Formula Collection for Math 447 Midterm 2 – Not all items are relevant!

Some abbreviations: probab = probability; spc = space; rv = r.v. = random variable; re = r.e. = random element; fn = function; lin = linear; for = random element; for = random variable; for = random variab

- (1) (a) ch.2: \bullet power set $2^{\Omega} = \{$ all subsets of $\Omega \}$ $\bullet \forall x \dots$: For all $x \dots \boxdot \exists x \text{ s.t.} \dots$ There is an x such that \dots
- $\blacksquare \exists ! x \text{ s.t.} \dots$ There is a unique $x \text{ s.t.} \dots \blacksquare p \Rightarrow q$ If p is true then q is true $\blacksquare p \Leftrightarrow q$ p iff q, i.e., p true if and only if q true
- Intervals: $|a, b| = \{x \in \mathbb{R} : a < x < b, |a, b|_{\mathbb{Z}} = \{x \in \mathbb{Z} : a < x \le b, [a, b]_{\mathbb{Q}} = \{x \in \mathbb{Q} : a \le x \le b, \text{etc.} \}$
- countable set A: can be sequenced: $\blacksquare A = \{a_1, a_2, \dots, a_n\}$ (finite set) $\blacksquare A = \{1, a_2, \dots\}$ ("countably infinite" set)
- $lacktriangledge \mathbb{Z}$ and \mathbb{Q} are countable, but \mathbb{R} is uncountable ullet family $ig(x_iig)_{i\in I}$: index set I may be uncountable ullet $\bigcup_{i\in J}A_i=\{x: \exists i_0\in J \text{ s.t. } x\in A_{i_0}\} ullet \bigcap_{i\in J}A_i=\{x: \forall i\in J x\in A_i\}. ullet \text{ Can use } A\biguplus B \text{ for } A\cup B \text{ if disjoint sets } ullet \text{ De Morgan: } lacktriangledge (igcup_k A_kig)^{\complement}=\bigcap_k A_k^{\complement} lacktriangledge (\bigcap_k A_kig)^{\complement}=\bigcup_k A_k^{\complement} ullet \text{ Obstributivity: } lacktriangledge (B\cap A_j)=B\cap \bigcup_j A_j lacktriangledge (B\cup A_j)=B\cup \bigcap_j A_j$
- Cartesian products: $|X_1 \times \cdots \times X_n| = |X_1| \cdots |X_n|$ Formulas f. preimages of $f: X \to Y$:

Arbitrary index set J and $B, B_j \subseteq Y$: $\Box f^{-1}(\bigcap_{j \in J} B_j) = \bigcap_{j \in J} f^{-1}(B_j) \ \Box f^{-1}(\bigcup_{j \in J} B_j) = \bigcup_{j \in J} f^{-1}(B_j)$

(b) ch.3 & 4: Sums and Riemann integrals (Riem-∫) and Lebesgue integrals (Leb-∫):

- $x_n \ge 0$ or $\sum_n x_n$ abs conv $\Rightarrow \sum_n x_n$ satisfies WHAT? Leb- \int : positive, monotone, linear, mon. + domin. conv.
- step fn $h: \int h(\vec{y})d\vec{y} = ?$ simple fn $g: \int gd\lambda^d = ?$ If both $\int_A f(\vec{y})d\vec{y}, \int_A fd\lambda^d$ exist, they are equal
- Use Fubini for both $\int_A f(\vec{y}) d\vec{y}$ and $\int_A f d\lambda^d$ to compute multidim \int . $[\mathbf{1}_A \text{ Riem-} \int \text{-ble }] \Rightarrow \lambda^d(A)$ defined how?
- Borel sets $\mathfrak{B}^d = \sigma\{d$ -dim rectangles $\}$ $[f \ge 0 \text{ or } \int |f| d\lambda^d < \infty] \Rightarrow [A \mapsto \int_A f d\lambda^d \text{ is } \sigma$ -additive]
- For what functions φ, ψ is $A \mapsto \sum_{\omega \in A} \varphi(\omega)$, $A \mapsto \int_A \psi(\vec{y}) d\vec{y} \ (= \int_A \psi d\lambda^d)$ a probab meas?

(c) ch.7: Combinatorial Analysis

- Think: Does order matter in your probability space or doesn't it?
- multiplication rule for several factors # of permutations P_r^n vs # of combinations $\binom{n}{r}$ vs $\binom{n}{r_1,\dots,r_k}$
- \bullet $0! = 1, n! = 1 \cdot 2 \cdot \cdots n; (n \in \mathbb{N})$ \bullet several interpretations of $\binom{n}{r_1} \binom{n}{r_2}$
- deck of 52 cards: \blacksquare 4 suits (clubs, spades, hearts, diamonds) of 13 each: Ace, $2, 3, \ldots, 10$, Jack, Queen, King \blacksquare so: 4 2's, 4 3's, 4 Aces, 4 Jacks, \ldots Roulette: \blacksquare slots $0, 00, 1, 2, \ldots, 36$ \blacksquare 18 black, 18 red; numbers 1 36 in 12 rows \times 3 cols

(d) ch.1, 5, 8: generalities about probability spaces:

- probab spc = sample spc (Ω, P) σ -algebra $\mathfrak{F} \subseteq 2^{\Omega}$: \bullet $A \in \mathfrak{F} \Rightarrow A^{\complement} \in \mathfrak{F} \bullet A_n \in \mathfrak{F} \Rightarrow \bigcup_{i=1}^{\infty} A_i \in \mathfrak{F} \bullet \emptyset \in \mathfrak{F}$
- distrib of r.e. $X: (\Omega, P) \to \Omega': P_X(B) = P\{X \in B\} = P(X^{-1}(B))$ on codomain.
- Conveniences: $P_X(\{x\}) = P\{X = x\}; P_X([a,b]) = P\{a < X \le b\}$ (if X is rv, i.e., $\Omega' \subseteq \mathbb{R}$); ...
- discr probab spaces and discr r.e.s and r.v.s defined how?
- independence for 2, n, arbitr. many events $P(A \mid B)$ general addition & multiplication rules, complement rule
- partition B_j $(j \in \mathbb{N})$ of Ω , $A \subseteq \Omega$: \Rightarrow total probability formula = ..., Bayes formula = ...
- Sampling: □ action vs realization □ random sample vs SRS □ urn models with/without replacement

(e) ch.6: Advanced Topics - Measure and Probability (may help to recall some formulas)

- meas μ : like probab meas, but $\mu(\Omega) \neq 1$ possible measures defined by: $\square \mu(A) := P(A)$
- $\boxdot \mu(A') := P_X(A') = P\{X \in A'\} \text{ (for r.e. } X : (\Omega, \mathfrak{F}, P) \to (\Omega', \mathfrak{F}') \text{) } \boxdot \mu(\{\omega\}\}) := f(\omega) \cdot p(\omega) \text{ (for PMF } p \text{ and } f \geq 0)$
- \square $\mu(A) := |A|$ (counts the elements of A) \square $\mu(]a,b]$) $:= \int_a^b f(y)dy$ defs meas μ on $(\mathbb{R},\mathfrak{B}^1)$; \square $\mu(B) := \int_B f(\vec{y})d\vec{y}$ (B = d-dim rectangle and $f \ge 0$) defs meas μ on $(\mathbb{R}^d,\mathfrak{B}^d)$; \bullet $\int f d\mu$ (and thus, $\int Y dP$) defined like for Lebesgue meas

 $\mu = \lambda^d$: first simple f, then $f \ge 0$, then general f. • $\int f d\mu$ is pos, mon, lin; mon. + domin. conv.

- $f:(\Omega,\mathfrak{F},\mu)\to(\Omega',\mathfrak{F}')$ is mble if $A'\in\mathfrak{F}'\Rightarrow f^{-1}(A')\in\mathfrak{F}$ Then $\mu_f(A')=\mu(f^{-1}(A'))$ defs image meas μ_f on \mathfrak{F}'
- $\bullet \; f,g \; \text{real-valued:} \; \int_{\Omega} g \circ f d\mu = \int_{\mathbb{R}} g d\mu_f$
- For μ =probab meas P and r.v. Y: $E[Y] = \int Y dP$ has properties of $\int (!)$, e.g., for $g : \mathbb{R} \to \mathbb{R}$: $\int_{\Omega} g \circ Y dP = \int_{\mathbb{R}} g(y) dP_Y$ \square so $E[g \circ Y] = \dots$

(f) ch.9, 10: Discrete r.e.s and continuous r.v.s

- ullet discr r.e. $X:(\Omega,P) o \Omega'$, PMF $p(x)=p_X(x)=\dots$ ullet cont r.v.s $Y:(\Omega,P) o \mathbb{R}$, PDF $p(y)=p_Y(y)=\dots$
- discr & cont rvs: CDF $F_Y(y)$; pth quantile $\phi_p \bullet E[Y], Var[Y], \sigma_Y$ of rv Y: \square Remember all formulas! \square $E[g(Y)] = \dots$
- m_k' and m_k ; MGF $m_Y(t)$ Each distrib: application context? $m_Y(t) = ?$ Given $m_Y(t)$: $Y \sim WHAT$?
- iid sequences of random elements 🖸 Bernoulli trials and sequences 🖸 0–1 encoded Bernoulli trials
- discr rvs: lacktriangle Bernoulli(p) lacktriangle binom(p, p) lacktriangle geom(p) lacktriangle neg. binom(p, r): $p(y) = \binom{y-1}{r-1} p^r q^{y-r}, \mu = \frac{r}{p}, \sigma^2 = \frac{r(1-p)}{p^2}$