10.3 Expected Value, Variance and MGF of a Continuous Random Variable

Assumption 10.2 (All continuous random variables have Expectations).
A. Unless explicitly stated otherwise, all continuous random variables are assumed to to possess a
probability density function fY (y) that satisfies∫ ∞

−∞
|y|f(y) dy| < ∞ .

This technical condition guarantees the existence of
∞∫
−∞

yf(y)dy which is needed to define the ex-

pected value of Y .
B. We further assume that, unless specifically stated otherwise, there is a common probability space
(Ω, P ) for all random variables. In other words, all random variables Y , be they discrete, continuous
or neither, are of the form Y : (Ω, P )→ R. �

Definition 10.5 (Expected value of a continuous random variable).

Let Y be a continuous random variable with PDF fY (y). We call

E(Y ) :=

∫ ∞
−∞

yfY (y) dy(10.14)

the expected value, also expectation or mean of Y . �

Remark 10.6. ? We recall that expectations E[Y ] are abstract integrals
∫
Y dP (see Definition

6.15 (Expected value of a random variable) on p.165. The connection with (10.14) is established in
formulas

(6.58)
∫
g dPY =

∫
g · f dλ1 =

∫ ∞
−∞

g(y)fY (y) dy .

and
(6.59) E[g ◦ Y ] =

∫
g ◦ Y dP =

∫
g dPY =

∫ ∞
−∞

g(y)fY (y) dy .

of Remark 6.19 on p.167, when setting g(y) = y.
As we reviously noticed for the expectations of discrete random variables, all assertions made in
Theorem 6.9 on p.159 for general abstract integrals apply to expectations of any kind of random
variables Y , since they all can be written as E[Y ] =

∫
Y dP . �

We will use the next theorem in the proof of Theorem 10.5 on p.221. The presentation given here
follows [4] Ghahramani, Saeed.

Theorem 10.4. ?
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Let Y be a continuous random variable with CDF FY and PDF fY .
Then

E[Y ] =

∫ ∞
0

(
1− FY (y)

)
dy −

∫ ∞
0

FY (−y)dy(10.15)

=

∫ ∞
0

P{Y > y}dy −
∫ ∞

0
P{Y ≤ −y}dy .(10.16)

PROOF: We only need to prove (10.15), since (10.16) follows from the definition of a CDF.

Let A1 := {(u′, y′) : y′ < 0, 0 < u′ < −y′} , B1 := {(u′, y′) : u′ > 0, y′ < −u′} .

Then u′ < −y′ ⇔ y′ < −u′ implies A1 = B1 = {(u′, y′) : u′ > 0, y′ < 0, u′ < −y′}. Thus,∫ 0

−∞

(∫ −y
0

du

)
f(y) dy =

∫∫
A1

fY (y) d(u, y)

=

∫∫
B1

fY (y) d(u, y) =

∫ ∞
0

(∫ −u
−∞

fY (y) dy

)
du .(a)

Let A2 := {(u′, y′) : y′ > 0, 0 < u′ < y′} , B2 := {(u′, y′) : u′ > 0, y′ > u′} .

Then A2 = B2, because both denote the set {(u′, y′) : u′ > 0, y′ > 0, u′ < y′}. It follows that∫ ∞
0

(∫ y

0
du

)
f(y) dy =

∫∫
A2

fY (y) d(u, y)

=

∫∫
B2

fY (y) d(u, y) =

∫ ∞
0

(∫ ∞
u

fY (y) dy

)
du .(b)

We use (a) and (b) in the following chain of equations:

E[Y ] =

∫ ∞
−∞

yfY (y) dy =

∫ 0

−∞
yfY (y) dy +

∫ ∞
0

yfY (y) dy

= −
∫ 0

−∞

(∫ −y
0

du

)
fY (y) dy +

∫ ∞
0

(∫ y

0
du

)
fY (y) dy

(a),(b)
= −

∫ ∞
0

(∫ −u
−∞

fY (y) dy

)
du +

∫ ∞
0

(∫ ∞
u

fY (y) dy

)
du .

= −
∫ ∞

0
FY (−u)du +

∫ ∞
0

(
1− FY (u)

)
du .

The last equation follows from
β∫
α
fY (y)dy = FY (β)− FY (α). �

Corollary 10.1. ?

Let Y be a nonnegative, continuous random variable with CDF FY and PDF fY . Then

E[Y ] =

∫ ∞
0

(
1− FY (y)

)
dy =

∫ ∞
0

P{Y > y}dy .(10.17)
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PROOF: Y ≥ 0 implies P{Y ≤ −y} = 0 for 0 ≤ y < ∞. Thus, (10.17) follows from (10.15) and
(10.16). �

Quite a few theorems about discrete random variables have continuous counterparts when one re-
places probability mass function p(y) with probability density function f(y) and summation over
the countably many y for which p(y) > 0 with integration over all y. The following theorem corre-
sponds to Theorem 9.2 on p.192. Note that the continuous random variable ω 7→ g

(
Y (ω)

)
of that

theorem is covered by Assumption 10.2 on p.219, i.e., E
[
g ◦ Y

]
exists.

Theorem 10.5.

Let Y be a continuous random variable with PDF fY and g : R → R; y 7→ g(y) be a real-valued
function. Then the random variable g ◦ Y : ω 7→ g

(
Y (ω)

)
has expectation

E[g(Y )] =

∫ ∞
∞

g(y)fY (y) dy .(10.18)

PROOF: As we mentioned in the remark following Definition 10.5 (Expected value of a continuous
random variable) on p.219, (10.18) was derived as formula (6.59) of Remark 6.19 on p.167. �

ALTERNATE PROOF ? – Doing it the hard way:

The proof of Theorem 9.2 on p.192 handles the discrete case. So we may assume that Y is a contin-
uous random variable.
According to Proposition 2.8 (Preimages of function composition) on p.45,

{g ◦ Y > u} = (g ◦ Y )−1(]u,∞[) = Y −1
(
g−1(]u,∞[)

)
= {Y ∈ g−1(]u,∞[)} .

{g ◦ Y ≤ −u} = (g ◦ Y )−1(]−∞,−u[) = Y −1
(
g−1(]−∞,−u[)

)
= {Y ∈ g−1(]−∞,−u[)} .

Thus,

P{g ◦ Y > u} = P{Y ∈ g−1(]u,∞[)} = PY {g−1(]u,∞[)} = PY {y : g(y) > u}
P{g ◦ Y ≤ −u} = P{Y ∈ g−1(]−∞,−u[)} . = PY {g−1(]−∞,−u[)} = PY {y : g(y) ≤ −u} .

(a)

Next, we show that A1 = B1. Here, we define A1 and B1 as follows:

A1 := {(u′, y′) : 0 < u′ <∞, g(y′) > u′} , B1 := {(u′, y′) : g(y′) > 0, 0 < u′ < g(y′)} ,(b1)

To show A1 ⊆ B1, let (u, y) ∈ A1, i.e., (u, y) ∈ {(u′, y′) : 0 < u′ <∞, g(y′) > u′}.
• 0 < u and u < g(y) yields g(y) > 0 and 0 < u < g(y). Thus, (u, y) ∈ B1.

To see that B1 ⊆ A1, let (u, y) ∈ B1, i.e., (u, y) ∈ {(u′, y′) : g(y′) > 0, 0 < u′ < g(y′)}.
• Since 0 < u < g(y), it follows that 0 < u <∞ and u < g(y). Thus, (u, y) ∈ A1.

We proved that A1 = B1. It follows that
∫∫

A1

fY (y) d(t, y) =

∫∫
B1

fY (y) d(t, y) .(c1)

On a parallel track, we show that A2 = B2, where we define A2 and B2 as follows:

A2 := {(u′, y′) : 0 < u′ <∞, g(y′) ≤ −u′} B2 := {(u′, y′) : g(y′) < 0, 0 < u′ ≤ −g(y′)} .(b2)
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To show A2 ⊆ B2, let (u, y) ∈ A2, i.e., (u, y) ∈ {(u′, y′) : 0 < u′ <∞, g(y′) ≤ −u′}.
• Since g(y) ≤ −u ⇔ u ≤ −g(y) and we also have 0 < u <∞,

(u, y) ∈ A2 implies 0 < u ≤ −g(y).
• To show that also g(y) < 0 we observe that g(y) ≤ −u < −0 = 0.

Finally, to show B2 ⊆ A2, let (u, y) ∈ B2 = {(u′, y′) : g(y′) < 0, 0 < u′ ≤ −g(y′)}.
• 0 < u <∞ is immediate from 0 < u ≤ −g(y).

We still must show that g(y′) ≤ −u.
• To show that also g(y) < 0 we observe that g(y) ≤ −u < −0 = 0. But this is

immediate from 0 < u ≤ −g(y).

We proved that A2 = B2. It follows that
∫∫

A2

fY (y) d(t, y) =

∫∫
B2

fY (y) d(t, y) .(c2)

We apply (c1) and (c2) to the integrals
∞∫
0

P{g ◦ Y > u}du and
∞∫
0

P{g ◦ Y ≤ −u}du as follows.

∫ ∞
0

P{g ◦ Y > u}du (a)
=

∫ ∞
0

P{Y ∈ g−1(]u,∞[)}du =

∫ ∞
0

PY {g−1(]u,∞[)}du

=

∫ ∞
0

PY {y : u < g(y) <∞}du =

∫ ∞
0

(∫
{y:u<g(y)<∞}

fY (y) dy

)
du

(b1)
=

∫∫
A1

fY (y) d(t, y)
(c1)
=

∫∫
B1

fY (y) d(t, y)
(b1)
=

∫
{y:g(y)>0}

(∫ g(y)

0
du

)
fY (y) dy

Hence, since
g(y)∫
0

du = g(y),∫ ∞
0

P{g ◦ Y > u}du =

∫
{y:g(y)>0}

g(y) fY (y) dy(d1)

∫ ∞
0

P{g ◦ Y ≤ −u}du (a)
=

∫ ∞
0

P{Y ∈ g−1(]−∞,−u[)}du =

∫ ∞
0

PY {g−1(]−∞,−u[)}du

=

∫ ∞
0

PY {y : −∞ < g(y) < −u}du =

∫ ∞
0

(∫
{y:−∞<g(y)<−u}

fY (y) dy

)
du

(b2)
=

∫∫
A2

fY (y) d(t, y)
(c2)
=

∫∫
B2

fY (y) d(t, y)
(b2)
=

∫
{y:g(y)<0}

(∫ −g(y)

0
du

)
fY (y) dy

Hence, since
−g(y)∫

0

du = −g(y),∫ ∞
0

P{g ◦ Y ≤ −u}du = −
∫
{y:g(y)<0}

g(y) fY (y) dy(d2)

It follows from (d1) and (d2) and Theorem 10.4 on p.219 and∫
{y:g(y)=0}

g(y)fY (y) dy =

∫
{y:g(y)=0}

0f(y)dy = 0 ,
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that

E[g ◦ Y ] =

∫ ∞
0

P{g ◦ Y > u}du −
∫ ∞

0
P{g ◦ Y ≤ −u}du

=

∫
{y:g(y)>0}

g(y) fY (y) dy +

∫
{y:g(y)<0}

g(y) fY (y) dy

=

∫
{y:g(y)>0}

g(y) fY (y) dy +

∫
{y:g(y)<0}

g(y) fY (y) dy +

∫
{y:g(y)=0}

g(y)fY (y) dy

=

∫
R
g(y) fY (y) dy =

∫ ∞
−∞

g(y) fY (y) dy �

The following corresponds to WMS Theorem 4.5.

Theorem 10.6.

Let c ∈ R, Y be a discrete or continuous random variable and g1, g2, gn : R→ R; y 7→ g(y) be a list
of n real-valued functions. Then

E[c] = c ,(10.19)
E[cgj(Y )] = cE[gj(Y )] .(10.20)

Further, the random variable

n∑
j=1

gj ◦ Y : Ω −→ R; ω 7→
n∑
j=1

gj
(
Y (ω)

)
has the following expected value:

E

 n∑
j=1

gj ◦ Y

 =

n∑
j=1

E[gj ◦ Y ] .(10.21)

PROOF: �

We will not deal in this course with the sums of continuous and discrete random variables, so the
next definition is only included for completeness’ sake and to allow the formulation of theorems
10.7 and 10.8 below.

Definition 10.6. ?

If Y1, Y2, . . . , Ym is a list of discrete random variables and Y ′1 , Y
′

2 , . . . , Y
′
n is a list of continuous random

variables, all of which are defined on the same probability space (Ω, P ), then we define

E

 m∑
i=1

Yi +

n∑
j=1

Y ′j

 :=

m∑
i=1

E[Yi] +

n∑
j=1

E[Y ′j ] p . �(10.22)
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The following is the continuous random variables version of Theorem 9.4 on p.194.

Theorem 10.7.

Let Y1, Y2, . . . , Yn : Ω→ R be random variables. (which all are defined on the same probability space
(Ω, P ) (n ∈ N by Assumption 10.2.B). Some may be continuous, others may be discrete. Then the
random variable n∑

j=1

Yj : Ω −→ R; ω 7→
n∑
j=1

Yj(ω)

has the following expected value:

E

 n∑
j=1

Yj

 =

n∑
j=1

E[Yj ] .(10.23)

In other words, the expectation of the sum is the sum of the expectations.

PROOF: Not given here. �

We extend Definition 9.3 on p.195 of the variance and standard deviation of a discrete random
variable to the continuous case without modification, i.e.,

V ar[Y ] := σ2
Y := E

[
(Y − E[Y ])2

]
,(10.24)

σY :=
√
V ar[Y ] .(10.25)

Theorems 9.5, 9.6 9.7 about the variances of discrete random variables have the following counter-
part.

Theorem 10.8. Let Y be a discrete or continuous random variable. Let Y1, Y2, . . . , Yn : Ω→ R be indepen-
dent random variables (which all are defined on the same probability space (Ω, P ) (n ∈ N by Assumption
10.2.B). Some may be continuous, others may be discrete. Further, let a, b ∈ R. Then

V ar[Y ] = E
[
Y 2
]
−
(
E[Y ]

)2
,(10.26)

V ar [aY + b] = a2V ar[Y ] ,(10.27)

V ar

 n∑
j=1

Yj

 =

n∑
j=1

V ar[Yj ] .(10.28)

PROOF: The proof of (10.26) is the same as for Theorem 9.5 on p.195. The proof of the other formulas
is not given here. �

Remark 10.7. Note that independence of Y1, . . . , Yn is required for the validity of (10.28)! �

Example 10.2. 98 A business has daily revenues R and costs C of which it is known that

98This a corrected version of WMS Exercise 5.113.
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• R ∼NNN (µ = 50, σ2 = 9) • C ∼ chi2(df = 8) • R and C are independent.
Assuming that R and C are given in thousands of dollars,

a What are expected value and variance of the daily profit?
b Is it likely that tomorrow’s profit will exceed 70, 000 dollars?

Solution:
Let Y denote the daily profit. Note that

• E[R] = µ = 50 • E[C] = df = 8) • V ar[R] = σ2 = 9 • V ar[C] = 2 df = 16).
Since Y = R− C, we obtain E[Y ] = E[R]− E[C] = 42.
Also, by independence, V ar[Y ] = V ar[R] + V ar[C] = 25.
Since (70 − 48)/5 = 28/5 = 5.6, tomorrow’s profit would have to rise above 5.6 SDs 99 to exceed
70, 000 dollars. That seems extremely unlikely. �

The moments about the origin µ′k, the moments about the mean µk and the MGF mY (t) of a discrete
random variable Y , all were defined as expected values. This allows us to use those same definitions
for continuous random variables.
Unless something different is stated, Y is a random variable Y : (Ω, P ) → R on some probability
space (Ω, P ). Further, µ = E[Y ], σ2 = V ar[Y ] and σ =

√
V ar[Y ] denote expectation, variance and

standard deviation of Y .

Definition 10.7. For k ∈ N, we define

µ′k := E[Y k] (kth moment of Y about the origin)(10.29)

µk := E[(Y − E[Y ])k] = E[(Y − µ)k] (kth central moment of Y )(10.30)

m(t) := mY (t) := E
[
etY
]

(moment–generating function of Y )(10.31)

As in the discrete case we assume that the expectations defining µ′k and µk exist and that there is
some δ > 0 such that mY (t) is defined (i.e., finite) for |t| < δ. �

Theorem 9.18 on p.209 remains valid for continuous random variables:

Theorem 10.9.

Let Y be a random variable with MGF mY (t) and k ∈ N. Then its kth moment is obtained as the
kth derivative of mY (·), evaluated at t = 0:

µ′k = m(k)(0) =
dkm(t)

dtk

∣∣∣
t=0

.(10.32)

PROOF: The proof of Theorem 9.18 can be used without any alterations. �

99WMS erroneously states this figure as 7.2 SDs
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Proposition 10.5.

Let Y be a random variable with MGF mY (t). Let a, b ∈ R, Y ′ := Y + a, Y ′′ := bY . Then

mY ′(t) = etamY (t) ,(10.33)
mY ′′(t) = mY (bt) .(10.34)

PROOF: To prove (10.33), we note that eta is constant in ω. Thus, E[etaW ] = etaE[W ] for any
random variable W . Thus,

mY ′(t) = E[et(Y+a)] = E[etY eta] = etaE[etY ] = etamY (t) .

Formula (10.34) follows from

mY ′′(t) = E[et(bY )] = E[e(tb)Y ] = mY (tb) . �

10.4 The Uniform Probability Distribution

Given two real numbers θ1 < θ2, we consider a random variable Y (ω) that “lives” in the interval
[θ1, θ2], i.e., P{θ1 ≤ Y ≤ θ2} = 1 and has the same likelyhood of occurring in any subinterval of
same length:

Definition 10.8 (Continuous, uniform random variable).

Let Y be a random variable and −∞ < θ1 < θ2 < ∞. We say that Y has a continuous
uniform probability distribution with parameters θ1 and θ2 — also, that Y is uniform on
[θ1, θ2] or Y ∼ uniform(θ1, θ2) — if Y has probability density function

fY (y) =


1

θ2 − θ1
, if θ1 ≤ y ≤ θ2,

0 , else. �
(10.35)

Remark 10.8 (uniform and equiprobable probability measures). Uniform distributions are the
equivalent of the distribution of discrete rancom variables Y that satisfy equiprobability, i.e., their
PMF pY (y) = P{Y = y} is strictly positive only for finitely many numbers y1, y2, . . . , yn and
pY (yj) = 1/n for all j ∈ [1, n]Z. See Definition 5.3 on p.109. �

Theorem 10.10 (WMS Ch.04.4, Theorem 4.6).

If θ1 < θ2 and Y is a uniform random variable with parameters θ1, θ2, then

E[Y ] =
θ1 + θ2

2
and V ar[Y ] =

(θ2 − θ1)2

12
.
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PROOF: A simple exercise in integrating
θ2∫
θ1

y dy and
θ2∫
θ1

y2 dy. �

Theorem 10.11.

Assume that Y is a continuous random variable with CDF FY (y). Let U := FY (Y ). Then U ∼
uniform(0, 1).

SIMPLIFIED PROOF under the assumption that the CDF FY is a bijection FY : R
∼−→]0, 1[.

The inverse F−1
Y of FY satisfies F−1

Y

(
FY (y)

)
= y for all y ∈ R. Thus, for 0 < u < 1,

FU (u) = P{U ≤ u} = P{FY ◦ Y ≤ u} = P{F−1
Y ◦ FY ◦ Y ≤ F−1

Y (u)}
= P{Y ≤ F−1

Y (u)} = FY
(
F−1
Y (u)

)
= u .

We still must handle the cases u ≤ 0 and u ≥ 1. We assumed that the codomain of FY is ]0, 1[.

• Thus, y ∈ R ⇒ 0 < FY (y) < 1.
• Thus, ω ∈ Ω ⇒ 0 < U(ω) = FY

(
Y (ω)

)
< 1

⇒
[
P{U ≤ 0} = 0 and P{U ≤ 1} = 1

]
⇒
[
FU (0) = 0 and FU (1) = 1

]
.

• Thus,
[
u ≤ 0 ⇒ FU (u) ≤ FU (0) = 0

]
and

[
u ≥ 1 ⇒ FU (u) ≥ FU (1) = 1

]
.

It follows that FU is the CDF of a uniform(0, 1) random variable. Thus, U ∼ uniform(0, 1). �

GENERAL PROOF ? (We drop the assumption that FY is a bijection R
∼−→]0, 1[.):

This proof follows the one of Theorem 2.1.10 in Casella, Berger [3], but it gives additional detail.
Let 0 < p < 1 and let

G(p) := min{y ∈ R : FY (y) ≥ p} .(A)

In other words, G(p) is the pth quantile φp for the random variable Y . Since G is nondecreasing,

FU (p) = P{U ≤ p} = P{FY (Y ) ≤ p} = P{G
(
FY (Y )

)
≤ G(p)} .(B)

The most difficult part of the proof is to show that

P{G
(
FY (Y )

)
≤ G(p)} = P{Y ≤ G(p)} .(C)

We consider two different cases.
• Case 1: There is a unique y such that G(p) = y. In

the picture, that would be y0 for p0 and y5 for p5

(a) Observe that G(p) = y ⇔ p = FY (y).
(b) G(p′) < G(p) < G(p′′) ⇔ p′ < p < p′′.
• Case 2: There are y∗ < y∗, determined by

G(p) = y ⇔ y∗ < y < y∗. In the picture,
that would be y∗ = y1 and y∗ = y4 for F (y) = p.

10.1 (Figure). non–injective, continuous CDF.
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We now show that (C) is true for Case 1.
We deduce from (a) and (b) that

ω ∈ {G
(
FY (Y )

)
≤ G(p)} ⇔ FY

(
Y (ω)

)
≤ G(p)

(
= FY (y)

)
⇔ Y (ω) ≤ y

(
= G(p)

)
⇔ ω ∈ {Y ≤ G(p)} .

Taking probabilities shows that (C) is valid, since we obtain

P{G
(
FY (Y )

)
≤ G(p) = P{Y ≤ G(p)} .

Next, we show that (C) is true for Case 2.
The picture shows that, if FY (y′) = p′ and FY (y) = p ⇔ y∗ ≤ y ≤ y∗, then

(c) G(p′) < G(p) ⇔ y′ < y∗; G(p′) = G(p) ⇔; y∗ ≤ y′ ≤ y∗;
(d) Thus, G(p′) ≤ G(p) ⇔ y′ ≤ y∗ ⇔;

[
y′ ≤ y∗ or y∗ < y′ ≤ y∗.

Clearly,

ω ∈ {G
(
FY (Y )

)
≤ G(p)} ⇔ G

(
FY (Y (ω))

)
≤ G(p)(= y∗)} .

We apply (d) with y′ = Y (ω) and p′ = FY
(
Y (ω)

)
and obtain

G
(
FY (Y (ω))

)
≤ G(p) ⇔

[
Y (ω) ≤ y∗ or y∗ < Y (ω) ≤ y∗

]
.

Thus, {G
(
FY (Y )

)
≤ G(p)} = {Y ≤ y∗} ] {y∗ < Y ≤ y∗}. Taking probabilities,

P{G
(
FY (Y )

)
≤ G(p)} = P{Y ≤ y∗} + P{y∗ < Y ≤ y∗}

= FY (y∗) +
(
FY (y∗) − FY (y∗)

)
= FY

(
G(p)

)
= P{Y ≤ G(p)} .

Here, the equation next to the last follows from G(p) = y∗ and FY (y∗) = G(p) = FY (y∗).
We have shown that (C) also is true for Case 2.
We combine (B) and (C) and obtain

FU (p) = P{FY (Y ) ≤ p} = P{Y ≤ G(p)} = FY
(
G(p)

)
.(D)

Our next goal is to show that FY
(
G(p)

)
= p. We break this down into the following steps.

(1) By (A), FY
(
G(p)

)
≥ p. We now show that also FY

(
G(p)

)
≤ p.

(2) Let yn := G(p)− 1/n. Then G(p) = lim
n→∞

yn.

(3) G(p) being the smallest y such that FY (y) ≥ p implies that FY (yn) < p.
(4) Since Y is continuous, F (y) is continuous. Thus, FY

(
G(p)

)
= lim

n→∞
FY (yn).

(5) Since FY (yn) < p by (3), lim
n→∞

FY (yn) ≤ p, i.e., FY
(
G(p)

)
≤ p. (See (4).)

(6) We have shown (1) and it follows that FY
(
G(p)

)
= p.

It now follows from (D) that P{U ≤ p} = p for any 0 < p < 1.
The boundary cases p = 0 and p = 1 are taken into account by extending the definition of G(p)
given in (A), which is G(p) = min{y ∈ R : FY (y) ≥ p}, as follows.
• Since FY (y) ≥ 0 for all y, it is natural to define G(0) := −∞.
• If there is some y∗ such that FY (y∗) = 1, then (A) remains in force for G(1).
• Otherwise, (if FY (y) < 1 for all y), we define G(1) :=∞. �
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Theorem 10.12.

Given are a uniform(0, 1) random variable U and a continuous function F : R→ [0, 1] that satisfies
the conditions of Theorem 10.1 (Properties of a Cumulative Distribution Function) on p.212:
• F is nondecreasing • F (−∞) := lim

y→−∞
F (y) = 0 • F (∞) := lim

y→∞
F (y) = 1

Let G : [0, 1]→ R; p 7→ G(p) := min{y ∈ R : F (y) ≥ p} .(10.36)

Let Z := G(U) be the random variable ω 7→ Z(ω) := G
(
U(ω)

)
.

Then its CDF matches F . In other words, FZ(y) = F (y) for all y ∈ R.

SIMPLIFIED PROOF under the assumption that the F is a bijection F : R
∼−→]0, 1[.

We first show that G is the inverse of F .
• Since F is both nondecreasing and injective, F is strictly increasing.
• Let 0 < p0 < 1 and y0 := F−1(p0) or, equivalently, p0 = F (y0).
• Let A := {y ∈ R : F (y) ≥ p0}. Since F (y0) = p0 ≥ p0, it follows that y0 ∈ A.
• Since F is strictly increasing, y < y0 ⇒ F (y) < F (y0) = p0 ⇒ y /∈ A
• Since y0 ∈ A and y < y0 ⇒ y /∈ A, we conclude that y0 = min(A).
• By (10.36), G(p0) = min(A). We have shown G(p0) = y0 = F−1(p0) for each 0 < p0 < 1.

Let y ∈ R. Since G = F−1, we obtain

FZ(y) = P{Z ≤ y} = P{G ◦ U ≤ y} = P{F−1 ◦ U ≤ y} = P{U ≤ F (y)} = F (y) .

The last equation follows from 0 < F (y) < 1 and U ∼ uniform(0, 1). It follows that FZ(y) = F (y)
for all y, i.e., FY = F �

GENERAL PROOF ? (We drop the assumption that FY is a bijection R
∼−→]0, 1[.):

Let I := FY (R) = {FY (y) : y ∈ R} be the range of FY .
• Note that G(p) equals the pth quantile φp of a random variable with CDF F (y). (See Defini-

tion 10.4 on p.216.)
• Further, the continuity of F guarantees that for each 0 < p < 1 one can find y ∈ R such that

F (y) = p (and thus, p 7→ G(p) is injective).
• Thus, I is one of the following intervals: � If 0 < F (y) < 1 for all y, then I = ]0, 1[

� If 0 ≤ F (y) < 1 for all y, then I = [0, 1[ � If 0 < F (y) ≤ 1 for all y, then I = ]0, 1]
� If 0 ≤ F (y) ≤ 1 for all y, then I = [0, 1]

• We will refer in this proof to Figure 10.1 on p.227 (non–injective, continuous CDF) in the
proof of Theorem 10.11.

We fix y ∈ R. Let p := F (y). Then

(a) Since F is continuous and nondecreasing, there are numbers y∗ ≤ y∗ such that
F (ỹ) = p ⇔ y∗ ≤ ỹ ≤ y∗.

(b) Either F is strictly increasing at y and then y∗ = y = y∗, or F is “flat around y” and y∗ < y∗.
(c) For p′ ∈ I , choose y′ such that F (y′) = p′. Then, since F (y∗) = p,

p′ < p ⇔ F (y′) < p ⇔ y′ < y∗ and p′ ≤ p ⇔ F (y′) ≤ p ⇔ y′ ≤ y∗ ⇔ G(p′) ≤ y∗.
(d) Further, since F is nondecreasing, G also is nondecreasing. Thus, p′ ≤ p ⇔ G(p′) ≤ G(p).

It follows from (c) that p′ ≤ p ⇔ G(p′) ≤ G(p) ⇔ y′ ≤ y∗ ⇔ G(p′) ≤ y∗.
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Let ω ∈ Ω and p′ := U(ω). Recall that p = F (y). Then

G
(
U(ω)

)
≤ y ⇔

[
G(p′) ≤ G(p)

] (d)⇔
[
p′ ≤ p

]
⇔
[
U(ω) ≤ F (y)

]
.

We take probabilities and obtain, since U ∼ uniform(0, 1) implies P{U ≤ p̃} = p̃ for 0 ≤ p̃ ≤ 1,

FZ(y) = P{G(U) ≤ y} = P{U ≤ F (y)} = F (y) .

To summarize, we have shown that FZ(y) = F (y) for all y ∈ R. �

Remark 10.9. A special case of Theorem 10.12 can be found in WMS Ch.06.3, Example 6.5, which
shows how to solve the following problem: Let U be a uniform random variable on the interval
(0, 1). Find a transformation G(U) such that G(U) possesses an exponential distribution with mean
β. �

10.5 The Normal Probability Distribution

Many numerical random phenomena yield his-
tograms which are approximately unimodal (a
single highest value) and symmetric around the
mean µ, like the picture to the right, and they
adhere to the empirical rule: Approximately
• 68% of the data fall between µ± 1 · σ
• 95% of the data fall between µ± 2 · σ
• 99.7% of the data fall between µ± 3 · σ

Such data are adequately modeled by the nor-
mal distribution. Source: WMS Ch.4.5

The empirical rule is also known as the 68%–95%–99.7% rule.

Definition 10.9 (Normal random variable).

Let σ > 0 and −∞ < µ < ∞. We say that a random variable Y has a normal probability
distribution with mean µ and variance σ2 if its probability density function is

fY (y) =
1

σ
√

2π
e−(y−µ)2/(2σ2), (y ∈ R) . �(10.37)

We also express that by saying that Y is NNN (µ, σ2). Moreover, we call Y standard normal if
Y is NNN (0, 1).

We will see that E[Y ] = µ and V ar[Y ] = σ2. This justifies calling the parameters µ and σ2 the mean
and variance of the distribution.

Lemma 10.1.

(y − µ)2 − 2ytσ2 =
[
y − (µ+ tσ2)

]2 − 2µtσ2 − t2σ4 .(10.38)
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PROOF: We multiply out the right–hand expression and obtain

R.S. =
[
y − (µ+ tσ2)

]2 − 2µtσ2 − t2σ4

= y2 − 2y(µ+ tσ2) + (µ2 + 2µtσ2 + t2σ4) − 2µtσ2 − t2σ4

= y2 − 2µy − 2ytσ2 + µ2

= (y − µ)2 − 2ytσ2 = L.S. �

Proposition 10.6.

Let the random variable Y be NNN (µ, σ2). Then

mY (t) = eµt+ (σ2t2)/2 .(10.39)

PROOF:

mY (t) =

∫ ∞
−∞

eyt
1

σ
√

2π
e−

(y−µ)2

2σ2 dy

=
1

σ
√

2π

∫ ∞
−∞

e
(yt)(2σ2)

2σ2 e−
(y−µ)2

2σ2 dy

=
1

σ
√

2π

∫ ∞
−∞

e−
1

2σ2

[
(y−µ)2− 2ytσ2

]
dy .

We apply Lemma 10.1 and obtain for the exponent the following.

− 1

2σ2

[
(y − µ)2 − 2ytσ2

]
= − 1

2σ2

{[
y − (µ+ tσ2)

]2 − 2µtσ2 − t2σ4
}

= −
[
y − (µ+ tσ2)

]2
2σ2

+
1

2σ2

[
2µtσ2 + t2σ4

]
= µt +

t2σ2

2
− 1

2

[
y − (µ+ tσ2)

σ

]2

It follows that

mY (t) =
1

σ
√

2π

∫ ∞
−∞

eµt+ t2σ2

2 e
− 1

2

[
y− (µ+tσ2)

σ

]2
dy

= eµt+ t2σ2

2

 1

σ
√

2π

∫ ∞
−∞

e
− 1

2

(
y− (µ+tσ2)

σ

)2

dy

 .
The expression in square brackets is the integral

∞∫
−∞

ϕ(y)dy, where ϕ(y) is the PDF of a normal

variable with mean µ+ tσ2 and variance σ2. Thus, this integral evaluates to 1 and it follows that

mY (t) = eµt+ t2σ2

2 . �
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Theorem 10.13 (WMS Ch.04.5, Theorem 4.7).

If Y is a normally distributed random variable with parameters µ and σ, then

E[Y ] = µ and V ar[Y ] = σ2 .

PROOF: We differentiate mY (t) = exp{µt + t2σ2

2 } twice and obtain

m′Y (t) =
(
µ+ tσ2

)
exp

{
µt +

t2σ2

2

}
,

m′′Y (t) =
(
µ+ tσ2

)2
exp

{
µt +

t2σ2

2

}
+ σ2 exp

{
µt +

t2σ2

2

}
.

Thus,the first and second moment about the origin are

E[Y ] = µ′1 = m′Y (0) = (µ+ 0)e0 = µ ,

E[Y 2] = µ′2 = m′′Y (0) = (µ+ 0)2e0 + σ2e0 = µ2 + σ2 .

Finally,
V ar[Y ] = E[Y 2] −

(
E[Y ]

)2
= µ2 + σ2 − µ2 = σ2 . �

Remark 10.10. The importance of the normal distribution stems from the so called Central Limit
Theorem (Theorem 13.13 on p.331), which we will discuss in Chapter 13 (Limit Theorems). It states
the following.
• Given is an iid sequence of random variables Y1, Y2, . . . with common expectation µ := E[Yj ]

and finite standard deviation σ :=
√
V ar[Yj ] <∞ and a standard normal variable Z.

• For n ∈ N, we define Ȳn := 1
n

n∑
j=1

Yj =
Y1 + · · ·+ Yn

n
and Zn :=

Ȳn − µ
σ/
√
n

.

• An aside: One easily sees from Theorems 10.7 (p.224) and 10.8 that E[Ȳn] = µ, σȲn = σ/
√
n

and thus, E[Zn] = 0, V ar[Zn] = 1.
• The Central Limit Theorem states that for each fixed z ∈ R, FZn(z) converges to FZ(z).

• In other words, lim
n→∞

P{Zn ≤ z} = lim
n→∞

FZn(z) = FZ(z) =

∫ z

−∞

1√
2π

e−t
2/2 dt for all z .

�

10.6 The Gamma Distribution

Whereas the normal distribution is a good fit for histograms which are symmetric, many random
phenomena yield left skewed (also referred to as left tailed) or right skewed (also referred to as
right tailed) histograms which are more appropriately modeled by distributions which themselves
also are left or right skewed.
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Left skewed distribution Right skewed distribution

The gamma distribution which we discuss here can be used to generate all kinds of right skewed
distributions.

Definition 10.10 (Gamma random variable).

Let σ > 0 and −∞ < µ < ∞. We say that a random variable Y has a gamma distribution
with shape parameter α > 0 and scale parameter β > 0 if its probability density function is

fY (y) =


yα−1e−y/β

βαΓ(α)
, if 0 ≤ y <∞ ,

0 , else ,
(10.40)

where Γ(α) is the gamma function

Γ(α) =

∫ ∞
0

yα−1e−y dy .(10.41)

We also express that by saying that Y is gamma(α, β). �

Proposition 10.7. The gamma function satisfies the following:

Γ(1) = 1 ,(10.42)
Γ(α) = (α− 1)Γ(α− 1) for all α > 1 ,(10.43)
Γ(n) = (n− 1)! for all n ∈ N .(10.44)

PROOF: (10.42) is immediate from
∞∫
0

e−ydy = −e−y
∣∣∣∞
0

= 0− (−1) = 1.

We obtain (10.43) from integration by parts of Γ(α):

Γ(α) = yα−1
(
− e−y

)∣∣∣∞
0

+

∫ ∞
0

(α− 1)yα−2e−y dy

= 0 + (α− 1)

∫ ∞
0

y(α−1)−1e−y dy

= (α− 1)Γ(α− 1) .
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To show (10.44) we observe that repeated application of (10.43) yields

Γ(n) = (n− 1)Γ(n− 1)

= (n− 1)(n− 2)Γ(n− 2)

= (n− 1)(n− 2)(n− 3) · · · 2Γ(2)

= (n− 1)(n− 2)(n− 3) · · · 2 · 1Γ(1) .

Since Γ(1) = 1 by (10.42), it follows that

Γ(n) = (n− 1)(n− 2)(n− 3) · · · 2 · 1 = (n− 1)! .

Proposition 10.8.

If the random variable Y is gamma(α, β) it has MGF

mY (t) =
1

(1− βt)α
for t <

1

β
.(10.45)

PROOF: ? We define

β̃ :=
β

1− tβ
(A)

and observe that β̃ > 0 for 1− tβ > 0, i.e., for t < 1/β. Further,

ty − y

β
=

(−y + tyβ)

β
=
−y(1− tβ)

β
= −y

/ β

(1− tβ)
=
−y
β̃
.(B)

Thus,

mY (t) = E(etY ) =

∫ ∞
0

ety

[
yα−1e−y/β

βαΓ(α)

]
dy

=
1

βα

∫ ∞
0

yα−1

Γ(α)
exp

[
ty − y

β

]
dy

(B)
=

1

βα

∫ ∞
0

yα−1 e−y/β̃

Γ(α)
dy

Part of (B) is
−y(1− tβ)

β
=
−y
β̃

. Thus, (1− tβ) β̃ = β; thus, βα = (1− tβ)α · β̃α; thus,

mY (t) =
1

(1− tβ)α
·
∫ ∞

0

yα−1 e−y/β̃

β̃αΓ(α)
dy =

1

(1− tβ)α
·
∫ ∞

0
ϕ(y) dy .

Here, the function ϕ(y) is the PDF of a gamma(α, β̃) random variable. It follows that
∞∫
0

ϕ(y) dy = 1

and we conclude that mY (t) = 1/(1− tβ)α. �
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Theorem 10.14 (WMS Ch.04.6, Theorem 4.8).

Let the random variable Y be gamma(α, β) with α, β > 0. Then

E[Y ] = αβ and V ar[Y ] = αβ2 .

PROOF: We obtain those results by differentiating the MGF of Y .

mY (t) = (1− βt)−α ⇒ m′Y (t) = (−α)(1− βt)−α−1(−β)

⇒ m′′Y (t) = (−α)(−β)(−β)(−α− 1)(1− βt)−α−2 .

Thus,

m′Y (0) = (−α)(1− 0)−α−1(−β) = αβ ,

m′′Y (0) = (−α)β2(−α− 1)(1− 0)−α−2 = (−α)2β2 − (−α)β2 = α2β2 + αβ2 .

In other words, E[Y ] = αβ and E[Y 2] = αβ2 From this,

V ar[Y ] = E[Y 2] −
(
E[Y ]

)2
= (α2β2 + αβ2) − α2β2 = αβ2 . �

Definition 10.11 (Chi–square distribution).

Let ν ∈ N. We say that a random variable Y has a chi–square distribution with ν degrees
of freedom, in short, Y is chi–square with ν df or Y is chi–square(ν), or Y is χ2(ν), if Y is
gamma(ν/2, 2). In other words, Y must have a gamma distribution with shape parameter
ν/2 and scale parameter 2. �

Theorem 10.15 (WMS Ch.04.6, Theorem 4.9).

A chi–square random variable Y with ν degrees of freedom has expectation and variance

E[Y ] = ν and V ar[Y ] = 2ν.

PROOF: This follows from Theorem 10.14 with α = ν/2 and β = 2. �

Definition 10.12 (Exponential distribution).

We say that a random variable Y has an exponential distribution with parameter β > 0, in
short, Y is expon(β), if it has density function

(10.46) fY (y) =


1

β
e−y/β , for 0 ≤ y <∞ ,

0 , else . �
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Remark 10.11. In many textbooks exponential random variables are expressed in terms of λ = 1/β.
Then its PDF is

(10.47) fY (y) =

{
λ e−λy , for 0 ≤ y <∞ ,

0 , else . �

Theorem 10.16.

An exponential random variable Y with parameter β has expectation and variance

E[Y ] = β and V ar[Y ] = β2.

PROOF: This follows from Theorem 10.14 with α = 1. �

Proposition 10.9 (Memorylessness of the exponential distribution). Let Y be an exponential random
variable. Let t > 0 and h > 0. Then

(10.48) P{Y > t+ h | Y > t} = P{Y > h} .

PROOF: From the definition of conditional probability and

{Y > t+ h} ∩ {Y > t} = {Y > t+ h} ,

it follows that

P{Y > t+ h | Y > t} =
P{Y > t+ h}
P{Y > t}

.

We obtain

P{Y > t+ h} =

∫ ∞
t+h

1

β
e−y/βdy = − 1

1/β
· 1

β
· e−y/β

∣∣∣∞
t+h

= −e−y/β
∣∣∣∞
t+h

= e−(t+h)/β

and
P{Y > t} =

∫ ∞
t

1

β
e−y/βdy = −e−y/β

∣∣∣∞
t

= e−t/β .

Thus,

P{Y > t+ h | Y > t} =
e−(t+h)/β

e−t/β
= e−h/β = P{Y > h} . �

Remark 10.12. The property (10.48) of an exponential distribution is referred to as the memoryless
property of the exponential distribution. It also occurs in the geometric distribution. �

10.7 The Beta Distribution

This chapter is merely a summary of the most impportant material of WMS Chapter 4.7 (The Beta
Probability Distribution).
Like the gamma PDF, the beta density function is a two–parameter PDF defined over the closed
interval 0 ≤ y ≤ 1. y often plays the role of a proportion, such as the proportion of impurities in a
chemical product or the proportion of time that a machine is under repair.
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Definition 10.13 (Beta distribution). ?

A random variable Y has a beta probability distribution with parameters α > 0 and β > 0
if it has density function

fY (y) =


yα−1(1− y)β−1

B(α, β)
, if 0 ≤ y ≤ 1 ,

0 , else ,
(10.49)

where

B(α, β) =

∫ 1

0
yα−1(1− y)β−1 dy =

Γ(α) Γ(β)

Γ(α+ β)
.(10.50)

We also express that by saying that Y is beta(α, β). �

Beta density functions come in a large variety of
shapes for different values of α and β. Some of
these are shown in the figure to the right.
Note that 0 ≤ y ≤ 1 does not restrict the use of
the beta distribution. It can be applied to a ran-
dom variable defined on the interval c ≤ y ≤ d by
means of the transformation ỹ = (y − c)/(d − c)
which defines a new variable 0 ≤ ỹ ≤ 1 which has
the correct domain for the beta density.

Beta density functions. Source: WMS

Theorem 10.17. ?

If Y is a beta–distributed random variable with parameters α > 0 and β > 0, then

E[Y ] =
α

α+ β
and V ar[Y ] =

αβ

(α+ β)2(α+ β + 1)
.

PROOF: See the WMS text �

10.8 Inequalities for Probabililities

This chapter lists some very useful estimates for probabilities which involve the moments of a ran-
dom variable. Among them is the Tchebysheff inequality.

Theorem 10.18. ?
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Let Y, Z be continuous or discrete random variables and a > 0. Assume further that Y ≥ 0. Then

P{Y ≥ a}) ≤ E[Y ]

a
,(10.51)

P{|Z| ≥ a}) ≤ E[ |Z|n]

an
.(10.52)

(10.51) is known as the Markov inequality

PROOF of (10.51): 100 We give the proof for continuous random variables. The discrete case is even
simpler since it involves summation instead of integration.
Let fY (y) be the PDF of Y . We observe the following:

(a) Y ≥ 0 implies y fY (y) = 0 for −∞ < y < 0.
(b) y fY (y) ≥ 0 for 0 ≤ y <∞.
(c) y fY (y) ≥ a fY (y) for a ≤ y <∞.

Thus,

E[Y ] =

∫ ∞
−∞

y fY (y)dy
(a)
=

∫ ∞
0

y fY (y)dy =

∫ a

0
y fY (y)dy +

∫ ∞
a

y fY (y)dy

(b)
≥
∫ ∞
a

y fY (y)dy
(c)
≥
∫ ∞
a

a fY (y)dy = a

∫ ∞
a

fY (y)dy = aP{Y ≥ a} .

We divide by a > 0 and obtain (10.51).
PROOF of (10.52): Since |Z|n ≥ 0 and an > 0, we can apply (10.51) with |Z|n in place of Y and an in
place of a:

P{|Z|n ≥ an} ≤ E[|Z|n]

an
.(A)

Since the function x 7→ xn is (strictly) increasing, |Z(ω)|n ≥ an ⇔ |Z(ω)| ≥ a.
Thus, (A) yields P{|Z| ≥ a} ≤ E[|Z|n]/an and this proves (10.52). �

The work we have done here allows us to quickly prove the Tchebysheff inequalities in the form
listed in WMS Chapter 4.10 (Tchebysheff’s Theorem).

Theorem 10.19 (Tchebysheff Inequalities).

Let Y be a random variable with mean µ = E[Y ] and standard deviation σ =
√
V ar[Y ]. Let k > 0.

Then

P{|Y − µ| ≥ kσ} ≤ 1

k2
,(10.53)

P{|Y − µ| < kσ} ≥ 1 − 1

k2
.(10.54)

Both (10.53) and (10.54) are known as the Tchebysheff inequalities
100Source: https://en.wikipedia.org/wiki/Markov%27s_inequality
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PROOF: We apply (10.52) with n = 2, Y − µ in place of Z, and kσ in place of a. We obtain

P{|Y − µ| ≥ kσ}) ≤ E[ |Y − µ|2]

(kσ)2
=

E[ (Y − µ)2]

(kσ)2
=

σ2

k2σ2
=

1

k2
.

This proves (10.53). Since the event {|Y −µ| < kσ} is the complement of the event {|Y −µ| ≥ kσ} ,
(10.54) follows. �

Remark 10.13. Some comments about the Tchebysheff inequalities:
(a) Both inequalities state the same, since the events {|Y − µ| < cσ} and {|Y − µ| ≥ cσ} are

complements of each other. We had noted this in the proof of Theorem 10.19.
(b) The inequalities are not particularly powerful, but consider that they are universally valid,

regardless of any particulars concerning Y !
(c) If we write a := kσ and thus, k = a/σ, we obtain

P{|Y − µ| < a} ≥ 1 − V ar[Y ]

a2
and P{|Y − µ| ≥ a} ≤ V ar[Y ]

a2
. �

Example 10.3. ACME Co. produces screws. Their lengths follow a distribution with a mean of
µ = 18.40 mm and a variance of σ2 = 0.64 mm2. In other words, the length Y of a randomly picked
screw (a sample of size 1) has E[Y ] = 18.40 and V ar[Y ] = 0.64.
A screw can only be sold if its length is within 17.20 and 19.60 mm. How likely is it that a screw is
produced that cannot be sold?

Solution: We observe that E[Y ] = 18.40 is the midpoint of the interval [17.20, 19.60] and that

• a screw cannot be sold ⇔ Y (ω) /∈ [17.20, 19.60] ⇔ |Y (ω)− E[Y ]| > (17.20, 19.60)/2 = 1.2.

We solve
kσ = |Y − E[Y ]| = 1.2 , i.e.,

√
0.64k = 0.8k = 1.2 ,

for k and obtain k = 1.2/0.8 = 3/2. Thus, k2 = 9/4.
Tchebysheff’s inequality (10.54) then yields the following upper bound for the probability of obtain-
ing a sample with a difference Ȳ (ω)− µ as large as or even larger than the one we have sampled:

P{|Y − µ| > kσ} ≤ 1

k2
= 4/9 .

This example demonstrates the low quality of the bounds that we obtain from Tchebysheff’s in-
equalities. For example, let us assume we know that Y follows a normal distribution, i.e.,

Y ∼ NNN (µ = 18.40, σ2 = 0.64) ,

then we can deduce from the empirical rule (the 68%–95%–99.7% rule) 101 that

0.32 = 1− 0.68 ≈ P{|Y − µ| > 1 · σ}
≥ P{|Y − µ| > 1.5σ}
≥ P{|Y − µ| > 2σ} ≈ 1− 0.95 = 0.05 .

101see the introcduction to subch.10.5: The Normal Probability Distribution

239 Math 447 - Version 2025-02-20



Math 447 – MF Lecture Notes Student edition with proofs

Thus, higher precision calculations show that the more likely event of Y (ω) not being within one
standard deviation of 18.40 mm only has a probability of 0.32, substantially less than our overly
generous estimate of 4/9 = 0.444̄ for the less likely event of being within 1.5 standard deviations.
By the way, the exact figure (in the case of Y ∼NNN (18.40, 0.64)) is P{|Y − µ| > 1.5σ} ≈ 0.1336.
This is less than one third of the Tchebysheff estimate. �

Example 10.4. It has been established some time ago that the data in the population of interest
follow a distribution with a mean of µ = 18.40. In other words, a random pick Y (a sample of size
1) from that population has E[Y ] = 18.40. There have been concerns that the composition of the
population has changed significantly and µ with it. An SRS (simple random sample) is drawn from
that population and mean and variance are estimated from the realization of this sample as

Ȳ (ω) = 17.60 and S2(ω) = 6.25 .102

Is the deviation of Ȳ (ω) from µ big enough to discard µ = 18.40 and go through the process of
establishing a new population mean?

Solution: We use S2 = 6.25 for σ2 = V ar[Y ]. Then σ =
√

6.25 = 2.5. We solve

kσ = |Ȳ − E[Y ]| , i.e., 0.25k = |17.60− 18.40| = 0.8 ,

for k and obtain k = 3.2. Thus, k2 = 10.24. Since E[Ȳ ] = E[Y ] it follows from Tchebysheff’s
inequality (10.54) that the probability of obtaining a sample with a difference Ȳ (ω)− E[Y ] as large
as or even larger than the one of the sample we have drawn, is

P{|Y − µ| < kσ} ≥ 1 − 1

k2
= 1 − 1

10.24
= 0.902344 .

This probability is very large and shows that our sample mean Ȳ = 17.60 does not contradict the
assumption that the population mean 18.40 �

102Ȳ = 17.60 is the so called sample mean (see Example 11.5: Variance of the sample mean on p.262) and

S2 = S2(ω) =
1

n− 1

(
n∑
j=1

(
Yj(ω)− Ȳ (ω)

)2) is the so called sample variance which will be introduced in subchapter

13.3 (Sampling Distributions) of Chapter 13(Limit Theorems). See Definition 13.4: Sample variance on p.325.

240 Math 447 - Version 2025-02-20



Math 447 – MF Lecture Notes Student edition with proofs

11 Multivariate Probability Distributions

Like the previous chapter, this one is extremely skeletal in nature. It contains very few examples.
You are reminded again that you must work through the corresponding chapters in the WMS text.
In this case, that would be WMS Chapter 5 (Multivariate Probability Distributions).

11.1 Multivariate CDFs, PMFs and PDFs

Assumption 11.1 (Comma separation denotes intersection). We will follow the following con-
vention for the notation of events that are generated by random variables or random elements
X,Y, Z . . .

Separating commas are to be interpreted as “and” and not as “or”. Thus, for example,

{X ∈ B, Y = α, 5 ≤ Z < 8} = {X ∈ B and Y = α and 5 ≤ Z < 8}
= {X ∈ B} ∩ {Y = α} ∩ {5 ≤ Z < 8} . �

Definition 11.1 (Joint cumulative distribution function).

Given are two random variables Y1 and Y2. No assumption is made whether they are dis-
crete or continuous. We call

F (y1, y2) := FY1,Y2(y1, y2) := P (Y1 ≤ y1, Y2 ≤ y2) , where y1, y2 ∈ R ,(11.1)

the joint cumulative distribution function or bivariate cumulative distribution function
or joint CDF or joint distribution function of Y1 and Y2. �

Theorem 11.1.

Let Y1 and Y2 be random variables with joint CDF FY1,Y2(y1, y2). Further, assume that ~a :=

(a1, a2) ∈ R2 and~b := (b1, b2) ∈ R2 satisfy a1 < b1 and a2 < b2. Then,

(11.2) FY1,Y2(−∞,−∞) = FY1,Y2(−∞, y2) = FY1,Y2(y1,−∞) = 0 .

(11.3) FY1,Y2(∞,∞) = 1 ,

P{a1 < Y1 ≤ b1, a2 < Y2 ≤ b2} = FY1,Y2(b1, b2) − FY1,Y2(a1, b2)

− FY1,Y2(b1, a2) + FY1,Y2(a1, a2) ,
(11.4)

(11.5) FY1,Y2(b1, b2) − FY1,Y2(a1, b2) − FY1,Y2(b1, a2) + FY1,Y2(a1, a2) ≥ 0 ,

PROOF:
(11.2) follows from

P{Y1 < −∞} = P{Y2 < −∞} = 0 .
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(11.3) follows from
P{Y1 <∞, Y2 <∞} = P (Ω) = 1 .

(11.5) is immediate from (11.4).
Finally, for the proof of (11.4), we see from the three pictures below the following:

• P{a1 < Y1 ≤ b1, a2 < Y2 ≤ b2} =̂ black rectangle in the upper right corner
• FY1,Y2(b1, b2) =̂ shaded area in the right drawing
• FY1,Y2(b1, a2) =̂ shaded area (below black rectangle) in the left drawing
• FY1,Y2(b1, a2) =̂ shaded area (to left of black rectangle) in the middle drawing
• FY1,Y2(a1, a2) =̂ area marked with a red C

The expression FY1,Y2(b1, b2) − FY1,Y2(a1, b2) − FY1,Y2(b1, a2) would correspond to the black
rectangle, except that we subtracted the red C area twice. We add FY1,Y2(a1, a2) to compensate. �

Definition 11.2 (Joint probability mass function).

Let Y1 and Y2 be discrete random variables. We call

p(y1, y2) := pY1,Y2(y1, y2) := P{Y1 = y1, Y2 = y2} , where y1, y2 ∈ R ,(11.6)

the joint probability mass function or bivariate probability mass function or joint PMF
of Y1 and Y2. �

Just as in the univariate case, pY1,Y2(y1, y2) assigns nonzero probabilities to only finitely or countably
many pairs of values (y1, y2). As in the univariate case, by definition,∑

(y1,y2)∈B

pY1,Y2(y1, y2) =
∑

(y1,y2)∈B,
pY1,Y2 (y1,y2)> 0

pY1,Y2(y1, y2) .

Proposition 11.1 (WMS Ch.05.2, Theorem 5.1).

If Y1 and Y2 are discrete random variables with joint PMF pY1,Y2(y1, y2), then
(1) pY1,Y2(y1, y2) ≥ 0 for all y1, y2 ∈ R,
(2)

∑
y1,y2

pY1,Y2(y1, y2) = 1.

(3) FY1,Y2(y1, y2) =
∑

u1≤y1, u2≤y2

pY1,Y2(u1, u2) =
∑
u1≤y1

∑
u2≤y2

pY1,Y2(u1, u2) .
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PROOF: Obvious. �

Definition 11.3 (Jointly continuous random variables).

Let Y1 and Y2 be random variables with joint CDF F (y1, y2). We call Y1 and Y2 jointly
continuous if F (y1, y2) is a continuous function of both arguments. �

Assumption 11.2 (Jointly continuous random variables have PDFs). We will follow the following
convention for the notation of events that are generated by random variables or random elements
X,Y, Z . . .

We assume for all jointly continuous random variables Y1 and Y2 that
∂2FY1,Y2
∂y1∂y2

exists and is

continuous except for (y1, y2) ∈ B∗, where the set B∗ ⊆ R2 satisfies that
B∗∩B is finite for any bounded subset B ∈ R2 (bounded sets are those contained in a circle
with sufficiently large radius).

This assumption guarantees for all y1, y2 ∈ R, when we write fY1,Y2 for
∂2FY1,Y2
∂y1∂y2

, that

FY1,Y2(y1, y2) =

∫ y1

−∞

∫ y2

−∞
fY1,Y2(u1, u2) du2 du1

=

∫ y2

−∞

∫ y1

−∞
fY1,Y2(u1, u2) du1 du2 .

=

∫∫
]−∞,y1×]−∞,y2]

fY1,Y2(u1, u2) du1 du2 . �

(11.7)

Definition 11.4 (WMS Ch.05.2, Definition 5.3).

Let Y1 and Y2 be continuous random variables with joint distribution function F (y1, y2) and

second derivative fY1,Y2(y1, y2) =
∂2FY1,Y2
∂y1∂y2

(y1, y2). We call fY1,Y2(y1, y2) the joint probabil-

ity density function or joint PDF of Y1 and Y2. �

Theorem 11.2.

Let Y1 and Y2 be jointly continuous random variables with joint PDF fY1,Y2(y1, y2), then
(1) fY1,Y2(y1, y2) ≥ 0 for all y1, y2.

(2)
∞∫
−∞

∞∫
−∞

fY1,Y2(y1, y2)dy1dy2 = 1.

PROOF: An easy consequence of Theorem 11.1 on p.241. �
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11.2 Marginal and Conditional Probability Distributions

Definition 11.5 (Marginal distribution of two random variables).

Let ~Y = (Y1, Y2) be a vector of two random variables with joint distribution

(B1, B2) 7→ PY1,Y2(B1, B2) = P{Y1 ∈ B1, Y2 ∈ B2} , where B1, B2 ⊆ R.

We call the probability measures

(11.8) Q1 : B1 7→ PY1,Y2(B1,R) and Q2 : B2 7→ PY1,Y2(R, B2)

the marginal distributions of ~Y = (Y1, Y2). �

Proposition 11.2.

The marginal distributions of ~Y = (Y1, Y2) are the distributions PY1 and PY2 of the coordinates
Y1 and Y2. In other words, Q1 = PY1 and Q2 = PY2

PROOF: Since, Y1(ω) ∈ B ⇔ Y1(ω) ∈ B and Y2(ω) ∈ R holds for all B ⊆ R, we obtain

Q1(B) = PY1,Y2(B,R) = P{Y1 ∈ B, Y2 ∈ R} = P{Y1 ∈ B} = PY1(B) , whenever B ⊆ R.

Thus, Q1 = PY1 . We obtain in a similar fashion from Y2(ω) ∈ B ⇔ Y1(ω) ∈ R and Y2(ω) ∈ B, that

Q2(B) = PY2(B) , for all B ⊆ R. �

Henceforth, we will retire the symbols Q1, Q2 and denote the marginal distributions of ~Y = (Y1, Y2)
by PY1 and PY2 .
Definition 11.5 translates for discrete random variables, whose distribution is determined by their
joint PMF and for continuous random variables, whose distribution is determined by their joint
PDF, to the following.

Definition 11.6 (Marginal PMF and PDF).

(a) Let Y1 and Y2 be discrete random variables with joint PMF pY1,Y2(y1, y2). We call

(11.9) pY1(y1) =
∑
all y2

pY1,Y2(y1, y2) and pY2(y2) =
∑
all y1

pY1,Y2(y1, y2)

the marginal probability mass functions or marginal PMFs of Y1 and Y2.

(b) Let Y1 and Y2 be continuous random variables with joint PDF fY1,Y2(y1, y2). We call

(11.10) fY1(y1) =

∫ ∞
−∞

fY1,Y2(y1, y2) dy2 and fY2(y2) =

∫ ∞
−∞

fY1,Y2(y1, y2) dy1 .

the marginal density functions or marginal PDFs of Y1 and Y2. �

Remark 11.1. We recall Definition 5.7 of P (A | B), the probability of the event A conditioned on the
event B, which is defined for P (B) > 0 as

P (A | B) =
P (A ∩B)

P (B)
.
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We also recall that, if P (B) > 0, the set function A 7→ P (A | B) is a probability measure on Ω. See
Theorem 5.8 on p.118. We replace the general events A and B with events {Y1 = y1} and {Y2 = y2}
and obtain, if P{Y2 = y2} > 0,

(11.11) P{Y1 = y1 | Y2 = y2} =
P{Y1 = y1, Y2 = y2}

P{Y2 = y2}
.

As we always do for conditional probabilities, we interpret (11.11) as the probability that the ran-
dom variable Y1 equals y1, given that Y2 equals y2.
Not much can be done with formula (11.11) for continuous random variables Y1 and Y2, because
P{Y2 = y2} = 0 for all y2 ∈ R; but it shows us how to define conditional PMFs for discrete random
variables. �

Definition 11.7 (Conditional probability mass function).

Let Y1 and Y2 be discrete random variables with joint PMF pY1,Y2(y1, y2) and marginal PMFs
pY1(y1) and pY2(y2). Then we call

(11.12) pY1|Y2(y1 | y2) :=

{
P{Y1 = y1 | Y2 = y2} , if P{Y2 = y2} > 0 ,

undefined , if P{Y2 = y2} = 0 ,

the conditional probability mass function or the conditional PMF of Y1 given Y2.

Likewise, we call

(11.13) pY2|Y1(y2 | y1) :=

{
P{Y2 = y2 | Y1 = y1} , if P{Y1 = y1} > 0 ,

undefined , if P{Y1 = y1} = 0 ,

the conditional PMF of Y2 given Y1. �

Remark 11.2. Note that conditional PMFs can be expressed in terms of joint PMF and marginal
PMFs:

pY1|Y2(y1 | y2) =
pY1,Y2(y1, y2)

pY2(y2)
if pY2(y2) > 0 ,(11.14)

pY2|Y1(y2 | y1) =
pY1,Y2(y1, y2)

pY1(y1)
if pY1(y1) > 0 . �(11.15)

We had mentioned in Remark 11.1 on p.244 that we must find an alternative to the formula

P{Y1 = y1 | Y2 = y2} =
P{Y1 = y1, Y2 = y2}

P{Y2 = y2}
,

used for discrete random variables conditioning, when conditioning a continous random variable
on another continuous random variable. And yet, the discrete case formulas. (11.14) and (11.14)
will guide us in creating the appropriate definitions.
From a modeling perspective, when one is concerned with expressing reality in mathematical terms,
the next two definition have proven very useful.
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Definition 11.8 (Conditional probability density function).

Let Y1 and Y2 be continuous random variables with joint PDF fY1|Y2(y1, y2) and marginal
densities fY1(y1) and fY2(y2). Then we call

(11.16) fY1|Y2(y1 | y2) :=


fY1,Y2(y1, y2)

fY2(y2)
, if fY2(y2) > 0 ,

undefined , if fY2(y2) = 0 ,

the conditional probability density function or the conditional PDF of Y1 given Y2.

Likewise, we call

(11.17) fY2|Y1(y2 | y1) :=


fY1,Y2(y1, y2)

fY1(y1)
, if fY1(y1) > 0 ,

undefined , if fY1(y1) = 0 ,

the conditional PDF of Y2 given Y1. �

Definition 11.9. ?

Let Y1 and Y2 be two jointly continuous random variables. Then,

(11.18) FY1|Y2(y1 | y2) :=

∫ y1

−∞

fY1,Y2(u1, y2)

fY2(y2)
du1

defines the conditional distribution function or conditional CDF of Y1 given Y2 = y2. �

Remark 11.3. We interpret fY1|Y2(y1 | y2) and FY1|Y2(y1 | y2) as follows:

fY1|Y2(y1 | y2) ≈ P{y1 < Y1 ≤ y1 + δ, y2 < Y2 ≤ y2 + δ}
P{y2 < Y2 ≤ y2 + δ}

,

FY1|Y2(y1 | y2) ≈ P{Y1 ≤ y1 | y2 < Y2 ≤ y2 + δ} ,

for very small δ > 0. As δ → 0, the error of approximation becomes smaller and smaller. �

11.3 Independence of Random Variables and Discrete Random Elements

Introduction 11.1. Let X1, X2 : (Ω, P ) → Ω′ be two random elements (recall that they are called
random variables only if Ω′ ⊆ R). Not all events A ⊆ Ω are meaningful for X1 and X2. Rather, only
events generated by X1 and by X2, i.e., events of the form {X1 ∈ B1} and {X2 ∈ B2} for suitable
B1, B2 ⊆ Ω′ will matter.
Since independence of two events A1 and A2 is defined by P (A1 ∩ A2) = P (A1)P (A2), the proper
way to define independence of X1 and X2 seems to be

P{X1 ∈ B1, X2 ∈ B2, } = P{X1 ∈ B1} · P{X2 ∈ B2, } for all relevant B1, B2 ⊆ Ω′.(11.19)

What are the relevant sets Bj? We answer that question for discrete random elements (hence, also
for discrete random variables) and for continuous random variables.
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(a) Assume that X : (Ω, P ) → Ω′ is a discrete random element with PMF pX(x). In other words,
there is a countable Ω∗ ⊆ Ω′ such that, for any B ⊆ Ω′,

P{X ∈ B} = PX(B) =
∑

x∈Ω∗∩B
pX(x) =

∑
x∈B

pX(x) =
∑
x∈B

P{X = x} .

These equations show that the distribution of X is determined by the events {X = x}. Thus, the
relevant sets for X are of the form B = {x}.
(b) Assume that Y is a continuous random variable on (Ω, P ) with PDF fY (y). Then the probabili-
ties for the events that matter, the events {a < Y ≤ b}where a < b, are

P{a < Y ≤ b} =

∫ b

a
fY (y)dy .

(See (10.4) in heorem 10.2 on p.214.) This equation shows that the distribution of Y is determined
by the probability density function fY (y). Thus, the relevant sets for Y are the intervals B = ]a, b].
103

In summary, we could define independence of discrete random elements X1 and X2 as

P{X1 = x1, X2 = x2, } = P{X1 = x1} · P{X2 = x2, } for all x1, x2 ∈ Ω′.

Equivalently, this can be expressed as

pX1,X2(x1, x2) = pX1(x1) · pX2(x2) for all x1, x2 ∈ Ω′.(11.20)

Moreover, independence of continuous random variables Y1 and Y2 could be defined as

P{a < X1 ≤ b, c < X2 ≤ d} = P{a < X1 ≤ b} · P{c < X2 ≤ d} for all a < b and c < d.

Equivalently, this can be expressed as∫ b

a

∫ d

c
fY1,Y2(y1, y2)dy2 dy1 =

∫ b

a
fY1(y1)dy1 ·

∫ d

c
fY2(y2)dy2 for all a < b and c < d.(11.21)

The CDF (cumulative distribution function) FY (y) gives us for both discrete and continuous ran-
dom variables (but we must exclude discrete random elements) a unified way to express what was
stated in (a) and (b) as follows.
In the discrete case (a) we have

P{Y = y} = P{Y ≤ y} − P{Y < y} = FY (y)− FY (y−) .

Here FY (y−) = lim
a<y,a→y

FY (a) is the left–hand limit of the (monotone) function FY (·) at y.

In the continuous case (b) we have

P{a < Y ≤ b} = P{Y ≤ b} − P{Y ≤ a} = FY (b)− FY (a) .

In both cases, independence of Y1 and Y2 can now be defined as

FY1,Y2(y1, y2) = FY1(y1) · FY2(y2) for all y1, y2 ∈ R. �(11.22)
103Since P{X = a} = 0 for all a ∈ R, it does not matter whether we do or do not include the end points. See Proposition

10.1 on p.213.
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We make (11.22) the basis for the definition of independence of random variables.

Definition 11.10 (Independent random variables).

Let Y1 and Y2 be random variables with CDFs FY1(y1) and FY2(y2) and with joint CDF
FY1,Y2(y1, y2). We call Y1 and Y2 independent if

FY1,Y2(y1, y2) = FY1(y1) · FY2(y2) for all y1, y2 ∈ R.(11.23)

If Y1 and Y2 are not independent, we call them dependent.

We must treat discrete random elements separately since there are no CDFs.

Let X1 and X2 be discrete random elements with PMFs pX1(x1) and pX2(x2) and with joint
PMF pX1,X2(x1, x2). We call X1 and X2 independent if

pX1,X2(x1, x2) = pX1(x1) · pX2(x2) for all x1, x2 ∈ R.(11.24)

If X1 and X2 are not independent, we call them dependent. �

Theorem 11.3 (Functions of independent random variables are independent).

Let ~Y = (Y1, . . . , Yk) : (Ω, P )→ R be a vector of k independent random variables and hj : R→ R.
• Then the random variables h1 ◦ Y1, . . . , hk ◦ Yk also are independent.

PROOF: We recall (2.50) of Proposition 2.8 (Preimages of function composition) on p.45: Let f :
X → Y and g : Y → Z and W ⊆ Z. Then

(g ◦ f)−1 = f−1 ◦ g−1, i.e., (g ◦ f)−1(W ) = f−1
(
g−1(W )

)
.(A)

We use this twice in the following calculations.

P{hj ◦ Yj ∈ Bj , (j = 1, . . . , n)} = P{(hj ◦ Yj)−1(Bj), (j = 1, . . . , n)}
(A)
= P{Y −1

j ◦ h−1
j (Bj), (j = 1, . . . , n)} = P{Yj ∈ h−1

j (Bj), (j = 1, . . . , n)} .

Since the Yj are independent, the product rule holds. We obtain

P{hj ◦ Yj ∈ Bj , (j = 1, . . . , n)} =
∏
j

P{Yj ∈ h−1
j (Bj)} =

∏
j

P{Y −1
j ◦ h−1

j (Bj)}

(A)
=
∏
j

P{
∏
j

P{(hj ◦ Yj)−1(Bj)} =
∏
j

P{hj ◦ Yj ∈ Bj} . �

Theorem 11.4 (WMS Ch.05.4, Theorem 5.4).

If Y1 and Y2 are discrete random variables with joint PMF pY1,Y2(y1, y2) and marginal PMFs pY1(y1)
and pY2(y2), then

Y1, Y2 are independent ⇔ pY1,Y2(y1, y2) = pY1(y1) · pY2(y2) for all y1, y2 ∈ R.(11.25)
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If Y1 and Y2 are continuous random variables with joint PDF fY1,Y2(y1, y2) and marginal PDFs
fY1(y1) and fY2(y2), then

Y1, Y2 are independent ⇔ fY1,Y2(y1, y2) = fY1(y1) · fY2(y2) for all y1, y2 ∈ R.(11.26)

PROOF: We only prove here the ⇒⇒⇒ directions of (11.25) and (11.26). The proof of the opposite
direction is left as an excercise to the reader.
We apply (11.4) of Theorem 11.1 on p.241 and (11.23) of Definition 11.10 (Independent random
variables) on p.248 as follows.

P{a1 <Y1 ≤ y1, a2 < Y2 ≤ y2}
(12.18)

= FY1,Y2(y1, y2) − FY1,Y2(a1, y2) − FY1,Y2(y1, a2) + FY1,Y2(a1, a2)

(11.23)
= FY1(y1)FY2(y2) − FY1(a1)FY2(y2) − FY1(y1)FY2(a2) + FY1(a1)FY2(a2)

=
(
FY1(y1) − FY1(a1)

) (
FY2(y2) − FY2(a2)

)
= P{a1 < Y1 ≤ y1} · P{a2 < Y2 ≤ y2}(A)

For discrete Y1 and Y2, we obtain with a1 = y1− and a2 = y2−,

pY1,Y2(y1, y2) = P{y1− < Y1 ≤ y1, y2− < Y2 ≤ y2}
(A)
= P{y1− < Y1 ≤ y1} · P{y2− < Y2 ≤ y2} = pY1(y1) · pY2(y2) .

For continuous Y1 and Y2, we obtain,∫ y1

a1

∫ y2

a2

fY1,Y2(u1, u2) du1du2 = P{a1 < Y1 ≤ y1, a2 < Y2 ≤ y2}

(A)
= P{a1 < Y1 ≤ y1} · P{a2 < Y2 ≤ y2} =

∫ y1

a1

fY1(u1) du1 ·
∫ y2

a2

fY2(u2) du2

We differentiate with respect to y1 and y2 and obtain fY1,Y2(y1, y2) = fY1(y1) fY2(y2). �

The next theorem will be generalized in Theorem 11.10 on p.256. There Y1 and Y2 will be replaced
with functions g(Y1) and (Y2).

Theorem 11.5.

If Y1 and Y2 are independent random variables, then

E[Y1 · Y2] = E[Y1] · E[Y2] .(11.27)

PROOF: We show the proof for continuous Y1 and Y2. Since fY1,Y2(y1, y2) = fY1(y1) · fY2(y2),

E[Y1Y2] =

∫ ∞
−∞

∫ ∞
−∞

y1y2fY1,Y2(y1, y2) dy1 dy2 =

∫ ∞
−∞

∫ ∞
−∞

y1y2fY1(y1) fY2(y2) dy1 dy2

=

∫ ∞
−∞

y2

[∫ ∞
−∞

y1fY1(y1) dy1

]
fY2(y2) dy2 =

∫ ∞
−∞

y2E[Y1]fY2(y2) dy2

= E[Y1]

∫ ∞
−∞

y2fY2(y2) dy2 = E[Y1]E[Y2] .
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The proof for discrete random variables is obtained by employing pY1,Y2(y1, y2) = pY1(y1) · pY2(y2)
and replacing integration with summation. �

Theorem 11.6 (WMS Ch.05.4, Theorem 5.5).

Let the continuous random variables Y1 and Y2 have a joint PDF fY1,Y2(y1, y2) that is strictly
positive if and only if there are constants a < b and c < d such that

fY1,Y2(y1, y2) > 0 ⇔ a ≤ y1 ≤ b and c ≤ y2 ≤ d .

Then Y1, Y2 are independent ⇔ fY1,Y2(y1, y2) = g1(y1) · g2(y2)(11.28)

for suitable nonnegative functions g1, g2 : R → R such that the only argument of g1 is y1 and the
only argument of g2 is y2.

PROOF:
The⇒⇒⇒ direction is trivially true: Choose the marginal densities fY1 and fY1 for g1 and g2.
PROOF of⇐⇐⇐: From f(y1, y2) = g1(y1) g2(y2), we obtain for the marginal densities,

fY1(y1) =

∫ ∞
−∞

f(y1, y2) dy2 =

∫ ∞
−∞

g1(y1) g2(y2) dy2 = g1(y1)

∫ ∞
−∞

g2(y2) dy2 = αg1(y1) ,

fY2(y2) =

∫ ∞
−∞

f(y1, y2) dy1 =

∫ ∞
−∞

g1(y1) g2(y2) dy1 = g2(y2)

∫ ∞
−∞

g1(y1) dy1 = βg2(y2) ,

(A)

Here, the constants α =
∞∫
−∞

g2(y2) dy2 and β =
∞∫
−∞

g1(y1) dy1 satisfy

αβ =

∫ ∞
−∞

g2(y2) dy2 ·
∫ ∞
−∞

g1(y1) dy1

=

∫ ∞
−∞

∫ ∞
−∞

g1(y1)g2(y2) dy1dy2 =

∫ ∞
−∞

∫ ∞
−∞

fY1,Y2(y1, y2) dy1dy2 = 1 .

(B)

We conclude that

fY1,Y2(y1, y2)
(B)
= αβ fY1,Y2(y1, y2) = αβ g1(y1)g2(y2) =

(
αg1(y1)

)(
βg2(y2)

) (A)
= fY1(y1)fY2(y2) .

We have proved independence. �

Example 11.1 (Buffon’s needle). The plane is segmented by paralled lines into strips of width d > 0.
A needle of length λ < d is dropped at random onto the plane. What is the probability that the line
will intersect one of those parallel lines?
Solution: A needle that is dropped on the plane uniquely determines a right–angled triangle as
follows:
• Leg #1 is perpendicular to the parallels. It extends from the midpoint of the needle to the

nearest parallel line. Its length is denoted a.
• Its hypothenuse of length c is on the same line as the needle. Thus, it extends from the

midpoint of the needle to the point of intersection with that parallel line.
• Leg #2 is located on that parallel line. Its length is denoted b.
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We denote the angle formed by the hypothenuse and leg #2 by θ. Thus,

sin(θ) =
a

c
, thus, c =

a

sin(θ)
.(A)

The needle intersects the (nearest) parallel ⇔ c < λ/2
(A)⇐⇒ a

sin(θ)
< λ/2 .(B)

11.1 (Figure).
Buffon’s needle

In Figure 11.1, the triangle on the left satisfies (B):
• c1 < λ/2 means that theNE part of the needle extends past the nearest parallel.

On the other hand, the one on the right does not satisfy (B):
• c2 > λ/2 means that the SW end of the needle does not reach the nearest parallel.

Note that the triangle created by the random position of the needle is uniquely determined by the
two random variables

ω 7→ A(ω) := length of leg #2 ,
ω 7→ Θ(ω) := angle between leg #1 and the hypothenuse.

Let Γ ⊆ Ω be the event that the needle intersects with a parallel line. We have seen that

ω ∈ Γ
(B)⇐⇒ A(ω)

sin
(
Θ(ω)

) <
λ

2
. ⇔

(
A(ω),Θ(ω)

)
∈ B ,

where

B =

{
(a, θ) ∈]0, d/2[× ]0, π[ :

a

sin(θ)
<

λ

2

}
=

{
(a, θ) ∈]0, d/2[× ]0, π[ : a <

λ

2
· sin(θ)

}
.

Here, the constraint 0 < a < d/2 results from the fact that the midpoint of the needle has a distance
of at most d/2 from the nearest parallel. Thus, the length A(ω) of leg #2 cannot exceed d/2.
The randomness of the needle toss ensures that
• A ∼ uniform(0, λ/2) • Θ ∼ uniform(0, π) • A and Θ are independent.

It follows that the joint PDF of (A,Θ) is

fA,Θ(a, θ) = fA(a) · fΘ(θ) =


2

dπ
, if 0 < a <

d

2
, 0 ≤ θ ≤ π ,

0 , elsewhere .
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We obtain the probability that a randomly tossed needle intersects one of the parallel lines as

P (Γ) = P{(A,Θ) ∈ B} =

∫∫
B
fA,Θ(a, θ) da dθ

=

∫ π

0

∫ (λ/2) sin(θ)

0

2

dπ
da dθ =

λ

dπ

∫ π

0
sin(θ) dθ =

λ

dπ
(− cos θ)

∣∣∣π
0

=
2λ

dπ
.

Note that
∫
. . . dθ must go from 0 to π and not just from 0 to π/2, because a needle with an angle of

30◦ (sloping up) is different from one with an angle of 150◦ (sloping down). �

11.4 The Mulitivariate Uniform Distribution

In this section we extend uniform distribution of Chapter 10.4 (The Uniform Probability Distribu-
tion) to regions in two– and threedimensional space.

Definition 11.11 (Multivariate continuous, uniform random variable).

(A) Let ~Y = (Y1, Y2) be a twodimensional random vector of continuous random variables
with a joint PDF f~Y (y1, y2) that satisfies the following:

• There is a constant c > 0 such that either f~Y (y1, y2) = c or f~Y (y1, y2) = 0.

Let C := {(y1, y2) ∈ R2 : f~Y (y1, y2) > 0}. Then we say that ~Y has a continuous uniform
probability distribution on C. �

(B) Let ~Y = (Y1, Y2, Y3) be a threedimensional random vector of continuous random vari-
ables with a joint PDF f~Y (y1, y2, y3) that satisfies the following:

• There is a constant d > 0 such that either f~Y (y1, y2, y3) = d or f~Y (y1, y2, y3) = 0.

Let D := {(y1, y2, y2, y3) ∈ R3 : f~Y (y1, y2, y3) > 0}. Then we say that ~Y has a continuous
uniform probability distribution on D. �

Remark 11.4. The constants c and d of the previous definition are uniquely determined as follows:
(A) In the twodimensional case,∫∫

R2

f~Y (y1, y2) dy1 dy2 = 1 ⇒ c = 1
/ ∫∫

C
dy1 dy2 .

In other words, c is the reciprocal of the area of C.

(B) In the threedimensional case,∫∫∫
R3

f~Y (y1, y2, y3) dy1 dy2 dy3 = 1 ⇒ d = 1
/ ∫∫∫

D
dy1 dy2 dy3 .

Thus, d is the reciprocal of the volume of D.

(C) It should be obvious how to generalize uniform distribution to n–dimensional random vectors:

Let ~Y = (Y1, . . . , Yn) be an n–dimensional random vector of continuous random variables with a
joint PDF f~Y (~y) that satisfies the following:

252 Math 447 - Version 2025-02-20



Math 447 – MF Lecture Notes Student edition with proofs

• There is a constant e > 0 such that either f~Y (~y) = e or f~Y (~y) = 0.

Let E := {~y ∈ Rn : f~Y (~y) > 0}. Then we say that ~Y has a continuous uniform probability
distribution on E.
Similarly to the cases n = 2 and n = 3, we obtain that e is the reciprocal of the (n–dimensional)
volume of E: e = 1/e′, where

e′ :=

∫
· · ·
∫

~y ∈ E

d~y �

Example 11.2. (a) What is the uniform density on C := C1 ] C2, where

C1 := {~y ∈ R2 : y1 < 0, 0 ≤ y2 ≤ ey1} , C2 := {~y ∈ R2 : 0 ≤ y1 ≤ 2, 0 ≤ y2 ≤ 1} ?

Note that C1 has area
0∫
−∞

ey1 dy1 = 1 and C2, a rectangle of with 2 and height 1, has area 2. Thus, C

has area 3 and thus, c = 1/3. It follows that

f~Y (~y) =


1

3
, if y1 < 0, 0 ≤ y2 ≤ ey1 , or 0 ≤ y1 ≤ 2, 0 ≤ y2 ≤ 1 ,

0 , else .

(b) Determine the uniform density on

D := {~y ∈ R3 : y1 > 0, y2 > 0, y3 > 0, y2
1 + y2

2 + y2
3 ≤ 1} .

Since Vol(D), the volume of D, is one eighth of (4/3)π, the volume of the unit sphere, we obtain

d =
1

Vol(D)
=

8

(4/3)π
=

6

π
.

Thus,

f~Y (~y) =


6

π
, if y1 > 0, y2 > 0, y3 > 0, y2

1 + y2
2 + y2

3 ≤ 1 ,

0 , else . �

11.5 The Expected Value of a Function of Several Random Variables

In this section we must work with vectors (x1, x2, . . . , xk) of fixed,but arbitrary dimension k, where
each component xj is a real number and thus, (x1, x2, . . . , xk) ∈ Rk. Since it is extremely space
consuming to repeatedly write such lengthy objects, we remind you of the “arrow notation” that
was introduced in Example 2.21 on p.51.

Notation 11.1 (Arrow notation for vectors).
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• We write ~x as an abbreviation for a vector
(
x1, x2, . . . , xn

)
. The dimension n is either

explicitly stated or known from the context.
• If f : Rn → R is a function of n real numbers and U = [a1, b1] × · × [an, bn] is an

n–dimensional rectangle, we write∫
A
f(~x) d~x =

∫ b1

a1

· · ·
∫ b2

a2

∫ b1

a1

f(x1, x2, . . . , xn) dy1dy2 · · · dyn

Note that all integrands that occur in this course are so well behaved that the order in
which those n integrations take place can be switched around, just as you remember
it in the cases n = 2 and n = 3 from multidimensional calculus.

• Let a1 < b1, a2 < b2, . . . , an < bn for some n ∈ N. Then ~y ∈ ]a1, b1] × ·×]ad, bd]
denotes the following: ~y =

(
y1, y2, . . . , yd

)
and ai < yi ≤ bi for i = 1, . . . , d.

Here are some examples.
(a) ~z ∈ Rm means: ~z =

(
z1, z2, . . . , zm

)
and zj ∈ R for all j.

(b) If f : Rk → R, then g(~y) means: f
(
y1, . . . , yk

)
.

(c) If g : Rd → R, then g(~Y ) means: g
(
Y1, . . . , Yd

)
; g
(
~Y (ω)

)
means: g

(
Y1(ω), . . . , Yd(ω)

)
.

(d) If ψ : Rn → R, then E
[
ψ(~Y )

]
means: E

[
ψ
(
Y1, . . . , Yn

)]
.

Definition 11.12 (Expected value of g(~Y )).

(a) Let k ∈ N and let ~Y =
(
Y1, Y2, . . . , Yk

)
be a vector of discrete random variables on a

probability space (Ω, P ) with PMF p~Y (~y). Further, let g : Rk → R be a function of k real
numbers y1, y2, . . . , yk. Then

E
[
g(~Y )

]
= E

[
g(Y1, Y2, . . . , Yk)

]
:=

∑
· · ·
∑

y1, y2, ..., yk

g(~y) p~Y (~y)(11.29)

is called the expected value or mean of the random variable g(~Y ). As usual, the sum on the
right is countable summation over those ~y =

(
y1, y2, . . . , yk

)
for which p~Y (~y) 6= 0.

(b) Let k ∈ N and let ~Y =
(
Y1, Y2, . . . , Yk

)
be a vector of continuous random variables on

a probability space (Ω, P ) with PDF f~Y (~y). Further, let h : Rk → R be a function of k real
numbers y1, y2, . . . , yk. Then

E
[
h(~Y )

]
= E

[
h(Y1, Y2, . . . , Yk)

]
:=

∫ ∞
−∞
· · ·
∫ ∞
−∞

h(~y) f~Y (~y)d~y(11.30)

is called the expected value or mean of the random variable g(~Y ).

See Notations 11.1 (Arrow notation for vectors) for an explanation of
∫
· · · d~y.
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As in the onedimensional case, we only are allowed to say that E
[
g(~Y )

]
exists

if
∑
· · ·
∑
|g(y1, . . . , yk)| p(y1, . . . , yk) is finite and that E

[
h(~Y )

]
exists

if
∫
· · ·
∫
|g(y1, . . . , yk)| f(y1, . . . , yk) dy1 . . . dyk is finite. The functions g and h we deal with

in this course will always satisfy that assumption. �

Example 11.3. As an example of the power of that definition, we give here the proof that

E[Y1 + · · ·+ Yn] = E[Y1] + · · ·+ E[Yn] .

Let h(~y) := y1 + · · ·+ yn. Then, by definition 11.12,

E[h(~Y )] =

∫
Rn

(y1 + · · ·+ yn)f~Y (~y)d~y =
n∑
j=1

∫
Rn
yjf~Y (~y)d~y.

Let ~̃y :=
(
y1, . . . , yj−1, yj+1, . . . , yn

)
. Then

∫
(· · · )d~y =

∫
(· · · )d~̃ydyj) because the order of integration

can be switched. Since yj is constant with respect to ~̃y,∫
Rn
yjf~Y (~y) d~y =

∫
R

(∫
Rn−1

yjf~Y (~y) d~̃y

)
dyj =

∫ ∞
−∞

yj

(∫
Rn−1

f~Y (~y) d~̃y

)
dyj .

The inner integral “integrates out” all variables except yj from the PDF of ~Y . Thus, it is the marginal

PDF fYj of Yj . It follows from E[Yj ] =
∞∫
−∞

yjfYjdyj that

E[h(~Y )] =
n∑
j=1

∫
Rn
yjf~Y (~y)d~y. =

n∑
j=1

∫ ∞
−∞

yjfYj dyj . =
n∑
j=1

E[Yj ] . �

We list here the theorems of WMS Chapter 5.6 (Special Theorems) that detail the rules for evaluating
expectations. For the remainder of this section we assume that Y1, Y2, . . . are random variables on a
common probability space (Ω, P )

Theorem 11.7 (WMS Ch.05.6, Theorem 5.6).

c ∈ R ⇒ E[c] = c .(11.31)

PROOF: Trivial. �

Theorem 11.8 (WMS Ch.05.6, Theorem 5.7).

Let c ∈ R and g : R2 → R Then the random variable g(Y1, Y2) satisfies

E[cg(Y1, Y2)] = cE[g(Y1, Y2)] .(11.32)
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PROOF: Trivial. �

Theorem 11.9 (WMS Ch.05.6, Theorem 5.8).

Let g1, g2, . . . , gk : Rn → R and ~Y := (Y1, . . . , Yn). Then the random variables gj(~Y ) (j =
1, . . . , k) satisfy

E[g1(~Y ) + g2(~Y ) + · · ·+ gk(~Y )]

= E[g1(~Y )] + E[g2(~Y )] + · · ·+ E[gk(~Y )] .
(11.33)

PROOF: We proved in Example 11.3 on p.255 that E
[∑

j Uj

]
=
∑

j E[Uj ] for discrete or continuous

random variables U1, . . . , Uk. We apply this formula to Uj := gj(~Y ) and the theorem follows. �

The next theorem generalizes Theorem 11.5 on p.249. That one stated that, for independent random
variables, the expectation of the product is the product of the expectations.

Theorem 11.10.

Let g, h : R → R be functions of a single variable and assume that the random variables Y1 and Y2

are independent. Then the random variables g(Y1) and h(Y2) also are independent and they satisfy

(11.34) E[g(Y1)h(Y2)] = E[g(Y1)]E[h(Y2)] .

PROOF: We give the proof for the continuous case only. It is the WMS proof without any alterations.
The proof for the discrete case is similar.
Let fY1,Y2(y1, y2) denote the joint PDF of Y1 and Y2. Independence of Y1 and Y2 yields

fY1,Y2(y1, y2) = fY1(y1) fY2(y2) .

The product g(Y1)h(Y2) is a function ϕ(Y1, Y2) of Y1 and Y2. Hence, by Definition 11.12 (Expected
value of g(~Y )) on p.254,

E[g(Y1)h(Y2)] =

∫ ∞
−∞

∫ ∞
−∞

g(y1)h(y2)fY1,Y2(y1, y2) dy2 dy1

=

∫ ∞
−∞

∫ ∞
−∞

g(y1)h(y2)fY1(y1) fY2(y2) dy2 dy1

=

∫ ∞
−∞

g(y1)fY1(y1)

[∫ ∞
−∞

h(y2)fY2(y2) dy2

]
dy1

=

∫ ∞
−∞

g(y1)fY1(y1)E[h(Y2)] dy1

= E[h(Y2)]

∫ ∞
−∞

g(y1)fY1(y1) dy1 = E[g(y1)]E[h(Y2)] .

The proof of the independence of g◦Y1 and h◦Y2 is based on a characterization of the independence
if random elementsXi which involves σ{Xi}, the sigma algebras generated by eachXi. it is omitted
here. �

256 Math 447 - Version 2025-02-20



Math 447 – MF Lecture Notes Student edition with proofs

11.6 The Covariance of Two Random Variables

Introduction 11.2. If we examine how two random variables Y1 and Y2 relate to each other, we can
consider among other issues the following:

(a) If the values of Y1 increase, will the values of Y2, on average, also tend to increase? One says
in this case that Y1 and Y2 have positive correlation.

(b) Or will the values of Y2, on average, tend to decrease as the values of Y1 increase? One says
in this case that Y1 and Y2 have negative correlation.

(c) Or will the values of Y2, on average, have neither increasing nor falling tendency as the
values of Y1 increase? One says in this case that Y1 and Y2 have zero correlation or that they
are uncorrelated.

(d) What if Y1 and Y2 are independent? We should expect in that case that Y1 and Y2 are uncor-
related.

One can associate with Y1 and Y2 a number ρ, their which measures the strength of their correlation.
More precsisely, it measures the strength of the linear association between Y1 and Y2 and whether
that association is of an increasing or decreasing nature. ρ is defined in terms of the covariance of
Y1 and Y2 and this will be the topic of the current section. �

In this entire section, we consider two random variables Y1 and Y2 on a probability space
(Ω, P ). As usual, we denote mean and standard deviation

µj := E[Yj ] , σj :=
√
V ar[Yj ] , for j = 1, 2.

Definition 11.13 (Covariance).

The covariance of Y1 and Y2 is

Cov[Y1, Y2] = E
[
(Y1 − E[Y1]) (Y2 − E[Y2])] = E

[
(Y1 − µ1) (Y2 − µ2)] . �(11.35)

Remark 11.5. Cov[Y1, Y2] has the following properties:
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(a) The larger the absolute value of the covariance of Y1 and Y2, the greater the linear depen-
dence between Y1 and Y2.

(b) Cov[Y1, Y2] > 0 indicates that, on average, Y1 increases as Y2 increases.
(c) Cov[Y1, Y2] < 0 indicates that, on average, Y1 decreases as Y2 increases.
(d) Cov[Y1, Y2] = 0 indicates that, on average, Y1 remains constant as Y2 increases. It is a pecu-

liarity of the statistician’s lingo that this kind of linear relationship, even if it is very strong,
is defined to be as NO linear relationship between Y1 and Y2.

(e) If we consider 10Y1 instead of Y1 and 10Y2 instead of Y2 the correlation changes by a factor
of 102 = 100: Cov[10Y1, 10Y2] = 100Cov[Y1, Y2]. This is not convenient in many situations
and one defines a standardized correlation by relating Y1 and Y2 to their variances. This will
be done in the next definition. �

Definition 11.14 (Correlation coefficient).

The correlation coefficient, of Y1 and Y2 is

ρ =
Cov(Y1, Y2)

σ1σ2
�(11.36)

We say that Y1 and Y2 have positive correlation if ρ > 0, (i.e., if Cov(Y1, Y2) > 0), they have
negative correlation if ρ < 0, (i.e., if Cov(Y1, Y2) < 0), and that they have zero correlation
or that they are uncorrelated if ρ = 0, (i.e., if Cov(Y1, Y2) = 0).

Proposition 11.3. The correlation coefficient satisfies the inequality

−1 ≤ ρ ≤ 1 �(11.37)

PROOF: Omitted �

The next formula often makes it easier to compute the covariance.

Theorem 11.11.

Cov[Y1, Y2] = E[(Y1 − µ1) (Y2 − µ2)] = E[Y1Y2] − E[Y1]E[Y2] .(11.38)

PROOF: Since E[U + V ] = E[U ] + E[V ] and E[cU ] = cE[U ] and E[c] = c for all random variables
U, V and numbers c,

Cov[Y1, Y2] = E[(Y1 − µ1) (Y2 − µ2)]

= E(Y1Y2 − µ1Y2 − µ2Y1 + µ1µ2)

= E[Y1Y2] − µ1E[Y2] − µ2E[Y1] + µ1µ2

= E[Y1Y2] − µ1µ2 − µ2µ1 + µ1µ2 = E[Y1Y2] − µ1µ2 . �
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Theorem 11.12.

Independent random variables are uncorrelated.

PROOF: By Theorem 11.5 on p.249, independent random variables Y1 and Y2 satisfy
E[Y1Y2] = E[Y1]E[Y2]. Together with (11.38), we obtain

Cov[Y1, Y2] = E[Y1Y2] − E[Y1]E[Y2] = 0 . �

Example 11.4 (Uncorrelated,but not independent). The following simple examle shows two discrete
random variables Y1 and Y2 which are uncorrelated, but they are not independent.
We obtain from the joint PMF p(y1, y2) of Y1 and Y2,
shown at the right, that
E[Y1] = (−1)1

4 + 0 · 1
2 + 1 · 1

4 = 0,
E[Y2] = (−1)1

2 + 1 · 1
2 = 0,

E[Y1Y2] = (−1)(−1)0 + 0(−1)1
2 + (1)(−1)0

+(−1)(1)1
4 + 0 · 1 · 0 + 1 · 1 · 1

4 = 0.

Y2

Y1 −1 1

−1 0 1/4

0 1/2 0

1 0 1/4

Thus, E[Y1Y2] = E[Y1]E[Y2] = 0 and Y1 and Y2 are uncorrelated. On the other hand, p(−1,−1) = 0,
whereas pY1(−1) · pY2(−1) = 1

4 ·
1
2 6= 0. Thus, Y1 and Y2 are not independent. �

Definition 11.15 (Linear function). ?

Let n ∈ N. We call a function ϕ : Rn → R; ~x = (x1, . . . , xn) 7→ ϕ(~x), a linear function, of
x1, . . . , xn, if there are constants a1, . . . , an ∈ R such that

ϕ(~x) = a1x1 + a2x2 + · · ·+ anxn =
n∑
j=1

ajxj . �(11.39)

Remark 11.6. Note that if ~Y = (Y1, . . . , Yn) is a vector of random variables, then the function ϕ of

(11.39) defines a random variable V = ϕ(~Y ) =
n∑
j=1

ajYj . �

Theorem 11.13 (WMS Ch.05.8, Theorem 5.12). Let ~X = X1, . . . , Xm and ~Y = Y1, . . . , Yn be random
variables on a probability space (Ω, P ). For i = 1, . . . ,m and j = 1, . . . , n, let ξi := E(Xi) and ηj := E(Yj).
Further, let

U :=
m∑
i=1

aiXi and V :=
n∑
j=1

bjYj ,

where ~a = (a1, a2, . . . , am) and~b = (b1, b2, . . . , bn) are two constant vectors. Then
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E[U ] =

m∑
i=1

aiξi ,(11.40)

V ar[U ] =

m∑
i=1

a2
iV ar[Xi] + 2

∑∑
1≤i<j≤m

aiajCov[Xi, Xj ] .(11.41)

Cov[U, V ] =

m∑
i=1

n∑
j=1

aibjCov[Xi, Yj ] .(11.42)

In (11.41),
∑∑

1≤i<j≤m
· · · refers to summation over all pairs (i, j) satisfying i < j.

PROOF: The theorem consists of three parts, of which (11.40) follows directly from Theorems 11.8
and 11.9.
Proof of (11.41): From the definition of variance we obtain

V ar[U ] = E[U − E[U ]]2 = E

[
n∑
i=1

aiXi −
n∑
i=1

aiξi

]2

= E

[
n∑
i=1

ai(Xi − ξi)

]2

= E

 n∑
i=1

a2
i (Xi − ξi)2 +

n∑
i=1

n∑
j=1

i 6=j

aiaj(Xi − ξi)(Xj − ξj)


=

n∑
i=1

a2
iE[Xi − ξi]2 +

n∑
i=1

n∑
j=1

i 6=j

aiajE[(Xi − ξi)(Xj − ξj)] .

By the definitions of variance and covariance, we have

E[(Xi − ξi)2] = V ar[Xi] and E[(Xi − ξi)(Xj − ξj)] = Cov[Xi, Xj ] .

Thus,

V ar[U ] =
n∑
i=1

a2
iV ar[Xi] +

n∑
i=1

n∑
j=1

i 6=j

aiajCov[Xi, Xj ] .

We apply symmetry Cov[Xi, Xj ] = Cov[Xj , Xi] to the double summation and obtain

V ar[U ] =
n∑
i=1

a2
iV ar[Xi] + 2

∑∑
1≤i<j≤n

aiajCov[Xi, Xj ] .
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We have shown (11.41). To prove (11.42), we proceed in a similar fashion: We have

Cov[U, V ] = E
[

(U − E[U ])(V − E[V ])
]

= E

( m∑
i=1

aiXi −
m∑
i=1

aiξi

) n∑
j=1

bjXj −
n∑
j=1

bjηj


= E

( m∑
i=1

ai(Xi − ξi)

) n∑
j=1

bj(Yj − ηj)



Thus, Cov[U, V ] = E

 m∑
i=1

n∑
j=1

aibj(Xi − ξi)(Yj − ηj)


=

m∑
i=1

n∑
j=1

aibjE[(Xi − ξi)(Yj − ηj)]

=

n∑
i=1

m∑
j=1

aibjCov[Xi, Yj) . �

Remark 11.7. Note the following about Theorem 11.13:
(a) Neither CDFs, PMFs or PDFs were needed to prove the theorem. Thus, the proof

applies to both discrete and continuous random variables.
(b) Since Cov[Yi, Yi] = V ar[Yi], (11.41) is a particular version of (11.42). �

We are now in a position to prove (10.28) of Theorem 10.8 on p.224 Those formulas state that, for
independent random variables, the variance of the sum equals the sum of the variances. Even better,
independence can be replaced with the weaker assumption of correlation zero. (See Theorem 11.12.)

Corollary 11.1 (Bienaymé formula for uncorrelated variables). ?

Let Y1, Y2, . . . , Yn : Ω → R be uncorrelated random variables (which all are defined on the same
probability space (Ω, P ) (n ∈ N. Then

V ar

 n∑
j=1

Yj

 =

n∑
j=1

V ar[Yj ] .(11.43)

PROOF: Since Y1, . . . , Yn are uncorrelated, Cov[Yi, Yj ] = 0 for 1 ≤ i, j ≤ n and i 6= j. We employ
(11.41) on p.260 with a1 = a2 = · · · = an = 1 and obtain

V ar

[
n∑
i=1

Yi

]
=

n∑
i=1

V ar[Yi] + 2
∑∑
1≤i<j≤n

Cov[Yi, Yj ] =

n∑
i=1

V ar[Yi] + 0 . �
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Example 11.5 (Variance of the sample mean 104 ). This example belongs thematically to Section
8.2 (Sampling and Urn Models With and Without Replacement). We model SRS sampling from a
population to infer statistical knowledge about it as follows.
• The population is represented by a probability space (Ω, P ) and the statistical knowledge

we are interested in is part of the distribution of a random variable Y on (Ω, P ).
• Picking at random an item from the population is modeled as the outcome Y (ω) of an invo-

cation of Y .
• Picking an SRS sample of size n from the population is modeled as the n outcomes ~Y (ω) =(

Y1(ω), . . . , Yn(ω) of n independent random variables Y1, . . . Yn which have the same distri-
bution as Y . In other words, the Yj are a (finite) iid sequence in the sense of Definition 5.18
on p.136.

• Of course, that last point is an idealization, since independent sample picks correspond to
sampling with replacement, whereas SRS models to sampling without replacement. See
Definitions 8.3 on p.186 and 8.5 about SRS and urn models. On the other hand, the compu-
tational differences between results based on sampling with and without replacement are of
practical insignificance if the sample size is small when compared to the population size. 105

In this example we specifically consider the mean of the population data.
• It seems natural to model this mean it by the mean of Y , i.e., the expectation µ = E[Y ] of Y .
• So that’s it then. E[Y ] is the answer we are looking for. Well, it would be if we only knew

the distribution of Y or, at least, E[Y ].
• But we don’t! We “defined” Y as the action of taking a single random pick from the popu-

lation, and that is the extent of our knowledge of Y .
• This is why we introduced the vector ~Y of n iid sample picks. The randomness and in-

dependence of Y1, . . . Yn should make the specific sample ~y that consists of the outcomes
yj = Yj(ω) representative of the population. Thus, its sample mean ȳ = Ȳ (ω) which is
obtained by averaging the sample data, i.e.,

Ȳ (ω) =
Y1(ω) + Y2(ω) + · · ·+ Yn(ω)

n
,

should result in a good estimate of the population mean.
All of the above serves as motivation for the following setup. Let Y1, Y2, . . . , Yn be independent
random variables with common expectation E[Yj ] = µ and variance V ar[Yj ] = σ2 (j = 1, . . . , n).
Let

Ȳ :=
1

n

n∑
j=1

Yj .(11.44)

104This is a modified version of WMS, Example 5.27.
105See parts (c) and (d) of Remark 8.2 on p.185.
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It follows from (11.40) on p.260 and Corollary 11.1 on p.261 that

E[Ȳ ] = E

 1

n

n∑
j=1

Yj

 =
1

n
E

 n∑
j=1

Yj

 =
1

n

n∑
j=1

E[Yj ] =
1

n
(nµ) = µ ,

V ar[Ȳ ] = V ar

 1

n

n∑
j=1

Yj

 =
1

n2
V ar

 n∑
j=1

Yj

 =
1

n2

n∑
j=1

V ar[Yj ] =
1

n2
(nσ2) =

σ2

n
.

We infer from those two formulas the following.
Recall that the purpose of Ȳ is to serve as an estimator for the following population parameter: The
population mean, which is the mean of anyone of the sample picks µ = E[Yj ].
The significance of the formula E[Ȳ ] = µ is as follows
• The expected value of this estimator equals the parameter it is meant to estimate.

An estimator with that property is referred to as an unbiased estimator.
Now to the formula V ar[Ȳ ] = σ2/n. We use it to compare the standard deviations

σYj =
√
V ar[Yj ] and σY =

√
V ar[Ȳ ]

of a single pick Yj and the average Ȳ of n such independent picks. Note that the standard deviation
of a random variable U is a measure for its concentration about its expected value. (And the same
is true for its variance.) A small σU signifies that most outcomes U(ω) are in close vicinity of E[U ].
Thus, σY is a measure for the lack of precision with which Ȳ estimates E[Ȳ ] = µ.

• In the extreme case of a sample of size 1, i.e., n = 1, that lack of precision is σ.
• For n = 100, that lack of precision goes down to

σ

10
. Thus, precision has improved by a

factor of 10.
• Generally speaking, increasing the sample size by the factor K (and spending all that time

and money doing so) does not reward us with a proportionate improvement of the precision
of the estimate Ȳ . It only increases by the factor

√
K. �

11.7 Conditional Expectations and Conditional Variance

11.7.1 The Conditional Expectation With Respect to an Event ?

We will start with a definition of the conditional expectationE[Y | B] of a random variable Y where
conditioning happens with respect to an event B ⊆ Ω. This definition is usually not taught in an
undergraduate level course on probability theory for the following reason: It cannot be extended,
in the case of continuous random variables Y and Ỹ , to E[Y | Ỹ = ỹ], i.e., conditioning on Ỹ having
a fixed outcome ỹ.
All that follows in this subsection is based on Theorem 5.8 on p.118 which states the following: If
(Ω, P ) is a probability space and B ⊆ Ω is an event that satisfies P (B) > 0, then the function Q(·),
defined as Q(A) := P (A | B) for A ⊆ Ω, is a probability measure on Ω. 106

106To be exact, there also was a σ–algebra FFF and we had to assume that B ∈ FFF and that P (A) is defined only for
A ∈ FFF . This in turn implies that Q(A) = P (A | B) only is defined for arguments A ∈ FFF . We do not mention FFF since
we decided to avoid dealing with σ–algebras whenever possible.
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Assumption 11.3.

In all of this subsection we deal with a fixed probability space (Ω, P ) and a fixed event
B ⊆ Ω that satisfies P (B) > 0. We further assume that Q(·) is the probability measure

A 7→ Q(A) := P (A | B), where A ⊆ Ω.(11.45)

The symbols X,X1, X2, . . . denote random elements and X,X1, X2, . . . denote random
variables on Ω. We need not be specific about whether we mean (Ω, P ) or (Ω, Q), because
the definition of random element and random variable does not involve the probability
measure, only the carrier space Ω. �

Remark 11.8. The following mathematical triviality allows us to translate much that we have done
with random variables in connection with P to their analogues with respect to Q = P (· | B).
• All definitions, propositions and theorems in which an unspecified probability measure P

is involved can be reformulated by replacing P with Q.
Here is a list (certainly not complete) of many such concepts.
• cumulative distribution function, • probability mass function
• probability density function • joint CDF • joint PMF • joint PDF
• expectation • variance •moments •moment generating function

BEWARE: The above does not apply to cases where a specific probability measure is considered.
An example for this would be, e.g., Proposition 10.9 on p.236 (memorylessness of the exponential
distribution). Here the probability measure is an exponential distribution PY .
We will elaborate on some of the items in that bulleted list in the next remark. �

Remark 11.9. In the following, the phrase “Q–.....” serves as an abbreviation for the lengthier “.....
with respect to Q”.

(a) The Q–CDF of a random variable Y is FQY (y) = Q{Y ≤ y} = P{Y ≤ y | B}.
(b) The Q–PMF of a discrete random element 107 X is pQX(x) = Q{X = x} = P{X = x | B}.

(c) Assume that the derivative fQY (y) =
dFQY (y)
dy of the Q–CDF of a random variable Y exists

and is continuous except for at most finitely many y in any finite interval. Then Y is a Q–
continuous random variable with Q–PDF fQY (y). 108

(d) We skip joint Q–CDFs and joint Q–PDFs and only elaborate on the joint Q–PMF. of two
random elements X1 and X2. It is, as one should expect, defined as
pQX1,X2

(x1, x2) = Q{X1 = x1, X2 = x2} = P{X1 = x1, X2 = x2 | B}.
(e) The Q–expected value of a discrete random variable Y is

EQ[Y ] =
∑

y y · p
Q
Y (y) =

∑
y y · P{Y = y | B}. (

∑
y is over all y where pQY (y) > 0.)

(f) The Q–expectation of a continuous random variable Y is EQ[Y ] =
∞∫
−∞

y · fQY (y)dy.

107Since P{X = x} ∩ B ≤ P{X = x}, P{X = x} = 0 implies Q{X = x} = 0. Thus, any P–discrete random element
also is Q–discrete.

108There may be some reasonably general and simple conditions that guarantee Y being Q–continuous from being P–
continuous, but this author is not aware of them.
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(g) The Q–variance of a random variable Y is V arQ[Y ] = EQ
[
(Y − EQ[Y ])2

]
.

(h) The Q–MGF of a random variable Y is mQ
Y (t) = EQ

[
etY
]
.

For expectations of functions of random variables we skip the case of one or two random variables
and proceed directly to the case of a vector ~Y =

(
Y1, Y2, . . . , Yk

)
of random variables. (See Definition

11.12 on p.254.)

(i) If the Yj are discrete and g : Rk → R, then EQ
[
g(~Y )

]
=

∑
· · ·
∑

y1, y2, ..., yk

g(~y) pQ~Y
(~y).

(j) If the Yj are continuous and h : Rk → R, then EQ
[
h(~Y )

]
=
∫∞
−∞ · · ·

∫∞
−∞ h(~y) fQ~Y

(~y)d~y. �

Here are some of the theorems we get for free because we have shown them for any probability
measure. Again, BEWARE: We made the assumption P (B) > 0!

Theorem 11.14.

If ~Y =
(
Y1, Y2, . . . , Yk

)
is a vector of k discrete or Q–continuous random variables, then

EQ

 n∑
j=1

Yj

 =

n∑
j=1

EQ[Yj ] .(11.46)

PROOF: This follows from Theorem 10.7 on p.224. �

Theorem 11.15. If Y is a discrete or Q–continuous random variable and ~Y =
(
Y1, Y2, . . . , Yk

)
is a vector

of k Q–independent discrete or Q–continuous random variables, then

V arQ[Y ] = EQ
[
Y 2
]
−
(
EQ[Y ]

)2
,(11.47)

V arQ [aY + b] = a2V arQ[Y ] ,(11.48)

V arQ

 n∑
j=1

Yj

 =

n∑
j=1

V arQ[Yj ] .(11.49)

PROOF: This follows from Theorem 10.8 on p.224. �

There is an issue with that last theorem. Not just with the proof, but with the assumptions that were
made. How is Q–independence defined for random variables, or even for events A1, A2, Ak? The
answer is, of course, that we apply all previously made definitions of independence of two or more
events or random variables, replacing the original probability measure P with Q.
The following theorem about the Q–independence of two events is worthwhile mentioning.

Theorem 11.16.
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Let A1, A2, B ⊆ Ω be three events such that P (A1 > 0, P (A2 > 0 and P (B > 0. Then

(a) P (A1 ∩A2 | B) = P (A1 | B) · P (A2 | B)

⇔⇔⇔ (b) P (A1 | A2 ∩B) = P (A1 | B)

⇔⇔⇔ (c) P (A2 | A1 ∩B) = P (A2 | B) .

(11.50)

In other words, if Ai and Aj are independent with respect to “just” conditioning on B, then “further”
conditioning of Ai on both Aj and B has no effect. Here, either i = 1, j = 2 or i = 2, j = 1.

PROOF: Since (a) is aymmetrical in A1 and A2 and (c) is obtained from (b) by switching the roles of
A1 and A2, it suffices to prove (a) ⇔ (b).
PROOF that (a) ⇒ (b):

P (A1 | A2 ∩B) =
P (A1 ∩A2 ∩B)

P (A2 ∩B)
=

P (A1 ∩A2 ∩B)

P (B)
· P (B)

P (A2 ∩B)

= P (A1 ∩A2 | B) · 1

P (A2 | B)

(a)
= P (A1 | B) · P (A2 | B) · 1

P (A2 | B)

= P (A1 | B) .

PROOF that (b) ⇒ (a):

P (A1 ∩A2 | B) =
P (A1 ∩A2 ∩B)

P (B)
=

P (A1 ∩A2 ∩B)

P (A2 ∩B)
· P (A2 ∩B)

P (B)

= P (A1 | A2 ∩B) · P (A2 | B)
(b)
= P (A1 | B) · P (A2 | B) . �

11.7.2 The Conditional Expectation w.r.t a Random Variable or Random Element

Remark 11.10. ? We mentioned at the beginning of the previous subsection 11.7.1 (The Con-
ditional Expectation With Respect to an Event), that conditioning with respect to an event B consti-
tutes a dead end street. This is the reason why the material has been marked as ? (optional).
Now let us give the reason.
As far as modeling reality by means of probability theoretical concepts is concerned, the primary
interest of conditioning is being able to assume during certain calculations of the probability in-
volving a random element X1, that another random element X2 has as its outcome a fixed value x2.
Thus, we typically are interested in
• P{X1 ∈ B1 | X2 = x2} , where x2 is some fixed outcome that can be attained by X2.

Having stated the issue in the most general terms, we will restrict ourselves for the remainder of
this remark to random variables Y1 and Y2 rather than working with random elements. This will
allow us to contrast discrete and continuous random variables.
The method of subsection 11.7.1 (using the probability measureQ(A) = P{A | Y2 = y2) will actually
work if we condition on specific values of a discrete random variable Y2. This is so because we only
are interested in those outcomes y2 for which

pY2(y2) = P{Y2 = y2} > 0
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and the conditional probability P{A | Y2 = y2} exist for such outcomes y2.
On the other hand, we have nothing at all to work with if Y2 is continuous, since P{Y2 = y2} = 0
for all numbers y2 (see Proposition 10.1 on p.213), since this results in P{Y1 ∈ B1 | Y2 = y2 being
UNDEFINED for all numbers y2!
To overcome this hurdle we will work with the conditional PMFs and PDFs

• pY1|Y2(y1 | y2) =
pY1,Y2(y1, y2)

pY2(y2)
, if Y1 and Y2 are discrete random variables,

• fY1|Y2(y1 | y2) =
fY1,Y2(y1, y2)

fY2(y2)
, if Y1 and Y2 are continuous random variables.

We close this remark by noticing that, in the case of discrete random variables, working withQ{Y1 ∈
B1} = P{Y1 ∈ B | Y2 = y2} or with pY1|Y2(y1 | y2) amounts to the same, because Q and pY1|Y2 satisfy

Q{Y1 ∈ B1} =
∑
y1∈B1

P{Y1 = y1 | Y2 = y2} =
∑
y1∈B1

pY1|Y2(y1 | y2) . �

Compare the following remark to Remark 11.8 on p.264 for discrete random variables.

Remark 11.11. The following allows us to translate much that we have done with continuous ran-
dom variables in connection with P to their analogues where we replace the (marginal) PDF fY1(y1)
with the conditional PDF fY1|Y2(y1 | y2):

• Assume that y2 ∈ R satisfies fY2(y2) > 0. Then the integrable function

fY1|Y2(· | y2) : y1 7→ fY1|Y2(y1 | y2) satisfies

��� fY1|Y2(y1 | y2) ≥ 0 for −∞ < y1 <∞ ���
∞∫
∞

fY1|Y2(y1 | y2)dy1 = 1 .

• According to Theorem 10.3 on p.215, fY1|Y2(· | y2) is the PDF of the probability measure Py2
on Ω, defined by

Py2{a < Y1 ≤ b} =

∫ b

a
fY1|Y2(y1 | y2) dy1 .

• Thus, all definitions, propositions and theorems in which an unspecified probability mea-
sure P is involved can be reformulated by replacing P with Py2 .

This applies, among others, to the following concepts which were listed in Remark 11.8 on p.264 for
discrete random variables:
• cumulative distribution function, • probability mass function
• probability density function • joint CDF • joint PMF • joint PDF
• expectation • variance •moments •moment generating function

• All that was said above extends to a random vector ~U = (U1, . . . , Uk) in place of Y1. We only
must replace fY1,Y2(y1, y2) with f~U,Y2(u1, . . . , uk, y2), etc. �

Definition 11.16 (Conditional expectation).
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Let Y1 and Y2 be two random variables which are either jointly discrete or jointly continuous
and g : R→ R. Let

E[g(Y1) | Y2 = y2] :=
∑
y1

g(y1) p(y1 | y2) (discrete case),(11.51)

E[g(Y1) | Y2 = y2] :=

∫ ∞
−∞

g(y1) f(y1 | y2) dy1 (continuous case).(11.52)

We call E[g(Y1) | Y2 = y2] the conditional expectation of g(Y1), given that Y2 = y2. �

Remark 11.12. Note for the following that the function

ω 7→ E[g(Y1) | Y2 = Y2(ω)] = E[g(Y1) | Y2 = y2]
∣∣∣
y2=Y2(ω)

defines a random variable on (Ω, P ). It is customary in many situations to suppress the argument
ω and write

E[g(Y1) | Y2](11.53)

for this random variable. Clearly, if we write Z(ω) for E[g(Y1) | Y2 = Y2(ω)], we can take its
(unconditional) expectation

E[Z] = E
[
E[g(Y1) | Y2]

]
.(11.54)

In particular, if g(y) = y, we can take the expectation E
[
E[Y1 | Y2]

]
of E[Y1 | Y2]. We will do so in

the next theorem. �

Theorem 11.17 (WMS Ch.05.11, Theorem 5.14).

Let Y1 and Y2 be either jointly continuous or jointly discrete random variables. Then

E[Y1] = E
[
E[Y1 | Y2]

]
.(11.55)

See Remark 11.12 concerning the interpretation of the right–hand side.

PROOF: We give the proof for jointly continuous Y1 and Y2. With the usual notation for joint PDF,
marginal densities and conditional PDF we obtain

E[Y1] =

∫ ∞
−∞

∫ ∞
−∞

y1 fY1,Y2(y1, y2) dy1 dy2

=

∫ ∞
−∞

∫ ∞
−∞

y1 fY1|Y2(y1 | y2)fY2(y2) dy1 dy2

=

∫ ∞
−∞

(∫ ∞
−∞

y1 fY1|Y2(y1 | y2) dy1

)
f2(y2) dy2

=

∫ ∞
−∞

E[Y1 | Y2 = y2] fY2(y2) dy2 = E
[
E[Y1 | Y2]

]
.
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The proof for the discrete case is done by doing summation instead of integration and replacing
joint, marginal and conditional PDFs with the corresponding PMFs. �

We define the conditional variance of Y1 given Y2 = y2 by applying Definition 11.16 to the functions
g(y1) = y1 and g(y1) = y2

1 .

Definition 11.17 (Conditional variance).

Let Y1 and Y2 be two random variables which are either jointly discrete or jointly continu-
ous. Let

V ar[Y1 | Y2 = y2] := E[Y 2
1 | Y2 = y2] −

(
E[Y1 | Y2 = y2]

)2
.(11.56)

We call V ar[Y1 | Y2 = y2] the conditional variance of g(Y1), given that Y2 = y2. �

Theorem 11.18.

Let Y1 and Y2 be jointly discrete or jointly continuous random variables. Then

V ar[Y1 | Y2] = E
[

(Y1 − E[Y1 | Y2])2 | Y2

]
,(11.57)

V ar[Y1] = E
[
V ar[Y1 | Y2]

]
+ V ar

[
E[Y1 | Y2]

]
.(11.58)

PROOF: We only give the proof of (11.58). Note that

V ar[Y1 | Y2] = E[Y 2
1 | Y2] −

(
E[Y1 | Y2]

)2
,(A)

E
[
V ar[Y1 | Y2]

]
= E

[
E[Y 2

1 | Y2]
]
− E

[ (
E[Y1 | Y2]

)2]
.(B)

By the definition of (unconditional) variance,

V ar
[
E[Y1 | Y2]

]
= E

[(
E[Y1 | Y2]

)2] − (E[E[Y1 | Y2]
])2

.(C)

Further,

V ar[Y1] = E
[
Y 2

1

]
−
(
E[Y1]

)2
= E

[
E[Y 2

1 | Y2]
]
−
(
E
[
E[Y1 | Y2]

])2
= E

[
E[Y 2

1 | Y2]
]
− E

[ (
E[Y1 | Y2]

)2]
+ E

[ (
E[Y1 | Y2]

)2] − (E[E[Y1 | Y2]
])2

= E
[
E[Y 2

1 | Y2] −
(
E[Y1 | Y2]

)2]
+
{
E
[ (
E[Y1 | Y2]

)2 − (E[E[Y1 | Y2]
])2}

= E
[
V ar[Y1 | Y2]

]
+ V ar

[
E[Y1 | Y2]

]
. �

11.7.3 Conditional Expectations as Optimal Mean Squared Distance Approximations

The presentation of the material presented here follows [1] Bickel and Doksum: Mathematical
Statistics.

Introduction 11.3. One can measure the distance between two real–valued functions in several
ways.
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For example, one can define for ϕ,ψ : A→ R,

dist1(ϕ, g) := max{|ϕ(a)− ψ(a)| : a ∈ A} .

In other words, one takes the maximum displacement over
all arguments of ϕ and ψ. This “worst case scenario” as the
advantage that it works for any kind of domain A, since all
that is needed is that the function values are numeric.

However, it often makes more sense to consider the area
between the curves defined by ϕ and ψ.

dist2(ϕ,ψ) :=

∫ b

a
|ϕ(x)− ψ(x)| dx .

Doing so averages out all individual displacements |ϕ(x)−
ψ(x)| over all arguments and one obtains a measure of dis-
tance which is not distorted just one potential outlier.

There are mathematical reasons why one would rather work with the squared difference and con-
sider

dist3(ϕ,ψ) :=

∫ b

a
|ϕ(x)− ψ(x)|2 dx =

∫ b

a

(
ϕ(x)− ψ(x)

)2
dx .

Moreover, one can replace the ordinary integral
∫
· · · dxwith a weighted integral

∫
· · ·w(x)dxwhere

w(x) ≥ 0 for all x and define

dist4(ϕ,ψ) :=

∫ b

a

(
ϕ(x)− ψ(x)

)2
w(x) dx .

Here, bigger values w(x) of the weight function w lead to a stronger contribution of ϕ(x)− ψ(x) to
the distance between ϕ and ψ
That last example shows us how the expectation of the difference of two functions of two continuous
random variables can be viewed as a distance

dist
(
ϕ(Y1), ψ(Y2)

)
= E[

(
ϕ(Y1)− ψ(Y2)

)2
] =

∫ ∞
−∞

∫ ∞
−∞

(
ϕ(y1)− ψ(y2)

)2
fY1,Y2(y1, y2) dy1 dy2 .

Since E[
(
ϕ(Y1)−ψ(Y2)

)2
] also is defined for discrete random variables, we obtain for those a corre-

sponding definition by replacing the joint PDF with the joint PMF and integration with summation:

dist
(
ϕ(Y1), ψ(Y2)

)
= E[

(
ϕ(Y1)− ψ(Y2)

)2
] =

∑
y1,y2

(
ϕ(y1)− ψ(y2)

)2
pY1,Y2(y1, y2) .

In either discrete or continuous case, we are particularly interested in the case ϕ(y1) = y1 and
examine the distance

dist
(
Y1, ψ(Y2)

)
= E[

(
Y1 − ψ(Y2)

)2
]

for all possible functions y2 7→ ψ(y2). It turns out that the minimum

min{ dist
(
Y1, ψ(Y2)

)
: all suitable functions ψ}

is attained by selecting ψ : y2 7→ E[Y1 | Y2 = y2]. �
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Lemma 11.1. ?

Let Y be a random variable on (Ω, P ) that satisfies E[Y 2] <∞. Then, E[|Y |] <∞.

PROOF:

Let A := |Y | < 1 and Z := 111A + |Y 2|, i.e., Z(ω) =

{
1 + |Y 2| , if |Y ω| < 1 ,

|Y 2| , if |Y ω| ≥ 1 .

Since |Y (ω)| < 1 for ω ∈ A and Y (ω)2 ≥ 1 for ω ∈ A{, we obtain |Y (ω)| ≤ Z(ω) for all ω. Thus,

E[|Y |] ≤ E[|Z|] ≤ E[1] + E[Y 2] .

The assertion follows. �

Lemma 11.2. ?

Let Y be a random variable on (Ω, P ) and h : R→ [0,∞] defined by a 7→ E[(Y − a)2]. Then,
either (a) h(a) = ∞ for all a ∈ R,

or (b) h attains a unique minimum at a = E[Y ].

PROOF:
Step I: We show that either h(y) ≡ ∞ for all y or h(y) ∈ R for all y.
For fixed a ∈ R,we define F : R→ R by F (y) := (y − a)2 −

(
(1/2)y2 − a2

)
. Then,

F ′(y) = 2(y − a)− y = y − 2a and F ′′(y) = 1.

It follows that F attains a (unique) minimum at y = 2a. From F (2a) = a2 − (2a2 − a2) = 0, we
obtain that F (y) ≥ 0 for all y. Thus, (y − a)2 ≥ (1/2)y2 − a2. This yields

1

2
y2 − a2 ≤ (y − a)2 = y2 − 2ay + a2 .(A)

Next, we obtain from (y − a)2 ≤ (y − a)2 + (y + a)2 that

y2 − 2ay + a2 ≤ (y2 − 2ay + 2a2) + (y2 = 2ay + 2a2) = 2y2 + 2a2 .(B)

Let ω ∈ Ω and y := Y (ω). We combine (A) and (B) and obtain 1
2 y

2 − a2 ≤ (y − a)2 ≤ 2y2 + 2a2 .
Since ω is an arbitrary elment of Ω, we have the following inequality of random variables:

1

2
Y 2 − a2 ≤ (Y − a)2 ≤ 2Y 2 + 2a2 .(C)

Taking expectations maintains inequalities. Since E[(Y − a)2] = h(a) and E[Y ]2 = h(0),

1

2
h(0) − a2 ≤ h(a) ≤ 2h(0) + 2a2 .(D)

From this we see that either
[
h(0) =∞ and in this case, h(a) =∞ for all a

]
,

or
[
h(0) <∞ and in this case, h(a) <∞ for all a

]
.
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Step II: We show that (b) holds if h(y) 6≡ ∞ According to Step I, we may assume that h(0) < ∞,
i.e., E[(Y 2] <∞. We obtain from Lemma 11.1 that |E[Y ]| <∞. Thus,

h(a) = E[(Y − a)2] = E[(Y 2] − 2aE[Y ] + a2

= E[(Y 2] − (E[Y ])2 +
(
a2 − 2aE[Y ] + (E[Y ])2

)
= V ar[Y ] + (a− E[Y ])2(E)

It follows that h attains a unique minimum in height of V ar[Y ] at a = E[Y ]. This concludes the
proof of the lemma. �

Theorem 11.19.

Assume that Y is a random variable and ~X = (X1, . . . , Xk) is a random vector on (Ω, P ). Then,
either E

[
(Y − g ◦ ~X)

]
= ∞ for all real–valued functions g : Rk → R of k real arguments, or

E
[(
Y − E[Y | ~X]

)2] ≤ E
[
(Y − g ◦ ~X)2

]
,

for all such functions g. Further, this is a strict inequality if E[Y | ~X] 6= g ◦ ~X .

Note that, as always, we consider equations and inequalities involving random variables to be true as long as
they are satisfied on a set of probability 1.

PROOF: Let us fix ~x ∈ Rk for which E[Y | ~X = ~x] is defined.

(a) In the case of discrete Y and ~X this means that p ~X(~x) > 0
and then B 7→

∑
y∈B py| ~X(y | ~x) is a probability measure P~x on Ω for which we denote

expectations by E~x[. . . ]. Further, for ψ : R→ R, E[ψ(Y ) | ~X = ~x] = E~x[ψ(Y )]

(b) For continuous Y and ~X this means that f ~X(~x) > 0. We have seen in Remark 11.11 on p.267
thatB 7→

∫
B fy| ~X(y | ~x)dy is a probability measure P~x on Ω for which we denote expectations

by E~x[. . . ]. Further, for ψ : R→ R, E[ψ(Y ) | ~X = ~x] = E~x[ψ(Y )]

(c) Thus, in both cases, all we have learned about ordinary expectations can be applied, for
fixed ~x, to the conditional expectations E[· · · | ~X = ~x].

(d) When we condition an expression on ~X = ~x, we can replace in that expression all occur-
rences of ~X with ~x.

It follows from (d) that

E
[(
Y − g( ~X)

)2 | ~X = ~x
]

= E
[(
Y − g(~x)

)2 | ~X = ~x
]
.(A)

We can apply Lemma 11.2 with E~x(. . . ) instead of E(. . . ) and the constant g(~x) instead of a and
conclude that

E
[(
Y − g(~x)

)2 | ~X = ~x
]
≥ E

[(
Y − E[Y | ~X]

)2 | ~X = ~x
]
.(B)

We apply both (A) and (B) and evaluate both sides of the resulting inequality for ~x = ~X(ω):

E
[(
Y − g( ~X)

)2 | ~X = ~X(ω)
]
≥ E

[(
Y − E[Y | ~X]

)2 | ~X = ~X(ω)
]
.
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As we have done before, we streamline this expression by replacing ~X = ~X(ω) with X :

E
[(
Y − g( ~X)

)2 | ~X)
]
≥ E

[(
Y − E[Y | ~X]

)2 | ~X] .
Taking expectations on both sides, we obtain

E
[(
Y − g( ~X)

)2] ≥ E [(Y − E[Y | ~X]
)2]

.

We have shown the inequality that was asserted in the theorem.

We still must prove that this inequality is strict if E[Y | ~X] 6= g ◦ ~X . To do so we apply the reasoning
above to formula (E) of Lemma 11.2 and obtain

E
[(
Y − g( ~X)

)2]
= V ar[Y ] + E

[(
g( ~X)− E[Y | ~X]

)2]
.

Since E
[(
g( ~X)− E[Y | ~X]

)2]
> 0 unless P{g( ~X) 6= E[Y | ~X]} = 0, the assertion at the end of the

theorem follows. �

The last theorem can be phrased as follows:

We interpret random variables of the form g( ~X), where ~x 7→ g(~x) is a (deterministic) func-
tion of ~x, as those random variables that only use the information available to ~X .
If we measure the quality of the approximation of a random variable Y by g( ~X) as their
mean squared distance, E

[(
Y − g( ~X)

)2], then

• E[Y | ~X] is the best approximation of Y which is based only on information pro-
vided by ~X .

11.8 The Multinomial Probability Distribution

Introduction 11.4. In Definition 7.3 (p.174) of Chapter 7 (Combinatorial Analysis) we discussed
multinomial coefficients (

n

n1 n2 · · ·nk

)
=

n!

n1!n2! · · ·nk!
when counting the ways of classifying n items into k classes in such a way that n1 items belong to
class 1, n2 items belong to class 2, ... nk items belong to class k (n1 + · · ·+ nk = n). The multinomial
probability distribution is based on those coefficients and generalizes the binomial distribution of
Section 9.2 (Bernoulli Variables and the Binomial Distribution).
The binomial distribution is that of a random variable Y which counts the number of successes in n
Bernoulli trials. (See Definition 9.4 on p.197 about Bernoulli trials.) To say this differently, Y counts
the number of those Bernoulli trials which result in an outcome that falls into the “success class”.
The multinomial distribution will not be about a single random variable Y , but about a random
vector ~Y =

(
Y1, . . . , Yk

)
of k random variables Yj , which count the number of the n trials resulting

in an outcome that falls into class j. What kind of trials are we talking about? We should expect
those n random elements, let us call them X1, . . . , Xn, to show some similarities to Bernoulli trials.
Of course, there must be some significant differences. For example, each Xi will not have two
outcomes (success or failure), but k outcomes corresponding to the k classes. �
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Definition 11.18 (Multinomial Sequence).

Let X1, X2, . . . be a finite or infinite sequence of random elements on a probability space
(Ω, P ) which take values in a set Ω′. We call this sequence a multinomial sequence, if the
following are satisfied:

(1) The sequence is iid.
(2) There is some k ∈ N such that the outcome of each Xj is one of k distinct values

ω′1, ω
′
2, . . . , ω

′
k ∈ Ω′.

Since the Xj have identical distribution, there are probabilities p1, p2, . . . , pk such that
(3) pi := P{Xj = ω′i} is the same for all j and p1 + · · ·+ pk = 1.

If we consider a finite multinomial sequenceX1, X2, . . . , Xn, we adopt the WMS notation and speak
of a multinomial experiment of size n wich consists of the trials Xj �

Definition 11.19 (Multinomial distribution).

Assume that ~Y =
(
Y1, Y2, . . . , Yk

)
is a vector of random variables which possesses the joint

probability mass function

p~Y (y1, y2, . . . , yk) =

(
n

y1, · · · , yk

)
py11 p

y2
2 · · · p

yk
k ,(11.59)

subject to the following conditions:

• pj ≥ 0 for j = 1, 2, . . . , k and
k∑
j=1

pj = 1.

• yi = 0, 1, 2, . . . , n for i = 1, 2, . . . , k and
k∑
i=1

yi = n.

Then we say that the random variables Yi have a multinomial distribution with parame-
ters n and ~p = (p1, p2, . . . , pk). �

Theorem 11.20.

Let n ∈ N and X1, . . . , Xn be a multinomial sequence of size n. Let pj := P{Xi = ω′j}. (That
probability is the same for all i, since the Xi have identical distribution.)
Let ~Y =

(
Y1, . . . , Yk

)
be a vector of k random variables, such that each Yj equals the number of the

n trials resulting in an outcome that falls into class j. In other words,
(A) Yi(ω) = yi ⇔ Xj(ω) = ω′i for exactly yi of the multinomial items Xj .

Then ~Y has a multinomial distribution with parameters n and p~Y (y1, y2, . . . , yk).

PROOF: For fixed ~y =
(
y1, . . . , yk

)
, the event A := {~Y = ~y} corresponds to all different ways that

{1, 2, . . . , n} can be partitioned into k subsets

{1, 2, . . . , n} = J1 ] J2 ] · · · ] Jk(A)
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such that each Ji contains yi of those n indices. It follows from Theorem 7.6 on p.175 that

there are
(

n

y1, y2, . . . yk

)
different ways of creating such a partition.(B)

Thus, if we write

A(J1, . . . , Jk) := {Xim,1 = · · · = Xim,ym = ω′m for all 1 ≤ m ≤ k} ,

it follows that

P (A) = P{~Y = ~y} = P
(⊎

A(J1, . . . , Jk)
)
,(C)

where this union is taken over all
(

n
y1,...yk

)
partitions J1, . . . , Jk of [1, n]Z.

For a fixed 1 ≤ m ≤ k, we write Jm = {im,1 < im,2 < · · · < im,ym}. Since the Xj are independent,

P{Xim,1 = Xim,2 = · = Xim,ym = ω′m} = P
(
{Xim,1 = ω′m} ∩ · · · ∩ {Xim,ym = ω′m} = (pm)ym

Since theXj are independent not only for indices j belonging to Jm, but also across all Jm, it follows
from the definition of A(J1, . . . , Jk) that

P
(
A(J1, . . . , Jk)

)
= (p1)y1 (p2)y2 · · · (pk)yk .(D)

The right–hand side is independent of the particular partition J1, . . . , Jk. We obtain from (B), (C)
and (D) that

P{~Y = ~y} =

(
n

y1, · · · , yk

)
(p1)y1 (p2)y2 · · · (pk)yk .

Thus, ~Y has the joint PMF that was specified in (11.59). We conclude that ~Y has a multinomial
distribution with parameters n and p~Y (y1, y2, . . . , yk). �

Example 11.6. Research by the marketing division of
GreatWidgets Corp. has established that their cus-
tomers’ age is distributed as shown in the table to the
right. A random sample of eight customers is taken. As-
sume that the proportions shown accurately reflect those
of GreatWidgets Corp.

Age Proportion
Group 1: 15− 20 0.2
Group 2: 21− 30 0.2
Group 3: 31− 40 0.1
Group 4: 41− 50 0.2
Group 5: > 50 0.3

what is the probability that the sample is composed as follows:
• Group 1: 1 person • Group 2: 3 persons • Group 4: 2 persons • Group 5: 2 persons?
Solution:
We interpret the sample picks as the members X1, . . . , X8 of a multinomial sequence each of which
has age group k as an outcome with probability pk as indicated in the table.
Then the probability we are looking for is given by (11.59) on p.274

p~y(y1, y2, y3, y4, y5) =
n!

y1! y2! y3! y4! y5!
py11 py22 py33 py44 py55 , �

In the context of this example we obtain

p(1, 3, 2, 0, 2) =
8!

1! 3! 2! 0! 2!
0.21 0.22 0.10 0.22 0.30 , = 0.009768. �
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Theorem 11.21 (WMS Ch.05.9, Theorem 5.13).

Assume that the random vector ~Y = (Y1, Y2, . . . , Yk) follows a multinomial distribution with pa-
rameters n and ~p = (p1, p2, . . . , pk). Then, for i, i′ ∈ [1, k]Z and qi = 1− pi,

(a) E[Yi] = npi (b) V ar[Yi] = npiqi (c) If i 6= i′, then Cov[Yi, Yi′ ] = −npipi′

PROOF: We may assume that there is an underlying multinomial sequence (Xj)j and distinct items
ω′1, . . . , ω

′
k such that

(1) P{Xj = ω′i} = pi for each j.
(2) Yi(ω) counts the number of indices j such that Xj(ω) = ω′i.

Clearly, Yi ∼ binom(n, pi). Thus, E[Yi] = npi and V ar[Yi] = npiqi. We have shown (a) and (b).
For the proof of (c), we associate with the (fixed and different!) indices i and i′ two 0–1 encoded
binomial sequences (Zj)j and (Z ′j)j as follows:

• Zj(ω) = 1 if Xj(ω) = ω′i and 0 else,

• Z ′j(ω) = 1 if Xj(ω) = ω′i′ and 0 else.
Then,

•
n∑
j=1

Zj(ω) = count of indices j such that Xj(ω) = ω′i = Yi(ω). See (2).

•
n∑
j=1

Z ′j(ω) = count of indices j such that Xj(ω) = ω′i′ = Yi′(ω). See (2).

It follows that

(3) Cov[Yi, Yi′ ] = Cov

[
n∑
j=1

Zj ,
n∑

m=1
Z ′m

]
.

This is easily computed by employing the formulas of Theorem 11.13 (WMS Ch.05.8, Theorem 5.12)
on p.259 and the following:
Since Zj ∼ binom(1, pi) and Z ′m ∼ binom(1, p′i) for each j and m,

(4) E[Zj ] = pi and E[Z ′m] = p′i for each j and each m.

Let j ∈ [1, n]Z and ω ∈ Ω. Since i 6= i′ implies ω′i 6= ω′i′ , at least one of Zj(ω), Z ′j(ω) is zero.

(5) Thus, E[ZjZ
′
j ] = 0 for all j.

It follows from (4) and (5) that
(6) Cov[Zj , Z

′
j ] = E[ZjZ

′
j ] − E[Zj ] · E[Z ′j ] = −pjp′j .

Let j,m ∈ [1, n]Z and j 6= m. Since X1, . . . , Xn are independent and Zj only depends on Xj and Z ′m
only depends on Xm, the random variables Zj and Z ′m also are independent.

(7) Thus, Cov[Zj , Z
′
m] = 0 for all j,m ∈ [1, n]Z such that j 6= m.
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We apply (11.42) on p.260 and obtain

Cov[Yi, Yi′ ]
(3)
= Cov

 n∑
j=1

Zj ,

n∑
m=1

Z ′m

 =

n∑
j=1

n∑
m=1

Cov[Zj , Z
′
m]

=

n∑
j=1

Cov[Zj , Z
′
j ] +

∑∑
j 6=m

Cov[Zj , Z
′
m]

(6),(7)
=

n∑
j=1

(−pip′i) +
∑∑
j 6=m

0 = −npip′i . �

Note that it makes perfect sense for Cov[Yi, Yi′ ] to be negative if i 6= i′: If a large proportion of the
Xj have the outcome ω′i, then fewer trials remain to take one of the other values.

11.9 Order Statistics

AAA
@@Author

The presentation of the material in this section is largely based on the 2015 Math
447 lecture notes of Prof. Xingye Qiao, Binghamton University

Given are n random variables ~Y = (Y1, Y2, . . . , Yn). One can sort them, for any fixed ω ∈ Ω, in
nondecreasing order. One obtains in this fashion a sequence, of size n, of numbers

Y(1)(ω) ≤ Y(2)(ω) ≤ Y(3)(ω) ≤ · · · ≤ Y(n)(ω) .

Since these numbers depend on randomness ω, each Y(j)(ω) represents an outcome of a random
variable Y(j).

Example 11.7. Here are some examples.
(a) 70 students are randomly selected when exiting lecture hall and their age is rounded to the
closest year. Those 70 ages, A1(ω), . . . , A70(ω), are sorted in increasing order:
• A(1)(ω) = height of the smallest person in the sample
• A(2)(ω) = height of the second smallest person in the sample
• - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
• A(j)(ω) = height of the jth smallest person in the sample
• - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
• A(n)(ω) = height of the tallest person in the sample

Clearly, A(1)(ω) ≤ A(2)(ω) ≤ A(3)(ω) ≤ · · · ≤ A(n)(ω) .

Almost all of those ages will be one of 18, 19, .., 25. Accordingly, it is not only possible that we
encounter an index j that results in equality, A(j)(ω) = A(j+1)(ω), but this will be the rule rather
than the exception.

(b) Rather than considering the age of those 70 students, we now look at their height, measured in
millimeters. Those 70 heights, H1(ω), . . . ,H70(ω), are sorted in increasing order.
Height can be considered a continuous random variable. Since the probability of two students
having precisely the same height is zero, we may consider the outcomes H(j) distinct. Accordingly,
we can replace “less or equal” with strict inequality and obtain

H(1)(ω) < H(2)(ω) < H(3)(ω) < · · · < H(n)(ω) . �
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• We will deal in this section exclusively with continuous random variables.
• When considering a finite or infinite sequence Y1, Y2, Y3, . . . of such random variables, we

assume that they are iid (independent and identically distributed).

Definition 11.20 (Order statistics).

Given n iid continuous random variables ~Y = (Y1, Y2, . . . , Yn), we sort them in inreasing
order. The resulting sequence of random variables, which we denote as Y(j), j = 1, . . . , n,
then satisfies, for each (omega ∈ Omega,

Y(1)(ω) ≤ Y(2)(ω) ≤ Y(3)(ω) ≤ · · · ≤ Y(n)(ω) .(11.60)

We call Y(j) the jth order statistic of ~Y .

See Example 11.7(b) why we may consider strictly increasing rather than nondecreasing. �

Assumption 11.4.

Unless explicitly stated otherwise,
• ~Y = (Y1, Y2, . . . , Yn) denotes a list of n iid continuous random variables (n ∈ N).
• Y1 ∼ Y2 ∼ · · · ∼ Yn implies FY1 = FY2 = · · · = FYn and fY1 = fY2 = · · · = fYn

We write F (y) := FYj (y) and f(y) := fYj (y) for the common CDF and PDF. �

Remark 11.13. Note that
• The first order statistic or smallest order statistic is Y(1) = min{Y1, . . . , Yn}.
• The nth order statistic or largest order statistic is Y(n) = max{Y1, . . . , Yn}.
• A simple consequence of the definition of min and max are the following formulas:

Y(1)(ω) > y ⇔ min
(
Y1(ω), . . . , Yn(ω)

)
> y ⇔ Yj(ω) > y for all j ∈ [1, n]Z ,(11.61)

Y(n)(ω) ≤ y ⇔ max
(
Y1(ω), . . . , Yn(ω)

)
≤ y ⇔ Yj(ω) ≤ y for all j ∈ [1, n]Z . �(11.62)

Theorem 11.22 (CDF and PDF of the jth order statistic).

For y ∈ R, the CDF of the kth order statistic (k = 1, . . . , n) satisfies the following:

FY(1)(y) = 1 − [1− F (y)]n ,(11.63)

FY(n)(y) = [F (y)]n ,(11.64)

FY(k)(y) = 1 −
k−1∑
j=0

(
n

j

)
[F (y)]j [1− F (y)]n−j =

n∑
j=k

(
n

j

)
[F (y)]j [1− F (y)]n−j .(11.65)
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For y ∈ R, the PDF of the kth order statistic (k = 1, . . . , n) satisfies the following:

fY(1)(y) = n [1− F (y)]n−1 f(y) ,(11.66)

fY(n)(y) = n [F (y)]n−1 f(y) ,(11.67)

fY(k)(y) =

k−1∑
j=0

(
n

j

)
f(y)

(
n [F (y)]n−1 − j[F (y)]j−1

)
.(11.68)

fY(k)(y) = n

(
n− 1

k − 1

)
f(y) ·

[
F (y)

]k−1 ·
[

1− F (y)
]n−k

.(11.69)

Note that the proofs are not given in the order of the seven formulas of the theorem.
PROOF of (11.64):

FY(n)(y)
(11.62)

= P
(
{Y1 ≤ y} ∩ {Y2 ≤ y} ∩ · · · ∩ {Yn ≤ y}

)
indep

= P{Y1 ≤ y} · P{Y2 ≤ y} · · ·P{Yn ≤ y} = [F (y)]n .

PROOF of (11.63):

P{Y(1) > y} (11.61)
= P

(
{Y1 > y} ∩ {Y2 > y} ∩ · · · ∩ {Yn > y}

)
indep

= P{Y1 > y} · P{Y2 > y} · · ·P{Yn > y} = [1− F (y)]n .

Thus, FY(1)(y) = 1− P{Y(1) > y} = 1− [1− F (y)]n.
PROOF of (11.66) and (11.67):

This follows from
d

dy

(
1− [1− F (y)]n

)
= −n[1− F (y)]n−1

(
− f(y)

)
and

d

dy

(
[F (y)]n

)
= n[F (y)]n−1 f(y).

PROOF of (11.65):
This proof requires a lot more work than the proofs we have done so far. It will be done by con-
structing a binomial random variable.
• Since y is fixed, so is p := F (y) = P{Yj ≤ y}. (Identical for all j, since the Yj are iid.)

• For j = 1, . . . , n, let Xj(ω) :=

{
1 if Yj(ω) ≤ y ,
0 else .

Let U(ω) :=
n∑
j=1

Xj(ω).

• We interpret Yj(ω) ≤ y as a success and Yj(ω) > y as a failure. Then X1, . . . , Xn form a
0–1 encoded Bernoulli sequence 109 and U ∼ binom(n, p), since U counts the number of
successes.

• Observe that Y(k)(ω) ≤ y ⇔ Yj(ω) ≤ y at least k times ⇔ there are at least k successes ⇔
U(ω) ≥ k. It does not matter whether or not there are more than k successes.

• Thus, FY(k)(y) = P{Y(k) ≤ y} = P{U ≥ k} =
n∑
j=k

P{U = j} = 1 −
k−1∑
j=0

P{U = j}.

• Since U ∼ binom(n, p) and p = F (y), FY(k)(y) = 1 −
k−1∑
j=0

(
n

j

)
[F (y)]j [1− F (y)]n−j .

109See Definition 9.4 (Bernoulli trials and variables) on p.197.

279 Math 447 - Version 2025-02-20



Math 447 – MF Lecture Notes Student edition with proofs

PROOF of (11.68):
This is done by differentiation. For each j = 0, . . . , k − 1,

d

dy

(
n

j

)
[F (y)]j [1− F (y)]n−j =

(
n

j

)
d

dy

(
[F (y)]j − F (y)]n

)
=

(
n

j

) (
j [F (y)]j−1 f(y) − nF (y)]n−1 f(y)

)(A)

Thus, fY(k) =
d

dy

 1 −
k−1∑
j=0

(
n

j

)
[F (y)]j [1− F (y)]n−j


= −

k−1∑
j=0

d

dy

(
n

j

)(
[F (y)]j [1− F (y)]n−j

)
(A)
=

k−1∑
j=0

(
n

j

)
f(y)

(
n [F (y)]n−1 − j F (y)]j−1

)
.

This finishes the proof of (11.68).
The proof of (11.69) is based on an entirely different approach. Before we do that proof, we first
illustrate that approach by redoing those of (11.66) and (11.67). Those proofs are much simpler and
are a good preparation for that of (11.69).
ALTERNATE PROOF of (11.66):
First, we note the following for a continuous random variable U with density fU (u) Assume that
δ > 0 is very close to zero. Since we assumed for all our continuous random variables that they
have continuous density, fU (·) ≈ const = fU (u) on ]u− δ, u+ δ[.

(a) Thus, P{u < U ≤ u+ δ} =
∫ u+δ
u fU (t) dt ≈ fU (u) · δ.

(b) For the fixed y and some “really small” δy, we create three events:
� L (for “left–hand side”) � I (for “inside”) � R (for “right–hand side”),

and a sequence of random elements X1, . . . , Xn as follows.
� Xj(ω) = L ⇔ Yj(ω) ≤ y. Then P{Xj = L} = P{Yj ≤ y} = F (y).

� Xj(ω) = I ⇔ y < Yj(ω) ≤ y + δ, Then P{Xj = I} = P{y < Yj ≤ y + δ}
(a)
≈ fU (u) · δ.

� Xj(ω) = R ⇔ Yj(ω) > y + δ. Then P{Xj = R} = P{Yj > y + δ} = 1− F (y + δ).
(c) By construction, the Xj form a multinomial sequence. Let ~U :=

(
U1, U2, U3

)
, where

� U1 := # of indices j such that Xj = L,
� U2 := # of indices j such that Xj = I ,
� U3 := # of indices j such that Xj = R.

(d) Then ~U is multinomial with parameters n, p1 = F (y), p2 = f(y)δ, p3 = 1− F (y + δ).
(e) Since we assume that Y(j)(ω) is strictly increasing with j for all ω, it seems reasonable that,

for “really small” δ, the following is true:

• If Y(1)(ω) > y, then Y(j)(ω) > y + δ for all j > 1.
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(f) Thus, fY(1)(y) · δ
(a)
≈ P{ y < Y(1) ≤ y + δ }

= P{ exactly one of Y1, . . . , Yn ∈ ]y, y + δ] and Yj > y + δ for all other j }.
= P{ none of the Xj are L and exactly one is I and n− 1 are R }.

= P{U1 = 0, U2 = 1, U3 = n− 1, } (d)
=

(
n

0, 1, n− 1

)
[F (y)]0

[
f(y)δ

]1
[1− F (y + δ)]n−1.

(g) Since
(

n

0, 1, n− 1

)
=

n!

0! · 1! · (n− 1)!
= n,

we obtain fY(1)(y) · δ ≈ n [1− F (y + δ)]n−1 f(y)δ.

We divide both expressions by δ, then let δ → 0. Since t 7→ F (t) is continuous, lim
δ→0

F (y+ δ) = F (y).

We conclude that the density of Y(1) is

fY(1)(y) = n [1− F (y)]n−1 f(y) .

ALTERNATE PROOF of (11.67):
We can adapt the alternate proof for the density of Y(1) to obtain that of Y(n) as follows.
We keep all items through (e) and modify (f) and (g) as follows.

(f’) fY(n)(y) · δ
(a)
≈ P{ y < Y(n) ≤ y + δ }

= P{ exactly one of Y1, . . . , Yn ∈ ]y, y + δ] and Yj ≤ y for all other j }.
= P{ none of the Xj are R and exactly one is I and n− 1 are L }.

= P{U1 = n− 1, U2 = 1, U3 = 0, } (d)
=

(
n

n− 1, 1, 0

)
[F (y)]n−1

[
f(y)δ

]1
[1− F (y + δ)]0.

(g’) Since
(

n

n− 1, 1, 0

)
=

n!

(n− 1)! · 1! · 0!
= n,

we obtain fY(n)(y) · δ ≈ n [F (y)]n−1 f(y)δ.

We divide both expressions by δ, then let δ → 0. We obtain the density of Y(n) as

fY(n)(y) = n [F (y)]n−1 f(y) .

PROOF of (11.69):
This time we adapt the alternate proof for the density of Y(1) to obtain that of Y(k) as follows.
We keep all items through (e) and modify (f) and (g) as follows.

(f”) fY(k)(y) · δ
(a)
≈ P{ y < Y(k) ≤ y + δ }

= P{ exactly one of Y1, . . . , Yn ∈ ]y, y + δ] and Yj ≤ y for k − 1 indices j
and Yj > y for n− k indices j }

= P{k − 1 of the Xj are L, n− k of the Xj are R and exactly one is I }

= P{U1 = k − 1, U2 = 1, U3 = n− k}
(d)
=

(
n

k − 1, 1, n− k

)
[F (y)]k−1

[
f(y)δ

]1
[1− F (y + δ))]n−k.
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(g”) Since
(

n

k − 1, 1, n− k

)
=

n · (n− 1)!

(k − 1)! · 1! · (n− k)!
= n ·

(
n− 1

k − 1

)
,

we obtain fY(k(y) · δ ≈ n ·
(
n− 1

k − 1

)
[F (y)]k−1 f(y)δ [1− F (y + δ)]n−k.

We divide both expressions by δ, then let δ → 0. Since t 7→ F (t) is continuous, lim
δ→0

F (y+ δ) = F (y).

We conclude that the density of Y(1) is

fY(k)(y) = n

(
n− 1

k − 1

)
[F (y)]k−1 f(y) [1− F (y)]n−k . �

Remark 11.14. (11.65) yields (11.63) for k = 1 and (11.64) for k = n. This can be seen as follows:
Recall that

1 =
(
F (y) + [1− F (y)]

)n
=

n∑
j=0

(
n

j

)
[F (y)]j [1− F (y)]n−j

=
n−1∑
j=0

(
n

j

)
[F (y)]j [1− F (y)]n−j +

(
n

0

)
[F (y)]0 [1− F (y)]n .

(A)

If we evaluate (11.65) for k = 1 and k = n, we obtain

FY(1)(y) = 1 −
(
n

0

)
[F (y)]0 [1− F (y)]n = 1 − 1 · 1 · [1− F (y)]n = [1− F (y)]n ,

FY(n)(y) = 1 −
n−1∑
j=0

(
n

j

)
[F (y)]j [1− F (y)]n−j

(A)
=

(
n

0

)
[F (y)]0 [1− F (y)]n = [1− F (y)]n . �

Remark 11.15. You may have noticed that there are two formulas for fY(k)(y).
(11.69) was shown by means of the “density approach” that utilized a limiting process δ → 0 in
conjunction with the multinomial distribution. The proof was harder than that of (11.68). In return,
(11.69) has computational advantages, since no more summation

∑k−1
j=0 is required. �

The next remark belongs thematically into Section 7.2 (Permutations) of Chapter 7. However, it has
been placed here, since every order statistic

~Y(•) =
(
Y(1), . . . , Y(n)

)
.

is a (specific) permutation of ~Y =
(
Y1, . . . , Yn

)
, and every other permutation(

Yi1 , Yi2 , . . . , Yin
)

of ~Y =
(
Y1, . . . , Yn

)
, possesses the same order statistic.

Remark 11.16. If we deal with a list ~a = (a1, a2, . . . , an) of distinct numbers, e.g.,

~a = (13.2, −3, 6.6, 2, −1.5) ,(A)
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then there is a uniquely determined permutation, ~a(•) = (a(1), a(2), . . . , a(n)) of ~a, which has those
aj in increasing order. In other words,

a(1) < a(2) < · · · < a(n) .

In the specific example (A), we obtain

~a(•) = (−3, −1.5, 2, 6.6, 13.2) .

If~b = (b1, b2, . . . , bn) is another list of distinct numbers, then

~b(•) = ~a(•) ⇔ ~b is a permutation of ~a .

Going back to our example, if

~b = (13.2, 6.6, −1.5, −3, 2) ,

~c = (13.2, −3, 6.6, 2, −1.51) ,

then ~b(•) = ~a(•), but ~c(•) 6= ~a(•), since ~a(•) does not include the number −1.51. �

Theorem 11.23 (Joint PDF of the order statistic).

A: Let ~y ∈ Rn satisfy

(11.70) y1 < y2 < · · · < yn .

For the vector ~Y =
(
Y1, . . . , Yn

)
, let ~Y(•) be the vector of its associated order statistics, i.e.,

(11.71) ~Y(•) =
(
Y(1), . . . , Y(n)

)
.

Then its density function at ~y is given by

(11.72) f~Y(•)
(~y) = n! ·

n∏
j=1

f(yj) = n! f(y1) · · · f(yn) .

B: If ~y does not satisfy (11.70), then f~Y(•)(~y) = 0.

FIRST PROOF:
Let ∆ be a “small” n–dimensional cube with volume V ol(∆) that is centered at ~y. Study the proof
of (11.65) of Theorem 11.22 on p.278. It explains (in the onedimensional case), why one can approx-
imate

P{~Y ∈ ∆} ≈ f~Y (~y) · V ol(∆) ,

P{~Y(•) ∈ ∆} ≈ f~Y(•)
(~y) · V ol(∆) .

A cube of sidelength 2ε has volume V ol(∆) = (2ε)n. If we solve that equation for ε, we obtain

ε =
V ol(∆)1/n

2
.
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Since y1 < y2 < · · · < yn, one can choose ∆ and hence, ε = V ol(∆)1/n/2, so small, that any two
intervals [ yi − ε, yi + ε ] and [ yj − ε, yj + ε ] have empty intersection for i 6= j.
For the following, see Remark 11.16 on p.282. Note that

~Y(•)(ω) ∈ ∆ ⇔ yk − ε ≤ Y(k)(ω) ≤ yk + ε for all k,

⇔ for all k, ∃ j such that yk − ε ≤ Yj(ω) ≤ yk + ε .
(A)

We illustrate this point for n = 3, V ol(∆) = 1/8, y1 = 2.6, y2 = 4.2, y3 = 7.8. ε = (1/83)/2 = 0.25.
This is small enough for the intervals yj ± 0.25 to be disjoint.

There are 3! = 6 different ways to have ~Y (ω) ∈ ∆. They are:
(1) 2.35 ≤ Y1(ω) ≤ 2.85, 3.95 ≤ Y2(ω) ≤ 4.45, 7.55 ≤ Y3(ω) ≤ 8.05,
(2) 2.35 ≤ Y1(ω) ≤ 2.85, 3.95 ≤ Y3(ω) ≤ 4.45, 7.55 ≤ Y2(ω) ≤ 8.05,
(3) 2.35 ≤ Y2(ω) ≤ 2.85, 3.95 ≤ Y1(ω) ≤ 4.45, 7.55 ≤ Y3(ω) ≤ 8.05,
(4) 2.35 ≤ Y2(ω) ≤ 2.85, 3.95 ≤ Y3(ω) ≤ 4.45, 7.55 ≤ Y1(ω) ≤ 8.05,
(5) 2.35 ≤ Y3(ω) ≤ 2.85, 3.95 ≤ Y1(ω) ≤ 4.45, 7.55 ≤ Y2(ω) ≤ 8.05,
(6) 2.35 ≤ Y3(ω) ≤ 2.85, 3.95 ≤ Y2(ω) ≤ 4.45, 7.55 ≤ Y1(ω) ≤ 8.05,

Let us assume that k = 2, i.e., we consider the interval [3.95, 4.45].
In (2) and (4), we choose j = 3 to obtain Yj ∈ [3.95, 4.45].
On the other hand, in (1) and (6), we choose j = 2 to obtain Yj ∈ [3.95, 4.45].
We refer you again to Remark 11.16 on p.282 to understand that (A) shows that

~Y(•)(ω) ∈ ∆ ⇔ some permutation of ~Y (ω) ∈ ∆

⇔ each permutation of ~Y (ω) ∈ ∆ .
(B)

• Since a list of n items has n! permutations, there are n! such (disjoint) events: There are n!
permutations (k1, k2, . . . , kn) of (1, 2, . . . , n) with corresponding event

{y1 − ε ≤ Yk1 ≤ y1 + ε} ∩ {y2 − ε ≤ Yk2 ≤ y2 + ε} ∩ · · · ∩ {yn − ε ≤ Ykn ≤ yn + ε}.

• Since the Yj are iid and P{yi − ε ≤ Ykj ≤ yi + ε} ≈ 2ε · f(yi) for each i and j,

each such event has probability ≈
∏n
j=1 f(yj) ·

(
2ε
)n.

• Thus, f~Y(•)(~y) · V ol(∆) ≈ n! ·
∏n
j=1 f(yj) · V ol(∆)

• As ∆→ 0, “≈” becomes “=” and then f~Y(•)
(~y) = n! ·

∏n
j=1 f(yj). �

ALTERNATE PROOF:
(a) We may assume that ~y satisfies y1 < y2 < · · · < yn, since f~Y(•)(~y) = 0 otherwise.
• For small enough dt1, dt2, dtn, the intervals [yj , yj + d tj ] are disjoint.

(b) Thus,
[
yj ≤ Y(j)(ω) ≤ yj + d tj for all j

]
⇔ [ there is a permutation i1, i2, . . . , in of the

indices 1, 2, . . . , n such that yj ≤ Yij (ω) ≤ yj + d tj for all j
]
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(c) Thus,
[
yj ≤ Y(j)(ω) ≤ yj +d tj for all j

]
⇔ [ among theXi(ω), exactly one is in [y1, y1 +d t1],

exactly one is in [y2, y2 + d t2], ..., exactly one is in [yn, yn + d tn]. (Thus, NONE are outside
the union of those intervals.)

(d) This can be interpreted as the counts of the outcomes of a multinomial sequenceX1, . . . , Xn,
where Xk(ω) results in outcome #j, if yj ≤ Yk ≤ yj + d tj .

• The probabilities pj = P{Xk results in #j} are, for small enough dtj , equal to

pj = P{Yi ∈ [yj , y + dtj ] } =
y+dtj∫
yj

f(t) dt ≈ f(tj) dtj .

(e) From (b), (c), (d):

f~Y(•)
(~y) dt1 · · · dtn = P{yj ≤ Y(j)(ω) ≤ yj + d tj for all j}

=P{ there is a permutation i1, i2, . . . , in of the indices 1, 2, . . . , n

such that yj ≤ Yij ≤ yj + d tj for all j}
=P{ each Xk has exactly one outcome #j for each j = 1, . . . , n}

=

(
n

1, 1, . . . , 1

)
p1

1p
1
2 · · · p1

n =
n!

1! · · · 1!

∏
j

(
f(tj) dtj

)
.

Thus, f~Y(•)
(~y) dt1 · · · dtn = n!

∏
j f(tj) (dt1 · · · dtn).

(f) We cancel dt1 · · · dtn on both sides and obtain f~Y(•)
(~y) dt1 = n!

∏
j f(tj). �

Example 11.8. Find the formula for the joint density of Y(1) and Y(n).

Solution:
(a) Note that, since the Yj are continuous, “<” and “≤” can be interchanged and the same is

true for “>” and “≥” when computing probabilities.
(b) Also, applying A = (A ∩B) ]A ∩B{ with A = {Y(n) ≤ yn} and B = {Y(1) ≤ y1} yields

P{Y(n) ≤ yn} = P{Y(n) ≤ yn, Y(1) ≤ y1} + P{Y(n) ≤ yn, Y(1) > y1}.

We find the CDF as follows:

FY(1),Y(n)(y1, yn)
(b)
= P{Y(n) ≤ yn} − P{Y(1) > y1, Y(n) ≤ yn}
=P{Yj ≤ yn for all j} − P{y1 < Yj ≤ yn for all j}

=

n∏
j=1

P{Yj ≤ yn} −
n∏
j=1

P{y1 < Yj ≤ yn} =
[
F (yn)

]n − [F (yn)− F (y1)
]n
.

We used first independence, then identical distribution in the last line.
Differentiation of the above then gives us fY(1),Y(n)(y1, yn) as follows:
For convenience, we define G(y1, yn) := FY(1),Y(n)(y1, yn). Then,

G(y1, yn) =
[
F (yn)

]n − [F (yn)− F (y1)
]n

Thus,
∂G

∂y1
= 0 − n

[
F (yn)− F (y1)

]n−1
f(y1) = n · f(y1)

[
F (yn)− F (y1)

]n−1

Thus,
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fY(1),Y(n)(y1, yn) =
∂2G

∂y1 ∂yn
= n · f(y1) · (n− 1)

[
F (yn)− F (y1)

]n−2 · f(yn)

= n(n− 1) · f(y1) f(yn) ·
[
F (yn)− F (y1)

]n−2

Alternate solution:
The PDF can be found by interpreting certain events related to finding the density as the outcomes
of the following multinomial sequence, ~X = (X1, . . . , Xn),

(c) For a given j, the outcomes ω′i and associated probabilities pi for Xj are

� ω′1: Yj is close to y1 ⇒ p1 = f(y1) dy1 � ω′2: Yj is close to yn; ⇒ p2 = f(yn) dyn

� ω′3: Yj strictly inbetween y1 and yn ⇒ y1 < Yj < yn ⇒ p3 = F (yn)− F (y1).

Note that it is impossible that none of ω′1, ω
′
2, ω

′
3 happens and Yj < y1 or Yj > yn.

(d) We denote by Wi the count of indices j such that Xj = ω′i.
Then ~W = (W1,W2,W3) ∼multinomial 110 with joint PMF p ~W (~w) given by

p ~W (~w) =

(
n

w1, w2, w3

)
pw1

1 pw2
2 pw3

k .

• Similar to what was done in the proofs of theorems 11.22 (CDF and PDF of the jth order
statistic) and 11.23 (Joint PDF of the order statistic), we conclude from (c) and (d) that

(e) fY(1),Y(n)(y1, yn)d ynd yn = P{Y(1) is “dy1 close” to y1 and Y(n) is “dyn close” to yn }
= P{ exactly one Yj is “dy1 close” to y1 and exactly one Yj is “dyn close” to yn

and the other Yj (there are n− 2 left) are between y1 and yn

= P{W1 = 1,W2 = 1,W3 = n− 2} = p ~W (1, 1, n− 2) =

(
n

1, 1, n− 2

)
p1

1 p
1
2 p

n−2
k .

= n(n− 1) · f(y1) dy1 · f(yn) dyn ·
[
F (yn)− F (y1)

]−2.

(f) Thus, fY(1),Y(n)(y1, yn) dy1 dyn
(e)
= n(n− 1) · f(y1) · f(yn) ·

[
F (yn)− F (y1)

]n−2
dy1 dyn.

• We cancel dy1 dyn in that last equation and obtain

(g) fY(1),Y(n)(y1, yn) = n(n− 1) · f(y1) · f(yn) ·
[
F (yn)− F (y1)

]n−2.

We have obtained the same result for the joint PDF of Y(1) and Y(n) as in the first solution. �

Remark 11.17 (Sample median). Recall from Definition 10.4 (pth quantile) on p.216 that the median
of a random variable U with CDF FU (·) was its 0.5th quantile

φ0.5 = min{u ∈ R : FU (u) ≥ 0.5} .

If U is continuous with a strictly increasing CDF, then φ0.5 is that unique value u, for which FU (u) =
0.5. Thus, half of the area under the density fU (·) is to the left of φ0.5 and the other half is to the
right of φ0.5.

110See Definition 11.19 (Multinomial distribution) on p.274.
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Assume that ~Y =
(
Y1, . . . , Yn

)
describes the action of picking a sample of n real numbers. In other

words, each Yj is a random variable and each invocation ~Y (ω) results in the specific sample ~y =(
y1, . . . , yn

)
, where

y1 = Y1(ω), y2 = Y2(ω), . . . yn = Yn(ω) .

Further assume that the Yj are continuous. Then we can assume that all sample picks Y1, . . . , Yn are
distinct, so that the order statistic satisfies strict inequalities

Y(1) < Y(2) < · · · Y(n) .(A)

The sample median of ~Y is defined as follows.

(a) If n = 2k + 1 is odd, then the sample median of ~Y is is the (k + 1)th order statistic Y(k+1).

(b) If n = 2k is even, then the sample median of ~Y is is the (random) average
Yk + Yk+1

2
.

Two examples:
(1) If n = 7 , then the sample median is Y(n+1) = Y(4). Three of the Yj are to the left of Y(4) and

the same number are to the right.

(2) If n = 8, then the sample median of ~Y is is the average
Y4 + Y5

2
. Since we have strict in-

equalities in (A), four of the Yj are to the left of the sample median and the same number are
to the right.

The point to remember is that the sample median of an odd–sized sample is an order statistic,
whereas that of an even sized one is not.

Example: Let us assume that the the sample picks of an odd sized sample ~Y =
(
Y1, . . . , Y2n+1

)
are

continuous and iid random variables. We can compute the PDF of the sample median as that of
Y(n+1) This time we do so by associating a multinomial random vector with three outcomes: Either
Yj is near yn+1 or it is near one of the n values to the left or it is near one of the n values to the right.
In that manner we obtain

fY(n+1)
(y) =

(
2n+ 1

n, 1, n

)
[F (y)]n · f(y) · [1− F (y)]n . �

Remark 11.18. Here are two observations about n iid random variables Y1, . . . , Yn.
(a) Assume that Yk1 , . . . , Ykn is a permutation (ANY permutation!!) of Y1, . . . , Yn. Then the

symmetry that results from iid implies that

P{Y1 < Y2 < · · · < Yn} = P{Yk1 < Yk2 < · · · < Ykn} .

Since there are n! permutations, each one of those probabilities equals
1

n!
.

(b) Fix an arbitrary k ∈ [1, k]Z. Then

P{Yk = Y(1)} = P{Yk = Y(2)} = . . . P{Yk = Y(n)} .

Since there are n such arrangements, each one of those probabilities equals
1

n
. �
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11.10 The Bivariate Normal Distribution (Optional)

Definition 11.21 (Bivariate normal distribution). ?

We say that two continuous random variables Y1 and Y2 have a bivariate normal distribu-
tion, or that they have a joint normal distribution, if their joint PDF is

fY1,Y2(y1, y2) =
e−Q/2

2πσ1σ2

√
1− ρ2

, −∞ < y1 <∞, −∞ < y2 <∞,(11.73)

where Q =
1

1− ρ2

[
(y1 − µ1)2

σ2
1

− 2ρ
(y1 − µ1)(y2 − µ2)

σ1σ2
+

(y2 − µ2)2

σ2
2

]
.

We then also write (Y1, Y2) ∼NNN (µ1, σ
2
1, µ2, σ

2
2, ρ). �

Whereas we have marked this definition as optional, you should remember the following theorem.

Theorem 11.24.

If two random variables Y1 and Y2 are NNN (µ1, σ
2
1, µ2, σ

2
2, ρ), then

(a) Y1 ∼NNN (µ1, σ
2
1 and Y1 ∼NNN (µ2, σ

2
2 .

Thus, E[Y1] = µ1, V ar[Y1] = σ2
1, E[Y2] = µ2, V ar[Y2] = σ2

2 .
(b) Cov[Y1, Y2] = σ1 σ2 ρ. Thus, ρ is the correlation coefficient of Y1 and Y2.

PROOF (outline):
One proves (a) by showing that the marginal densities are

fY1(y) =
1

σ1

√
2π
e−(y−µ1)2/(2σ2

1) , fY2(y) =
1

σ2

√
2π
e−(y−µ2)2/(2σ2

2) .

See (10.37) on p.230.
For the proof of (b), see Casella, Berger [3]. �

Theorem 11.25.

If two jointly normal random variables Y1 and Y2 are uncorrelated, then they are independent.

PROOF: If ρ = 0, the joint PDF of Y1 and Y2 which was given in (11.73) is

fY1,Y2(y1, y2) =
e−Q/2

2πσ1σ2
,

where Q =
(y1 − µ1)2

σ2
1

− 0 +
(y2 − µ2)2

σ2
2

. Thus,

fY1,Y2(y1, y2) =
1

(
√

2πσ1)(
√

2πσ2)
exp

{
−(y1 − µ1)2

2σ2
1

− (y2 − µ2)2

2σ2
2

}
=

(
1

(
√

2πσ1)
exp

{
−(y1 − µ1)2

2σ2
1

})(
1

(
√

2πσ2)
exp

{
−(y2 − µ2)2

2σ2
2

})
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It follows from Theorem 11.24(a) that fY1,Y2(y1, y2) = fY1(y1) fY2(y2). The independence of Y1 and
Y2 follows from Theorem 11.4 on p.248. �

Remark 11.19. The concept of joint normality can be extended from two random variables to an
arbitrary number of random variables Y1, . . . , Yn. However, the definition of their joint PDF utilizes
n× n matrices and their determinants. This requires some background in linear algebra and that is
not a prerequisite for this course. �
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12 Functions of Random Variables and their Distribution

This chapter essentially only contains enough material to serve as a reference and review
“sheet”. You will not be able to properly understand the techniques noted here if you do
not work through the many examples of the WMS text!

12.1 The Method of Distribution Functions

The Method of Distribution Functions is best explained by some examples.

Example 12.1. Find the CDF and PDF for U := 2Y − 6, where the density of the random variable Y
is

fY (y) =

{
8y , if 0 ≤ y ≤ 1/2 ,

0 , else .
(12.1)

Solution: Applying the distribution function method means the following:
� Find the CDF FU (u) of U � Find the PDF fU (u) of U by differentiating FU (u)

� Do this with help of the relation U = 2Y − 6 ⇔ Y =
U + 6

2
.

We obtain

FU (u) = P{U ≤ u} = P{2Y − 6 ≤ u} = P

{
Y ≤ u+ 6

2

}
= FY

(
u+ 6

2

)
.

Note that
0 ≤ y ≤ 1

2
⇔ 0 ≤ u+ 6

2
≤ 1

2
⇔ −6 ≤ u ≤ −5

Thus, FU (u) = 0 for u < −6 and FU (u) = 1 for u > −5.

For −6 ≤ u ≤ −5, i.e., 0 ≤ y ≤ 1
2 , we must integrate:

P

{
Y ≤ u+ 6

2

}
=

∫ (u+6)/2

0
fY (t) dt =

∫ (u+6)/2

0
8t dt =

8

2

(
u+ 6

2

)2

.

We combine the cases u < −6; −6 ≤ u ≤ −5; u > −5 and obtain

FU (u) =


0 , if u < −6 ,

(u+ 6)2 , if − 6 ≤ u ≤ −5 ,

1 , if u > −5 .

We differentiate this CDF and otain the density function for U :

fU (u) =
dFU (u)

du
=

{
2(u+ 6) , if − 6 ≤ u ≤ −5 ,

0 , else . �
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Example 12.2 (WMS Ch.06.3, Example 6.3). The following is Example 6.3 of the WMS text. Its proof
has been substantially rewritten.
Let (Y1, Y2) denote a random sample of size n = 2 from the uniform distribution on the interval
(0, 1). In other words, we assume that Y1 and Y2 are jointly continuous and have a joint PDF which
is constant and not zero on the unit square.
The issue is to find the probability density function for U := Y1 + Y2.

Solution: It follows from the assumptions that Y1 and Y2 possess the same mariginal PDF The
density function for each Yi is

f(y) := fY1(y) = fY2(y) =

{
1 , 0 ≤ y ≤ 1 ,

0 , elsewhere .

Since Y1 and Y2 are independent,

fY1,Y2(y1, y2) = fY1(y1)fY2(y2) = f(y1)f(y2) =

{
1 , 0 ≤ y1 ≤ 1 , 0 ≤ y2 ≤ 1 ,

0 , elsewhere .

Thus, FU (u) = P{Y1 + Y2 ≤ u} =

∫∫
B
f(y1)f(y2) dy1 dy2 , where, for a fixed u, the region of inte-

gration is

B :=
(
[0, 1]× [0, 1]

)
∩ {(y1, y2) ∈ R2 : y1 + y2 ≤ u} .(A)

We will separately treat the cases • u ≤ 0 or u ≥ 2 • 0 < u ≤ 1 • 1 < u < 2.

Case 1: u ≤ 0 or u ≥ 2.
If u ≤ 0, then [0, 1]× [0, 1] and {(y1, y2) ∈ R2 : y1 + y2 ≤ u} are disjoint. Thus, B = ∅ and

∫∫
B · · · = 0

and thus, FU (u) = 0.

If u ≥ 2, then [0, 1] × [0, 1] ⊆ {(y1, y2) ∈ R2 : y1 + y2 ≤ u}. Thus,
∫∫
B · · · =

1∫
0

1∫
0

· · · and thus,

FU (u) = 1.

Case 2: • 0 < u ≤ 1.
The graph of y1+y2 = u in the (y1, y2) plane is a straight line which intersects the vertical coordinate
axis, y1 = 0, at y2 = u and the horizontal coordinate axis, y2 = 0, at y1 = u. Thus, B is the triangle
bounded by the coordinate axes and the line y1 + y2 = u. since it is half of a square with side length
u, its area is u2/2.
Of course, this also follows from the fact that

∫∫
B . . . is achieved by first integrating, for 0 ≤ y1 ≤ u,

over the vertical slice of B at y1 and then integrating those integrals. Since the vertical slice of B at
y1 extends from y2 = 0 to y1 + y2 = u, i.e., to y2 = u− y1

FU (u) =

∫∫
B

1 dy1 dy2 =

∫ u

0

∫ u−y1

0
1 dy2 dy1

=

∫ u

0
(u− y1) dy1 =

(
uy1 −

u2

2

) ∣∣∣∣u
0

= u2 − u2

2
=

u2

2
.

Case 3: • 1 < u < 2.
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Let B̃ :=
(
[0, 1]× [0, 1]

)
\ {(y1, y2) ∈ R2 : y1 + y2 ≥ u} . Then

B̃ =
(
[0, 1]× [0, 1]

)
∩ {(y1, y2) ∈ R2 : y1 + y2 ≤ u} ,(B)

FU (u) = 1 − P{Y1 + Y2 ≥ u} = 1 −
∫∫

B̃
1 dy1 dy2(C)

Now, the graph of y1 + y2 = u in the (y1, y2) plane is a straight line which intersects the vertical line,
y1 = 1, at y2 = u− 1 and the horizontal line, y2 = 0, at y1 = u− 1.
B̃ is the right angle triangle bounded by the lines y1 = 1, y2 = 1 and y1 + y2 = u.
Its legs have length 1− (u− 1) = 2− u. Thus, its area is half that of a square with side length 2− u.
Thus, the area of B̃ is (2− u)2/2. It follows from (C) that

FU (u) = 1 − area(B̃) = 1 − 4− 4u+ u2

2
= −1 + 2u − u2

2
.

This also could have been computed by iterated integration. In this case,

1 − FU (u) =

∫∫
B̃

1 dy1 dy2 =

∫ 1

u−1

∫ 1

u−y1
1 dy2 dy1

=

∫ 1

u−y1
(1− u+ y1) dy1 =

(
(1 − u) +

y2
1

2

) ∣∣∣∣1
u−1

= (1− u)(2− u) +
1

2
− (u− 1)2

2
= 2 − 2u +

u2

2
.

We thus obtain, as before, FU (u) = 1−
(
2 + 2u− u2/2

)
= −1 + 2u− u2/2. �

The problem of the next example is that of WMS Ch.6.4, Example 6.8. This instructor does not
understand the reasoning given there and has provided a completely different proof. You find this
example here rather than in the next section (section 12.2: The Method of Transformations in One
Dimension), because it is solved with the techniques of this section.

Example 12.3. Let Y1 and Y2 be jointly continuous random variables with density function

fY1,Y2(y1, y2) =

{
e−(y1+y2) , 0 ≤ y1 , 0 ≤ y2 ,

0 , else .

What are the CDF andPDF of U := Y1 + Y2?

Solution:

P{U ≤ u} = P{Y1 + Y2 ≤ u} =

∫∫
R
e−y1−y2 d~y

where R = triangle with vertices (0, u), (0, 0), (u, 0). Thus, for u > 0,

P{U ≤ u} =

∫ u

0

[∫ u−y1

0
e−y1−y2 dy2

]
dy1 =

∫ u

0
e−y1

[
−e−y2

∣∣∣u−y1
0

]
dy1

=

∫ u

0
e−y1

[
1 − e−(u−y1)

]
dy1 =

∫ u

0
e−y1

[
1 − ey1e−u

]
dy1

=

∫ u

0
e−y1 dy1 −

∫ u

0
e−u dy1 = −e−y1

∣∣∣u
0
− u e−u

= − (e−u − 1) − u e−u = 1 − (1 + u) e−u .
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The derivative is (for u > 0)

fU (u) =
d

du

(
1 − (1 + u) e−u

)
= −(1 + u)′ e−u − (1 + u)

(
e−u
)′

= − e−u − (1 + u)
(
− e−u

)
= −e−u + e−u + u e−u = u e−u .

Thus, the CDF is FU (u) =

{
1 − (1 + u) e−u , if u > 0 ,

0 , else

and the PDF is fU (u) =

{
u e−u , if u > 0 ,

0 , else .

The latter agrees with the WMS result. �

Remark 12.1. In the following we use the arrow notation ~y =
(
y1, . . . , yn

)
, ~Y =

(
Y1, . . . , Yn

)
, ...

Summary of the Distribution Function Method
Goal: Find the PDF fU (u) for U = g(~Y ), where g : D → R has a domain D ⊆ Rn large
enough to hold all arguments ~y that are relevant for the problem.

(1) Find the region R = {g ≤ u} = g−1
(
]−∞, u]

)
. (Thus, R ⊆ Rn.)

(2) Find the “boundary” R∗ = {g = u} of the region R.
(3) Find the CDF FU (u) = P{U ≤ u} by integrating f(~y) over the region R.
(4) Find the the PDF fU (u) = dFU (u)

du by differentiating FU (u).

Note for the above that, since g may not be invertible, g−1 denotes the preimage g−1(B) = {~y :
g(~y) ∈ B}, where B ⊆ R. If, e.g., B = ]−∞, u] , then R = g−1

(
]−∞, u]

)
, and (3) expresses

FU (u) = P{U ≤ u} = P{g
(
~Y
)
≤ u} = P

{
ω : ~Y (ω) = ~y such that g(~y) ≤ u

}
= P{Y ∈ R} =

∫∫
· · ·
∫
R
f~Y (~y) d~y . �

(12.2)

The next remark really should be considered another example for the distribution method. It has
been marked as optional, so it will not be part of any exam or quiz. Nevertheless, you are strongly
encouraged to work through its proof and increase your skills with respect to applying the distri-
bution method.

Remark 12.2. ? Let Y be a continuous random variable with PDF fY (y) and let h : R→ R be a
symmetrical function (also, symmetric function), i.e., h(−y) = h(y) for all y. Also, assume that

(1) y 7→ h(y) is differentiable (hence, continuous) everywhere.
(2) y 7→ h(y) is injective for y ≥ 0, i.e., 0 ≤ y < y′ ⇒ h(y) 6= h(y′). (Thus, by symmetry, h(y)

also is injective for y < 0).

Continuous functions of a real variable are either strictly increasing or strictly decreasing on any
subset of the domain where they are injective. (Draw a picture!) Thus, there are two possibilities.

(1) h is strictly increasing on [0,∞[ (and then, by symmetry, h is strictly decreasing on [−∞, 0[).
Also, h attains its global minimum at y = 0.

(2) h is strictly decreasing on [0,∞[ (and then, by symmetry, h is strictly increasing on [−∞, 0[).
Also, h attains its global maximum at y = 0.
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In either case, there are no jumps for the continuous h(·). We will determine the CDF and PDF of
the random variable U := h ◦ Y under the following assumptions: For any given u ∈ R,

(3) h is strictly increasing on [0,∞[
(4) h(0) = 0 and thus, h(y) ≥ 0 for all y. Note that then P{U > 0} = 1 and P{U ≤ 0} = 0.

(6) Thus, if u > 0, then U
(
ω
)
≤ u ⇔ |Y (ω)| ≤ y = h−1(u). Thus,

FU (u) = P{U ≤ u} = P{|Y | ≤ h−1(u)} = P{−h−1(u) ≤ Y ≤ h−1(u)}
= FY

(
h−1(u)

)
− FY

(
− h−1(u)

)
if u > 0, i.e.,

(12.3) FU (u) =


1 , if h(y) < u for all y ,
FY
(
h−1(u)

)
− FY

(
− h−1(u)

)
, if there is y = h−1(u) ,

0 , if u ≤ 0 .

We differentiate
d

du
to obtain the density. We write h−1′(u) =

dh−1(u)

du
:

• fU (u) = h−1′(u) fY
(
h−1(u)

)
− (−1)h−1′(u)fY

(
− h−1(u)

)
Thus,

(12.4) fU (u) =

{
h−1′(u)

[
fY
(
h−1(u)

)
+ fY

(
− h−1(u)

) ]
, if there is y = h−1(u) ,

0 , else . �

Example 12.4. As an example for that last remark, let us consider the function h(y) = y2. 111 h is
strictly increasing on [0,∞[ and its minimum is h(0) = 0. Thus, h satisfies the assumptions (3) and
(4) of Remark12.2. Since lim

y→∞
y2 =∞, the condition “if h(y) < u for all y” of (12.3) is never satisfied.

Further, the condition “if there is y = h−1(u)” of (12.3) and (12.4) becomes “u ≥ 0”.

Thus, if U = Y 2, then h−1(u) =
√
u for u ≥ 0 and h−1′(u) = 1/(2

√
u). We obtain

fU (u) =


1

2
√
u

[
fY
(√
u
)

+ fY
(
−
√
u
) ]

, if u > 0 ,

0 , else . �

Example 12.5. Assume that the random variable Y is NNN (0, 1), i.e., Y is standard normal. What is
the distribution of U := Y 2?
For this example, let

φ(y) := fY (y) =
1√
2π
e−y

2/2 ,(12.5)

Φ(y) :=

∫ y

−∞
φ(t) dt .(12.6)

In other words, φ is the PDF of Y and Φ is the CDF of Y .
Since U ≥ 0, we have fU (u) = FU (u) = 0 for u < 0. Thus, we may assume that u ≥ 0.

111That is WMS Example 6.4.
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Then, FU (u) = P{−
√
u ≤ Y ≤

√
u} = Φ(

√
u) − Φ(−

√
u) and thus,

fU (u) = F ′U (u) =
d

du

[
Φ(
√
u) − Φ(−

√
u)
]

= φ(
√
u)

1

2
√
u

+ φ(−
√
u)

1

2
√
u

= φ(
√
u)

1√
u

=
1√
2π

e−(
√
u)2/2 1√

u

Above, we used symmetry φ(−
√
u) = φ(

√
u) to obtain the equation before the last. Thus,

fU (u) =
1√
2π

e−u/2 u−1/2 =
u1/2−1

21/2
√
π
e−u/2

One can show that Γ(1/2) =
√
π. 112 We use that result without attempting to prove it and obtain,

setting α := 1/2 and β := 2,

fU (u) =
u1/2−1 e−u/2

21/2Γ(1/2)
=

uα−1 e−u/β

βαΓ(α)
.

We finally remember that all this was done for u ≥ 0 and that fU (u) = 0 for u < 0.

fU (u) =


uα−1 e−u/β

βαΓ(α)
, if u ≥ 0 ,

0 , else .

It follows that the square of a NNN (0, 1) variable has a gamma(1/2, 2) distribution. Equivalently, it
has a chi–square distribution with one degree of freedom. �

Example 12.6. It is important that you recognize when there are significant shortcuts. It might be
possible to obtain FU (u) = FU

(
g−1(y)

)
without having to integrate the PDF. Here is an example.

Let the random variable Y be expon(1). Find the CDF and PDF of U := 2Y − 4.
Solution:

(1) Here, u = g(y) = 2y − 4 has inverse y = g−1(u) = (u+ 4)/2.

(2) The CDF of Y is FY (y) =

{
1 − e−y , if y ≥ 0 ,

0 , else .

(3) Thus, FU (u) = P{U ≤ u} = P{2Y − 4 ≤ u} = P

{
Y ≤ u+ 4

2

}
= FY

(
u+ 4

2

)
.

(4) From (2): FU (u) =

{
1 − e−

u+4
2 , if u+4

2 ≥ 0 ,

0 , else .

(5) Thus, FU (u) =

{
1 − e−

u+4
2 , if u ≥ −4 ,

0 , else .
(6) We have obtained FU (u) without integrating a PDF.

(7) The density is fU (u) = F ′U (u) =


1
2 e
−u+4

2 , if u ≥ −4 ,

0 , else .
�

112See, e.g., https://en.wikipedia.org/wiki/Gamma_function or Shilov, G. [9].
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12.2 The Method of Transformations in One Dimension

Introduction 12.1. We already encountered the method of transformations in Remark 12.2 on p.293.
There we computed the CDF and PDF of the random variable U = h(Y ) for a continuous random
variable Y and a symmetric and differentiable function h(y) which was injective on the interval
B1 = [0,∞[. (By symmetry, h also had those characteristics on B2 =]−∞, 0[.)
At the heart of the calculations was the fact that injectivity allowed us to compute, for a given u, a
unique y = h−1(u) such that h(y) = u.
Since differentiable functions are continuous, injectivity on an interval B implies that h is either
strictly increasing or strictly decreasing on B. See figures 12.1 and 12.2 below.

12.1 (Figure). Strictly increasing function.
Source: WMS Ch.6.4

12.2 (Figure). Strictly decreasing function.
Source: WMS Ch.6.4

Those figures illustrate the following.
(1) If h is strictly increasing, then h(y) ≤ u1 ⇔ y ≤ h−1(u1). Thus,

P{U ≤ u} = P{h(Y ) ≤ u} = P{h−1[h(Y )] ≤ h−1(u)} = = P{Y ≤ h−1(u)} ,
i.e., FU (u) = FY

(
h−1(u)

)
.

(12.7)

(2) If h is strictly decreasing, then h(y) ≤ u1 ⇔ y ≥ h−1(u1). Thus,

P{U ≤ u} = P{h(Y ) ≤ u} = P{Y ≥ h−1(u)} = 1 − P{Y ≤ h−1(u)} ,
i.e., FU (u) = 1− FY

(
h−1(u)

)
.

(12.8)

Case I: h is strictly increasing

We differentiate (12.7) with respect to u and write h−1′(u) for
dh−1(u)

du
. Then

fU (u) =
dFU (u)

du
=

dFY
(
h−1(u)

)
du

= fY
(
h−1(u)

)
· h−1′(u) .

Since h is strictly increasing, h−1′(u) > 0. Thus, h−1′(u) = |h−1′(u)|. Thus,

(12.9) fU (u) = fY
(
h−1(u)

)
· |h−1′(u)| .

Case II: h is strictly decreasing
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We differentiate (12.8) with respect to u. Then

fU (u) = −
dFY

(
h−1(u)

)
du

= fY
(
h−1(u)

)
·
(
− h−1′(u)

)
.

Since h is strictly decreasing, h−1′(u) < 0. Thus, −h−1′(u) = |h−1′(u)|. Thus,

(12.10) fU (u) = fY
(
h−1(u)

)
· |h−1′(u)| .

(3) We compare (12.9) and (12.10) and see that they are equal. Thus, as long as h is eiher strictly
increasing everywhere or strictly decreasing everywhere, (i.e., as long as f is invertible ev-
erywhere,)

(12.11) fU (u) = fY
(
h−1(u)

)
· |h−1′(u)| = fY

(
h−1(u)

)
·
∣∣∣∣ d[h−1(u)]

du

∣∣∣∣ .
Since

∫ b

a
fY (t) dt =

∫
[a,b]∩{ỹ:f(ỹ) 6=0}

fY (t) dt for any interval [a, b], we only need to worry about the

behavior of h for arguments belonging to

suppt(fY ) = {ỹ : fY (ỹ) 6= 0} .113

• suppt(fY ) = ]y2, y5[∪ ]y6, y7[. It does not
matter what h(y) does outside suppt(fY ).

• h must be injective on the support of fY .
• h changes direction at y3 and y4, so

the pieces ]y2, y3[, ]y3, y4[, ]y4, y5[, must be
treated separately. �

The following theorem summarizes the observations of those introductory results:

Theorem 12.1.

Given are a continuous random variable Y with density fY (y) and a differentiable function h(y)
which is either strictly increasing or strictly decreasing for all y ∈ suppt(fY ), i.e., for all y that
satisfy fY (y) > 0. Then the PDF of U := h(Y ) is

(12.12) fU (u) = fY
(
h−1(u)

)
· |h−1′(u)| = fY

(
h−1(u)

)
·
∣∣∣∣ d[h−1(u)]

du

∣∣∣∣ .
PROOF: See the introduction 12.1. �

Example 12.7 (Increasing function). Given is a random variable Y with the following PDF:

fY (y) =

{
2y , if 0 ≤ y ≤ 1 ,

0 , else .

113 ? See Definition 4.8 (Support of a real–valued function) on p.99
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Let U := 4Y − 3. Find the PDF for U by means of the transformation method.

Solution: We apply the transformation method with the strictly increasing function
u = h(y) = 4y − 3. Then the inverse of h is y = h−1(u) = (u+ 3)/4, for all u ∈ R.

(1) We apply the transformation method with u = h(y) = 4y − 3 (strictly increasing).
(2) Then the inverse of h is y = h−1(u) = (u+ 3)/4, for all u ∈ R.
(3) Further, h−1′(u) = 1/4. Since 0 ≤ (u+ 3)/4 ≤ 1 ⇔ −3 ≤ u ≤ 1,

fU (u) =


2(u+ 3)

4
· 1

4
, if − 3 ≤ u ≤ 1 ,

0 , else .
=


u+ 3

8
, if − 3 ≤ u ≤ 1 ,

0 , else . �

Example 12.8 (Decreasing function). Given is a random variable Y with the same PDF as in Example
12.7:

fY (y) =

{
2y , if 0 ≤ y ≤ 1 ,

0 , else .

Let U := −3Y + 2. Find the PDF for U by means of the transformation method.

Solution: We apply the transformation method with the strictly decreasing function
u = h(y) = 2− 3y. Then the inverse of h is y = h−1(u) = (2− u)/3, for all u ∈ R.

(1) We apply the transformation method with u = h(y) = 2− 3y (strictly decreasing).
(2) Then the inverse of h is y = h−1(u) = (2− u)/3, for all u ∈ R.
(3) Further, h−1′(u) = −1/3. Since 0 ≤ (2− u)/3 ≤ 1 ⇔ 0 ≥ (u− 2) ≥ −3 ⇔ −1 ≤ u ≤ 2,

fU (u) =


2(2− u)

3
·
∣∣∣∣−1

3

∣∣∣∣ , if − 1 ≤ u ≤ 2 ,

0 , else .
=


4− 2u

9
, if − 3 ≤ u ≤ 1 ,

0 , else . �

Example 12.9 (Distribution function method with two variables). Given are two jointly continuous
random variables with uniform distribution on the triangle

B := {(y1, y2) : 0 < y2 < 1− y1 < 1} .

Find the CDF of U = Y1 + Y2.

(1) The joint PDF of (Y1, Y2) is fY1,Y2(y1, y2) =

{
2 , if 0 < y2 < 1− y1 < 1 ,

0 , else .

(2) FU (u) = P{U ≤ u} = P{Y1 + Y2 ≤ u} =
∫∫
B∩C

2 d~y, where C = {(y1, y2) : y1 + y2 ≤ u}.

(3) (y1, y2) ∈ B ⇒ 0 < 1− y1 < 1 ⇒ 0 > y1 − 1 > −1 ⇒ 0 < y1 < 1.
0 < y2 < 1 is obvious. Thus, u ≤ 0 ⇒ P{U ≤ u} = 0.

(4) B is the triangle with vertices (0, 0), (0, 1) and (1, 0).
For u > 0, C is the triangle with vertices (0, 0), (0, u) and (u, 0)
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(5) Thus, 0 < u < 1 ⇒ B ∩ C = C ⇒
∫∫
B∩C

2 d~y = 2
∫∫
C d~y

(6) Thus, from (5) & (2), 0 < u < 1 ⇒ B ∩ C = C ⇒ FU (u) = 2
∫∫
C d~y.∫∫

C · · · d~y is done by integrating, for each fixed 0 < y1 < u, over that part of the vertical line
{y2 : y2 = y1} that is within C. That is the segment 0 < y2 < u− y1.

(7) Thus, 0 < u < 1 ⇒ FU (u) = 2

∫ u

0

∫ u−y1

0
dy2 dy1

= 2

∫ u

0
(u− y1 − 0) dy1 = 2u2 − 2

y2
1

2

∣∣∣u
0

= u2 .

(8) From (4), u ≥ 1 ⇒ B ∩ C = B = suppt(fU ) ⇒ FU (u) = 1.

(9) Thus, from (3) & (7) & (8), FU (u) =


0 , if u ≤ 0 ,

u2 , if 0 < u < 1 ,

1 , if u ≥ 1 .

Differentiation yields fU (u) =

{
2u , if 0 < u < 1 ,

0 , if u ≤ 0 or u ≥ 1 . �

Remark 12.3. In the following we use the arrow notation ~y =
(
y1, . . . , yn

)
, ~Y =

(
Y1, . . . , Yn

)
, ...

Summary of the Transformation Method
Goal: Find the PDF fU (u) for U = h(Y ), where
• h : R → R has a domain R ⊆ R large enough to hold all arguments y that are

relevant for the problem. That requires that R contains the support of the PDF fY
(the set where fY is not zero).

• h is invertible on R. In other words, h is injective on R: If y ∈ R and u = h(y), then
there is no ỹ ∈ R such that ỹ 6= y and h(ỹ) = u.

• Thus h has an inverse u 7→ h−1(u) which maps any u that is a function value u = h(y)
back to y. Do not confuse this genuine inverse function of h(·) with the preimage
function B 7→ h−1(B) = {y ∈ Y : h(y) ∈ B}! That one maps sets to sets!

• We require that h is either strictly increasing or strictly decreasing for those y ∈ R
where fY (y) > 0. This assumption guarantees that h is injective and its inverse
u 7→ h−1(u) exists on the support of fY .

To find the PDF fU (u) for U = h(Y ), proceed as follows:
(1) Find the inverse function, y = h−1(u), for those u that correspond to y with fY (y) 6=

0.

(2) Find the derivative
dh−1

du
=

dh−1(u)

du
= h−1′(u).

(3) Finally, compute fU (u) as follows: fU (u) = fY
(
h−1(u)

) ∣∣∣∣ dh−1(u)

du

∣∣∣∣ . �

Remark 12.4. The transformation method still works if h is not either strictly increasing or decreas-
ing on suppt(g),as long as h is injective and R can be subdivided by intervals on which h is either
strictly increasing or strictly decreasing.
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As an example, consider u := h(y) :=

{
y, if y ≤ 0 ,

e−y, if y > 0 .

• On ]−∞, 0], h is strictly increasing with inverse y = h−1(u) = u. This inverse has derivative
h−1′(u) = 1 > 0.

• On ]0,∞[, h is strictly decreasing with inverse y = h−1(u) = − ln(u). This inverse has
derivative h−1′(u) = −1/u < 0.

• Obviously if y ≤ 0, then y ≤ 0 ⇔ u ≤ 0. Moreover, y > 0 ⇔ 0 < u = e−y < 1.

• Thus, fU (u) =


fY (h−1(u) · |1| = fY (u), ifu ≤ 0 ,

fY (h−1(u)
)
· |−1/u| =

fY
(
− ln(u)

)
u

, if 0 < u < 1 ,

0, else . �

12.3 The Method of Transformations in Multiple Dimension

Introduction 12.2. In Chapter 12.2 (The Method of Transformations in Multiple Dimension), we
looked for ways to compute the density fU (u) of the transform U = h(Y ) of a continuous random
variable Y by means of a function hwhich maps real numbers y to real numbers u = h(y). Theorem
12.1 on p.297 provided us with an explicit formula for the PDF fU (u) of the transformed random
variable U = h(Y ):

(12.13) fU (u) = fY
(
h−1(u)

)
· |h−1′(u)| = fY

(
h−1(u)

)
·
∣∣∣∣ d[h−1(u)]

du

∣∣∣∣ .
(1) Since |h−1′(u)| appears in that formula, h−1(u) must exist and be differentiable.
(2) That in turn requires that h is differentiable, in particular continuous.
(3) Moreover, neither h′(y) nor h−1′(u) can be zero, since h′(y) · h−1′(u) = 1.

Existence of h−1(u) requires h to be injective on the support of the PDF fY :
(4) If u0 is the function value u0 = h(y) of some argument y that satisfies fY (y) > 0,

• then there is no other argument ỹ that also satisfies u0 = h(ỹ) and fY (ỹ) > 0.

Since h is continuous, (4) is satisfied if h is either strictly increasing or strictly decreasing for all y in
the support of h, so we replaced (4) with that simpler assumption.
We now look for an n–dimensional analogue. If you have attended a linear algebra course, you
are knowledgeable about n × n matrices and their determinants. If your background about those
subjects is limited to a course in multivariable calculus, then assume that n = 2 or n = 3. We study

• random vectors ~Y =
(
Y1, . . . , Yn

)
, where each coordinate Yj is a random variable.

• functions ~u = ~h
(
~y
)

that map n–dimensional arguments ~y to n–dimensional function values

~y, have continuous partial derivatives
∂hi
yj

for i, j ∈ [1, n]Z and that satisfy a multidimen-

sional analogue of (4):

(5) If the vector ~u0 is a function value ~u0 = ~h
(
~y
)

of some argument ~y that satisfies f~Y
(
~y
)
> 0,

(here, f~Y
(
~y
)

) is the PDF of the jointly continuous random variables Y1, . . . , Yn),
• then there is no other argument ~̃y that also satisfies ~u0 = h(~̃y) and fY (~̃y) > 0.
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These two conditions guarantee the invertibility of the function ~y 7→ ~u = ~h
(
~y
)
: This inverse function

~h−1(·) is defined by the relation

~u = ~h
(
~y
)
⇔ ~y = ~h−1

(
~u
)
.

Since the function values ~y = ~h−1
(
~u
)

belong to Rn, ~h−1(·) consists of n coordinate functions
h−1

1 (·), h−1
2 (·), . . . , h−1

n (·). They are defined by the equations

(12.14) h−1
1

(
~u
)

= y1, h−1
2

(
~u
)

= y2, . . . , h
−1
n

(
~u
)

= yn.

In the onedimensional case, the existence of continuous
dh

du
which satisfies

∣∣∣∣dhdu
∣∣∣∣ 6= 0 implies that of

a continuous and non–zero derivative
dh−1

dy
. Further,

(12.15)
dh−1

dy
= 1

/dh
du

.

In the n–dimensional case, we must replace the condition
∣∣∣∣dhdu

∣∣∣∣ 6= 0 with the condition

(5) J−1 := det


∂h1
∂y1

∂h1
∂y2

· · · ∂h1
∂yn

∂h2
∂y1

∂h2
∂y2

· · · ∂h2
∂yn

· · · · · · · · · · · ·
∂hn
∂y1

∂hn
∂y2

· · · ∂hn
∂yn

 6= 0 .

The choice of the symbol J−1 for this determinant will become clear in a moment. The assump-

tions(5) and (6) are sufficient for the existence of all partial derivatives
∂h−1

i

uj
and their continuity.

They form an n×n matrix and one can show that it’s determinant, which we denote by J , also does
not vanish. In other words,

(12.16) J = det



∂h−1
1

∂u1

∂h−1
1

∂u2
· · · ∂h−1

1
∂un

∂h−1
2

∂u1

∂h−1
2

∂u2
· · · ∂h−1

2
∂un

· · · · · · · · · · · ·
∂h−1

n
∂u1

∂h−1
n

∂u2
· · · ∂h−1

n
∂un

 6= 0 .

Moreover, the determinants J−1 and J satisfy the analogue of (12.15):

(12.17) J−1 =
1

J
. �

Before we examine how this material about the matrices of the partial derivatives and their deter-
minants can be used to compute the joint PDF of the random vector ~U(ω) = ~h

(
~Y (ω)

)
and before

state our findings as a formal theorem, we illustrate the above with the following example.
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Example 12.10 (The joint PDF of two independent, exponential random variables – Part 1). In this
twodimensional example, the function ~h = (h1, h2) is defined as follows:

u1 :=h1(y1, y2) := 2y1 + y2 ,(12.18)
u2 :=h2(y1, y2) := y1 − 2y2 .(12.19)

(1) We show that this function can be inverted by solving these equations for ~y = (y1, y2).

• u1 − 2u2
(12.18)

= y2 + 4y2 = 5y2 ⇒ y2 = u1/5 − 2u2/5 .

• Thus, y1
(12.19)

= u2 + 2y2 = u2 + (1/5)[2u1 − 4u2] = (2u1)/5 + u2/5.

We have found the inverse function ~h−1 =
(
h−1

1 , h−1
2

)
to be

h−1
1 (u1, u2) = y1 =

1

5
(2u1 + u2) ,(12.20)

h−1
2 (u1, u2) = y2 =

1

5
(u1 − 2u2) .(12.21)

We will continue in Example12.11 on p.304. �

In the introduction, we informally discussed the following result from multivariable calculus which
we are rephrasing here in the language of joint PDFs of continuous random variables and which
is at the heart of this section. It is so lengthy that we spread it over several boxes. As mentioned
before, assume that n ≤ 3 if you do not have sufficient knowledge of linear algebra.

Theorem 12.2.

• Let ~Y =
(
Y1, . . . , Yn

)
be a vector of randomvariables with joint PDF f~Y

(
~y
)

and let R be a
“nice” subset of Rn which is so big that it hosts all outcomes ~Y (ω) of ~Y .

• Let the function ~h : R→ Rn; ~y 7→ ~u = ~h
(
~y
)

satisfy the following.

� ~h has continuous partial derivatives
∂hi
yj

for all 1 ≤ i, j ≤ n.

� If the vector ~u is a function value ~u = ~h
(
~y
)

of some argument ~y that satisfies f~Y
(
~y
)
> 0,

then there is no other argument ~̃y that satisfies all those conditions.

Then ~h has an inverse ~h−1 = h−1
1 , h−1

2 , . . . , h−1
n which is defined by the relation

~u = ~h
(
~y
)
⇔ ~y = ~h−1

(
~u
)
.

We can write this for the coordinate functions hi(·) and h−1
j (·) as follows:

(12.22) u1 = h1

(
~y
)
, . . . , un = hn

(
~y
)

and y1 = h−1
1

(
~u
)
, . . . , yn = h−1

n

(
~u
)
.

Also, all partial derivatives
∂h−1

i

uj
exist and are continuous for 1 ≤ i, j ≤ n.
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(12.23) Let
d~h

d~y
:=


∂h1
∂y1

∂h1
∂y2

· · · ∂h1
∂yn

∂h2
∂y1

∂h2
∂y2

· · · ∂h2
∂yn

· · · · · · · · · · · ·
∂hn
∂y1

∂hn
∂y2

· · · ∂hn
∂yn

 ,
d ~h−1

d~u
:=



∂h−1
1

∂u1

∂h−1
1

∂u2
· · · ∂h−1

1
∂un

∂h−1
2

∂u1

∂h−1
2

∂u2
· · · ∂h−1

2
∂un

· · · · · · · · · · · ·
∂h−1

n
∂u1

∂h−1
n

∂u2
· · · ∂h−1

n
∂un

 .

(12.24) Let J−1 := J−1(~y) := det

(
d~h

d~y

)
, J := J(~u) := det

(
d ~h−1

d~u

)
.

• We add another assumption: J−1(~y) 6= 0 for all y that satisfy f~Y
(
~y
)
> 0.

(12.25) Then J
(
h(~y)

)
6= 0 and J

(
h(~y)

)
= 1

/
J−1

(
~y
)
.

Further, the density of the transform ~U = h
(
~Y
)

is computed as

(12.26) f~U (~u)
)

= f~Y
(
h−1(~u)

)
· |J(~u)| .

PROOF: Beyond the scope of this course. It needs knowledge not only of linear algebra, but also of
the so called implicit function theorem. �

Before we give some examples to illustrate this theorem, we make a remark about some of the

notation introduced there and then give a name to the determinant J−1 of the matrix
d~h

d~y
of the

partial derivatives of h.

Remark 12.5. In the onedimensional case (n = 1), the situation is as follows.

• Rn is the set R of real numbers, • ~u = ~h
(
~y
)

becomes u = h(y) for real numbers y and u,

• the 1× 1 “matrix” of “partial” derivatives is h′(y) =
dh

dy
.

Considering that last point, it seems natural to write
d~h

d~y
for the n × n matrix of partial derivatives

∂hi
∂yj

and this author chose to do so. However, you will find either different notation 114 or, like in

the WMS text, no dedicated symbols at all. That works well enough with 2× 2 matrices. �

Definition 12.1 (Jacobian and Jacobian matrix).

114For example, Williamson, Richard E. and Trotter, Hale [14] uses the notation ~h′(~y), the multidimensional analogue of
h′(y).
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The matrix
d~h

d~y
of the partial derivatives of the function ~y 7→ ~h(~y) is called the Jacobian

matrix of~h(·). We refer to its determinant, J−1(~y) = det

(
d~h

d~y

)
, as the Jacobian, sometimes

also the Jacobian determinant, of ~h(·). �

Notation 12.1 (Jacobian).

• Stewart writes
∂(u1, . . . , un)

∂(y1, . . . , yn)
:= det

(
d~h−1

d~u

)
and

∂(y1, . . . , yn)

∂(u1, . . . , un)
:= det

(
d~h−1

d~u

)
• Thus, the expression J = J(~u) = det

(
d ~h−1

d~u

)
, which appears in

(12.26) f~U (~u)
)

= f~Y
(
h−1(~u)

)
· |J(~u)|, is the Jacobian of h−1(~u) and not of

h(~y) .
• This author follows the great majority of books on multivariable calculus in defining

the the Jacobian as the determinant of
d~h

d~y
.

• Be aware that WMS chooses instead to call J = det
d~h−1

d~u
the Jacobian.

• The reason seems to be that most books on probability and statistics agree on using

the letter J for det
d~h−1

d~u
(without giving a name to that determinant) and WMS does

not want to use the somewhat lengthy “the reciprocal of the Jacobian” in its frequent
references to J

�

Example 12.11 (The joint PDF of two independent, exponential random variables – Part 2). In Ex-
ample 12.10 on p.302, we defined ~u = ~h(~y) as follows:

u1 = h1(y1, y2) = 2y1 + y2 , u2 = h2(y1, y2) = y1 − 2y2 .

We computed its inverse ~u = ~h−1(~u) = and obtained

y1 = h−1
1 (u1, u2) =

1

5
(2u1 + u2) , y2 = h−1

1 (u1, u2) =
1

5
(u1 − 2u2) .

Observe that both ~h and ~h−1 are defined for all points in R2.

The partial derivatives of ~h are

∂h1

∂y1
= 2 ,

∂h1

∂y2
= 1 ,

∂h2

∂y1
= 1 ,

∂h2

∂y2
= −2 .

Those of ~h−1 are

∂h−1
1

∂u1
=

2

5
,

∂h−1
1

∂u2
=

1

5
,

∂h−1
2

∂u1
=

1

5
,

∂h−1
2

∂u2
=
−2

5
.
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Further,

d~h

d~y
=

[
2 1
1 −2

]
,

d~h−1

d~u
=

[
2
5

1
5

1
5
−2
5

]
,

Since the determinant of a 2× 2 matrix
[
a b
c d

]
, is ad− bc, we obtain

J−1 = (2)(−2) − (1)(1) = −5, J =

(
2

5

)(
−2

5

)
−
(

1

5

)(
1

5

)
=
−4 − 1

25
=
−1

5
,

Observe that J =
1

J−1
, validates what was stated in (12.25) on p.303.

We will continue in Example12.12. �

Example 12.12 (The joint PDF of two independent, exponential random variables – Part 3). In Ex-
ample 12.10 on p.302, we defined ~u = ~h(~y) as follows:

u1 = h1(y1, y2) = 2y1 + y2 , u2 = h2(y1, y2) = y1 − 2y2 .(12.27)

In its continuation, Example 12.11 above, we obtained J = const =
−1

5
for the reciprocal of the

Jacobian of ~h.
We are ready to specify the random variables that we wish to transform by means of ~h(·).
• Assume that Y1 and Y2 are independent expon(2) random variables.
• Let U1 := h1(~Y ) = 2Y1 + Y2, U2 := h2(~Y ) = Y1 + 2Y2.
• Apply Theorem 12.2 on p.302 to compute the joint density f~U (u1, u2) of ~U = ~h(~Y ).

Solution:

(a) f~Y (~y) = fY1,Y2(y1, y2) = fY1(y1) · fY2(y2) =


1

4
e−(y1+y2)/2, if y1, y2 > 0 ,

0, else .

(b) We recall that y1 =
1

5
(2u1 + u2) and y2 =

1

5
(u1 − 2u2). Thus,

f~U (~u) = fU1,U2(u1, u2) =
1

4
exp

{
−
(

1

5
(2u1 + u2) +

1

5
(u1 − 2u2)

)/
2

}
·
∣∣∣∣− 1

5

∣∣∣∣
=

1

20
exp

{
−1

10
(2u1 + u2 + u1 − 2u2)

}
=

1

20
exp

{
3u1 − u2

−10

}
=

1

20
exp

{
u2 − 3u1

10

}
.

• BUT ONLY IF y1 = h−1
1 (~u) ≥ 0 AND y2 = h−1

2 (~u) ≥ 0! What are those vectors ~u?
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(c) y1 ≥ 0 and y2 ≥ 0 ⇔ 2u1 + u2 ≥ 0
and u1 − 2u2 ≥ 0

(d) y1 ≥ 0 and y2 ≥ 0
(12.27)⇒ u1 = 2y1 + y2 ≥ 0.

(e) From (c): 2u1 + u2 ≥ 0 ⇒ u2 ≥ −2u1

(f) From (c): u1 − 2u2 ≥ 0 ⇒ u1 ≥ 2u2

⇒ u2 ≤
u1

2
(g) From (d), (e), (f): h−1

1 (~u) ≥ 0 and h−1
2 (~u) ≥ 0 ⇔

u1 ≥ 0 and −2u1 ≤ u2 ≤
u1

2
.

• The figure to the right shows that those are the
points enclosed by the quadrant which is ob-
tained when rotating the first quadrant clock-
wise, by an angle of 60◦

(h) Thus, if we denote this quadrant by R,

f~U (~u) =


1

20
e(u2−3u1)/10, if ~u ∈ R ,

0, else . where h−1
1 (u1,u2) > 0 and h−1

2 (u1,u2) > 0

At this point we know how to integrate with respect to the PDF of ~U = ~h(~Y ). We can replace the
integral d~u over the region R by an iterated integral du2 du1 as follows.

For a fixed u1 > 0, the integration bounds for u2 are −2u1 ≤ u2 ≤
u2

2
. (See (g)). Thus,

∫∫
R2

· · · f~U (~U) d~u =

∫∫
R
· · · −1

20 e
(u2−3u1)/10 d~u =

∫ ∞
0

∫ u2/2

−2u1

· · · −1
20 e

(u2−3u1)/10 du2 du1

For example, if w = g(~U) = g(u1, u2) is a real–valued function of (u1, u2) ∈ R2, then

E[g(~U)] = =

∫ ∞
0

∫ u2/2

−2u1

g(~u)−1
20 e

(u2−3u1)/10 du2 du1 �

12.4 The Method of moment–generating Functions

Assumption 12.1. Unless stated otherwise, we will assume in this entire section that

(a) ~Y = (Y1, Y2, . . . , Yn) denotes a list of n random variables (n ∈ N).
• Either all Yj are discrete, or they all are continuous random variables.

(b) h : D → R; ~y 7→ u = h(~y) = h(y1, . . . , yn)
is a function with domain D ⊆ Rn (this covers R = R1 for n = 1), such that
• there is no issue with the existence of the PMF or PDF of U := h(~Y ).
• All MGFs, mYj (t) = E

[
etYj

]
and mU (t) = E

[
etU
]

exist if |t| is small enough, i.e.,
there is some δ > 0 such that those MGFs exist for −δ < t < δ.

(c) Those assumptions also hold for differently named (vectors of) random variables

and functions, e.g. V = g
(~̃
Y
)

= g
(
Ỹ1, . . . , Ỹk

)
. �
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Introduction 12.3. The moment–generating function method for finding the probability distribu-
tion of a function of random variables Y1, Y2, . . . , Yn is based on Proposition 9.5 on p.208 (Section
9.5: Moments, Central Moments and Moment Generating Functions). It was stated without proof
and asserts that the following is true under the conditions stated in Assumption 12.1:

Assume that two random variables Y and Ỹ possess identical kth moments about the origin for all
k = 1, 2, . . . . In other words, assume that

E[Y 1] = E[Ỹ 1], E[Y 2] = E[Ỹ 2], E[Y 3] = E[Ỹ 3], . . .

Then PY = PỸ , i.e., Y and Ỹ have the same distribution. �

We have the following uniqueness theorem.

Theorem 12.3 (The MGF determines the distribution).

Given are two random variables Y and Ỹ . If their moment–generating functions mY (t) and m
Ỹ

(t)
exist and coincide in a small interval that is centered at t = 0,
• Then PY = P

Ỹ
, i.e., Y and Ỹ have the same probability distribution.

PROOF:
Theorems 9.18 on p.209 and 10.9 on p.225 allow us to conclude that

E[Y k] =
dk

dtk
mY (t)

∣∣∣
t=0

=
dk

dtk
m
Ỹ

(t)
∣∣∣
t=0

= E[Ỹ k] for all k ∈ N .

It follows from Proposition 9.5 on p.208 that PY = P
Ỹ
�

Remark 12.6.

To find the distribution of U = h(~Y ) = h
(
Y1, Y2, . . . , Yn

)
by means of the MGF method,

proceed as follows:
• Compute the MGF mU (t) = E

[
etU
]

of U
• Does this MGF match that of a random variable V with a known distribution?

You may want to consult a list of MGFs like the one in Appendix 2 of [13] Wackerly,
Mendenhall, Scheaffer, R.L.

• Then you are done, since Theorem 12.3 (The MGF determines the distribution) guar-
antees that PU = PV .

Of course, the devil is in the details. In most cases, you will not succeed in finding that matching
MGF, unless one or both of the following are satisfied:
• U is a linear function U = a1Y1 + · · ·+ anYn, with constant aj ∈ R.
• The random variables Y1, . . . , Yn are independent and h(~y) = h1(y1) ·

h2(y2) · · ·hn(yn), for suitable functions hj(y).
We will examine some very important and general cases that illustrate all this. �

Example 12.13 (WMS Ch.06.5, Example 6.10). Suppose that Y is a normally distributed random
variable with mean µ and variance σ2. Show that

Z :=
Y − µ

σ
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has a standard normal distribution, i.e., Z ∼NNN (0, 1).

Solution:
(a) According to Proposition 10.6 on p.231, mY (t) = eµt+ (σ2t2)/2 .
(b) Any random variable W is independent from any constant (real number) a.
(c) Thus, according to Theorem 11.10 on p.256, the random variables h1(W ) = etW and h2(a) =

e−at are independent, and E[etW · e−at] = E[etW ] · e−at].
(d) Thus if U = Y − µ, then mU (t) = E

[
etY−tµ

]
= E

[
etY e−tµ

]
= E

[
etY
]
· e−tµ.

• Thus, mU (t) = mY (t) e−tµ
(a)
= eµt+ (σ2t2)/2 · e−tµ = e(σ2t2)/2.

• Since Z = U/σ, mZ(t) = mU (t/σ) = e(σ2(t/σ)2/2 = et
2/2.

(e) We use Proposition 10.6 once more and see that t 7→ et
2/2 is the MGF of a standard normal

random variable. Thus, Z ∼NNN (0, 1). �

Example 12.14 (WMS Ch.06.5, Example 6.11). LetZ be a normally distributed random variable with
mean 0 and variance 1. Use the method of moment–generating functions to find the probability
distribution of Z2.

Solution:
The moment–generating function for Z2 is

mZ2(t) = E(etZ
2
) =

∫ ∞
−∞

etz
2
f(z) dz =

∫ ∞
−∞

etz
2 e−z

2/2

√
2π

dz

=

∫ ∞
−∞

1√
2π

e−(z2/2)(1−2t) dz =

∫ ∞
−∞

ψ(z) dz ,

(A)

where

ψ(z) = exp

[
−
(
z2

2

)
(1 − 2t)

]/√
2π

= exp

[
−
(
z2

2

)/
(1 − 2t)−1

]/(√
2π(1 − 2t)−1/2 · 1

(1 − 2t)−1/2

)
.

We define σ := (1 − 2t)−1/2 and obtain

ψ(z) = exp

[
−
(
z2

2

)/
σ2

]/(√
2π σ · 1

σ

)
= e−z

2/(2σ2) · σ√
2π σ

= σ ϕ(z) ,

where ϕ(z) is the density of a NNN (0, σ) random variable. Thus,
∫∞
−∞ ϕ(z) dz = 1. It follows from (A)

and ψ(z) = σ ϕ(z) and σ := (1 − 2t)−1/2 that

mZ2(t) =

∫ ∞
−∞

ψ(z) dz =

∫ ∞
−∞

(1 − 2t)−1/2 ϕ(z) dz =
1

(1 − 2t)1/2

∫ ∞
−∞

ϕ(z) dz =
1

(1 − 2t)1/2
.

According to Proposition 10.8 on p.234, t 7→ 1

(1 − 2t)1/2
is the MGF of a random variable which

follows a gamma(1/2, 2) distribution which is, by definition 10.11 on p.235, also known as a χ2

distribution with one degree of freedom. We obtained this result previously in Example 12.5 on
p.294 by the method of distribution functions. �
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Theorem 12.4 (MGF of a sum of functions of independent variables).

Given are n independent random variables Y1, Y2, . . . , Yn with MGFs mY1(t),mY2(t), . . . ,mYn(t).
and n real–valued functions h1(y1), . . . , hn(yn) of real numbers y1, . . . , yn.
Let U := h1(Y1) + h2(Y2) + · · · + hn(Yn). Then (under the conditions of Assumption 12.1 on
306)

mU (t) = mh1(Y1) +···+hn(Yn) =

n∏
j=1

mhj(Yj)(t) .(12.28)

PROOF:
For each j = 1, . . . , n, let gj(y) := ethj(y). Consider a fixed t. Since functions of independent random
variables are independent random variables, the random variables Vj := gj(Yj) = ethj(Yj) are
independent. We apply Theorem 11.10 on p.256 and obtain

mU (t) = E
[
et(V1+V2+···+Vn)

]
= E

[
etV1

]
· · ·E

[
etVn

]
. = E

[
eth1(Y1)

]
· · ·E

[
ethn(Yn)

]
= mh1(Y1)(t) ·mh1(Y1)(t) · · ·mh1(Yn)(t) . �

Corollary 12.1 (WMS Ch.06.5, Theorem 6.2).

Let Y1, Y2, . . . , Yn be independent random variables with moment–generating functions
mY1(t),mY2(t), . . . ,mYn(t), respectively. Then

mY1 +···+Yn(t) =
n∏
j=1

mYj (t) = mY1(t) ·mY2(t) · · ·mYn(t) .(12.29)

PROOF:
This follows from applying Theorem 12.4 to the functions hj(yj) = yj . �

Next, we generalize But its great importance gives it the status of a theorem.

Theorem 12.5 (Linear combinations of uncorrelated normal variables are normal).

Given are n uncorrelated, NNN (µj , σ
2
j ) random variables Yj , (j = 1, . . . , n. In other words, each Yj

is normal with expectation µj and standard deviation σj . Let a1, . . . , an ∈ R. Then

n∑
j=1

ajYj ∼ NNN

 n∑
j=1

ajµj ,

n∑
j=1

a2
jσ

2
j

 .(12.30)

Thus, the linear combination of uncorrelated normal random variables is normal with expectation and vari-
ance being the linear combinations of the indivicual expectations and variances.

PROOF:
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First off, we recall that one of the special properties of normal random variables is that they are
uncorrelated if and only if they are independent. Thus we can use everything that applies to inde-
pendent random variables.
Consider a fixed t and define

U :=

n∑
j=1

ajYj .

We apply Theorem 12.4 (MGF of a sum of functions of independent variables) on p.309 with the
functions hj(yj) = ajyj and obtain

mU (t) =

n∏
j=1

majYj (t) =

n∏
j=1

mYj (ajt)

=
n∏
j=1

exp
{

(σ2
j /2)(ajt)

2 + µj(ajt)
}

Here we used that a NNN (µ̃, σ̃2) variable has MGF eσ̃
2t2/2+µ̃t. See Proposition 10.6 on p.231. Thus,

mU (t) = exp


n∑
j=1

(σ2
j /2)(ajt)

2 + µj(ajt)


= exp


 n∑
j=1

(σ2
ja

2
j/2) t2

 +

 n∑
j=1

(µjaj) t


= exp


 n∑
j=1

(a2
jσ

2
j )

/2 · t2 +

 n∑
j=1

(ajµj)

 · t


By Proposition 10.6, the last expression is the MGF of a NNN (µ̃, σ̃2) variable with

µ̃ =

n∑
j=1

(ajµj) , σ̃2 =

n∑
j=1

(a2
jσ

2
j ) .

Since distributions of random variables are determined by their MGFs,

U ∼ NNN

 n∑
j=1

ajµj ,

n∑
j=1

a2
jσ

2
j

 . �

Remark 12.7. It is a consequence of Theorem 12.5 that the sum of two independent random vari-
ables also is normal. In the next example we construct two normal variables U andW which are not
independent, such that their sum is not normal. It shows that we cannot drop the assumption of in-
dependence in Theorem 12.5. This example is given in many books on probability. It can be found,
e.g., in [7] Pishro-Nik, Hossein: Introduction to Probability, Statistics, and Random Processes.

Assume that U and V are independent random variables with distributions
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• U ∼NNN (0, 1),
• V ∼ binom(n = 1, p = 0.5).

Let

W (ω) :=

{
U(ω), if V (ω) = 1,

−U(ω), if V (ω) = 0 .

(a) Show that W ∼NNN (0, 1).
(b) Let Y := U +W . Show that Y is not a continuous random variable.

It follows from (b) that Y is not normal, since normal random variables are continuous. �

Solution to (a): Note that the PDF of U is symmetric, i.e., fU (u) = fU (−u) for all u ∈ R. Thus, for
all u,

P{U ≤ u} =

∫ u

−∞
fU (t)dt =

∫ ∞
−u

fU (t)dt = P{U ≥ −u} = P{−U ≤ u} .

It follows that U and −U have the same distribution and thus, −U ∼NNN (0, 1). 115

Now, we show that W ∼NNN (0, 1). Let w ∈ R. Then,

P{W ≤ w} = P{W ≤ w, V = 0} + P{W ≤ w, V = 1}
= P{W ≤ w | V = 0}P{V = 0} + P{W ≤ w | V = 1}P{V = 1}

=
1

2
P{−U ≤ w | V = 0} +

1

2
P{U ≤ w | V = 1}

We use the independence of U and V followed by U ∼ −U and obtain

P{W ≤ w} =
1

2

(
P{−U ≤ w} + P{U ≤ w}

)
=

1

2

(
P{U ≤ w} + P{U ≤ w}

)
= P{U ≤ w} .

Thus, W ∼ U . Since U is standard normal, so is W . We have proven (a).

Solution to (b): It follows from the definition of W and Y := U +W , that

Y (ω) :=

{
2U(ω), if V (ω) = 1,

0, if V (ω) = 0 .

Since U is a continuous random variable, P{2U = 0} = 0.

Thus, P{2U = 0, V = 1} ≤ P{2U = 0} = 0 .

Thus, P{Y = 0} = P{2U = 0, V = 1} + P{V = 0} = P{V = 0} =
1

2
.

It follows that the CDF FY of Y has a jump
• FY (0) − FY (0−) = P{Y = 0} = 1/2

at y = 0. Thus, Y is not a continuous random variable and we have shown (b). �

115This result should not come as a surprise since, for n = 1 and a1 = −1, Theorem 12.5 on p.309 states the following:
If Y1 ∼NNN (µ, σ2), then −Y1 ∼NNN (−µ, σ2). Note though, that the proof given here shows that U and −U have the same
distribution whenever U has a symmetric PDF. Also note that U ∼ −U holds if U is discrete with a symmetric PMF,
i.e., pU (u) = P{U = u} = P{U = −u} = pU (−u), for all u.
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Theorem 12.6.

Given are n independent, gamma(αj , β) random variables Yj , (j = 1, . . . , n. In other words, each
Yj is gamma with the same scale parameter β. Then

n∑
j=1

Yj ∼ gamma

 n∑
j=1

αj , β

 .(12.31)

Thus, the sum of independent gamma random variables with the same scale parameter β is gamma with the
shape parameter being the sum of the shape parameters, and scale parameter β.

PROOF:
Consider a fixed t and define

U :=
n∑
j=1

Yj .

We apply Theorem 12.4 (MGF of a sum of functions of independent variables) on p.309 and recall
that the MGF of a gamma(α̃, β̃) variable Ỹ is, according to Proposition 10.8 on p.234,m

Ỹ
= (1−β̃t)α̃.

We obtain

mU (t) = m∑
j Yj

(t) =

n∏
j=1

mYj (t)

=

n∏
j=1

1

(1− βt)αj
=

1

(1− βt)
∑n
j=1 αj

.

Since distributions of random variables are determined by their MGFs,

U ∼ gamma

 n∑
j=1

αj , β

 . �

Corollary 12.2.

Let Y1, Y2, . . . , Yn be independent χ2 variables such that each Yj has νj degrees of freedom. Then

mY1 +···+Yn(t) ∼ χ2

 n∑
j=1

νj df

 .(12.32)

PROOF:
This follows immediately from Theorem 12.6, Since χ2 variables with νj df are gamma(νj/2, 2). �
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13 Limit Theorems

Introduction 13.1. In this section we will discuss the ways in which a sequence Yn of random vari-
ables can have a random variable Y as its limit. Before we go there, let us quickly review conver-
gence of a sequence (yn)n of real numbers and of a sequence of functions fn : A → R, with all
members fn defined on a subset A of Rk, where k = 1, 2, . . . . Note that k = 1 covers the situation
where the arguments are real numbers. Some examples of number sequences:

• If yn =
3− 2n

5 + n2 − 6n
, then lim

n→∞
yn =

3

5
, and the sequence converges to

3

5
.

• If yn = (−1)n, then lim
n→∞

yn does not exist.

• If yn =
n∑
j=1

n, then lim
n→∞

yn = ∞. Recall that convergence only happens if the limit is a real

number. Thus, (yn)n does not “converge to∞”. Rather, this sequence diverges. 116

For the following examples of function sequences, let us agree that, if fn, f : A → R, where A ⊆ R,
then “pointwise convergence” 117 of the functions fn to the function f simply means that

(13.1) lim
n→∞

fn(a) = f(a) for all a ∈ A .

• Let fn, f, g, h : [0, 1]→ R be the functions

(13.2) � fn(x) := xn � f(x) :=

{
0 , if 0 ≤ x < 1,

1 , if x = 1 ,
� g(x) := 0, �h(x) := x.

The situation with respect to pointwise convergence is as follows:
• f is the pointwise limit of the sequence fn.
• Even though g is the pointwise limit of the sequence fn on [0, 1[, it is not the pointwise limit

on [0, 1], since lim
n→∞

fn(x) = g(x) = 0, for 0 ≤ x < 1, but lim
n→∞

fn(1) = 1, whereas g(1) = 0.

• h is not the pointwise limit of the sequence fn (except on {0, 1}.

Did you notice that no use was made of the fact that the domain [0, 1] of those functions is a set of
numbers?
• Assume instead that Ω is some arbitrary, nonempty set (not necessarily a probability space).

Further assume that there are functions fn, f : Ω→ R. We still have the notion of pointwise
convergence of the functions fn to the function f : (13.1) becomes

(13.3) lim
n→∞

fn(ω) = f(ω) for all ω ∈ Ω

and one certainly can examine whether or not the above is true for any kind of domain, i.e.,
for any nonempty set Ω.

We will not discuss vector–valued sequences. However, for completeness sake, we give the follow-
ing example.

116There is no such thing as divergence to ±∞. Thus, you must say that (yn) diverges, not that (yn) diverges to∞.
117The formal definition of pointwise limits will be given in Section 13.1 (Four Kinds of Limits for Sequences of Random

Variables).
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• If ~yn =
(
(−1)n, cos(2/n)

)
, then lim

n→∞
~yn does not exist, since the limit of a vector–valued

sequence is, by definition, the vector of the limits of the coordinates. The second coordinate
sequence, yn = cos(2/n)

)
, converges to the number 1. Since the first coordinate sequence,

yn = (−1)n, does not have a limit, neither does
(
~yn
)
n

. Thus this sequence does not converge.

After these preliminary remarks, let us consider sequences of random variables. We recall that all
random variables Y are functions

Y : (Ω,F, P )→ R ω 7→ Y (ω) .

They take their arguments ω in a probability space (Ω,F, P ) and map them to numeric outcomes
y = Y (ω).
• The σ–algebra is of no significance in this chapter, so we keep ignoring it and simply con-

sider the probability space (Ω, P ).
• On the other hand, the arguments ω play an essential role and we will often replace “Y ”

with “ω 7→ Y (ω)” to remind the reader that we are dealing with functions of ω.
• If (Yn)n is a sequence of random variables (Ω, P )→ R. Then each ω ∈ Ω comes with its own

sequence
(
Yn(ω)

)
n

of real numbers.
• One obvious question to ask about those sequences Yn(ω) of real numbers is this one:

� Does lim
n→∞

Yn(ω) exist and will it be a real number (rather than ±∞) for all ω ∈ Ω?

� If so, then the assignment ω 7→ Y (ω) := lim
n→∞

Yn(ω) defines a real–valued function

Y : (Ω, P )→ R, i.e., another random variable. What are its properties?
• Not quite so obvious: � Does the presence of the probability measureP on Ω give additional

insight about the convergence behavior of the functions ω 7→ Yn(ω)?
• In contrast to the deterministic case where the only mode of convergence available to us is

pointwise convergence, 118 we will see in Section 13.1 (Four Kinds of Limits for Sequences
of Random Variables) that the presence of a probability P allows us to consider additional
modes of convergence:
� convergence almost surely,
� convergence in probability measure,
� convergence in distribution. �

13.1 Four Kinds of Limits for Sequences of Random Variables

The following definition is a central place for all the different convergence modes of sequences of
random variables that are of interest to us. We will examine each one in detail.

Definition 13.1 (Convergence of Random Variables).

118This is not entirely true: If Ω is a subset of R or of Rk. then there is the notion of uniform convergence, fn(·)→ f(·).
We will not be concerned with uniform convergence in this course.
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Let Yn (n ∈ N) and Y be random variables on a probability space (Ω, P ). We define

Yn
pw→Y or pw – lim

n→∞
Yn = Y , if lim

n→∞
Yn(ω) = Y (ω), for all ω ∈ Ω ,(13.4)

Yn
a.s.→Y or a.s. – lim

n→∞
Yn = Y , if P{ω ∈ Ω : lim

n→∞
Yn(ω) = Y (ω)} = 1 ,(13.5)

Yn
P→Y or P – lim

n→∞
Yn = Y , if ∀ ε > 0 lim

n→∞
P{ω ∈ Ω : |Yn(ω)− Y (ω)| > ε} = 0 ,(13.6)

Yn
D→Y, if lim

n→∞
FYn(y) = FY (y), ∀ y ∈ R where the CDF FY of Y is continuous.(13.7)

We also say:
If Yn

pw→ Y , Y is the pointwise limit of the Yn, or: Yn converges pointwise to Y .
If Yn

a.s.→ Y , Y is the almost sure limit of the Yn, or: Yn converges almost surely to Y .
If Yn

P→ Y , Y is the limit in probability; of the Yn, or: Yn converges in probability to Y .
If Yn

D→ Y , Y is the limit in distribution of the Yn, or: Yn converges in distribution to Y .

Example 13.1. Consider Ω := [0, 1] as a probability space (Ω, P ) by defining

P (]a, b]) := b− a, for 0 ≤ a < b ≤ 1 .

In other words, P is the uniform distribution on [0, 1].
We rename the functions fn, f, g, h of (13.2) in the introduction to Yn, Y, U, V , since doing so will
make it less confusing to examine the convergence behavior of the sequence. This particularly
applies to converges in probability and in distribution. Accordingly, we define

Yn(ω) := ωn, U(ω) = 0, V (ω) := ω, (for 0 ≤ ω ≤ 1) Y (ω) :=

{
0 , if 0 ≤ ω < 1,

1 , if ω = 1 .

Part I: Pointwise and a.s convergence

Pointwise convergence behavior of the Yn corrresponds to that of (13.2):
• Y is the pointwise limit of the sequence Yn,
• U is the pointwise limit of the Yn on [0, 1[ only, but not on Ω,
• V is not the pointwise limit of the Yn (except for ω = 0) or ω = 1).

With respect to almost sure convergence, we see that

• Yn
a.s.→ Y , since { lim

n→∞
Yn = Y } = [0, 1] = Ω, and P (Ω) = 1.

• Yn
a.s.→ U , since { lim

n→∞
Yn 6= U} = {1}, and P ({1}) = 0.

• (Yn)n does not converge to V a.s., since P{ lim
n→∞

Yn = V } = P{0, 1} = 0 6= 1.

Part II: Convergence in probability

Next, we examine convergence in probability. We will see that a sequence of random variables can
have more than one P–limit by showing the following: The sequence ω 7→ Yn(ω) = ωn has both
ω 7→ U(ω) = 0 and ω 7→ Y (ω) = 1 if ω = 1 and 0 else as P–limits.
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By definition of P– lim
n→∞

Yn = Ỹ , we must prove that, for any fixed, but arbitrary ε > 0,

lim
n→∞

P{ |Yn − Ỹ | > ε } = 0. See (13.6).

Since this probability decreases as ε increases and we must show that it approaches 0 as n→∞, we
only need to worry about the very small ε. Thus, we may assume that 0 < ε < 1.
We observe that, for Yn(ω) = ωn and 0 < ε < 1,[

|Yn(ω)| ≥ ε ⇔ ωn ≥ ε ⇔ ω ≥ ε1/n
]

⇒
[
P{ |Yn| ≥ ε } = P

(
[ε1/n, 1]

)
= 1 − ε1/n

]
.

(A)

0 < ε < 1 ⇒ lim
n→∞

ε1/n = 1 ⇒ lim
n→∞

(
1− ε1/n

)
= 0.(B)

Part II (1): We now prove that P– lim
n→∞

Yn = Y :

[
|Yn(ω) − Y (ω)| ≥ ε ⇔ |Yn(ω)| ≥ ε and ω 6= 1

]
⇒
[
P{|Yn − Y | ≥ ε} ≤ P{|Yn| ≥ ε}

(A)
= 1 − ε1/n (B)→ 0, as n→∞.

]
.

(a)

Thus, lim
n→∞

P{|Yn − Y | ≥ ε} = 0.

Part II (2): We now prove that P– lim
n→∞

Yn = U :

• We could repeat the proof for the P–convergence of Yn to Y with very minor modifications
and the reader is encouraged to do so. Instead, we will use that result to show that P–
lim
n→∞

Yn = U

• Since the outcome {1} has probability zero and Y (ω) = U(ω) for ω 6= 1,

P{|Yn − Y | ≥ ε} = P{|Yn − Y | ≥ ε and ω 6= 1}
= P{|Yn − U | ≥ ε and ω 6= 1} = P{|Yn − U | ≥ ε} .

• Since lim
n→∞

P{|Yn − Y | ≥ ε} = 0,

lim
n→∞

P{|Yn − U | ≥ ε} = lim
n→∞

P{|Yn − Y | ≥ ε} = 0.

Thus, P– lim
n→∞

Yn = U .

Part II (3): Next, we show that it is not true that (Yn)n converges in probability to V .
We argue by picture rather than giving an exact proof, since that would require some very tedious
of terms containing ln(k).
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• The picture makes it very clear that
ε = 1/10 ⇒ ω − ωn > ε for 49

100 ≤ ω ≤ 51
100 and

n ≥ 100.
Thus, P{|Yn − V | ≥ ε} ≥ ε ·

(
51
100 −

49
100

)
= 2

1000 .
Thus, lim

n→∞
P{|Yn − V | ≥ ε} = 0 is not true.

• Since lim
n→∞

P{|Yn−V | ≥ ε} = 0 must hold for ALL

ε and we showed that this is not so for ε =
1

10
,

it follows that (Yn)n does not converge in proba-
bility to V .

Part III: Convergence in distribution

We will show that Yn does not converge to V in distribution as follows.
• Let 0 < y < 1. We recall that P ]a, b] = b− a, for all 0 ≤ a < b ≤ 1.
• From V (ω) = ω, we get FV (y) = P{V ≤ y} = P{ω ∈ Ω : V (ω) ≤ y} = P ]0, y] = y.

• Since Yn(ω) = ωn, FYn(y) = P{Yn ≤ y} = P{ω ∈ Ω : ωn ≤ y} = P ]0, y1/n] = y1/n.
• We note that 0 < y < 1 ⇒ lim

n→∞
y1/n = 1.

Thus, FV (y) = y, whereas, lim
n→∞

FYn(y) = 1 for 0 < y < 1.

Thus, lim
n→∞

FYn(y) 6= FV (y) for 0 < y < 1.

• Since all those y are points of continuity for FV , it follows that (Yn)n does not converge in
distribution to V .

On the other hand, the theorem that follows now shows that (Yn)n converges in distribution to Y
and U , since we have shown convergence in probability to those random variables. �

Theorem 13.1 (Relationship between the modes of convergence).

Let Y and Y1, Y2, . . . be random variables on a probability space (Ω, P ). Then,

(13.8) Yn
pw→ Y ⇒ Yn

a.s.→ Y ⇒ Yn
P→ Y ⇒ Yn

D→ Y .

PROOF:

I: It is obvious that Yn
pw→ Y ⇒ Yn

a.s.→ Y for the following reason:
• Let A := {ω ∈ Ω : lim

n→∞
Yn(ω) 6= Y (ω)}.

• Then, Yn
pw→ Y ⇒ A = ∅ ⇒ P (A) = 0 ⇒ Yn

a.s.→ Y .

II: The proofs that Yn
a.s.→ Y ⇒ Yn

P→ Y and Yn
P→ Y ⇒ Yn

D→ Y are outside the scope of this
course. Fairly accessible proofs for those who can work with sets like
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⋂
n≥1

⋃
j≥n
{ω ∈ Ω : |Yj(ω)− Y (ω)| ≥ ε}


and are familiar with the exact definition of convergence of sequences 119 can be found at this
Wikipedia link. �

There are many theorems concerning the convergence of random variables. We only mention here
the following two which will be used later in this chapter.

Theorem 13.2 (Slutsky’s Theorem). ?

Let Y1, Y2, . . . ) and U1, U2, . . . be two sequences of random variables. Let Y be another random
variable and c a constant such that

• Yn
D−→ Y (convergence in distribution) • Un

P−→ c (convergence in probability)

Then,

Yn + Un
D−→Y + c ,(13.9)

Yn · Un
D−→cY ,(13.10)

Yn
Un

D−→ Yn
c
, assuming that c 6= 0.(13.11)

PROOF: Omitted. See, e.g., [1] Bickel and Doksum: Mathematical Statistics.

Theorem 13.3 (Convergence is maintained under continuous transformations). ?

Let Y1, Y2, . . . ) and Y be random variables on some probability space (Ω, P ). Let f : R → R be
continuous. Then,

Yn
a.s.−→ Y ⇒ f ◦ Yn

a.s.−→ f ◦ Y .

Yn
P−→ Y ⇒ f ◦ Yn

P−→ f ◦ Y .

Yn
D−→ Y ⇒ f ◦ Yn

D−→ f ◦ Y .

PROOF: Omitted. 120 �

Example 13.2 (Convergence in probability but not a.s.). ?

Consider the “sliding hump” example. 121 As our probability space we choose Ω := [0, 1], the unit
interval in R, with the probability measure defined by P

(
]a, b]

)
:= b− a.

119xn converges to x ⇔ for all ε > 0 one can find N ∈ N such that |xn − x| < ε whenever n ≥ N .
120A proof can be found at this Convergence of random variables (Mann–Wald theorem, general transformation theo-

rem) Wikipedia link.
121See this StackExchange link.
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(a) We partition Ω into the two intervals I1 = [0, 1/2] and I2 =]1/2, 1].

• For n = 1, 2, let Yn(ω) :=

{
1 , if ω ∈ In,
0 , else .

(b) We partition Ω into the three intervals I3 = [0, 1/3], I4 =]1/3, 2/3], and I5 =]2/3, 1],

then into I6 = [0, 1/4], I7 =]1/4, 2/4], I8 =]2/4, 3/4], and I9 =]3/4, 1], and so on .....

• We define random variables Yn as in (a): For n ∈ N, let Yn(ω) :=

{
1 , if ω ∈ In,
0 , else .

(c) Then the sequence Yn converges in probability to the (deterministic) random variable
ω 7→ Y (ω) := 0. A proof is given directly after this example.

(d) But this sequence of random variables does not converge almost surely. In fact, there is no
0 ≤ ω ≤ 1 for which lim

n→∞
Yn(ω) exist:

• Fix ω ∈ [0, 1]. By construction, there are indices

n1 = n1(ω) < n2 = n2(ω) < n3 = n3(ω) < · · · , such that ω ∈ Ink and Ink has length 1/k.
(Thus, P (Ink) = 1/k.)

(e) Let ω′ ∈ [0, 1];ω′ 6= ω. The subsequences nk(ω) and nk(ω′) will differ for all k so large that
1

k
<
|ω − ω′|

2
, i.e.,

2

k
< |ω−ω′| , since ω ∈ Ink(ω) and ω′ ∈ Ink(ω′) ⇒ Ink(ω)∩Ink(ω′) = ∅.

(Draw a picture!)
(f) It follows for such big k, that Ynk(ω)(ω) = 1 and Ynk(ω)(ω

′) = 0.
On the other hand, Ynk(ω′)(ω) = 0 and Ynk(ω′)(ω

′) = 1.
Thus, the full sequences Yn(ω) does not have a limit, since it would have to be 1 along the
subsequence nk(ω) and 0 along the subsequence nk(ω′).

(g) ω is arbitrary in Ω = [0, 1]. This shows that there is no ω ∈ Ω for which lim
n→∞

Yn(ω) exists. �

PROOF that (Yn) converges in probability:
If we write |In| for the length of the interval In, then

(h) � |In| = 1 ⇔ n = 1 � |In| = 1/2 ⇔ n = 2, 3 � |In| = 1/3 ⇔ n = 4, 5, 6.

Thus, if s1 = 1, s2 = s1 + 2, s3 = s2 + 3, . . . , sk = sk−1 + k =
k∑
j=1

j =
k · (k + 2)

2
, . . . ,

(i) then In = 1/k ⇔ n = sk−1 + 1, sk−1 + 2, . . . , sk−1 + k ⇔ sk−1 < n ≤ sk.

(j) It should be clear that
[
n→∞

][
k →∞

]
For a proof: � “⇐” follows from n ≥ k.

�For the other direction, we observe that n
(i)
≤ 2sk = 2k(k + 1) < 2(k + 1)2,

i.e.,
√
n/2− 1 < k. Thus,

[
n→∞

]
⇒
[
k →∞

]
and “⇒” follows.

(k) Since Yn(ω) :=

{
1 , if ω ∈ In,
0 , else

for n ∈ N, we obtain P{|Yn| ≥ ε} = 0 for ε ≤ 1 and, with nk

as defined in (k), P{|Ynk | ≥ ε} =
1

k
for 0 < ε ≥ 1. Thus, P{|Ynk | ≥ ε} ≤

1

k
for ε > 0.

(l) Fix ε > 0 and k ∈ N. |In| and hence, P{|Yn| > ε} is nonincreasing with n. Thus,

n ≥ nk ⇒ P{|Yn| > ε} ≤ P{|Ynk | > ε} =
1

k
. Since

[
n → ∞

] (j)⇒
[
k → ∞

]
, it follows

that lim
n→∞

P{|Yn| > ε} = 0 and this shows that Yn
P→ 0. �
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�

13.2 Two Laws of Large Numbers

Our knowledge of convergence in probability and almost surely enables us to understand the weak
law and the strong law of large numbers. Recall that the “id” part of any iid sequence (Yn) implies
that E[Y1] = E[Y2] = · · · and V ar[Y1] = V ar[Y2] = · · · .

Theorem 13.4 (Weak Law of Large Numbers).

Let Y1, Y2, . . . be an iid sequence of random variables on a probability space (Ω, P ).
with finite variance: σ2 := var[Yn] <∞. Let µ := E[Yn]. Then,

Y1 + Y2 + · · ·+ Yn
n

converges in probability to µ, i.e.,

[
ε > 0

]
⇒

 lim
n→∞

P


∣∣∣∣ 1n

n∑
j=1

Yj − µ
∣∣∣∣ > ε

 = 0.

(13.12)

PROOF: Let

ω 7→ Ȳn(ω) :=
Y1(ω) + Y2(ω) + · · ·+ Yn(ω)

n
=

1

n

n∑
j=1

Yj(ω).

We have seen in Example 11.5 (Variance of the sample mean) on p.262, that

µȲn = E
[
Ȳn
]

= µ , and σ2
Ȳn

= V ar
[
Ȳn
]

=
σ2

n
.(A)

We apply Tchebysheff’s inequality 10.53 on p.238 with k = ε
√
n/σ and obtain from (A), that

P
{
|Ȳn − µ| > ε

}
≤ 1

(n ε2/σ)2
=

σ2

n ε2
→ 0, as n→∞

This proves that P– lim
n→∞

Ȳn = µ. �

Remark 13.1. We have previously encountered the random variable Ȳn under the name Ȳ , as the
sample mean of a sample of size n. See Example 11.5 (Variance of the sample mean) on p.262.
It is considered bad form to use a subscript for the sample mean. We chose to do so in this section
about the laws of large numbers anyway, since we are not dealing with this sample mean in the
context of samples of a fixed size, but we are examining what happens as this size approaches
infinity. �

Remark 13.2. We have learned in Theorem 13.1 (Relationship between the modes of convergence)
on p.317, that almost sure convergence implies convergence in probability. One can interpret this in
the following manner:
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• It is harder to establish almost sure convergence, since it is a more powerful tool for proving
that some mathematical property is true.

• Accordingly, it would be wonderful if one could strengthen a theorem that proves conver-
gence in probability for some sequence of random variables, to show that this convergence
actually happens almost surely.

• It turns out that this is possible for the weak law of large numbers (Theorem 13.4 on p.320. It
is called the weak law of large numbers because there also is a strong law of large numbers

which replaces the conclusion P– lim
n→∞

1
n

n∑
j=1

Yj = µ with a.s.– lim
n→∞

1
n

n∑
j=1

Yj = µ. We will

study that next. �

Theorem 13.5 (Strong Law of Large Numbers).

Let Y1, Y2, . . . be an iid sequence of random variables on a probability space (Ω, P ).
Let µ := E[Yn]. Then,

Y1 + Y2 + · · ·+ Yn
n

converges almost surely to µ, i.e.,

P

 lim
n→∞

1

n

n∑
j=1

Yj 6= µ

 = 0 .
(13.13)

PROOF:
Outside the scope of these lecture notes. �

Example 13.3 (Infinite Monkey Theorem). A monkey has been granted eternal life. It is continually
hitting at random the keys of a wordprocessor that will never break down.
The keyboard has a customized layout that makes it equally likely for each key, at any given key
stroke, to be selected by the monkey. (For example, there is no CAPS key. Rather, there are separate
keys for “a” and “A”, “b” and “B”, .....)
What is the probability that, in this infinite sequence of letters, there is a contiguous block that
constitutes the collected work of William Shakespeare? We expect a flawless result: No typos,
correct punctuation, CAPS exactly when required, ....

Solution:
• There are K different keys that are being hit, at each stroke, with equal probability.
• Only one of them is correct at any given time and the others are failures.
• Thus, the sequence X1, X2, . . . of key strokes is a sequence of independent random items

with constant success probability pj = p = 1/K.
• We consider the indices 1, 2, 3, . . . as points in time, so X753 is the key that was hit at time

j = 753.
• The author does not know how many letters Shakespeares collected work (“S-C-W”) con-

sists of, but this certainly is a finite number. Let us denote it by N .
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Let Y1 := 1, if X1, X2, . . . , XN form S-C-W. Let Y1 := 0, else.
Let Y2 := 1, if XN+1, XN+2, . . . , X2N form S-C-W. Let Y2 := 0, else.

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Let Yj := 1, if X(j−1)N+1, X(j−1)N+2, . . . , XjN form S-C-W. Let Yj := 0, else.

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

• If i 6= j, then Yi and Yj depend on “disjoint” chunks
(
X(i−1)N+1, X(i−1)N+2, . . . , XiN

)
and(

X(j−1)N+1, X(j−1)N+2, . . . , XjN

)
of the independent Xk. Thus, Yi and Yj are independent.

• Also, both are binom(1, (1/K)N ) (Bernoulli trials).
• Thus, (Yn)n is an iid sequence with expectations µ = (1/K)N .
• By the strong law of large numbers, there is an event A ⊆ Ω such that P (A) = 1 and

ω ∈ A ⇒ lim
n→∞

n∑
j=1

Yj(ω)
/
n = µ =

(
1

K

)N
> 0.

• Since we divide the sum by n, the limit is zero if only finitely many Yj(ω) are not zero, i.e.,
if only finitely many Yj(ω) are 1. Thus,

ω ∈ A ⇒ Yj(ω) = 1 , infinitely often!

• Since P (A) = 1 and Yj denotes the completion of the jth collection of Shakespeare’s works:
• With probability 1, the monkey will produce an infinite number of Shakespeare’s entire

collection! �

13.3 Sampling Distributions

Introduction 13.2. Back in Chapter 8.2 (Sampling and Urn Models With and Without Replacement),
we gave Definition 8.2 (Sampling as a Random element) on p.185 of a sample.

• A sample of size n was nothing but a vector ~X =
(
X1, X2, . . . , Xn

)
of random elements, or

a realization ~x = ~X(ω) of those random elements. What makes this vector a sample is the
interpretation of ω 7→ Xj(ω) as the jth pick of an item from a population of interest and the
intent to use the outcomes xj = Xj(ω) for inferences about that population.

These sample picks may happen with or without replacement. Sampling with replacement is de-
sirable from a mathematical point of view, since this allows us to assume that the sample picks
have identical distribution. Thus, if the Xj are real–valued, their cumulative distribution functions
satisfy

FX1(x) = FX2(x) = · · · = FXn(x) (x ∈ R) ;

This in turn implies that, if the sample picks are real-valued functions of ω i.e., they are random
variables, they all have the same expectation, variance, MGF, and so on.
Also, those sample picks may or may not be independent. independence would be extremely desir-
able from a mathematical perspective. For example, if the Xj are jointly continuous and indepen-
dent random variables, knowledge of the marginal densities yields the joint density, because,

f ~X(~x) = fX1(x1) · fX2(x2) · · · fXn(xn) (~x ∈ Rn) .
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Unfortunately, identical distribution and independence are simplifications of the real world. This
is even true when one considers n rolls of a die. 122 The surface on which the die is rolled is not
perfectly even, so that negates identical distribution. If several people take turns, then the different
ways in which they throw the die creates a dependency. Of course, it is very likely that those
differences, if we are able to detect them, are so minuscule that they can be ignored.
But there are many examples where those deviations are so large that we cannot work under the iid
assumption. This need not necessarily occur in a real world application. It can also be part of the
probabilistic models we create: Whenever we assume that we sample without replacement from a
finite population, the probabilistic makeup of the items remaining in that population changes with
every item we happen to pick for our sample.
Consider sampling at random from an urn that initially contains R red and N −R black balls. If Xj

is red, then there will be less of a probability of Xj+1 being red, than if Xj was black. Hence, the Xj

are neither independent, nor identically distributed.
However, those sample picks constitute a simple random sample according to Definition 8.3 (Simple
Random Sample) on p.186:

• A sample ~X =
(
X1, X2, . . . , Xn

)
of size n from a population of size N ≥ n is called a simple

random sample (SRS), if it is done without replacement and if each one of the potential
outcomes ~x = ~X(ω) has equal chance of being selected.

If the sample size of an SRS is large, but small when compared to the size of the population, then
treating it as iid will result in insignificant domputational differences. 123 This observation is one of
the reasons that even the more restrictive definition of an SRS is of a generality we are not looking
for in this chapter. We follow [5] Hogg, McKean, Craig: Introduction to Mathematical Statistics.
A typical statistical problem can be described as follows: We have a random variable Y that we
know about, but we do not know its distribution, given by its CDF FY (y).
Our insufficient knowledge of Y can manifest itself in two different ways:

(I) We know the type of distribution, but not all of its parameters. For example, we may know
that Y is normal with σ2 = 3.65, but its mean µ is unknown.

(II) We do not even know the type of distribution: Does Y follow a Poisson distribution or is it
normal or exponential or .....?

We deal in this section with problem (I). �

Example 13.4. Some more problem (I) examples are the following:
(a) Y ∼ binom(64, p), with unknown success probability p. We write pY (y; p) for the PMF.
(b) Y ∼NNN (µ, σ2), where both µ and σ2 are unknown. We write fY (y;µ, σ) for the PDF.
(c) Y ∼ expon(β), with unknown β. We write fY (y;β) for the PDF.
(d) Y ∼ gamma(α, 3), with unknown α. We write fY (y;α) for the PDF. �

Remark 13.3. The examples just given suggest now to handle the general case. Since the random
variable Y is given and we know its distribution except for one or several parameters, we know its
PMF pY (y) in the discrete case or PDF fY (y) in the continuous case. It is customary to write θ or

122Interpret Xj as the jth pick from the population of all rolls of that die.
123We mentioned this in Remark 8.2 on p.185.
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~θ for the unknown parameter or parameters of the distribution and to write Θ for the parameter
space, i.e., the set of all parameters we consider for the problem. 124

Thus, in Example 13.4(a), Θ = [0, 1]. In Example 13.4(b), Θ =]−∞,∞[×[0,∞[.
Problem (I) can now be formulated as follows:
• Given is a random variable Y of which we know its distribution except for one or several

parameters.
� We know the PMF pY (y; θ) if Y is discrete. � We know the PDF fY (y; θ) if Y is continuous.

• What is a good, possibly optimal, procedure for the estimation of θ from the sample that we
have drawn or intend to draw from the population?

It seems obvious enough that this estimate must be a (deterministic) function

θ = T (~y) = T (y1, . . . , yn) = T
(
~Y (ω)

)
= T

(
Y1(ω), . . . , Yn(ω)

)
.

of the potential outcomes (realizations) of the sample. �

We had stated in the introduction that only iid samples are considered in this section.

Definition 13.2 (Random samples from a distribution).

Let Y be a random variable on a probability space (Ω, P ). Let n ∈ N. We call a vector
~Y =

(
Y1, . . . , Yn

)
a random sampling action of size n on (or from) the distribution of Y , if

• the random variables Y1, . . . , Yn are iid with distribution PY .

The following are alternate names for this kind of sampling action:

• random sampling action of size n on (or from) Y
• “random sampling action” can be shortened to “random sample”
• random sample also refers to a realization ~y = ~Y (ω) of a random sampling action.

Note that the last two bulleted items are consistent with earlier definitions of sampling where we
also use “sample” both for a sampling action and a realization of such an action. �

That definition allows us to restate the essence of Remark 13.3 as follows: We expect a procedure to
estimate the parameter θ of a PMF pY (y; θ) or PDF fY (y; θ) to be a random variable ω 7→ T

(
~Y (ω)

)
.

There is a special name for transforms ~y 7→ T (~y) of a random sample on Y .

Definition 13.3 (Statistic ).
124It is unfortunate that this standard notation for parameters to be estimated is at odds with the other standard which

uses the CAPS version of a letter to denote a random item and the corresponding small letter to denote an outcome of
this random element. (For example, y = Y (ω)).

324 Math 447 - Version 2025-02-20



Math 447 – MF Lecture Notes Student edition with proofs

Let Y be a random variable on a probability space (Ω, P ) and ~Y =
(
Y1, . . . , Yn

)
a random

sampling action on Y . Let
T : Rn 7→ R ; ~y 7→ T (~y)

be some function that can be applied to the sampling action ~Y . We call the random variable

ω 7→ T
(
~Y (ω)

)
a statistic of that sampling action. We call the distribution of that random variable,

B 7→ PT◦~Y (B) = P{T (~Y ) ∈ (B)} = P{ω ∈ Ω : T
(
~Y (ω)

)
∈ B}(13.14)

its sampling distribution. Once the sampling action has been performed and the corre-
sponding realization ~y = ~Y (ω) has been obtained, we call t = T

(
~Y (ω)

)
the realization of

the statistic. �

Theorem 13.6.

Let Y be a random variable on a probability space (Ω, P ) and ~Y =
(
Y1, . . . , Yn

)
a random sampling

action on Y . Let T1, T2, . . . , Tk : Rn 7→ R be statistics for that sample action. Let

T ∗ : Rk 7→ R ; (t1, . . . , tk) 7→ T ∗(t1, . . . , tk) .

Then, setting ~t = (t1, . . . , tk) and ~T = (T1, . . . , Tk), the composition

T ∗ ◦ ~T ◦ ~Y : ω 7→ T ∗
(
~T [ ~Y (ω) ]

)
= T ∗

(
T1[ ~Y (ω) ], . . . , Tk[ ~Y (ω) ]

)
also is a statistic of ~Y .

PROOF:
Left as an exercise which is very easy for the student who has had exposure to functions Rn → Rk

with dimensions n and/or k that can exceed the value 3. �

The last theorem can be stated succinctly and without mathematical symbols as follows:

A function of a function of the data is a function of the data.

Here is an example of a statistic which is so important that it deserves its own definition. It also is
used to illustrate Theorem 13.6.

Definition 13.4 (Sample variance).

Let ~Y =
(
Y1, . . . , Yn

)
be a random sample action on a random variable Y .

The sample variance is defined as the random variable

(13.15) ω 7→ S2(ω) :=
1

n− 1

n∑
j=1

(
Yj(ω)− Ȳ (ω)

)2
.

We further call ω 7→ S(ω) :=
√
S2(ω) the The sample standard deviation.

We will often write s2 and s for the realizations S2(ω) and S(ω) that result from creating the
sample.
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We write Sn, S2
n, sn, s

2
n for S, S2, s, s2, if we want to keep track of the sample size. That will be

the case, e.g., if we consider the sample variance of the first n picks of a sample of infinite size. �

Example 13.5. For the following examples assume that ~Y =
(
Y1, . . . , Yn

)
is a random sample on a

random variable Y .
(a) In Example 11.5 (Variance of the sample mean) on p.262, we considered the sample mean

ω 7→ Ȳ (ω) = 1
n

n∑
j=1

Yj(ω) . Ȳ is a statistic: The transform is T (~Y ) = 1
n

n∑
j=1

Yj .

We also mentioned that this statistic is an obvious choice for estimating the parameter µ =
E[Y ] of the underlying random variable Y .

(b) Sample variance S2 and sample standard deviation S which were defined above are statis-
tics. This can be shown with the help of Theorem 13.6 on p.325 as follows. Let

t1 = T1(~y) = y1, t2 = T2(~y) = y2, . . . , tn = Tn(~y) = yn, tn+1 = Tn+1(~y) = ȳ .

T ∗(t1, . . . , tn, tn+1) =
1

n− 1

n∑
j=1

(
tj − tn+1

)2
Then S2 = T ∗

(
T1(~Y ), . . . , Tn(~Y )

)
, Tn+1(~Y )

)
. By Theorem 13.6, S2 is a statistic for ~Y . We ap-

ply this theorem again to the function T ∗∗ : t∗ 7→
√
t∗ and obtain that the standard deviation

S is a statistic, since S = T ∗∗(S2).
(c) The jth order statistic, Y(j) is indeed a statistic, since knowledge of all values of a list

y1, . . . , yn of real numbers uniquely determines which one is the jth largest value in that
list.

(d) The sample range, R = Y(n) − Y(1), is a statistic, since it is a function (the difference) of
the two statistics Y(n) and Y(1). �

Example 13.6 (WMS Ch.07.1, Example 7.1). Example 7.1 of the WMS text discusses in quite big de-
tail the sampling distribution of the statistic Ȳ for a sample of three independent rolls of a balanced
die. You are strongly encouraged to study it. �

Theorem 13.7 (WMS Ch.07.2, Theorem 7.1).

Let Y1, Y2, . . . , Yn be a random sample of size n from a normal distribution with mean µ and variance
σ2, i.e., we sample on a random variable Y ∼NNN (µ, σ2). Then the sample mean Ȳ follows a normal
distribution with mean µ and variance σ2/n.

PROOF: That is an immediate consequence of Theorem 12.5 (Linear combinations of uncorrelated
normal variables are normal) on p.309. �

Theorem 13.8 (WMS Ch.07.2, Theorem 7.2).
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Let ~Y =
(
Y1, . . . , Yn

)
be a random sample on Y ∼ NNN (µ, σ2). Let Zj = (Yj − µ)/σ for j =

1, 2, . . . , n. Then ~Z =
(
Z1, . . . , Zn

)
is a random sample on a standard normal variable. (In

particular, the Zj are iid.) Further,

(13.16)
n∑
j=1

Z2
i =

n∑
j=1

(
Yj − µ

σ

)2

follows a χ2 distribution with n degrees of freedom.

PROOF: It follows from Theorem 12.5 (Linear combinations of uncorrelated normal variables are
normal) on p.309 that the linear combination Zj = (Yj − µ/σ) is standard normal. It follows from
Theorem 12.4 (MGF of a sum of functions of independent variables) on p.309 that the Zj are iid. It

follows from Theorem 12.6 on p.312 that
n∑
j=1

Z2
i ∼ χ2(df = n). �

The following is Example Example 6.13 of the WMS text.

Proposition 13.1. ?

Let Y1 and Y2 be independent standard normal random variables. Then Y1 + Y2 and Y1 − Y2 are
independent and normally distributed, both with mean 0 and variance 2.

PROOF: See WMS Ch.06.6, Example 6.13. �

Theorem 13.9 (Independence of sample mean and sample variance in normal populations).

Let ~Y =
(
Y1, . . . , Yn

)
be a random sample on Y ∼NNN (µ, σ2). LetZj = (Yj−µ)/σ for j = 1, . . . , n.

Then, ~Z = (Z1, . . . , Zn) is a random sample on a standard normal variable. Moreover,

(a)
(n− 1)S2

σ2
=

1

σ2

n∑
j=1

(Yj − Ȳ )2 ∼ χ2(df = n− 1)

(b) Ȳ and S2 are independent random variables.

PROOF: ? See the proof of WMS Ch.07.2, Theorem 7.3 for the case n = 2. �

• The sample mean Ȳ was a natural choice to estimate the mean µ = E[Y ] of a random
variable X .

• It seems just as natural to use the sample variance S2 to estimate σ2 = V ar[Y ]. We will see
that, if Y follows a normal distribution, this choice turns out to be mathematically sound.

The t distribution which we define next is a means towards that end.

Definition 13.5 (Student’s t–distribution 125 ).
125Named after the English statistician William S. Gosset (1876 – 1937). Georg Ferdinand Ludwig Philipp Cantor

(1845 – 1918), Gosset was Head Brewer of the Guinness Brewery in Dublin, Ireland and published his papers under
the pseudonym "Student".
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Let Z and W be independent random variables such that Z is standard normal andW is χ2

with ν df. Let

(13.17) T =
Z√
W/ν

Then we refer to the distribution PT of T as a t–distribution or Student’s t–distribution
with ν df. We also write that as T ∼ t(ν) or T ∼ t(df = ν). �

Remark 13.4.

• One can prove that E[T ] = 0 for any ν, and V ar[T ] =
ν

ν − 2
for ν > 2.

The density of the t–distribution looks very similar to that of a normal density. Both have a sym-
metrical, bell shaped graph. But note the following:
• Since it does not depend on ν, E[T ] = 0 is not a parameter of the t–distribution.
• Since

ν

ν − 2
> 1, the tails are fatter than those of a NNN (0, 1) variable. See Figure 13.1. �

13.1 (Figure). densities of the standard normal and t distribution. Source: Wikipedia.

Remark 13.5. The following looks somewhat strange. Assume that Z1 and Z2 are independent
and standard normal. Since Z2

2 ∼ χ2(df = 1) and |Z2| =
√
Z2

2 , the random variable Z1/|Z2|
follows a t(df = 1) distribution! �
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Theorem 13.10.

Let Y ∼NNN (µ, σ2) and ~Y =
(
Y1, . . . , Yn

)
be a random sample on Y . Let

(13.18) T :=
Ȳ − µ

S/
√
n
.

Then T follows a t–distribution with (n− 1) df.

PROOF: Let

Z :=
Ȳ − µ
σ/
√
n

and W :=
(n− 1)S2

σ2
.(A)

We have seen that Z ∼NNN (0, 1) and W ∼ χ2(df = n− 1). Since Ȳ and S2 are independent by The-
orem 13.9 on p.327, Z as a function of Ȳ only and W as a function of S2 only also are independent.
Now,

T
(13.18)

=
Ȳ − µ
S/
√
n

=
(Ȳ − µ)/(σ/

√
n)

S/
√
n/(σ/

√
n)

(A)
=

Z

S/σ

=
Z

(
√
n− 1/

√
n− 1) · (

√
S2/
√
σ2)

=
Z√[

(n− 1)S2
]
/σ2 /

√
n− 1

(A)
=

Z√
W/
√
n− 1

=
Z√

W/(n− 1)
.

By definition, of the t–distribution,
Z√

W/(n− 1)
∼ t(df = n− 1). �

Example 13.7 (WMS Ch.07.2, Example 7.6). Example 7.6 of the WMS text discusses a practical ex-
ample of the Student’s t–distribution that discusses how to estimate the unknown variance of a
normal random variable from a sample. You are strongly encouraged to study it. �

The next and last distribution tied to random sampling on a normal variable that we give in this
section allows us to compare the variances of two random samples on normal random variables that
represent two independent populations. This is used in the so called analysis of variance (ANOVA)
to decide whether the means of several independent normal populations all coincide or whether at
least two of them are different.

Definition 13.6 (F–distribution).

Given are two independent random variables W1 ∼ χ2(df = ν1) and W2 ∼ χ2(df = ν2).
with ν1 and ν2 df, respectively. Then we say that

F =
W1/ν1

W2/ν2

follows an F distribution with ν1 numerator degrees of freedom and ν2 denominator
degrees of freedom. �
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Remark 13.6. ? One can show that

• ν2 > 2 ⇒ E[F ] =
ν2

ν2 − 2
,

• ν2 > 4 ⇒ V ar[F ] =
2ν2

2(ν1 + ν2 − 2)

ν1(ν2 − 2)2(ν2 − 4)
. �

Theorem 13.11.

Consider two random samples of sizes n1 and n2 from two independent populations,
on random variables Y1 ∼NNN (µ1, σ

2
1) and Y2 ∼NNN (µ2, σ

2
2) with sample variances S2

1 and S2
2 . Let

(13.19) F :=
S2

1/σ
2
1

S2
2/σ

2
2

.

Then F follows an F distribution with (n1 − 1) numerator df and (n2 − 1) denominator df.

PROOF: Let

W1 :=
(n1 − 1)S2

1

σ2
1

, W2 :=
(n2 − 1)S2

2

σ2
2

.

Since the random samples are independent, so are their sample variances S2
1 and S2

2 , and so are the
transforms W1 of S2

1 and W2 of S2
2 . By Theorem 13.9 (Independence of sample mean and sample

variance in normal populations) on p.327,

W1 ∼ χ2(df = n1 − 1) , and W2 ∼ χ2(df = n2 − 1) .

According to Definition 13.6 of an F distribution,

W1/ν1

W2/ν2
=

[
(n1 − 1)S2

1/σ
2
1

]
/ (n1 − 1)[

(n2 − 1)S2
2/σ

2
2

]
/ (n2 − 1)

=
S2

1/σ
2
1

S2
2/σ

2
2

follows an F distribution with (n1 − 1) numerator df and (n2 − 1) denominator df. �

Example 13.8 (WMS Ch.07.2, Example 7.7). Example 7.6 of the WMS text discusses another practical
example of the Student’s F distribution. You are strongly encouraged to study it. �

13.4 The Central Limit Theorem

Introduction 13.3. In section13.3 (Sampling Distributions) we were able to determine the sampling
distributions of some very important statistics that can be computed from the realization of a ran-
dom sample ~Y on some random variable Y . But there was very restrictive assumption on that
underlying random variable
• Y had to follow a normal distribution.

We will find a solution for determining the sampling distribution of the sample mean, Ȳ = 1
n

n∑
j=1

Yj ,

even if Y is not normal.
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• It is an asymptotic solution, i.e., its comes in form of a U = lim
n→∞

Un theorem.

• Here, Un is a statistic Tn ◦ ~Y , which we can compute from (the realization of) ~Y and

Ȳn := 1
n

n∑
j=1

Yj , a very natural approximation of Ȳ , can also be computed from Un

• n denotes the sample size. Thus, the sample must be sufficiently large to allow us to ignore
the discrepancy between Un and U .

We have learned that there are four different kinds of limits which occur in connection with a se-
quence of random variables. We will discuss in this chapter the central limit theorem. It allows us
to show the existence of the least desirable of those four limits, the limit in distribution. But that is
not as bad as it sounds for the following reason.
• For large enough n, the CDF of Un is close to that of U . Since the CDF determines the

probabilities of all important events B, we can approximate P{Un ∈ B} ≈ P{U ∈ B}, �

We will state and prove the limit theorem which was mentioned in the introduction above, after
the following important theorem that relates convergence in distribution, Yn

D→ Y , to (pointwise)
convergence, mYn(t)→ mY (t) of the associated MGFs.

Theorem 13.12 (Lévy–Cramér continuity theorem). ?

Let Y1, Y2, . . . ) be a sequence of random variables (iid is not assumed) with associated CDFs
FY1 , FY2 , . . . ) and MGFs mY1(t),mY2(t), . . . ).
Let Y be a random variable with associated CDF FY and MGF mY (t). Then,[

mYn(t) → mY (t) as n→∞, for all t ∈ R
]

⇒
[
FYn(y) → FY (y) as n→∞, for all y where FY (·) is continuous.

](13.20)

PROOF: Outside the scope of this course. �

Theorem 13.13 (Central Limit Theorem).

Central Limit Theorem:
Let ~Y = (Y1, Y2, . . . , Yn) be a vector of iid random variables with common expectation E[Yj ] = µ
and finite variance V ar[Yj ] = σ2. Let Z be a standard normal variable and

Un :=

n∑
j=1

Yj − nµ

σ ·
√
n

=
Ȳn − µ
σ/
√
n
, where n ∈ N , Ȳn =

1

n

n∑
i=1

Yi .

Then, Un converges to Z in distribution as n→∞. In other words,

lim
n→∞

P{Un ≤ u} = P{Z ≤ u} =

∫ u

−∞

1√
2π

e−t
2/2 dt for all u .

PROOF:
(1) Let Ỹn := Yn − µ. The Ỹn are iid, with E[Ỹj ] = 0, V ar[Ỹj ] = σ2 and MGF m(t) := m

Ỹn
(t).

By Corollary 12.1 on p.309, m
Ỹ1+···Ỹn(t) =

[
m(t)

]n. Thus.
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mUn(t) = E

exp


n∑
j=1

Ỹj ·
t

σ
√
n


 = m

Ỹ1+···Ỹn

(
t

σ
√
n

)
=

[
m

(
t

σ
√
n

)]n
.(2)

(3) According to Theorem 13.12 (Lévy–Cramér continuity theorem), it suffices to show that
lim
n→∞

mUn(t) = mZ(t) = et
2/2 .

Equivalently, since x 7→ ex is continuous, it suffices to show that

lim
n→∞

ln mUn(t) =
t2

2
.(4)

(5) Let h :=
t

σ
√
n

. Then n =
t2

σ2 h2
. Thus, by (2),

ln mUn(t) = n lnm(h) =
t2

σ2 h2
lnm(h) =

t2

σ2

(
lnm(h)

h2

)
.

Thus,

lim
n→∞

ln mUn(t) =
t2

σ2
lim
h→0

lnm(h)

h2
.(6)

Since m(0) = e0 = 1, the right–hand limit is of the form 0/0. We use L’Hôpital’s rule 126 twice in a
row and obtain, since m(t) = m

Ỹn
(t) and hence, m′′(0) = E[Ỹ 2

n ],

lim
h→0

lnm(h)

h2
= lim

h→0

[
1/m(h)

]
m′(h)

2h
= lim

h→0

m′(h)

2hm(h)

= lim
h→0

m′′(h)

2m(h) + 2hm′(h)
=

m′′(0)

2m(0) + 0
=

m′′
Ỹn

(0)

2
=

E[Ỹ 2
n ]

2
.(7)

(8) Since Ỹn = Yn − µ and hence, E[Ỹ 2
n ] = E[(Yn − µ)2] = V ar[Yn] = σ2, (7) implies

lim
h→0

lnm(h)

h2
=

σ2

2
.

Thus, by (6), lim
n→∞

ln mUn(t) =
t2

σ2
· σ

2

2
=

t2

2
.

We have shown (4) and this finishes the proof. �

Remark 13.7. In statistical applications the CLT often is employed as follows: Carefully designed
statistical techniques have resulted in the estimate µ = µ0 for µ, the unknown mean of the popu-
lation of interest. But this has been quite some time ago. Today there is reason to believe that this
value is now outdated and one wants to obtain supporting evidence for that claim.
• We make µ = µ0 our working hypothesis.

126in the form lim
x→0

f(x)

g(x)
= lim

x→0

f ′(x)

g′(x)
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• An SRS ~Y of size n is taken and c0 :=
ȳ − µ0

σ/
√
n

is computed from the sample mean

realization ȳ =
n∑
j=1

yj which one obtains from the realization ~y = ~Y (ω) of the sample.

• If Ȳ (ω) is close to µ0, then P

{ ∣∣∣∣ Ȳ − µ0

σ/
√
n

∣∣∣∣ > c0

}
will be very small.

For example, assume that c0 = 3, i.e., |ȳ − µ0| = 3 · (σ)/
√
n). The r.v. ω → Ȳ (ω) satisfies

E[Ȳ ] = E[Y ] = µ = µ0 and V ar[Ȳ ] =
V ar[Y ]

n
=

σ2

n
, i.e.,

σ√
n

= σȲ .

Thus, c0 = 3 signifies that Ȳ is three SDs away from its mean. According to the CLT,
Ȳ − µ0

σ/
√
n

is

approximately standard normal and we can employ the the 68%–95%–99.7% rule for the normal

distribution (the empirical rule). It tells us that the probability of
Ȳ − µ0

σ/
√
n

being within the ±3 SD

range is close to a huge 99.7%. But then we obtain a very small

P

{ ∣∣∣∣ Ȳ − µ0

σ/
√
n

∣∣∣∣ > c0

}
≈ 1 − 0.997 = 0.003 .

In other words, the probability that a Ȳ belonging to a random sample like ours (with the same
sample size) is 3 SDs or more away from µ0.
• So it was just the luck of the draw that let us obtain a sample that only has a chance of one

in 333 of being picked. Or is there another explanation?
How about this? α0 = 0.05 was obtained contingent on the hypothesis that µ still equals µ0. Let us
change our point of view and assume that there was nothing unusual about our sample.
• We reject the hypothesis µ = µ0, since the data obtained from the sample suggest that
|Ȳ − µ| < |Ȳ − µ0| and that necessitates µ 6= µ0.

• In the extreme, we could dispense with any effort to find a well founded estimate of µ.
Instead, we act as if our particular sample serves that purpose and replace µ0 with µ1 := ȳ.

In the extreme, we could dispense with any effort to find a well founded estimate of µ. Instead, we
act as if our particular sample serves that purpose and replace µ0 with µ1 := ȳ. But of course, that
generally is not a good idea and one should follow the established process to obtain a new estimate
of µ. �

Remark 13.8. This is a continuation of the previous example.
• The procedure outlined there to decide whether or not to reject the hypothesis µ = µ0 in-

volved the computation of the expression c0 :=
ȳ − µ0

σ/
√
n

.

• However, knowledge of the population variance σ2 = V ar[Yj ] of a sample pick Yj from that
population is the exception rather than the rule and σ2 must be estimated from the sample.
The obvious way of doing so is use of the sample variance realization s2 = S2(ω).

• We have the following problem. The CLT asserts that, for large enough n, ω 7→ Ȳ (ω)− µ0

σ/
√
n

is approximately standard normal. We used that fact to compute P

{ ∣∣∣∣ Ȳ − µ0

σ/
√
n

∣∣∣∣ > c0

}
and

we based the decision to reject or not reject the hypothesis µ = µ0 on that number.
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• But what happens if we replace σ with S(ω)? If the random variable ω 7→ Ȳ (ω)− µ0

S(ω)/
√
n

also

is approximately standard normal for large n, then our problem is solved. �

To show that the CLT indeed remains in force if σ2 is replaced by S2, we must collect some material.

Theorem 13.14 (Student t converges to normal distribution).

Let T1, T2, . . . ) be a sequence of random variables such that Tj ∼ t(df = j). Then Tj converges in
distribution to a standard normal variable.

PROOF: Omitted. 127 Note though that the graphs of the t–PDFs shown in Remark 13.4 on p.328
visually support the assertion of this theorem.

Lemma 13.1. ? Let ~y := (y1, . . . , yn) ∈ Rn, (n ∈ N), and ȳ :=
∞∑
j=1

yj the arithmetic mean of ~y. Then,

(a)
n∑
j=1

(yj − c)2 =

n∑
j=1

(yj − ȳ)2 +

n∑
j=1

(ȳ − c)2 ,

(b) ȳ minimizes the expression
n∑
j=1

(yj − c)2, where c ∈ R):

n∑
j=1

(yj − c)2 ≥
n∑
j=1

(yj − ȳ)2 for all c ∈ R ,

PROOF: To show (a), we observe that

n∑
j=1

(yj − ȳ) (ȳ − c) = ȳ

n∑
j=1

yj + ȳ · c
n∑
j=1

1 − c

n∑
j=1

yj − ȳ · ȳ
n∑
j=1

1

= ȳ(nȳ) + (ȳc)n − c(nȳ) − (ȳ2)n = 0 .

(13.21)

Hence,

n∑
j=1

(yj − c)2 =
n∑
j=1

(yj − ȳ + ȳ − c)2

=

n∑
j=1

(yj − ȳ)2 + 2

n∑
j=1

(yj − ȳ) (ȳ − c) +

n∑
j=1

(ȳ − c)2

(13.21)
=

n∑
j=1

(yj − ȳ)2 +

n∑
j=1

(ȳ − c)2 .

This proves (a). Clearly, the last expression is minimal when the right–hand summation term van-
ishes, i.e., when ȳ = c. This proves (b). �

127A proof can be found at this StackExchange link.
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Corollary 13.1. ?

The sample variance S2 =
1

n− 1

n∑
j=1

(
Yj−Ȳ

)2 of any sample ~Y := (Y1, . . . , Yn), (n ∈ N), satisfies

(n− 1)S2 =
n∑
j=1

Y 2
j − n Ȳ 2 .

PROOF: We apply formula (a) of Lemma 13.1 with c = 0 and obtain

n∑
j=1

Y 2
j =

n∑
j=1

(Yj − Ȳ )2 +

n∑
j=1

Ȳ 2 . =

n∑
j=1

(Yj − Ȳ )2 + n · Ȳ 2 .

Thus,

(n− 1)S2 =

n∑
j=1

(Yj − Ȳ )2 =
n∑
j=1

Y 2
j − n Ȳ 2 . �

Theorem 13.15 (Sample variance converges to population variance).

Let ~Y := (Y1, . . . , Yn) ∈ Rn, (n ∈ N), be a random sample from the distribution of a random
variable Y with finite variance σ2 <∞.

Then the sample variance S2
n =

1

n− 1

n∑
j=1

(
Yj − Ȳ

)2 converges a.s (hence, also in probability

and in distribution) to σ2.

PROOF: ? Let Un :=
n− 1

n
S2
n and Ȳn := Ȳ =

1

n

n∑
j=1

Yj . By Corollary 13.1,

Un =
1

n

n∑
j=1

Y 2
j − Ȳ 2

n .(A)

Since the sample picks Yj are iid, so are their squares. Note that

E[Y 2
j ] = V ar[Yj ] +

(
E[Yj ]

)2
= σ2 + µ2

We apply the Strong Law of Large Numbers to the iid sequences Y 2
j and Yj and obtain

a.s.– lim
n→∞

1

n

n∑
j=1

Y 2
j = σ2 + µ2 , a.s.– lim

n→∞
Ȳn = µ .(B)

Next, we apply Theorem 13.3 (Convergence is maintained under continuous transformations) on
p.318 to the continuous function x 7→ x2. It follows from a.s.– lim

n→∞
Ȳn = µ obtained in (B), that

a.s.– lim
n→∞

Ȳ 2
n = µ2 .(C)
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It now follows from the definition of Un and from (A) and (B) and (C), that

a.s.– lim
n→∞

S2
n = a.s.– lim

n→∞

n− 1

n
S2
n = a.s.– lim

n→∞
Un = (σ2 + µ2) − µ2 = σ2 .

It follows from Theorem 13.1 (Relationship between the modes of convergence) on p.317 that con-
vergence S2

n → σ2 also takes place in probability and in distribution. �

We now are able to provide a version of the CLT which allows us to work with ω 7→ Ȳ (ω)− µ0

S(ω)/
√
n

instead of ω 7→ Ȳ (ω)− µ0

σ/
√
n

and solves the issue brought up in Remark 13.8 on p.333.

Theorem 13.16 (CLT – Sample variance version).

Let ~Y = (Y1, Y2, . . . , Yn) be a vector of iid random variables with common expectation E[Yj ] = µ
and finite variance V ar[Yj ] = σ2. Let Z be a standard normal variable. For n ∈ N, let

Ȳn :=
1

n

n∑
i=1

Yi , S2
n :=

1

n− 1

n∑
i=1

(
Yi − Ȳn

)2
, Sn :=

√
S2 , Wn :=

Ȳn − µ
Sn/
√
n
.

(Thus, Ȳn and Sn are sample mean and sample standard deviation of the RSA ~Y ).

Then Wn converges to Z in distribution as n→∞.

PROOF: ? 128 Let Un :=
Ȳn − µ
σ/
√
n
.

According to the standard version of the CLT (Theorem 13.13 on p.331) Un
D−→ Z and, according

to Theorem 13.15 (Sample variance converges to population variance) on p.335, S2
n

D−→ σ2.
By Theorem 13.3 (Convergence is maintained under continuous transformations) on p.318,

σ Un
D−→ σ Z and Sn =

√
S2
n

D−→
√
σ2 = σ .

Since the limit σ of Sn is constant, we can apply Slutsky’s theorem (Theorem 13.2 on p.318) and
obtain

Wn =
σUn
S

D−→ σY

σ
= Y . �

Remark 13.9. Note that it follows from Theorem 13.10 on p.329 that, in the special case that the
sample picks Yj are NNN (µ, σ2),

Wn =
Ȳn − µ
Sn/
√
n
∼ t(df = n− 1) .

For that reason, one would rather approximate Wn with a t(df = n−1) distribution than a standard
normal distribution, if the following was true:

(1) The population is known to approximately follow a normal distribution.
(2) The sample size is rather small (rule of thumb: n < 40. For such small n, the distri-

bution of Wn may be too far away from NNN (0, 1), the limit for n→∞. �

128Adapted from stats stackexchange link.

336 Math 447 - Version 2025-02-20

https://stats.stackexchange.com/questions/279780/does-the-central-limit-theorem-hold-if-you-replace-the-true-variance-with-the-sa


Math 447 – MF Lecture Notes Student edition with proofs

Example 13.9 (WMS Ch.07.3, Example 7.8). ACME Corp. produces X-widgets. When the machines
work properly, their weight, in pounds, has a mean of 38 and a variance of 49.

(a) A random sample of n = 144 X-widgets was taken yesterday. It had a mean weight of 40
pounds. Does this sample provide sufficient evidence that the manufacturing process is off
and the machines need to be recalibrated?

(b) What would be the situation if n = 100, ȳ = 39.4, µ = 38 and σ2 = 121?

Solution for (a):
Let Ȳ denote the mean of a random sample of n = 144 X–widgets from a population with µ = 38
and σ2 = 49. According to the CLT (Theorem 13.13 on p.331),

U :=
Ȳ − µ
σ/
√
n

=
Ȳ − 38

7/12

is approximately NNN (0, 1). Thus, if Z denotes a standard normal random variable,

P{Ȳ ≥ 40} = P

{
U ≥ 40− 38

7/12

}
= P

{
U ≥ 2 · 12

7

}
≈ P

{
Z ≥ 2 · 12

7

}
≈ 0.0003 .

Because this probability is so small, it is unlikely that the sampled X–widgets constitute a random
sample from machinery that produces them with µ = 38 and σ2 = 49. The evidence suggests that
the machinery needs to be recalibrated.

Solution for (b):
On the other hand, if n = 100, ȳ = 39.4, µ = 38 and σ2 = 121, then

U =
Ȳ − 38

10/11

and

P{Ȳ ≥ 39.4} = P

{
U ≥ 39.4− 38

10/11

}
≈ P {Z ≥ 1.273} ≈ 0.1016 .

This means that more than one in ten random samples of size n = 100 from a population with
µ = 38 and σ2 = 49 possess a sample mean above 39.4. That is too big a chance to ignore and one
would probably not spend a lot of time and money on adjusting the machines.

337 Math 447 - Version 2025-02-20



Math 447 – MF Lecture Notes Student edition with proofs

13.2 (Figure). (a) No area in the right tail. 13.3 (Figure). (b) right tail area > 10%.

Because this probability is so small, it is unlikely that the sampled X–widgets constitute a random
sample from machinery that produces them with µ = 38 and σ2 = 49. The evidence suggests that
the machinery needs to be recalibrated.
This example illustrates the use of probability in the process of testing hypotheses, a common tech-
nique of statistical inference. �

Example 13.10 (WMS Ch.07.3, Example 7.9). The average life time of an A–widget is documented
as µ = 4500 hours, with a standard deviation of σ = 1500 hours.
A random sample of n = 81 A–widgets has been taken and their life times ~y = y1, . . . , Yn have
an average of Ȳ = 4250 hours. Does this deviation of 250 hours from µ indicate that µ = 4500 is
outdated and the formal process to determine should be set in motion?

Solution:

round( pnorm(4250, mean=4500, sd=1500/9), 4)
## [1] 0.0668

round( pnorm((4250 - 4500)*9/1500, mean=0, sd=1), 4)
## [1] 0.0668

We do the same steps as in Example 13.9. Because n is rather large,

U :=
Ȳ − µ
σ/
√
n

=
Ȳ − 4500

1500/9

is approximately NNN (0, 1). Thus, if Z denotes a standard normal random variable,

(13.22) P{Ȳ ≤ 4250} = P

{
U ≤ 4250− 4500

1500/9

}
≈ P

{
Z ≤ 4250− 4500

1500/9

}
≈ 0.0668 .
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The probability of obtaining a random sample of 81 A–widgets with a sample mean no higher than
4250 hours under the assumption that the population mean equals 4500, is approximately 0.0668.
There is no clear–cut answer for a P–value of this size, even though it is larger than the generally
accepted reject/don’t reject threshold of 0.05. �

Remark 13.10. When we computed the probabilities of interest in Examples 13.9 and 13.10, we did
so by replacing the random variable Ȳ which possesses expectation µ and variance σ/

√
n, with the

random variable (Ȳ − µ)/(σ/
√
n) which possesses expectation 0 and variance 1.

Was that necessary? Since (Ȳ −µ)/(σ/
√
n) and a standard normal random variable Z have approx-

imately the same distribution, the random variables

Ȳ =
(
σ
√
n
)( Ȳ − µ

σ/
√
n

)
+ µ and W :=

(
σ
√
n
)
Z + µ

also have approximately the same distribution. It follows from Theorem 12.5 (Linear combinations
of uncorrelated normal variables are normal) on p.309 that W ∼ NNN

(
µ, σ2/n

)
. 129

One sees that, e.g., (13.22) could have been expressed as follows:

(13.23) P{Ȳ ≤ 4250} ≈ P{W ≤ 4250} .

Most statistical software can directly compute probabilities associated with a NNN (µ, σ2) distribution
for arbitrary µ an σ2 For example, the R language handles (13.22) this way:

round( pnorm(4250, mean=4500, sd=1500/9), 4)
## [1] 0.0668

and (13.23) as follows:

round( pnorm((4250 - 4500)*9/1500, mean=0, sd=1), 4)
## [1] 0.0668

Here is an explanation of those calls: pnorm(x,mean = µ, sd = σ2) computes P{X ≤ x}, for a
NNN (µ, σ2)–distributed random variable X . Invoking round(a, 4) rounds a to 4 decimals. �

Example 13.11 (WMS Ch.07.4, Example 7.10). Example 7.10 of the WMS text also discusses an ap-
plication of the CLT The approximation of a binomial distribution with a normal distribution. You
are strongly encouraged to study it. �

Example 13.12 (WMS Ch.07.4, Example 7.11). Example 7.11 of the WMS text also discusses the so
called continuity correction that should be done whe one approximates a binomial distribution
with a normal distribution. You are strongly encouraged to study that example. �

129Considering that
Ȳ − µ
σ/
√
n

and Z have approximately the same distribution and that multiplication by (σ/
√
n) fol-

lowed by addition of µ transforms those random variables into Ȳ and W , it should not be a surprise that Ȳ and W share
the same expectation and variance.
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14 Sample Problems for Exams

14.1 Practice Midterm 1 for Math 447 - Chris Haines

Here are some commented excerpts of a practice exam for the first midterm. It was written by Prof.
Christopher Haines and forwarded to me by Prof. Adam Weisblat, both at Binghamton University
(October 2023).

Exercise 14.1. Practice Midterm 1 (C. Haines) – # 01
SKIPPED �

Answer: N/A �

Exercise 14.2. Practice Midterm 1 (C. Haines) – # 02

The Lakers and Heat are playing in the NBA Finals. The series is a best–of–seven (first team to win
four games clinches the series). The Lakers will win each game with probability 3/4.

(a) Given that the Heat won game one, what is the probability the Lakers go on to win the
series?

(b) Given that the Heat win at least two games in the series, what is the probability the Lakers
go on to win the series?

�

Solution:
We denote a sequence of games as ~x = (x1, x2, . . . , xn), where n ≤ 7 and xj = H if the Heat
win game j and xj = L if the Lakers win game j. Note that n < 7 is possible, for example, if
~x = (H,H,H,H). (The series is finished.)

Solution to (a):
• Let A := { The Lakers win the series }
• Let B := { The Heat win game #1}
• �

Assume that ~x ∈ A ∩B. Then x1 = H and
• either x2 = x3 = x4 = x5 = L ⇒ one choice
• or one of x2, . . . , x4 is H and the other three and x5 are L ⇒

(
4
1

)
= 4 choices

• or two of x2, . . . , x5 are H and the other three and x6 are L ⇒
(

5
2

)
= 10 choices

• Thus, P (A ∩B) = 1 · 1
4 ·
(

3
4

)4
+ 4 ·

(
1
4

)2 · (3
4

)4
+ 10 ·

(
1
4

)3 · (3
4

)4
We obtain P (A | B) = P (A ∩B)/P (B) = 1701/2048. �

Solution to (b): Note that my solution differs from that given in the original (see course materials
page!)
• Let A := { The Lakers win the series },
• B := { The Heat win at least 2 games },
• B2 := { The Heat win precisely 2 games }.
• B3 := { The Heat win precisely 3 games },
• Then A ∩B = A ∩

(
B2 ]B3

)
(Heat cannot win more than 3 if Lakers win the series).
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To compute P (A ∩B) = P (A ∩B2) + P (B3 ∩B3), we note that

• either ~x ∈ A ∩B2 ⇔ exactly two of x1, . . . , x5 are H and x6 = L ⇒
(

5
2

)
= 10 choices

• or ~x ∈ A ∩B3, i.e., exactly 3 of x1, . . . , x6 are H and x7 = L ⇒
(

6
3

)
= 6·5·4

3! = 20 choices
• Thus, P (A ∩B) = 10 ·

(
1
4

)2 · (3
4

)4
+ 20 ·

(
1
4

)3 · (3
4

)4
Next, we compute P (B{).
• Let B0 := { The Heat win precisely 0 games }. Then ~x ∈ B0 ⇔ x1 = x2 = x3 = x4 = L
⇒ 1 choice

• Let B1 := { The Heat win precisely 1 game }. Then ~x ∈ B1 ⇔ exactly one of x1, . . . , x4 is
H and x5 = L ⇒ 4 choices

• Further, P (B{) = P (B0) + P (B1) =
(

3
4

)4
+ 4 · 1

4

(
3
4

)4
= 2

(
3
4

)4.

Thus,

P (A | B) =
P (A ∩B)

1− P (B{)
=

10 ·
(

1
4

)2 · (3
4

)4
+ 20 ·

(
1
4

)3 · (3
4

)4
1 − 2

(
3
4

)4 �
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15 Other Appendices

15.1 Greek Letters

The following section lists all greek letters that are commonly used in mathematical texts. You do
not see the entire alphabet here because there are some letters (especially upper case) which look
just like our latin alphabet letters. For example: A = Alpha B = Beta. On the other hand there
are some lower case letters, namely epsilon, theta, sigma and phi which come in two separate forms.
This is not a mistake in the following tables!

α alpha θ theta ξ xi φ phi
β beta ϑ theta π pi ϕ phi
γ gamma ι iota ρ rho χ chi
δ delta κ kappa % rho ψ psi
ε epsilon κ kappa σ sigma ω omega
ε epsilon λ lambda ς sigma
ζ zeta µ mu τ tau
η eta ν nu υ upsilon

Γ Gamma Λ Lambda Σ Sigma Ψ Psi
∆ Delta Ξ Xi Υ Upsilon Ω Omega
Θ Theta Π Pi Φ Phi

15.2 Notation

This appendix on notation has been provided because future additions to this document may use
notation which has not been covered in class. It only covers a small portion but provides brief
explanations for what is covered.
For a complete list check the list of symbols and the index at the end of this document.

Notation 15.1. a) If two subsets A and B of a space Ω are disjoint, i.e., A ∩ B = ∅, then we often
write A ]B rather than A ∪B or A+B. The complement Ω \A of A is denoted A{. .
b) R>0 or R+ denotes the interval ]0,+∞[, R≥0 or R+ denotes the interval [0,+∞[,
c) The set N = {1, 2, 3, · · · } of all natural numbers excludes the number zero. We write N0 or Z+ or
Z≥0 for N ] {0}. Z≥0 is the B/G notation. It is very unusual but also very intuitive. �
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List of Symbols

An ↓ A – nonincreasing set seq. , 36
An ↑ A – nondecreasing set seq. , 36
FY (y) – CDF of random var. Y , 212
[a, b[, ]a, b] – half-open intervals , 28
[a, b] – closed interval , 28
Cnk – nbr of combinations , 172
Pnr – permutation , 170(
n
r

)
– nbr of combinations , 172

⇒ – implication , 21
∅ – empty set, 19
∃! – exists unique , 27
∃ – exists , 27
∀ – for all , 27
P(Ω), 2Ω – power set , 24
±∞ – ± infinity , 28
inf(A) – infimun of A , 48
inf (xi), inf (xi)i∈I , inf

i∈I
xi – families , 49

inf (xn), inf (xn)n∈N, inf
n∈N

xn – sequences , 49

sup(A) – supremun of A , 48
sup (xn), sup (xn)n∈N, sup

n∈N
xn – sequences , 49

|x| – absolute value , 30
]a, b[Q – interval of rational #s , 29
]a, b[Z – interval of integers , 29
]a, b[ – open interval , 28
x ∈ X – element of a set, 18
x /∈ X – not an element of a set, 18
xn ↓ x – nonincreasing seq. , 36
xn ↑ x – nondecreasing seq. , 36
A{ – complement of A , 22
N0 – nonnegative integers, 27
R+ – positive real numbers, 27
R>0 – positive real numbers, 27
R≥0 – nonnegative real numbers, 27
R 6=0 – non-zero real numbers, 27
R+ – nonnegative real numbers, 27
Z≥0 – nonnegative integers, 27
Z+ – nonnegative integers, 27

(xi)i∈I – family , 38
2Ω,P(Ω) – power set , 24(

n
n1 n2···nk

)
– multinom. coeff. , 174(

n
k

)
– binomial coeff. , 174

µ′k – kth moment , 208

µk – kth central moment , 208, 225
µ′k – kth moment , 225
φp – pth quantile , 216
ρ – correlation coeff. , 258
σY – standard dev, discr. r.v. , 165, 195
σ2
Y – variance, cont. r.v. , 224
σ2
Y – variance, discr. r.v. , 195

binom(n, p) , 198
θ – distribution parameter , 324
Θ – parameter space , 324
Cov[Y1, Y2] – covariance , 257
E(Y ) – expected value , 165, 219
E[g(Y1) | Y2 = y2] – conditional expectation ,

268
E[Y ] – expected value , 190
m(t) – MGF , 208
R – sample range , 326
S, Sn – sample standard deviation , 326
s, sn – sample standard deviation , 326
S2, S2

n – sample variance , 326
s2, s2

n – sample variance , 326
SD(Y ) – standard dev, discr. r.v. , 195
SD[Y ] – standard dev, discr. r.v. , 165
V ar[Y1 | Y2 = y2] – conditional variance , 269
V ar[Y ] – variance , 165
V ar[Y ] – variance, cont. r.v. , 224
V ar[Y ] – variance, discr. r.v. , 195
Yn

a.s.→ Y – almost sure limit , 315
Yn

D→ Y – limit in distrib. , 315
Yn

pw→ Y – pointwise limit , 315
Yn

P→ Y – limit in probab. , 315
Γ(α) – gamma function , 233
⇔ – if and only if, 19
N,N0 , 342
R+,R>0 , 342
R+,R≥0 , 342
R>0,R+ , 342
R≥0,R+ , 342
Z+,Z≥0 , 342
B – Borel σ–algebra of R , 114
Bd – Borel σ–algebra of Rd , 114
µ1 × µ2 – product measure , 161
R – [−∞,∞] , 28
Π – partition of n-dim rectangle , 68
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NNN (µ, σ2) – normal with µ, σ2 , 230
NNN (µ1, σ

2
1, µ2, σ

2
2, ρ) – bivariate normal , 288

111A – indicator function of A , 53
inf
x∈A

f(x) – infimum of f , 49

infA f – infimum of f , 49
sup
x∈A

f(x) – supremum of f , 49

supA f – supremum of f , 49
sup (xi), sup (xi)i∈I , sup

i∈I
xi – families , 49

σ{AAA } – σ–algebra generated by AAA , 114
→
x – vector , 51
suppt(f) – support of f , 99
|X| – size of a set , 25
B,Bd – Borel sets , 85
F1 ⊗ F2 – product σ–algebra , 160
{} – empty set, 19
A ∩B – A intersection B, 20
A \B – A minus B , 22
A ⊂ B – Do not use, 19
A ⊆ B – A is subset of B , 19
A ( B – A is strict subset of B, 19
A4B – symmetric difference of A and B , 22
A ]B – disjoint union , 13, 20
A{ – complement , 342
B ⊃ A – Do not use, 19
B ) A – B is strict superset of A, 19
B(α, β) , 237
f : X → Y – function, 33
f(A) – direct image , 46
f−1(B) – indirect image, preimage , 42
fY1|Y2(y1 | y2) – conditional PDF , 246
P (A | B) – conditional probab , 118, 245
(Ω,F, µ) – measure space , 148
(Ω,F, P ) – probability space , 106
(S,SSS , P ) – sample space , 106
χ2(ν) – chi–square with ν df , 235
7→ – maps to , 32
µ(·) – measure , 148
Π – mesh of a partition , 68
σ{AAA } – σ–algebra generated by AAA , 113
Σ∗(·) – counting measure , 150
|f |, f+, f− , 30
B(A) – Borel sets of A ∈ Rd , 149
A ∪B – A union B , 20
A ⊇ B – A is superset of B, 19
f
∣∣
A

– restriction of f , 35

f ∨ g, f ∧ g – max(f, g),min(f, g) , 30
FY1,Y2(y1, y2) – joint CDF , 241
P – measure , 106
pY1,Y2(y1, y2) – joint PMF , 242
x ∨ y – max(x, y) , 30
x ∧ y – min(x, y) , 30
x+, x− – positive, negative parts , 30
X1 ×X2 · · · ×Xn – cartesian product , 51
Y(j) – jth order statistic, 278
beta(α, β) – beta with α, β , 237
chi–square(ν) – chi–square with ν df , 235
expon(β) – exponential with β , 235
gamma(α, β) – gamma with α, β , 233
geom(p) , 199
poisson(λ) , 205
uniform(θ1, θ2) – uniform distrib , 226

g.l.b.(A) – greatest lower bound of A , 48

l.u.b.(A) – least upper bound of A , 48
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P Null event, 106
χ2(ν) (chi–square distribution), 235
µ Null set, 148
σ–algebra, 102

Borel σ–algebra, 114
σ–algebra generated by a collection of sets, 114
σ–algebra generated by a family of functions

(advanced def., 144
σ–algebra generated by a family of random ele-

ments, 126
σ–finite measure, 148
σ–field, 102
0–1 encoded Bernoulli trial, 197
68%–95%–99.7% rule, 230

closed rectangle, 64

absolute value, 30
absolutely convergent series, 58
abstract integral, 155
abstract integral on a subset, 159
almost sure convergence, 315
almost sure limit, 315
argument, 33
assignment operator, 33
asymptotic solution, 331

Bayes formula, 181
Bernoulli sequence, 197
Bernoulli trial, 197

0–1 encoded, 197
failure probability, 197
success probability, 197

Bernoulli variable, 197
beta probability distribution, 237
beta(α, β), 237
bijective, 34
binom(n, p) distribution, 198
binomial coefficients, 174
binomial distribution, 198
binomial theorem, 174
bivariate cumulative distribution function, 241
bivariate normal distribution, 288
bivariate probability mass function, 242
Borel σ–algebra, 114

Borel function, 91
Borel measurable, 138
Borel measurable function, 91
Borel set, 85, 114
Borel sets of a subset of Rd, 149
Borel, Émile, 85
bounded, 48
bounded above, 48
bounded below, 48
box (3 dimensional rectangle), 64

carrier, 106
carrier set, 106
cartesian product, 51
CDF, 212

conditional, 246
joint, 241

central moment of a random variable, 208
chi–square distribution, 235
chi–square with ν df (chi–square distribution),

235
chi–square(ν) (chi–square distribution), 235
closed interval, 28
codomain, 33
coefficient

binomial, 174
multinomial, 174

collection, 20
indexed, 20

combination, 172
combinatorics, 168
complement, 22
conditional CDF, 246
conditional distribution function, 246
conditional expectation, 268
conditional PDF, 246
conditional PMF, 245
conditional probability, 118
conditional probability density function, 246
conditional probability mass function, 245
conditional variance, 269
conditionally convergent series, 59
continuous random variable, 213
continuous unifurm probability distribution,

226, 252, 253
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convergence
almost surely, 315
in distribution, 315
in probability, 315
pointwise, 315
uniform, 314

convergence in distribution, 315
convergence in probability, 315
correction factor, 205
correlation

negative, 257, 258
positive, 257, 258
zero, 257, 258

correlation coefficient, 258
countable set, 37
countably infinite set, 37
counting measure, 150
covariance, 257
cumulative distribution function, 212

bivariate, 241
joint, 241

De Morgan’s Law, 24, 40
decreasing, 36
degrees of freedom, 235

chi–square distribution, 235
denominator, 329
numerator, 329

denominator degrees of freedom, 329
density function

marginal, 244
dependent random elements, 248
dependent random variables, 248
determinant

Jacobian, 304
deterministic sample, 185
deterministic sampling, 184
df = degrees of freedom, 235
direct image, 46
discrete measure, 148
discrete measure space, 148
discrete probability space, 110
discrete random variable, 124
discrete random vector, 124
disjoint, 20
distribution, 124, 154

binomial, 198

marginal, 244
multinomial, 274
parameter, 324
uniform, 226, 252, 253

distribution function, 212
conditional, 246
joint, 241

domain, 33
dominated convergence theorem, 95

Lebesgue integral, 95
dummy variable (setbuilder), 19

element of a set, 18
empirical probability, 7
empirical rule, 230
empty set, 19
equiprobability, 11, 109
estimator, 263

unbiased, 263
event, 7, 14

independence, 120, 121
mutually exclusive, 106

event (precise definition), 106
events generated by random elements, 246
exclusive events, 106
expectation

conditional, 268
expectation - abstract integral, 165
expectation - continuous r.v., 219
expectation - discrete r.v., 190
expected value, 254
expected value - abstract integral, 165
expected value - continuous r.v., 219
expected value - discrete r.v., 190
experiment

multinomial, 274
expon(β) (exponential distribution), 235
exponential distribution, 235
extended real numbers, 28
extension of a function, 35

F distribution, 329
failure probability, 197
family, 38

supremum, 49
finite measure, 148
finite sequence, 35
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first quartile, 216
Fubini, Guido, 83
function, 33

µ–integrable, 156
argument, 33
assignment operator, 33
Borel measurable, 91
codomain, 33
domain, 33
extension, 35
function value, 33
infimum, 49
inverse, 34
Lebesgue integrable, 91
linear, 259
maps to operator, 33
measurable, 138
range, 33
restriction, 35
simple, 138
simple (preliminary), 87
support, 99
supremum, 49
symmetric, 293
symmetrical, 293

function value, 33

gamma distribution, 233
gamma function, 233
gamma(α, β), 233
geom(p) distribution, 199
geometric distribution, 199
graph, 33
greatest lower bound, 48
greek letters, 342

half closed rectangle, 64
half open rectangle, 64
half-open interval, 28
histogram

left skewed, 232
right skewed, 232

hypergeometric distribution, 203

identity, 129
identity function, 129
iid family, 136
iid sequence, 136

ILMD method, 162
image measure, 154
improper Riemann integral, 75
increasing, 36
independence

random elements, 131, 145–147
independent and identically distributed, 136
independent events, 120, 121
independent random elements, 248
independent random variables, 248
index set, 38
indexed collection, 20
indexed family, 38
indicator function, 53
induced measure, 154
infimum, 48
infimum of a family, 49
infimum of a sequence, 49
infinite sequence, 35
injective, 34
integer, 27
integrable function (w.r.t. µ), 156
integrable function w.r.t. µ on a subset, 159
integral, 155

abstract integral, 155
Lebesgue integral, 88, 90

integral w.r.t. µ, 155
interval, 64

closed, 28
half-open, 28
open, 28

inverse function, 34
irrational number, 27

Jacobian, 304
Jacobian determinant, 304
Jacobian matrix, 304
joint CDF, 241
joint cumulative distribution function, 241
joint distribution function, 241, 242
joint normal distribution, 288
joint PDF, 243
joint PMF, 242
joint probability density function, 243
joint probability mass function, 242
jointly continuous random variables, 243
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largest order statistic, 278
least upper bound, 48
Lebesgue integrable function, 91
Lebesgue integrable function on a subset, 93
Lebesgue integral, 88, 90

dominated convergence theorem, 95
monotone convergence theorem, 95

Lebesgue integral on a subset, 93
Lebesgue measure, 65, 85

rectangle, 65
Lebesgue measure on a subset of Rd, 149
Lebesgue Null set, 85
Lebesgue, Henri L., 65
left skewed, 232
left tailed, 232
limit

almost sure, 315
in probability, 315
pointwise, 315

limit in probability, 315
linear function, 259
lower bound, 48

maps to operator, 33
marginal density function, 244
marginal distribution, 244
marginal PDF, 244
marginal PMF, 244
marginal probability mass function, 244
Markov inequality, 238
maximum, 30, 48
mean, 254
mean - abstract integral, 165
mean - continuous r.v., 219
mean - discrete r.v., 190
measurable

Borel measurable, 138
measurable function, 138
measurable space, 138
measure, 148

σ–finite, 148
counting measure, 150
discrete, 148
finite, 148
induced, 154
product, 161

measure space, 148

discrete, 148
product, 161

median, 216
sample median, 287

member of a set, 18
member of the family, 38
memoryless property, 236
mesh, 68
MGF (moment–generating function), 208
minimum, 48
moment about about its mean, 208
moment about the origin, 208
moment of a random variable, 208
moment–generating function, 208
monotone convergence theorem, 95

Lebesgue integral, 95
multinomial coefficients, 174
multinomial distribution, 274
multinomial experiment, 274
multinomial sequence, 274
multiplicative law of probability, 119
mutually disjoint, 7, 20
mutually exclusive, 106

natural number, 27
negative binomial distribution, 202
negative correlation, 257, 258
negative part, 30
nondecreasing, 36
nonincreasing, 36
normal distribution

bivariate, 288
joint, 288

normal probability distribution, 230
Null event, 106
Null measure, 151
Null set, 148

λd, 85
µ (abstract measure), 148
Lebesgue, 85

numerator degrees of freedom, 329

open interval, 28
open rectangle, 64
or

exclusive, 26
inclusive, 26
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order statistic, 278
largest, 278
smallest, 278

outcome, 7, 12, 14
probability space, 14
sample space, 12, 14

parameter of a distribution, 324
parameter space, 324
partition, 25, 38

mesh, 68
partitioning, 25, 38
PDF

conditional, 246
joint, 243
marginal, 244

PDF (probability density function), 214
percentile, 216
permutation, 170
PMF

conditional, 245
joint, 242
marginal, 244

PMF (probability mass function), 188
pointwise convergence, 315
pointwise limit, 315
Poisson probability distribution, 205
poisson(λ), 205
positive correlation, 257, 258
positive part, 30
power set, 24
preimage, 42
probability, 106

conditional, 118
empirical, 7

probability density function, 113, 214
conditional, 246
joint, 243

probability distribution, 124, 154
probability function, 188
probability mass function, 188

conditional, 245
joint, 242
marginal, 244

probability measure, 12, 13, 106
probability space, 12, 14, 106

discrete, 110

product measure, 161
product measure space, 161
proof by cases, 24
proper Riemann integral, 73
pull–back, 146
push–forward, 146

quad, 64
quantile, 216
quartile

first, 216
third, 216

r.v. = random variable, 124
random action, 9
random element, 42, 125, 142

σ–algebra generated by ..., 125
dependence, 248
events generated by, 246
independence, 131, 145–147, 248

random item, 125
random sample, 187, 324
random sampling action, 187

on/from a distribution, 324
on/from a random variable, 324

random variable, 42, 124, 142
central moment, 208
continuous, 213

expectation, 219
expected value, 219
mean, 219

dependence, 248
discrete, 124

expectation, 190
expected value, 190
mean, 190
variance, 195

distribution function, 212
expectation - abstract integral, 165
expected value - abstract integral, 165
independence, 248
mean - abstract integral, 165
moment, 208
moment about its mean, 208
moment about the origin, 208
moment–generating function, 208
standard deviation, 165, 195
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standard normal, 230
uncorrelated, 257, 258
uniform, 226
variance - abstract, 165

random variables
jointly continuous, 243

random vector, 124, 142
discrete, 124

range, 33
sample, 326

rational number, 27
real number, 27
realization, 12, 183, 185
rearrangement

sequence, 58
series, 58

rectangle
d–dimensional, 52, 64
closed, 64
half closed, 64
half open, 64
Lebesgue measure, 65
open, 64

restriction of a function, 35
Riemann integrable, 75
Riemann integral, 66, 68, 71, 73

improper, 75
proper, 73

Riemann integral over a subset, 76
Riemann sum, 62, 68, 71, 73
Riemann, Bernhard, 59
right continuous function, 212
right skewed, 232
right tailed, 232
rv = random variable, 124

sample, 12, 183, 185
deterministic, 184, 185
random sample, 324
realization, 183, 185

sample mean, 262
sample point, 12, 106

sample space, 14
sample range, 326
sample space, 12, 14, 106
sample standard deviation, 325
sample variance, 325

sampling action, 12, 183, 185
sampling distribution, 325
sampling procedure, 183, 185
sampling process, 183, 185
scale parameter, 233
sequence, 35

finite, 35
finite subsequence, 36
infimum, 49
infinite, 35
multinomial, 274
start index, 35
subsequence, 36
supremum, 49

series
absolutely convergent, 58
conditionally convergent, 59

set, 18
countable, 37
countably infinite, 37
difference, 22
difference set, 22
disjoint, 20
intersection, 20, 38
mutually disjoint, 20
proper subset, 19
proper superset, 19
setbuilder notation, 18
size, 25
strict subset, 19
strict superset, 19
subset, 19
superset, 19
symmetric difference, 22
uncountable, 37
union, 20, 38

shape parameter, 233
sigma algebra, 102

generated by a collection of sets, 114
sigma algebra generated by a function (ad-

vanced def.), 144
sigma algebra generated by random elements,

125
sigma–field, 102
simple function, 138

standard form, 138
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simple function (preliminary), 87
simple random sample, 187
simple random sampling action, 187
singleton = singleton set, 9
size, 25
smallest order statistic, 278
SRS, 187
SRS action, 187
standard deviation, 165, 195

sample, 325
standard normal, 230
start index, 35
statistic, 325
step function, 62, 66
strictly decreasing, 36
strictly increasing, 36
Student’s t–distribution, 327
subsequence, 36

finite, 36
success probability, 197
support, 99
supremum, 48
supremum of a family, 49
supremum of a sequence, 49
surjective, 34
symmetric function, 293
symmetrical function, 293

t–distribution, 327
Tchebysheff inequalities, 238
third quartile, 216
triangle inequality, 31

unbiased estimator, 263
uncorrelated random variables, 257, 258
uncountable set, 37
uniform convergence, 314
uniform probability distribution, 226
uniform random variable, 226
uniform random vector, 252, 253
uniform(θ1, θ2), 226
unit mass, 150
universal set, 22
upper bound, 48
urn model with replacement, 187
urn model without replacement, 187

variance

conditional, 269
sample, 325

variance - abstract, 165
variance - discrete r.v., 195
vector, 51

zero correlation, 257, 258
zero measure, 151
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