Math 447 - Probability - Section 1 - Spring 2025

Selected Solutions for Spring 2025 Quizzes

Quiz 01:

#1 (a): Obvious choice for Ω : $\Omega = \{LL, LM, LU, ML, MM, MU, UL, UM, UU \}$. Then, $P\{\omega\} = \boxed{1/9, \forall \omega \in \Omega}$. #1 (b): $P(A_1) = \boxed{5/9}$ #1 (c): $P(A_2) = \boxed{5/9}$

#3: See Definition 2.5

#4: $\left[\{ 2k\pi : k \in \mathbb{Z} \} \cup \{ \frac{\pi}{2} + 2k\pi : k \in \mathbb{Z} \} \right]$ (things are 2π –periodic!)

Quiz 02:

#1: $\{ (Yes, 2), (No, 2), (Yes, 4), (No, 4), (Yes, 6), (No, 6), \}$

#2: With De Morgan: The probability is $1 - P(A \cap B) = 1 - (0.8 - 0.5) = \boxed{0.7}$

#3: D is one half of the quad $[0,2] \times [0,2] \times [0,3]$ when one slices it diagonally with the plane that contains the points (0,0,0) and (0,2,2). Thus, $\lambda^3(D)=6$. Thus, $\int g(\vec{x}) \cdot \mathbf{1}_D(\vec{x}) d\vec{x} = \boxed{30}$

#4:
$$f(x) = \begin{bmatrix} 0, \ \forall x \end{bmatrix} \int_{-\infty}^{\infty} f(x) dx = \begin{bmatrix} 0 \end{bmatrix} \int_{-\infty}^{\infty} f_n(x) dx = \begin{bmatrix} \infty, \ \forall n \end{bmatrix} \lim_{n \to \infty} \int_{-\infty}^{\infty} f_n(x) dx = \boxed{\infty}$$

Quiz 03:

#1: See lecture notes. #2(a): False since, e.g., $A^{\complement} \notin \mathfrak{F}$ #2(b): True

#3(a): $(1/2)2\pi = \pi$ #3(b): $5 \cdot 2 \cdot 2 - 3 \cdot 1 \cdot 5 = 5$

Quiz 04:

#1(a): [0,1] **#1(b)**: $[\emptyset, [0,1],]1, 2], [0,2]$

#2(a): $\{(0,0), (1,0)\}$ **#2(b)**: $\{(2,2)\}$

#3(a): S #3(b): distribution #3(c): $P(Y^{-1}(U)) = P\{Y \in U\}$

#4(a): 0.4 #4(b): 0.5 #4(c): True #4(d): True

Quiz 05:

#1: $\binom{29}{9,12,8} = \boxed{\frac{29!}{9! \cdot 12! \cdot 8!}}$ **#2**: $\binom{8}{4} = \frac{8 \cdot 7 \cdot 6 \cdot 5}{4 \cdot 3 \cdot 2} = \boxed{70}$

#3: $\boxed{\frac{P_7^{10}}{10^7}}$ The reason: There are 10^7 different vectors (x_1, x_2, \dots, x_7) such that each $x_j \in [1, 10]_{\mathbb{Z}}$. Of those, $P_7^{10} = 10 \cdot 9 \cdots 8$ have no duplicates.

1

#4(a): $\begin{bmatrix} 88 \\ 20 \end{bmatrix}$ **#4(b)**: $\frac{\binom{36}{12} \cdot \binom{88-36}{20-12}}{\binom{88}{20}} = \begin{bmatrix} \binom{36}{12} \cdot \binom{52}{8} \\ \binom{88}{20} \end{bmatrix}$

Quiz 06:

#1: True: random samples . The other 3 are false #2: See lecture notes

#3: (a) $\left[\frac{2}{3}\right]$ (b) $\left[\frac{1}{3}\right]$ #4: P(no contact | nonfiction) = $\left[\frac{4}{7}\right]$ (tree diagram!)

Quiz 07:

#1(a): $\sum_{y} y \cdot p_{Y}(y)$ **#1(b)**: $\sum_{y} \frac{3y+5}{10y^{2}+1} \cdot p_{Y}(y)$

#2: (a) 12 $\sqrt{18 \cdot (2/3) \cdot (1/3)} = \sqrt{(36/9)} = 2$

b. $\boxed{\frac{3}{2}}$ $1 - (6/9) - (2/3)(1/3) = \boxed{\frac{1}{9}}$ **c.** $\boxed{9}$

#3: (a) $\boxed{7}$ (b) $\boxed{2}$ (c) $4^2 + 5^2 = \boxed{41}$ (d) $Var[V] = 4 \cdot 4^2 + 5^2 = \boxed{89}$

#4: (a) $10.00 \mapsto \boxed{\frac{1}{4}}$ $5.00 \mapsto \boxed{\frac{1}{12}}$ $0.00 \mapsto \boxed{\frac{2}{3}}$ (b) $10(3/12) + 5(1/12) + 0(8/12) - 3.00 = \boxed{\frac{-1}{12}}$