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1 Some Preliminaries

1.1 About This Document

1.2 A First Look at Probability

Definition 1.1 (Probability measure - Preliminary Definition, version I). A probability mea-
sure P on a set Ω is a function which assigns to each subset A of Ω a real number P(A) between
0 and 1 as follows.

(a) P(∅) = 0 and P(Ω) = 1. Here ∅ denotes the empty set which contains no elements.
(b) If the subsets A,B of Ω have no elements in common, then probability is additive:

P(A ∪B) = P(A) + P(B) .

This last formula makes disjoint unions so important that we have reserved the special symbol
“
⊎

” as a visual aid. Henceforth, we usually write U ] V for U ∪ V if we know that U ∩ V = ∅:

P(A ]B) = P(A) + P(B) . �

Definition 1.2 (Probability measure - Preliminary Definition, version II). A probability mea-
sure P on a set Ω is a function which assigns to each subset A of Ω a real number P(A) between
0 and 1 as follows.

(a) P(∅) = 0 and P(Ω) = 1.
(b) If the subsets A1, A2 . . . of Ω are mutually disjoint, then probability is σ–additive:

(1.1) P(A1 ]A2 ] · · · ) = P(A1) + P(A2) + · · · =
∞∑
j=1

P(Aj) .

• The combination (Ω,P) is called a probability space aka sample space.
• An element ω of Ω is called an outcome aka sample point
• A subset of Ω is called an event. �

5 Math 447 - Version 2025-09-04
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2 Sets, Numbers, Sequences and Functions

2.1 Sets – The Basics

Definition 2.1 (Sets).
• A set is a collection of stuff called members or elements which satisfies the following

rules: The order in which you write the elements does not matter and if you list an
element two or more times then it only counts once.

• We write x1 ∈ X to denote that an item x1 is an element of the set X and x2 /∈ X to
denote that an item x2 is not an element of the set X .

• Occasionally we are less formal and write x1 in X for x1 ∈ X and x2 not in X for
x2 /∈ X .

Definition 2.2 (empty set). ∅ denotes the empty set. It is the set that does not contain any
elements. �

Definition 2.3 (subsets and supersets).
• We say that a set A is a subset of the set B and we write A ⊆ B if any element of A

also belongs to B. Equivalently we say that B is a superset of the set A and we write
B ⊇ A . We also say that B includes A or A is included by B. Note that A ⊆ A and
∅ ⊆ A is true for any set A.

• If A ⊆ B but A 6= B, i.e., there is at least one x ∈ B such that x /∈ A, then we say that
A is a strict subset or a proper subset of B. We write “A ( B” Alternatively we say
that B is a strict superset or a proper superset of A and we write “B ) A”) �

BBB

AAA

Figure 2.1: Set inclusion: A ⊆ B, B ⊇ A

Definition 2.4 (unions, intersections and disjoint unions of two sets). Given are two sets A and
B. No assumption is made that either one is contained in the other or that either one is not
empty!

6 Math 447 - Version 2025-09-04
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• The unionA∪B (pronounced "A union B") is defined as the set of all elements which
belong to at least one of A,B.

• The intersection A ∩ B (pronounced "A intersection B") is defined as the set of all
elements which belong to both A and B.

• We callA andB disjoint , also mutually disjoint , if A ∩B = ∅. We then often write
A ]B (pronounced “A disjoint union B”) rather than A ∪B. �

Definition 2.5 (Arbitrary unions, intersections and disjoint unions of sets). Let J be an arbi-
trary, nonempty set. J may be finite or infinite. J may or may not be a set of numbers.
Assume that each j ∈ J is associated with a set Aj . 1 For J = {�, 3,XXX}, the sets are A�, A3, AXXX ;
and J = {1, 2, . . . }, yields the infinite sequence (of sets!) A1, A2, . . . .
• The union

⋃
j∈J

Aj is defined as the set of all elements which belong to at least oneAj ,

where j ∈ J .
• The intersection

⋂
j∈J

Aj is defined as the set of all elements which belong to each Aj ,

where j ∈ J .
• We call this collection of sets disjoint , also mutually disjoint , if Ai ∩Aj = ∅when-

ever i, j ∈ J and i 6= j. We then often write
⊎
j∈J

Aj rather than
⋃
j∈J

Aj . �

Remark 2.1. Convince yourself that for any sets A,B and C.

A ∩B ⊆ A ⊆ A ∪B,(2.1)
A ⊆ B ⇒ A ∩B = A and A ∪B = B,(2.2)
A ⊆ B ⇒ A ∩ C ⊆ B ∩ C and A ∪ C ⊆ B ∪ C.(2.3)

The symbol⇒ stands for “allows us to conclude that”. So A ⊆ B ⇒ A∩B = A means “From
the truth of A ⊆ B we can conclude that A ∩ B = A is true”. Shorter: “From A ⊆ B we can
conclude that A ∩ B = A”. Shorter: “If A ⊆ B, then it follows that A ∩ B = A”. Shorter: “If
A ⊆ B, then A ∩B = A”. More technical: A ⊆ B implies A ∩B = A. �

Definition 2.6 (set differences and symmetric differences). Given are two arbitrary sets A and
B. No assumption is made that either one is contained in the other or contains any elements!

7 Math 447 - Version 2025-09-04
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• The difference set or set difference A \ B (pronounced "A minus B") is defined as
the set of all elements which belong to A but not to B:

(2.4) A \B := {x ∈ A : x /∈ B}

• The symmetric difference A4B (pronounced "A delta B") is defined as the set of all
elements which belong to either A or B but not to both A and B:

(2.5) A4B := (A ∪B) \ (A ∩B) �

Definition 2.7 (Universal set). Usually there always is a big set Ω that contains everything
we are interested in and we then deal with all kinds of subsets A ⊆ Ω. Such a set is called a
“universal” set. �

Definition 2.8 (Complement of a set). Let Ω be a universal set. The complement of a set A ⊆ Ω

consists of all elements of Ω which do not belong to A. We write A{. In other words:

(2.6) A{ = Ω \A = {ω ∈ Ω : x /∈ A} �

A \B: A4B: Universal set: A{:

A B A B
ΩΩΩ AAA

A{A{A{

Figure 2.2: Difference, symmetric difference, universal set, complement

Proposition 2.1. Let A, B, X be subsets of a universal set Ω and assume A ⊆ X . Then

8 Math 447 - Version 2025-09-04
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A ∪ ∅ = A; A ∩ ∅ = ∅(2.7a)
A ∪ Ω = Ω; A ∩ Ω = A(2.7b)

A ∪A{ = Ω; A ∩A{ = ∅(2.7c)
A4B = (A \B) ] (B \A)(2.7d)
A \A = ∅(2.7e)
A4∅ = A; A4A = ∅(2.7f)
X4A = X \A(2.7g)
A ∪B = (A4B) ] (A ∩B)(2.7h)
A ∩B = (A ∪B) \ (A4B)(2.7i)
A4B = ∅ if and only if B = A(2.7j)

Proposition 2.2 (Distributivity of unions and intersections for two sets). Let A,B,C be sets.
Then

(A ∪ B) ∩ C = (A ∩ C) ∪ (B ∩ C),(2.8)
(A ∩ B) ∪ C = (A ∪ C) ∩ (B ∪ C).(2.9)

Proposition 2.3 (De Morgan’s Law for two sets). Let A,B ⊆ Ω. Then the complement of the
union is the intersection of the complements, and the complement of the intersection is the union of the
complements:

a. (A ∪B){ = A{ ∩B{ b. (A ∩B){ = A{ ∪B{(2.10)

Definition 2.9 (Power set). The power set

2Ω := {A : A ⊆ Ω}

of a set Ω is the set of all its subsets. Note that many older texts also use the notation P(Ω) for
the power set. �

Remark 2.2. Note that ∅ ∈ 2Ω for any set Ω, even if Ω = ∅: 2∅ = {∅}. It follows that the power set of
the empty set is not empty. �

9 Math 447 - Version 2025-09-04
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Definition 2.10 (Partition). Let Ω be a set and A ⊆ 2Ω, i.e., the elements of A are subsets of Ω.
We call A a partition or a partitioning of Ω if

(a) If A,B ∈ A such that A 6= B then A ∩B = ∅. In other words, A consists of mutually
disjoint subsets of Ω.

(b) Each x ∈ Ω is an element of some A ∈ A. �

Definition 2.11 (Size of a set).
a. Let X be a finite set, i.e., a set which only contains finitely many elements. We write

∣∣X∣∣
for the number of its elements, and we call

∣∣X∣∣ the size of the set X .
b. For infinite, i.e., not finite sets Y , we define |Y | :=∞. �

2.2 The Proper Use of Language in Mathematics: Any vs All, etc

2.2.0.1 OR vs. EITHER ... OR

Note that “OR” in mathematics always is an inclusive or, i.e., “A OR B” means “A OR B OR
BOTH”. More generally, “A OR B OR ...” means “at least one of A, B, ...”.
To rule out that more than one of the choices is true you must use a phrase like “EXACTLY
ONE OF A, B, C, ...” or “EITHER A OR B OR C OR ...”. We refer to this as an exclusive or.

2.2.0.2 Some Convenient Shorthand Notation

• ∀x . . . For all x...
• ∃x s.t. . . . There exists an x such that . . .
• ∃!x s.t. . . . There exists a UNIQUE x such that . . .
• P ⇒ Q If P then Q
• P ⇔ Q P iff Q, i.e., P if and only if Q

2.3 Numbers

Definition 2.12 (Types of numbers). Here is a definition of the various kinds of numbers in a
nutshell.
N := {1, 2, 3, . . . } denotes the set of natural numbers.
Z := {0,±1,±2,±3, . . . } denotes the set of all integers.
Q := {n/d : n ∈ Z, d ∈ N} (fractions of integers) denotes the set of all rational numbers.

10 Math 447 - Version 2025-09-04
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R := {all integers or decimal numbers with finitely or infinitely many decimal digits} denotes
the set of all real numbers.
R \ Q = {all real numbers which cannot be written as fractions of integers} denotes the set of
all irrational numbers. There is no special symbol for irrational numbers. Example:

√
2 and π

are irrational. �

N0 := Z+ := Z≥0 := {0, 1, 2, 3, . . . } denotes the set of nonnegative integers,
R+ := R≥0 := {x ∈ R : x ≥ 0} denotes the set of all nonnegative real numbers,
R+ := R>0 := {x ∈ R : x > 0} denotes the set of all positive real numbers,
R 6=0 := {x ∈ R : x 6= 0}. �

Definition 2.13 (Intervals of Numbers). For a, b ∈ R we have the following intervals.
• [a, b] := {x ∈ R : a ≤ x ≤ b} is the closed interval with endpoints a and b.
• ]a, b[ := {x ∈ R : a < x < b} is the open interval with endpoints a and b.
• [a, b[ := {x ∈ R : a ≤ x < b} and ]a, b] := {x ∈ R : a < x ≤ b} are half-open intervals

with endpoints a and b.

]−∞, a] :={x ∈ R : x ≤ a}, ]−∞, a[ := {x ∈ R : x < a},
]a,∞[ :={x ∈ R : x > a}, [a,∞[ := {x ∈ R : x ≥ a}, ]−∞,∞[ := R

(2.11)

• [a, a] = {a}; [a, a[ = ]a, a[ = ]a, a] = ∅
• [a, b] = [a, b[ = ]a, b[ = ]a, b] = ∅ for a ≥ b �

Definition 2.14 (Extended real numbers). ? It is sometimes convenient to refer to the set

(2.12) R := [−∞,∞] := R ∪ {−∞} ∪ {∞}

as the extended real numbers. and to work with intervals such as

(2.13) [−∞, a] := {−∞}∪ ]−∞, a ] , ]b,∞] := ]b,∞[∪{∞} , . . . �

Definition 2.15 (Extended real numbers arithmetic). Rules for Addition:

11 Math 447 - Version 2025-09-04
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c ± ∞ =∞ ± c = ∞,(2.14)
c ± (−∞) = −∞ ± c = −∞,(2.15)
∞ + ∞ =∞,(2.16)
−∞ − ∞ = −∞,(2.17)

(±∞)∓∞ = UNDEFINED.(2.18)

Rules for Multiplication:

p · (±∞) = (±∞) · p = ±∞,(2.19)
(−p) · (±∞) = (±∞) · (−p) = ∓∞,(2.20)

0 · (±∞) = (±∞) · 0 =
0

0
= 0, and

1

∞
= 0,(2.21)

(±∞) · (±∞) =∞,(2.22)
(±∞) · (∓∞) = −∞,(2.23)

Notation 2.1 (Notation Alert for intervals of integers or rational numbers). It is at times con-
venient to also use the notation [. . . ], ] . . . [, [. . . [, ] . . . ], for intervals of integers or rational
numbers. We will subscript them with Z or Q. For example,

[ 3, n ]Z = [ 3, n] ∩ Z = {k ∈ Z : 3 ≤ k ≤ n},
]−∞, 7 ]Z = ]−∞, 7 ] ∩ Z = {k ∈ Z : k ≤ 7} = Z≤7,

]a, b[Q = ]a, b[∩Q = {q ∈ Q : a < q < b}.

An interval which is not subscripted always means an interval of real numbers, but we will
occasionally write, e.g., [a, b]R rather than [a, b], if the focus is on integers or rational numbers
and an explicit subscript helps to avoid confusion. �

Definition 2.16 (Absolute value, positive and negative part). For a real number x we define its

absolute value: |x| =

{
x ifx ≥ 0,

−x ifx < 0.

positive part: x+ = max(x, 0) =

{
x ifx ≥ 0,

0 ifx < 0.

negative part: x− = max(−x, 0) =

{
−x ifx ≤ 0,

0 ifx > 0.

If f is a real–valued function then we define the functions |f |, f+, f− argument by argument:

|f |(x) := |f(x)|, f+(x) :=
(
f(x)

)+
, f−(x) :=

(
f(x)

)−
. �

12 Math 447 - Version 2025-09-04
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Definition 2.17 (Minimum and maximum). For two real number x, y we define

maximum: x ∨ y = max(x, y) =

{
x ifx ≥ y,
y ifx ≤ y.

minimum: x ∧ y = min(x, y) =

{
y ifx ≥ y,
x ifx ≤ y.

If f and g is are real–valued function then we define the functions f ∨ g = max(f, g)

and f ∧ g = min(f, g) argument by argument:

f ∨ g(x) := f(x)∨ g(x) = max
(
f(x), g(x)

)
, f ∧ g(x) := f(x)∧ g(x) = min

(
f(x), g(x)

)
. �

Assumption 2.1 (Square roots are always assumed nonnegative). We will always assume that
“
√
b” is the positive value unless the opposite is explicitly stated. �

Proposition 2.4 (Triangle Inequality for real numbers).

(2.24) Triangle Inequality : |a1 + a2 + · · ·+ an| ≤ |a1| + |a2| + · · ·+ |an|

2.4 Functions and Sequences

Definition 2.18 (Function). A function f consists of two nonempty sets X and Y and an as-
signment rule x 7→ f(x) which assigns any x ∈ X uniquely to some y ∈ Y . We write f(x) for
this assigned value and call it the function value of the argument x. X is called the domain
and Y is called the codomain of f . We write

f :X → Y, x 7→ f(x).(2.25)

We read “a 7→ b” as “a is assigned to b” or “a maps to b” and refer to 7→ as the maps to operator
or assignment operator. The graph of such a function is the collection of pairs

Γf := {
(
x, f(x)

)
: x ∈ X},(2.26)

and the subset f(X) := {f(x) : x ∈ X} of Y is called the range of the function f . �

Definition 2.19 (Inverse function). Given are two nonempty sets X and Y and a function f :
X → Y with domain X and codomain Y . We say that f has an inverse function if it satisfies
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all of the following conditions which uniquely determine this inverse function, so that we are
justified to give it the symbol f−1:

(a) f−1 : Y → X , i.e., f−1 has domain Y and codomain X .
(b) f−1

(
f(x)

)
= x for all x ∈ X , and f

(
f−1(y)

)
= y for all y ∈ Y . �

Definition 2.20 (Surjective, injective and bijective functions). Given are two nonempty sets X
and Y and a function f : X → Y with domain X and codomain Y . We say that

(a) f is “one–one” or injective, if for each y ∈ Y there is at most one x ∈ X such that
f(x) = y.

(b) f is “onto” or surjective, if for each y ∈ Y there is at least one x ∈ X such that f(x) = y.
(c) f is bijective, f is both injective and surjective. �

Remark 2.3. One can show: A function f has an inverse f−1 if and only if f is bijective. �

Remark 2.4. If the inverse function f−1 exists and if x ∈ X and y ∈ Y , then we have the relation

y = f(x) ⇔ x = f−1(y) .

Definition 2.21 (Restriction/Extension of a function). ? Given are three nonempty sets
A,X and Y such that A ⊆ X , and a function f : X → Y with domain X . We define the
restriction of f to A as the function

f
∣∣
A

: A→ Y defined as f
∣∣
A

(x) := f(x) for all x ∈ A.(2.27)

Conversely let f : A → Y and ϕ : X → Y be functions such that f = ϕ |A. We then call ϕ an
extension of f to X . �

Definition 2.22. Let n? be an integer and assume that an item xj associated
• either with each integer j ≥ n?, In other words, we have an item xj assigned to each

j = n?, n? + 1, n? + 2, . . . .
• or with each integer j such that n? ≤ j ≤ n?. In this case an item xj is assigned to each

j = n?, n? + 1, . . . , n?.
Such items can be anything, but we usually deal with numbers or outcomes or sets of outcomes
of an experiment.
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• In the first case we usually write xn? , xn?+1 , xn?+2 , . . . or (xn)n≥n? for such a collection
of items and we call it a sequence with start index n?.

• In the second case we speak of a finite sequence, which starts at n? and ends at n?.
We write (xn)n?≤n≤n? or xn? , xn?+1 , . . . , xn? for such a finite collection of items.

• If we refer to a sequence (xn)n without qualifying it as finite then we imply that we
deal with an infinite sequence, xn? , xn?+1 , xn?+2 , . . . . �

Definition 2.23.
• If (xn)n is a finite or infinite sequence and one pares down the full set of indices to a

subset {n1, n2, n3, . . . } such that n1 < n2 < n3 < . . . , then we call the corresponding
thinned out sequence (xnj )j∈N a subsequence of that sequence.

• If this subset of indices is finite, i.e., we have n1 < n2 < · · · < nK for some suitable
K ∈ N, then we call (xnj )j≤K a finite subsequence of the original sequence. �

Definition 2.24. We give some convenient definitions and notations for monotone sequences
of numbers, functions and sets.

(a) Let xn be a sequence of extended real–valued numbers.
• We call xn a nondecreasing or increasing sequence, if j < n ⇒ xj ≤ xn .
• We call xn a strictly increasing sequence, if j < n ⇒ xj < xn .

• We call xn a nonincreasing or decreasing sequence, if j < n ⇒ xj ≥ xn .
• We call xn a strictly decreasing sequence, if j < n ⇒ xj > xn .

• We write xn ↑ for nondecreasing xn, and xn ↑ x to indicate that lim
n→∞

xn = x,

• We write xn ↓ for nonincreasing xn, xn ↓ x to indicate that lim
n→∞

xn = x. �

(b) Let An be a sequence of sets.
• We call An a nondecreasing or increasing sequence, if j < n ⇒ Aj ⊆ An .
• We call An a strictly increasing sequence, if j < n ⇒ Aj ( An .

• We call An a nonincreasing or decreasing sequence, if j < n ⇒ Aj ⊇ An .
• We call An a strictly decreasing sequence, if j < n ⇒ Aj ( An .

• We write An ↑ for nondecreasing An, and An ↑ A to indicate that
⋃
nAn = A,

• We write An ↓ for nonincreasing An, An ↓ A to indicate that
⋂
nAn = A. �

Definition 2.25 (Countable and uncountable sets). Let X be a set.
(a) We call X countable if its elements can be written as a finite sequence (those are the

finite sets) X = {x1, x2, . . . , xn} or as an infinite sequences. X = {x1, x2, . . . }.
(b) We callX countably infinite X is both countable and infinite, i.e., there is an infinite

sequence. X = {x1, x2, . . . }. of distinct items xj .
(c) We call a nonempty set uncountable if it is not countable, i.e., its elements cannot

be sequenced.
(d) By convention the empty set, ∅, is countable. �
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Fact 2.1. One can prove the following important facts:
(a) The integers are countable. (Easy: Z = {0,−1, 1,−2, 2,−3, 3, . . . }) lists all elements of Z

in a sequence.
(b) Subsets of countable sets are countable. (Easy: If X = {x1, x2, . . . } and A ⊆ X , then

remove all xj that are not in A. That subsequence lists the elements of A.
(c) Countable unions of countable sets are countable: IfA1, A2, . . . is a finite or infinite sequence

of sets, then A1 ∪A2 ∪ · · · is countable.
(d) The rational numbers Q are countable. A proof is given below.
(e) The real numbers R are uncountable! �

Definition 2.26 (Families). ? Let I and X be nonempty sets such that each i ∈ I is
associated with some xi ∈ X . Then

a.
(
xi
)
i∈I is called an indexed family or simply a family in X .

b. I is called the index set of the family.
c. For each i ∈ IJ , xi is called a member of the family (xi)i∈I . �

Definition 2.27 (Arbitrary unions and intersections of families of sets). Let J be an arbitrary,
nonempty set and

(
Aj
)
j∈J a family of sets with index set J . We define

• The union
⋃
j∈J

Aj := {x : ∃ i0 ∈ J s.t. x ∈ Ai0}.

• The intersection
⋂
j∈J

Aj = {x : ∀ i ∈ J : x ∈ Ai}.

• If the sets Ai are disjoint, we often write
⊎
j∈J

Aj rather than
⋃
j∈J

Aj .

• Let
(
Bj
)
j∈J be a family of subsets of a set X . We call this family a partition or a

partitioning of X if the corresponding set of sets {Bi : i ∈ J} is a partition of X :
(a) i 6= j ⇒ Bi ∩Bj = ∅ (b) X =

⊎
j∈J

Bj . See Definition 2.10 on p.9. �

Notation 2.2. Empty unions and intersections:

(2.28)
⋃
i∈∅

Ai := ∅, always ;
⋂
i∈∅

Ai := Ω, if there is a universal set, Ω .

Theorem 2.1 (De Morgan’s Law). Let J be an arbitrary, nonempty set. Let (Aj)j∈J be a collection
of subsets of a set Ω. Then the complement of the union is the intersection of the complements, and the
complement of the intersection is the union of the complements:
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(2.29) (a)

⋃
j∈J

Aj

{ =
⋂
j∈J

A{j ; (b)

⋂
j∈J

Aj

{ =
⋃
k

A{k ;

Remark 2.5. Note that (2.29) holds true for ANY index set J . In particular, for finite and infinite
sequences of sets. �

Proposition 2.5 (Distributivity of unions and intersections). Let (An)n be a finite or infinite se-
quence of sets and let B be a set. Then

⋃
j

(B ∩Aj) = B ∩
⋃
j

Aj ,(2.30)

⋂
j∈I

(B ∪Aj) = B ∪
⋂
j

Aj .(2.31)

Proposition 2.6 (Rewrite unions as disjoint unions). Let (Aj)j∈N be a sequence of sets which all are
contained within the universal set Ω. Let

Bn :=

n⋃
j=1

Aj = A1 ∪A2 ∪ · · · ∪An (n ∈ N),

C1 := A1 = B1, Cn+1 := An+1 \Bn (n ∈ N).

Then

(a) The sequence (Bj)j is nondecreasing: m < n⇒ Bm ⊆ Bn.

(b) For each n ∈ N,
n⋃
j=1

Aj =
n⋃
j=1

Bj . Further,
∞⋃
j=1

Aj =
∞⋃
j=1

Bj .

(c) The sets Cj are mutually disjoint,
n⋃
j=1

Aj =
n⊎
j=1

Cj for all n, and
∞⋃
j=1

Aj =
∞⋃
j=1

Cj .

(d) The sets Cj (j ∈ N) form a partition of the set
∞⋃
j=1

Aj .

2.5 Preimages

Definition 2.28. Let X,Y be two nonempty sets. Let f : X → Y and B ⊆ Y . Then

f−1(B) := {x ∈ X : f(x) ∈ B}(2.32)

is a subset of X which we call the preimage of B under f . �
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Notation 2.3 (Notational conveniences for preimages). If we have a set that is written as {. . . }
then we may write f−1{. . . } instead of f−1({. . . }). Specifically for singletons {y} such that
y ∈ Y , it is OK to write f−1{y}.
• You are NOT allowed to write f−1(y) instead of f−1{y}, since it is a very bad idea

to confound elements y and subsets {y} of Y . �

Proposition 2.7. Some simple properties:

f−1(∅) = ∅(2.33)

B1 ⊆ B2 ⊆ Y ⇒ f−1(B1) ⊆ f−1(B2) (monotonicity of f−1{. . . } )(2.34)

f−1(Y ) = X always!(2.35)

Notation 2.4 (Notational conveniences for preimages II). REMOVED: duplicate to Notation 2.3 on
p.18.

Theorem 2.2 (f−1 is compatible with all basic set ops). Assume that X,Y be nonempty, f : X →
Y , J is an arbitrary index set. 2 Further assume that B ⊆ Y and that Bj ⊆ Y for all j. Then

f−1(
⋂
j∈J

Bj) =
⋂
j∈J

f−1(Bj)(2.36)

f−1(
⋃
j∈J

Bj) =
⋃
j∈J

f−1(Bj)(2.37)

f−1(B{) =
(
f−1(B)

){(2.38)

B1 ∩B2 = ∅ ⇒ f−1(B1) ∩ f−1(B2) = ∅.(2.39)

f−1(B1 \B2) = f−1(B1) \ f−1(B2)(2.40)

f−1(B1∆B2) = f−1(B1)∆f−1(B2)(2.41)

Note that (2.39) implies that the preimages of a disjoint family form a disjoint family.

Proposition 2.8 (Preimages of function composition). Let X,Y, Z be arbitrary, nonempty sets.
Let f : X → Y and g : Y → Z and h : X → Z the composition

h(x) = g ◦ f(x) = g
(
f(x)

)
.

Let U ⊆ X and W ⊆ Z. Then

(2.42) (g ◦ f)−1 = f−1 ◦ g−1, i.e., (g ◦ f)−1(W ) = f−1
(
g−1(W )

)
for all W ⊆ Z.
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Definition 2.29 (Direct image). ? Let X,Y be two nonempty sets and f : X → Y . Let
A ⊆ X . We call the set

(2.43) f(A) := {f(a) : a ∈ A} .

which consists of all function values of arguments in A, the direct image of A under f . �

Notation 2.5 (Notational conveniences for direct images). As we do for preimages, if we deal
with a set that is written as {. . . }, then we may write f{. . . } instead of f({. . . }). In particular,
we can write f{x} for singletons {x} ⊆ X . �

4!4!4!
The same symbol f is used for the original function f : X → Y and the direct
image which we can think of as a function

2X → 2Y ; A 7→ f(A) = {f(a) : a ∈ A} , (A ⊆ X) .

Be careful not to let this confuse you! �

2.6 Infimum and Supremum: Generalized Minimum and Maximum

Definition 2.30 (Minimum, maximum, infimum, supremum). ? Let A ⊆ R, A 6= ∅, and let
l and u be real numbers.

(a) We call l a lower bound of A if l ≤ a for all a ∈ A.
(b) We call u an upper bound of A if u ≥ a for all a ∈ A.
(c) We call A bounded above if this set has an upper bound.
(d) We call A bounded below if A has a lower bound.
(e) We call A bounded if A is both bounded above and bounded below.

(f) The minimum of A, if it exists, is the unique lower bound l of A such that l ∈ A.
(g) A maximum of A, if it exists, is the unique upper bound u of A such that u ∈ A.

Since they are uniquely determined by A, we may write min(A) for the minimum of A and
max(A) for the maximum of A.

(h) If A is bounded below (i.e., A has lower bounds), we call the maximum of those
bounds the infimum of A. Thus, it is the greatest lower bound of A. We write inf(A)
or g.l.b.(A). Otherwise (A is not bounded below), we define inf(A) := −∞.

(i) If A is bounded above (i.e., A has upper bounds), we call the minimum of those
bounds the supremum of A. Thus, it is the least upper bound of A. We write sup(A)
or l.u.b.(A). Otherwise (A is not bounded above), we define sup(A) :=∞. �

Remark 2.6. Here is the cookbook approach to infima and suprema. (NOT OPTIONAL!)
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• Infima are generalized minima and suprema are generalized maxima.

• Think of inf(A) as a minimum that does not need to belong to A.
• Traverse the lower bounds of A from the left (from −∞) to the rigt until you “hit” A.

That’s the greatest lower bound. That’s inf(A).

• Think of sup(A) as a maximum that does not need to belong to A.
• Traverse the upper bounds of A from the right (+∞) to the left until you “hit” A.

That’s the least (smallest) upper bound. That’s sup(A). �

Definition 2.31. ? LetX be an arbitrary set (need not be numbers or elements of Rd!) and
A ⊆ X .
Let f : X → R be real–valued. The supremum and infimum of f on A are defined as

sup
A
f := sup

x∈A
f(x) := sup{f(x) : x ∈ A}(2.44)

inf
A
f := inf

x∈A
f(x) := inf{f(x) : x ∈ A}.(2.45)

The supremum and infimum of a family of real numbers (xi)i∈I (xi)i∈I are defined as

sup (xi) := sup
i

(xi) := sup (xi)i := sup (xi)i∈I := sup
i∈I

xi := sup {xi : i ∈ I}.(2.46)

inf (xi) := inf
i

(xi) := inf (xi)i := inf (xi)i∈I := inf
i∈I

xi := inf {xi : i ∈ I}. �(2.47)

The definition above for families extends to sequences xn, defined for n = n∗, n∗+1, n∗+2, . . . .
The supremum and infimum of a sequence of real numbers (xn)n≥n∗ are defined as

sup (xn) := sup (xn)n≥n∗ := sup
n≥n∗

xn = sup {xn : n = n∗, n∗ + 1, n∗ + 2, . . . }(2.48)

inf (xn) := inf (xn)n≥n∗ := inf
n≥n∗

xn = inf {xn : n = n∗, n∗ + 1, n∗ + 2, . . . } �(2.49)

Theorem 2.3. ? Let α1 ≥ α2 ≥ · · · be a nonincreasing sequence and β1 ≤ β2 ≤ · · · a nonde-
creasing sequence of real numbers. Then

(a) lim
n→∞

αn exists (might be −∞) and equals inf
n∈N

αn.

(b) lim
n→∞

βn exists (might be∞) and equals sup
n∈N

βn.

Let ∅ 6= A ⊆ R and fn, gn : A→ R two sequences of real–valued functions on A, such that

(fn)n is nonincreasing, i.e., f1 ≥ f2 ≥ · · · , i.e., f1(x) ≥ f2(x) ≥ · · · , for all x ∈ A,
(gn)n is nonincreasing, i.e., g1 ≤ g2 ≤ · · · , i.e., g1(x) ≤ g2(x) ≤ · · · , for all x ∈ A,
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Then

(c) x→ lim
n→∞

fn(x) exists (might be −∞ for some or all x ∈ A) and equals x→ inf
n∈N

fn(x).

(d) x→ lim
n→∞

gn(x) exists (might be∞ for some or all x ∈ A) and equals x→ sup
n∈N

gn(x).

2.7 Cartesian Products

Definition 2.32 (Cartesian Product). Let X and Y be two sets The set

X × Y := {(x, y) : x ∈ X, y ∈ Y }(2.50)

is called the cartesian product of X and Y . We write X2 as an abbreviation forX ×X .

Note that the order is important: (x, y) and (y, x) are different unless x = y.

This definition generalizes to more than two sets as follows:

Let X1, X2, . . . , Xn be sets. The set

X1 ×X2 · · · ×Xn := {(x1, x2, . . . , xn) : xj ∈ Xj for each j = 1, 2, . . . n}(2.51)

is called the cartesian product of X1, X2, . . . , Xn.
We write Xn as an abbreviation forX ×X × · · · ×X . �

Proposition 2.9. Let X1, X2, Xn be finite, nonempty sets. Then,
The size of the cartesian product is the product of the sizes of its factors, i.e.,∣∣X1 ×X2 × · · · ×Xn

∣∣ =
∣∣X1

∣∣ · ∣∣X2

∣∣ · ∣∣X3

∣∣ · · · ∣∣Xn

∣∣ .(2.52)

2.8 Indicator Functions

Definition 2.33 (Indicator function of a set). Let Ω be a nonempty set and A ⊆ Ω. Let 111A : Ω→
{0, 1} be the function defined as

(2.53) 111A(ω) :=

{
1 if ω ∈ A,
0 if ω /∈ A.

111A is called the indicator function 3 of the set A. �
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Proposition 2.10. Let A1, A2, . . . be subsets of Ω. Then

A1 ⊆ A2 ⇒ 111A1 ≤ 111A2 ,(2.54)
111A1∩A2 = min(111A1 ,111A2), 111⋂[An :n∈N] = inf

n∈N
111An ,(2.55)

111A1∪A2 = max(111A1 ,111A2), 111⋃[An :n∈N] = sup
n∈N

111An ,(2.56)

111A{
1

= 1− 111A1 ,(2.57)

111A1]A2 = 111A1 + 111A2 , 111⊎[An :n∈N] =
∑
n∈N

111An , (A1, A2, . . . disjoint).(2.58)

3In abstract algebra 111A is often called the characteristic function of A. Some authors write χA or 1A instead of 111A.
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3 Calculus Revisited

3.1 Absolute Convergence of Series

Definition 3.1 (Absolute Convergence). We say that an infinite series
∑
aj(aj ∈ R) is abso-

lutely convergent and also, that it converges absolutely, if
∞∑
j=1

|aj | = |a1|+ |a2|+ |a3|+ · · · < ∞ , �

Theorem 3.1. If the series
∑
aj(aj ∈ R) is absolutely convergent, then the following holds true:

(a) The series
∑
aj itself converges, i.e., there is −∞ < a <∞ such that

∞∑
j=1

aj = a,

(b) ANY rearrangement
∞∑
j=1

anj = an1 + an2 + · · · converges to the same limit as
∑
aj .

We speak of a rearrangement of a sequence (aj)n∈N (a series
∑
aj) if its members are reshuffled into a

sequence (bj)n∈N (a series
∑
bj) as follows: There are indices nj ∈ N such that

b1 = an1 , b2 = an2 , b3 = an3 , . . . ,

and those indices satisfy the following:
(1) They are distinct: i 6= j ⇒ ni 6= nj .
(2) They leave no gaps in the set N of all indices: For each k ∈ N there is j ∈ N such that k = nj . 4

Theorem 3.2. If the series
∑
aj(aj ∈ R) satisfies aj ≥ 0 for all j, then

• ANY rearrangement
∞∑
j=1

anj possesses the same limit, finite or infinite, as
∞∑
j=1

aj .

• In particular, if
∑
aj is not convergent, then

∞∑
j=1

anj =∞ for each rearrangement.

Proposition 3.1.
(1) A series which only has finitely many nonzero terms converges absolutely.
(2) If |an| ≤ |bn| for all n and

∑
bn converges absolutely, then

∑
an converges absolutely.
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Theorem 3.3. Let S be some (abstract) nonempty set and f : S → R some real–valued function on S.
Assume that S∗ := {x ∈ S : f(x) 6= 0} is countable, i.e. S∗ = {x1, x2, · · · } for some finite or infinite
sequence x1, x2, · · · of elements of S and that at least one of the following two is true:

(a) f(xj) ≥ 0, for all j, (b) the series
∑
f(xj) is absolutely convergent.

• Then, ANY rearrangement
∞∑
j=1

f(xnj ) of the f(xj) possesses the same value as
∞∑
j=1

f(xj).

Theorem 3.4. Assume that J1, J2, . . . is a countable collection of disjoint subsets of N. and J :=
J1 ] J2 ] · · · . Let

∑
j∈J1

aj ,
∑
j∈J2

aj , . . . be a corresponding collection of series such that

• aj ≥ 0, for all j ∈ J or •
∑
j∈J

aj is absolutely convergent.

Then ∑
j∈J1

aj +
∑
j∈J2

aj + · · · =
∑
j∈J

aj .

3.2 Integration – The Riemann Integral

3.2.1 The Riemann Integral of a Step Function

Definition 3.2 (d dimensional rectangles).
For a, b ∈ R, a ≺ b here denotes either a < b or a ≤ b.
Let a1 ≤ b1, a2 ≤ b2, . . . , ad ≤ bd, be d pairs of numbers (d ∈ N). We call the set

{~x = (x1, . . . , xd) ∈ Rd : a1 ≺ x1 ≺ b1, a2 ≺ x2 ≺ b2, . . . , ad ≺ xd ≺ bd}

a d–dimensional rectangle (simply rectangles, if there is no confusion about d).

The set {~x ∈ Rd : a1 ≺ x1 ≺ b1, a2 ≺ x2 ≺ b2, . . . , ad ≺ xd ≺ bd} has alternate (and more familiar)
notation in the following special cases. We also write
• ]a1, b1[ × · · ·× ]ad, bd[, if aj < xj < bj for all j: open rectangles,
• ]a1, b1 ] × · · ·× ]ad, bd ], if aj < xj ≤ bj for all j, or
• [ a1, b1[ × · · · × [ ad, bd[, if aj ≤ xj < bj for all j:

half open rectangles, also called half closed rectangles),
• [ a1, b1 ] × · · · × [ ad, bd ], if aj ≤ xj ≤ bj for all j: closed rectangles).

Usually, onedimensional rectangles are called intervals and 3 dimensional rectangles are called
quads or boxes. �
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Definition 3.3 (Lebesgue measure of d dimensional rectangles). Let a ≺ b again stand for
either a < b or a ≤ b. Given are d ∈ N and aj , bj ∈ R such that aj ≤ bj , for j = 1, 2, . . . , d. Let

R := {~x = (x1, . . . , xd) ∈ Rd : a1 ≺ x1 ≺ b1, a2 ≺ x2 ≺ b2, . . . , ad ≺ xd ≺ bd}

be a d–dimensional rectangle. We call

(3.1) λd(R) := (b1 − a1) (b2 − a2) . . . (bd − ad)

the d–dimensional Lebesgue measure of R. We also simply speak of the Lebesgue measure
of R, if there is no confusion about d).
We extend λd as follows.
• If aj < bj for all j and aj = −∞ and/or bj =∞ for at least one j, then λd(R) := ∞.
• If aj = bj for at least one j, then λd(R) := 0, even if not all aj and bj are finite.
• λd(∅) := 0.
• If R1, R2, . . . is a finite or infinite sequence of disjoint rectangles, i.e., Ri ∩ Rj = ∅

for i 6= j, then we define the Lebesgue measure of the union by ”σ–addititivity” as
follows:

(3.2) λd (R1 ]R2 ] · · · ) := λd(R1) + λd(R2) + · · · �

Definition 3.4. A function ϕ : Rd → R is called a step function if there is n ∈ N, a list of
d–dimensional rectangles A1, . . . , An, and a list of real numbers c1, . . . , cn, such that

(3.3) ϕ(~x) =
n∑
j=1

cj111Aj (~x).

We call

(3.4)
∫
ϕ(~x) d~x :=

∫
Rd

ϕ(~x) d~x :=

∫∫
· · ·
∫

Rd

f(~x) d~x :=
n∑
j=1

cj λ
d(Aj)

the (d dimensional) Riemann integral of the step function ϕ.

Here,
~x 7→ 111Aj (~x) =

{
1 if ~x ∈ Aj ,

0 else ,

is the indicator function 5 of the subset Aj of Rd. �

3.2.2 The Riemann Integral as the Limit of Riemann Sums

3.2.2.1 The Riemann Integral in Dimension 1 ?

5see Definition 2.33 (indicator function for a set) on p.21.
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Definition 3.5. Let Π be defined as in (??), and let f : [a, b]→ R be a function on [a, b]. We call

RS(f ; Π) :=
n∑
j=1

f(uj)(yj − yj−1)

the Riemann sum of f with respect to Π, and we call∫ b

a
f(x)dx := lim

‖Π‖→0
RS(f ; Π)

the Riemann integral of f on [a, b], provided that this limit exists.

3.2.2.2 The Riemann Integral in Dimension 2 ?

Definition 3.6. Let Π be defined as in (??). Consider the rectangle

R := [ a(1), b(1) ] × [ a(2), b(2) ] .

Let f : R→ R ; ~y 7→ f(~y), be a real–valued function on R. We call

(3.5) RS(f ; Π) :=

n∑
j1=1

n∑
j2=1

f(~u(j1, j2)) (y
(1)
j1
− y(1)

j1−1) · (y(2)
j2
− y(2)

j2−1)

the Riemann sum of f with respect to Π, and we call

(3.6)
∫∫

R
f(~y) d~y := lim

‖Π‖→0
RS(f ; Π)

the Riemann integral of f on R, provided that this limit exists. �

3.2.2.3 The Riemann Integral in d Dimensions ?

Definition 3.7. Let Π be as in (??) and R := [ a(1), b(1) ] × [ a(2), b(2) × · · · × [ a(d), b(d) ].
Let f : R→ R ; ~y 7→ f(~y), be a real–valued function on R. We call

(3.7) RS(f ; Π) :=

n∑
j1,...,jd=1

f(~u(j1, j2, . . . , jd)) (y
(1)
j1
− y(1)

j1−1) · (y(2)
j2
− y(2)

j2−1) · · · (y(d)
jd
− y(d)

jd−1)

the Riemann sum of f with respect to Π, and we call

(3.8)
∫∫
· · ·
∫
R
f(~y) d~y := lim

‖Π‖→0
RS(f ; Π)

the Riemann integral aka proper Riemann integral of f on R, provided that this limit exists.
�
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3.3 Improper Integrals and Integrals Over Subsets

Definition 3.8 (Improper Riemann integral). Let f : [a,∞[→ R, g : ] − ∞, b] → R, h :
]−∞,∞[→ R.
Their improper Riemann integrals are defined as follows:∫ ∞

a
f(x) dx = lim

b→∞

∫ b

a
f(x) dx ,∫ b

−∞
f(x) dx = lim

a→−∞

∫ b

a
f(x) dx .∫ ∞

−∞
f(x) dx = lim

a→−∞
lim
b→∞

∫ b

a
f(x) dx . �

(3.9)

Definition 3.9 (Riemann integrability).
(a) Let A ⊆ Rd be a d dimensional rectangle and ϕ : A → R, a real–valued function on

A. We say that ϕ is Riemann integrable, if its proper Riemann integral, as specified
(for general d) in Definition 3.7 on p.26, exists and is finite.

(b) Let ψ be one of the functions f, g, h specified in Definition 3.8 (Improper Riemann
integral) above. We say that ψ is Riemann integrable, if its improper integral, as
specified in Definition 3.8 above, exists and is finite.

(c) If ϕ is as above and α, its proper Riemann integral exists, then we call α the (proper)
Riemann integral, even if α = ±∞ (and thus, ϕ is not Riemann integrable).

(c) If ψ is as above and β, its improper integral exists, then we call β the improper
Riemann integral of ψ, even if β = ±∞ (and thus, ψ is not Riemann integrable). �

Definition 3.10. (A): Let R ⊆ Rd be a d dimensional rectangle, d ∈ N, and ∅ 6= A ⊆ R. Let
f : A→ R be a function on A such that the function

(3.10) 111A f : R −→ R ~x 7→ 111A(~x)f(~x) =

{
f(~x) if ~x ∈ A,
0, else ,

possesses a Riemann integral. Then we call

(3.11)
∫∫
· · ·
∫

A

f(~x) d~x :=

∫∫
· · ·
∫

R

111A(~x) f(~x) d~x

the Riemann integral of f on (also, over,) the subset A.

We are not yet completely done with the case d = 1, since we also must consider improper
integrals of functions of a single variable. We do that now.
(B): Let I ⊆ R be an interval of infinite length, i.e., I is one of [a,∞[, ]−∞, b], ]−∞,∞[, for
suitable a, b ∈ R. Let ∅ 6= A ⊆ I and f : A→ R a function on A such that the function
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(3.12) 111A f : I −→ R x 7→ 111A(x)f(x) =

{
f(x) ifx ∈ A,
0, else ,

possesses an improper Riemann integral. Then we call

(3.13)
∫
A
f(x) dx :=

∫
I

111A(x) f(x) dx

the Riemann integral of f on (also, over,) the subset A. �

Theorem 3.5. Let f : Rd → R be a real–valued, nonnegative, and Riemann–integrable function on Rd.
Let

RRR := {A ⊆ Rd : 111A is Riemann integrable } .

If
∫

Rd

f(~x) d~x = 1, then the set function P(A) :=

∫
A
f(~x) d~x satisfies Definition 1.2 on p.5

of a Probability measure on RRR, in the following sense:

• P(∅) = 0 • P(Rd) = 1 • 0 ≤ P(A) ≤ 1, for all A ∈RRR.

• σ–additivity: If An ∈RRR are disjoint and A :=
⊎
n∈N

An ∈RRR, then P(A) =
∑
n∈N

P(An).

3.4 Series and Integrals as Tools to Compute Probabilities

3.4.1 Series and Sums

Theorem 3.6. Let Ω be an arbitrary, nonempty, countable set. Let p : Ω −→ R be a function on Ω
which satisfies

(3.14) • p(ω) ≥ 0 for all ω ∈ Ω, •
∑
ω∈Ω

p(ω) = 1 .

Then, ω 7→ p(ω) defines a probability measure P on Ω as follows.

(3.15) P(∅) := 0 ; P(A) :=
∑
ω∈A

p(ω)

3.4.2 Integrals

• Throughout this section, “P is a probability measure on Rd” does not imply that
A 7→ P(A) is defined for all A ⊆ Rd. Rather, it suffices that P(A) is defined for
Riemann integrable A.
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4 Calculus Extensions

4.1 Extension of Lebesgue Measure to the Borel sets of Rd

Definition 4.1. Let A ⊆ Rd. If it exists, we call the Riemann integral of the constant function 1
over the region of integration A,

(4.1) λd(A) :=

∫∫
· · ·
∫

A

d~x =

∫∫
· · ·
∫

R

111A(~x) d~x , (R is a rectangle that contains A),

the d dimensional Lebesgue measure of A. �

Theorem 4.1. ? There exists a set of subsets of Rd, we denote it Bd, and a function

(4.2) λd : Bd −→ R ∪ {∞} ; A 7→ λd(A) ,

in the abstract sense of Definition 2.18 (Function) on p.13, such that
(A) Bd satisfies the following:

If
∫∫
· · ·
∫
A
d~x exists, then A ∈ Bd, and λd(A) =

∫∫
· · ·
∫
A
d~x ,(4.3)

∅ ∈ Bd, and Rd ∈ Bd ,(4.4)

A ∈ Bd ⇒ A{ ∈ Bd ,(4.5)

An ∈ Bd for all n ∈ N ⇒
⋃
n∈N

An ∈ Bd, and
⋂
n∈N

An ∈ Bd .(4.6)

(B) λd satisfies the following:

A ∈ Bd ⇒ λd(A) ≥ 0, (positivity)(4.7)

λd(∅) = 0 ,(4.8)

A,B ∈ Bd and A ⊆ B ⇒ λd(A) ≤ λd(B) , (monotony)(4.9)

(An)n∈N ∈ Bd disjoint ⇒ λd
(⊎
n∈N

An

)
=
∑
n∈N

λd(An) . (σ–additivity)(4.10)

Definition 4.2 (Borel sets). ? We call the elements of Bd the Borel sets of Rd. We also

simply say that they are Borel. We call B ∈ Bd Lebesgue Null, also, λd Null, if λd(B) = 0. �
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Theorem 4.2. ? All countable subsets of Rd are Lebesgue Null. In particular, they are Borel sets.

Corollary 4.1. ?

(a) All finite subsets of Rd are Borel. In particular, all singleton sets {~x} (~x ∈ Rd), are Borel.
(b) adding and/or removing countably many points to/from a Borel set results in a Borel set.

4.2 The Lebesgue Integral

Definition 4.3 (Simple Function on Rd). Let d, n ∈ N. Let A1, . . . , An be Borel sets of Rd. (Thus,
λd(Aj) is defined for all Aj .) Further, let c1, c2, . . . , cn be a corresponding set of non–negative
real numbers. Let

(4.11) f : Rd −→ R ; ~x 7→ f(~x) :=
n∑
j=1

cj111Aj (~x)

Then we call f a simple function. �

Proposition 4.1. ?

(a) All step functions with cj ≥ 0 are simple functions.
(b) Not all simple functions are step functions.
(c) Not all simple functions possess a Riemann integral.

Definition 4.4. Let f(~x) =
n∑
j=1

cj111Aj (~x) be a simple function such that cj ≥ 0 for all j. Then

we call

(4.12)
∫
fd λd :=

∫
f(~x)d λd(~x) :=

∫
f(~x)λd(d~x) :=

n∑
j=1

cjλ
d(Aj) .

the Lebesgue integral of the simple function f . �

Definition 4.5 (Lebesgue integral). ?

(a) Either let f : Rd → [0,∞[ be a nonnegative function on Rd, such that

• there is a nondecreasing sequence of simple functions, fn ≥ 0, satisfying fn ↑ f ;

Or let f : Rd → ]−∞, 0] be a nonpositive function on Rd, such that
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• there is a nonincreasing sequence of simple functions, fn ≤ 0, satisfying fn ↓ f .

We define the Lebesgue integral of that nonnegative or nonpositive function f as

(4.13)
∫
f dλd := lim

n→∞

∫
fn dλ

d .

(b) Let f : Rd → R be a function on Rd such that

• both f+ and f− are limits of nondecreasing sequences of simple functions ≥ 0;

• at least one of
∫
f+dλd,

∫
f−dλd is finite. (According to (a), those integrals exist, but

neither of them was guaranteed to be finite.)

Then we define the Lebesgue integral of the function f as the expression

(4.14)
∫
f dλd =

∫
(f+ − f−) dλd :=

∫
f+ dλd −

∫
f− dλd .

(c) We call a real–valued function f Lebesgue integrable, if
∫
f dλd exists and is finite. �

Definition 4.6. ?

• We call simple functions, and real–valued functions that are limits of sequences of
simple functions, Borel measurable functions (or simply, Borel functions). �

Theorem 4.3. ? Assume that f1, f2, . . . are Borel functions, c1, c2, · · · ∈ R, B ∈ Bd.

Each of the following also is a Borel function:

• c1 (constant function) • c1f1 • f1 ± f2 • f1f2 • 111Bf1 • f1/f2 (if f2 6= 0) •
n∑
j=1

cjfj

• min(f1, f2) • max(f1, f2) • min
j=1,...,n

fj • max
j=1,...,n

fj • inf
j∈N

fj • sup
j∈N

fj �

If they exist (see the subsequent remark), the following also are Borel functions:

• lim
j→∞

fj •
∞∑
j=1

fj • min
j∈N

fj • max
j∈N

fj

Theorem 4.4. ? Lebesgue integrals satisfy the following. Let B ∈ Bd and assume that f is a
Borel function. Then

(a) If
∫
f dλd exists, then

∫
111B f dλ

d exists.

(b) If f is Lebesgue integrable, then 111Bf is Lebesgue integrable.
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Definition 4.7. Let B ∈ Bd and assume that f is a Borel function on Rd for which the Lebesgue
integral

∫
fdλd exists. The Lebesgue integral of f on B or over B is defined by the expression

(4.15)
∫
B
f dλd :=

∫
B
f(~x)d λd(~x) :=

∫
B
f(~x)λd(d~x) :=

∫
111Bf dλ

d .

We say that Lebesgue integrable on B, if
∫
B f dλ

d exists and is finite. �

Fact 4.1. Let D ⊆ Rd and f : D → R, such that f and D are of any relevance for this course.

• If the Riemann integral
∫
D
f(~x) d~x exists, then the Lebesgue integral

∫
D
f dλd exists.

• Further,
∫
D
f(~x) d~x =

∫
D
f dλd.

• Accordingly, all the techniques one has learned in calculus to evaluate the Riemann integral
can be used to compute the Lebesgue integral. �

Proposition 4.2 (Integrability criterion). ? Let f be a Borel function and B a Borel set. Then f

is integrable on B ⇔
∫
B
|f | dλd <∞ ⇔ both

∫
B
f+ dλd <∞ and

∫
B
f− dλd <∞.

Theorem 4.5. Assume that f, g, f1, f2, . . . are Borel functions, c, c1, c2, · · · ∈ R, and B is a Borel set.
Then Lebesgue integrals on B satisfy the following.

(a) Positivity:
∫
B

0 dλd = 0; f ≥ 0 on B ⇒
∫
B
f dλd ≥ 0,

(b) Monotonicity: λd{~x ∈ B : f(~x) > g(~x)} = 0 ⇒
∫
B
f dλd ≤

∫
B
g dλd.

In particular, f ≤ g on B ⇒
∫
B
f dλd ≤

∫
B
g dλd,

and also, λd{~x ∈ B : f(~x) 6= g(~x)} = 0 ⇒
∫
B
f dλd =

∫
B
g dλd.

(c) Linearity I: f, g integrable on B ⇒
∫
B

(f ± g) dλd =

∫
B
f dλd ±

∫
B
g dλd

and also,
∫
B

(cf) dλd = c

∫
B
f dλd.

Linearity II: f1 . . . , fn integrable ⇒
∫
B

( n∑
j=1

fj

)
dλd =

n∑
j=1

cj

∫
B
fj dλ

d.

(d) Monotone Convergence: Assume that 0 ≤ f1 ≤ f2 ≤ · · · , 0 ≥ g1 ≥ g2 ≥ · · · .

Then
∫
B
fn dλ

d ↑
∫
B

(
sup
n∈N

fn

)
dλd and

∫
B
gn dλ

d ↓
∫
B

(
inf
n∈N

gn

)
dλd as n→∞.
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(e) Dominated Convergence: Assume that

• lim
n→∞

fn exists, • |fn| ≤ g for all n ∈ N, •
∫
B
g dλd < ∞.

Then lim
n→∞

∫
B
fn dλ

d =

∫
B

(
lim
n→∞

fn

)
dλd as n→∞.

Theorem 4.6 (Fubini’s theorem for Lebesgue integrals). ? Assume that f1, f2, . . . are Borel func-
tions, and B1, B2 are Borel sets. Then, for any rearrangement j1, j2, . . . , jd of 1, 2, . . . , d,∫

B1×B2×···×Bd

f dλd =

∫
B1

(∫
B2

(
· · ·
∫
Bd

f dλ1 · · ·
)
dλ1

)
dλ1

=

∫
Bj1

(∫
Bj2

(
· · ·
∫
Bjd

f dλ1 · · ·

)
dλ1

)
dλ1

(4.16)

This formula is technically correct, but let us supply all arguments and write, 6 e.g., λ1(dxj) for dλ1:

∫
B1×B2×···×Bd

f(~x)λd(d~x) =

∫
B1

(∫
B2

(
· · ·
∫
Bd

f(~x)λ1(dxd) · · ·
)
λ1(dx2)

)
λ1(dx1)

=

∫
Bj1

(∫
Bj2

(
· · ·
∫
Bj1

f(~x)λ1(dxjd) · · ·

)
λ1(dxj2)

)
λ1(dxj1) .

(4.17)

In particular, assume that each Bj is an interval [αj , βj ] or [αj , βj ] or [αj , βj ] or [αj , βj ], where αj ≤ βj .

If we adjust the notation to that of Riemann integrals and replace
∫
Bj

with
βj∫
αj

, λd(d~x) with d~x, and λ1(dxj)

with dxj , then (4.17) matches Fubini’s formula (??)(g) for Riemann integrals (see p.??).

Here is another version of Fubini’s theorem. It features “only” two vector– valued components.

Assume that d, d1, d2 ∈ N, that d1 + d2 = d, that f : Rd → R is a nonnegative and/or λd–integrable
Borel function, and that B1 ∈ Bd1 and B2 ∈ Bd2 . For ~x = (x1, x2 . . . , xd1) and ~y = (y1, y2 . . . , yd2),
let
(
~x, ~y
)

:= (x1, . . . , xd1 , y1, . . . , yd2). Then∫
B1×B2

f
(
~x, ~y
)
λd
(
d(~x, ~y)

)
=

∫
B1

(∫
B2

f
(
~x, ~y
)
λd2(d~y)

)
λd1(d~x)

=

∫
B2

(∫
B1

f
(
~x, ~y
)
λd1(d~x)

)
λd2(d~y) .

(4.18)

6Recall that (4.4) on p.30 and (4.7) on p.32 give us a choice of notation∫
B

f dλd =

∫
B

f(~x)d λd(~x) =

∫
B

f(~x)λd(d~x)
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Even though there only are two integrations λd1(d~x) and λd2(d~y), (4.18) is more general than (4.17), because
the Borel sets B1, B2, and B1 ×B2 are no more cartesian products of onedimensional Borel sets.

Theorem 4.7. Let f : Rd → R be a real–valued, Borel–measurable function on Rd. If f is nonnegative
or Lebesgue integrable (i.e.,

∫
|f |dλd <∞), then the set function

(4.19) Ψ : Bd −→ [0,∞], Ψ(A) :=

∫
A
f dλd

is σ–additive.

Corollary 4.2. Let f : Rd → R be a real–valued, nonnegative, and Borel–measurable function on Rd.

If
∫
fdλd = 1, then the set function

(4.20) P : Bd −→ [0,∞], P(A) :=

∫
A
f dλd

defines a probability measure on Rd.

Definition 4.8 (Support of a real–valued function). ?

Let Ω be some nonempty set and f : Ω→ R. We call

(4.21) suppt(f) := {ω ∈ Ω : f(ω) 6= 0 }
the support of the function f . �
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5 The Probability Model

5.1 Probability Spaces

Definition 5.1 (σ–algebra). Let Ω be a nonempty set and F ⊆ 2Ω such that

(a) A ∈ F ⇒ A{ ∈ F .

(b) An ∈ F arbitrary ⇒
∞⋃
j=1

Aj ∈ F .

(c) ∅ ∈ F .

Then we call F a σ–algebra for Ω. (Also, a σ–algebra on Ω or asociated with Ω.)

F is also called a σ–field for Ω, but that is considered old–fashioned terminology. �

Proposition 5.1. σ–algebras F satisfy the following.

(a) Ω ∈ F.
(b) Let n ∈ N and A1, . . . , An ∈ F. Then A1 ∪A2 ∪ · · · ∪An ∈ F. (finite union.)

(c) Let n ∈ N and A1, A2, · · · ∈ F. Let A =
n⋂
k=1

Ak and B =
∞⋂
k=1

Ak.

Then A ∈ F and B ∈ F. �

Proposition 5.2. ? Assume that (Aj)j∈J is a countable partition of a nonempty set Ω. In other
words, the sets Aj are mutually disjoint subsets of Ω,

⊎[
Aj : j ∈ J

]
= Ω, and the index set J is

countable. Then

(5.1) F := { all unions involving some or all of the Aj }

is a σ–algebra for Ω.

Definition 5.2 (Probability measures and probability spaces). Given are a nonempty set Ω with
a σ–algebra F ⊆ 2Ω and a function

P : F −→ [0, 1] ; A 7→ P(A) as follows.

(5.2) P(∅) = 0 , (5.3) P(Ω) = 1 ,

(5.4) (An)n∈N ∈ Fdisjoint ⇒ P
(⊎
n∈N

An

)
=

∞∑
n=1

P(An) =
∑
n∈N

P(An). (σ–additivity)

• We call P a probability measure or simply a probability
• The triplet (Ω,F,P) is called a probability space.
• (Only) the elements of F are called events.
• We often call disjoint events mutually exclusive events.
• An event A is a P Null event, also, Null event, if P(A) = 0.
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We suggest to reserve the term “probability” for the function value P(A) that belongs to a specific
event A, and always refer to P, i.e., the function A 7→ P(A), as a “probability measure”. �

Notation 5.1 (Sample spaces and sample points).
• We also call a probability space a sample space and an outcome a sample point.
• We also call Ω by itself (as opposed to the triplet (Ω,F,P)) a probability space or

sample space. Sometimes we refer to Ω as the carrier set or carrier of (Ω,F,P).
• We like to write Ω for the carrier set, F for the σ–algebra and P for the probability

measure of a probability space, but different notation may be used. For example,
there may be a probability space (S,SSS , Q) and outcomes s or x or ~y (vector notation).

Definition 5.3 (Equiprobability). Let (Ω,P) be a finite probability space, i.e., |Ω| < ∞. Let
n := |Ω|. We say that P has equiprobable outcomes or that P satisfies equiprobability, if

(5.5) P
(
{ω}

)
=

1

|Ω|
(since then P{ω} is constant for all ω ∈ Ω).

Synonyms for equiprobability are (discrete) 7uniform probability, Laplace probability, �

Theorem 5.1 (Continuity property of probability measures). Let (Ω,F,P) be a probability space.
If An, Bn ∈ F, then the following is true:

An ↑ ⇒ P(An) ↑ P

(⋃
n∈N

An

)
,(5.6)

Bn ↓ ⇒ P(Bn) ↓ P

(⋂
n∈N

Bn

)
.(5.7)

Definition 5.4 (Discrete probability space). Assume that the probability space (Ω,F,P) satisfies
the following:

(a) P({ω}) is defined for all ω ∈ Ω. In other words, we ask that {ω} ∈ F for all ω ∈ Ω.
(b) There exists a countable subset A∗ of Ω such that

∑
ω∈A∗

P{ω} = 1

Then we call (Ω,F,P) a discrete probability space. �

7there also is the concept of uniform probability in connection with continuous random variables. See Definition 10.8
(Continuous uniform random variable) on p.78.
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Theorem 5.2. Let (Ω′,F′,P′) be a discrete probability space and A∗ ∈ F′ a countable event such
that

∑
ω′∈A∗

P′{ω′} = 1. Then

(a) A∗ ∈ F′.
(b) P′(A∗) = 1 and thus, P′

(
(A∗){

)
= 0.

(c) P′(A) = P′(A ∩A∗) for all A ∈ F′.
(d) P′(A) =

∑
ω′∈A∩A∗

P′{ω′} for all A ∈ F′.

(e) ? The formula P(B) := P′(B ∩A∗) “extends” P′ to a probability measure P on the

entire power set 2Ω′ .

Corollary 5.1.
(a) If (Ω′,F′,P′) be a discrete probability space, then P′ is characterized by the probabilities

P′{ω′} of the outcomes ω′.
(b) Let Ω′ be some arbitrary, nonempty set. Assume that

(
pj
)
j

is a finite or infinite sequence of
real numbers that satisfies
• pj ≥ 0 for all j and

∑
j pj = 1

Further, assume that
(
ω′j
)
j

is a corresponding sequence of distinct elements of Ω′, then
(
pj
)
j

defines a discrete probability space (Ω′, 2Ω′ ,P′) as follows.
• P′(∅) := 0, P′(A) :=

∑
j : ω′j∈A

pj , for A 6= ∅. �

Theorem 5.3. ? Let Ω be some arbitrary set and
(
Fi
)
i∈I a family of σ–algebras on Ω, i.e., Fi ⊆ 2Ω for

each i ∈ I . No assumption is made about the index set other than I 6= ∅. Thus, this family may consist of
finitely many σ–algebras or of entire sequence or even uncountably many σ–algebras.
• Let F :=

⋂
i∈I Fi, i.e., F = {A ⊆ Ω : A ∈ Fi for each index i}. Then F is a σ–algebra.

This can also be stated as follows. Any intersection of σ–algebras results in a σ–algebra.

Theorem 5.4. ? Let Ω be an arbitrary set and AAA ⊆ 2Ω. (So elements of AAA are subsets of Ω.)

• There exists a minimal (i.e., smallest) σ–algebra that contains AAA .
• Further, this σ–algebra is uniquely determined by AAA . This allows us to name it σ{AAA }.

Definition 5.5 (σ–algebra generated by a collection of sets). ? Let Ω be a nonempty set.
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(a) Let AAA ⊆ 2Ω, i.e., the elements of AAA are subsets of Ω.
We call σ{AAA } the σ–algebra generated by AAA . If AAA is of the form AAA = {...}, we also
write σ{...} for σ{{...}}.

(b) Assume in addition that F is a σ–algebra for Ω and AAA ⊆ F. If σ{AAA } = F, we call AAA
a generator for F a.k.a. generator of F, and we say that AAA generates F.

Concerning notation:
• One also can write σ(AAA ) or σ[AAA ] for σ{AAA }.
• Given a family of subsets Ai ⊆ Ω, (i ∈ I), σ{Ai : i ∈ I} can also be written as

σ{Ai : i ∈ I} = σ
(
(Ai)i∈I

)
= σ

[
(Ai)i∈I

]
= σ

{
(Ai)i∈I

}
.

As usual, it is OK to omit the “i ∈ I” part if the meaning of I is unambiguous. �

Definition 5.6 (Borel σ–algebra). ?

For d = 1, 2, . . . , we define
• Bd := σ{ d–dimensional rectangles },
• B := B1 = σ{ all intervals of real numbers }.

B and Bd are the Borel σ–algebras and their members are the Borel sets of R and Rd. �

Fact 5.1. ? For the following, note that the sets I1, . . . ,I8 were defined in Example ?? on p.??.

(a) Let I denote one of the collections of half-open intervals, I1, I4. Let EEE := I ] R. Then any
function P0 : EEE → [0, 1] which satisfies P0(∅) = 0, P0(R) = 1 and σ–additivity on EEE :
En ∈ EEE disjoint such that E :=

⊎
n∈N
∈ EEE ⇒ P0(E) =

∑
n∈N

P0(En),

can be uniquely extended to a probability measure on B, the Borel sets of R.

(b) Let I denote one of the collections of d–dimensional rectangles I5, I8. Let EEE := I ∪ {Rd}.
Then any function P0 : EEE → [0, 1] which satisfies P0(∅) = 0, P0(Rd) = 1 and σ–additivity
on EEE : En ∈ EEE disjoint such that E :=

⊎
n∈N

En ∈ EEE ⇒ P0(E) =
∑
n∈N

P0(En),

can be uniquely extended to a probability measure on Bd, the Borel sets of Rd. �

Notational conveniences for probabilities:
If we have a set that is written as {. . . }, i.e., with curly braces as delimiters, then we may write
its probability as P{. . . } instead of P

(
{. . . }

)
. Specifically for singletons {ω}, it is OK to write

P{ω}.
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Theorem 5.5 (WMS Ch.02.8, Theorem 2.6). If A,B are events in a probability space (Ω,P), then

Additive Law of Probability: P(A ∪B) = P(A) + P(B) − P(A ∩B) .(5.8)

Rule of the Complement: P
[
A{
]

= 1 − P[A] .(5.9)

Theorem 5.6 (Exclusion–Inclusion formula). ? If A1, A2, · · · , An are events in a probability
space (Ω,P), then

P(A1∪A2 · · · ∪An) =
∑
i

P(Ai) −
∑
i<j

P(Ai ∩Aj)

+
∑
i<j<k

P(Ai ∩Aj ∩Ak) − · · · + (−1)n+1 · P(A1 ∩A2 · · · ∩An) .
(5.10)

Corollary 5.2 (Exclusion–Inclusion formula for 3 events). ? If A1, A2, A3 are events in a
probability space (Ω,P), then

P(A1∪A2 ∪A3) =
[

P(A1) + P(A2) + P(A3)
]

−
[
P(A1 ∩A2) + P(A1 ∩A3) + P(A2 ∩A3)

]
+ P(A1 ∩A2 ∩An) .

(5.11)

5.2 Conditional Probability and Independent Events

Definition 5.7 (Conditional probability). Given are a probability space (Ω,FFF ,P) and two
events A,B ∈FFF . We call

(5.12) P(A | B) :=


P(A ∩B)

P(B)
, if P(B) > 0 ,

undefined , if P(B) = 0 ,

(read: “probability of A given B” or “probability of A conditioned on B”) the conditional
probability of the event A, given that the event B has occurred. �

Theorem 5.7. Given are a probability space (Ω,FFF ,P) and an event B ∈FFF such that P(B) > 0. Then

P(· | B) : F −→ [0, 1] ; A 7→ P(A | B)(5.13)

is another probability measure on (Ω,FFF ).
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In other words, P(· | B) satisfies (5.2) – (5.4) of Definition 5.2 (Probability measures and probability spaces)
on p.35.

Proposition 5.3. If (Ω,F,P) is a probability space and A,B,C ∈ F, then

(5.14) P(A ∩B ∩ C) = P(A | B ∩ C) · P(B | C) · P(C) .

Proposition 5.4 (Multiplicative Law of Probability for n events). If (Ω,F,P) is a probability space,
n ∈ N and A1, . . . , An ∈ F, then

P(A1 ∩A2 ∩ · · · ∩An) = P(A1 | A2 ∩ · · · ∩An) · P(A2 | A3 · · · ∩An) · · ·
· · ·P(An−2 | An−1 ∩An) P(An−1 | An) P(An).

(5.15)

Definition 5.8 (Two independent events). Given are a probability space (Ω,FFF ,P) and two
events A,B ∈FFF . We say that A and B are independent if

(5.16) P(A ∩B) = P(A) · P(B) . �

Definition 5.9 (Three independent events). Given are a probability space (Ω,FFF ,P) and three events
A,B,C ∈FFF . We say that A,B and C are independent if

P(A ∩B ∩ C) = P(A) · P(B) · P(C) ,

P(A ∩B) = P(A) · P(B) ,

P(A ∩ C) = P(A) · P(C) ,

P(B ∩ C) = P(B) · P(C) . �

(5.17)

Definition 5.10 (Finitely many independent events). Given are a probability space (Ω,FFF ,P),
n ∈ N and events A1, A2, . . . , An ∈FFF . We say that A1, A2, . . . , An are independent if, for ANY
subselection of indices

1 ≤ j1 < j2 < · · · < jk ≤ n ,

it is true that

(5.18) P(Aj1 ∩Aj1 ∩Ajk) = P(Aj1) · P(Aj2) · P(Ajk) . �

Definition 5.11 (Sequences of independent events). Given are a probability space (Ω,FFF ,P)
and a sequence of eventsA1, A2, · · · ∈FFF We say that this sequence is independent if, for ANY
FINITE subselection of distinct indices j1, j2, . . . , jk ∈ N, it is true that

(5.19) P(Aj1 ∩Aj2 ∩Ajk) = P(Aj1) · P(Aj2) · P(Ajk) . �
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Definition 5.12 (Independence of arbitrarily many events). ? Given are a probability space

(Ω,FFF ,P) and a family
(
Ai
)
i∈I of events Ai ∈ FFF . Here I denotes an arbitrary set of indices.

We say that this family is independent if, for ANY FINITE subselection of distinct indices
i1, i2, . . . , ik ∈ I , it is true that

(5.20) P(Ai1 ∩Ai2 ∩Aik) = P(Ai1) · P(Ai2) · P(Aik) . �

Theorem 5.8. ? Given are a probability space (Ω,FFF ,P) and a family
(
Ai
)
i∈I of independent

events Ai ∈FFF . Here I denotes an arbitrary set of indices. Then we have the following:

If some or all of the Ai are replaced by their complement A{i , then the resulting family of events also is
independent.

In other words, for each i ∈ I , let Bi be either Ai or A{i . Then independence of
(
Ai
)
i∈I

implies that of
(
Bi
)
i∈I .

Corollary 5.3. Given are a (Ω,F,P) is a probability space, n ∈ N and independent eventsA1, . . . , An ∈
F.
If some or all of the Ai are replaced by their complement A{i , then the resulting list of events also is
independent.

In other words, for each i = 1, 2, . . . , n, let Bi be either Ai or A{i . Then independence of A1, . . . , An

implies that of B1, . . . , Bn.

Theorem 5.9. Given are a probability space (Ω,FFF ,P) and two events A,B ∈FFF such that P(B) > 0.
Then

A and B are independent ⇔ P(A | B) = P(A) .(5.21)

Corollary 5.4. If (Ω,FFF ,P) is a probability space and A,B ∈ FFF such that P(A) > 0 and P(B) > 0.
Then

A and B are independent ⇔ P(A | B) = P(A) ⇔ P(B | A) = P(B) .(5.22)
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5.3 Random Elements and their Probability Distributions

Theorem 5.10. Let (Ω,P) be a probability space, Ω′ a nonempty set, and Y : Ω→ Ω′ a function. Then
the formula

(5.23) PY (B) := P{Y ∈ B} (B ⊆ Ω′)

defines a probability measure on Ω′.

Definition 5.13 (Probability Distribution). Let (Ω,P) be a probability space, Ω′ a nonempty set,
and Y : Ω→ Ω′ a function. Then the probability measure PY on Ω′ of Theorem 5.10, given by

PY (A′) := P{Y ∈ A′} = P
(
Y −1(A′)

)
(A′ ⊆ Ω′) ,(5.24)

is called the probability distribution or just the distribution of Y with respect to P. Very often
the probability space (Ω,P) is fixed for a long stretch. We then simply talk about the probability
distribution of Y , without referring to P. �

Definition 5.14 (Random Variables and Random Vectors). Let (Ω,P) be a probability space and
let n ∈ N.
Let B ⊆ R. A function

Y : Ω −→ B ; ω 7→ Y (ω)

is called a random variable (in short, r.v. or rv,) on (Ω,F,P). Let B′ ⊆ Rn. A function

~X =
(
X1, X2, . . . , Xn

)
: Ω −→ B′ ; ω 7→ ~X(ω) =

(
X1ω), . . . , Xn(ω

)
is called a random vector on (Ω,F,P).
If there is a countable subset B∗ = {y1, y2, . . . } of B such that

∑
j PY {yj} = 1 (i.e.,

P{Y /∈ B∗} = 0 ), we call Y a discrete random variable. Likewise, if there is a countable
subset B′∗ of B′ such that P{ ~X /∈ B′∗} = 0, we call ~X a discrete random vector.

Note that random variables and vectors which have a countable range are discrete. �

Definition 5.15 (σ–algebra generated by random elements). ? Let (Ω,P) be a probability
space.

(a) Let X : (Ω,P)→ Ω′ be a random element on (Ω,P). We call

(5.25) σ{X} := σ{X−1(A′) : A′ ⊆ Ω′}

the σ–algebra generated by the random element X .
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(b) Let Xi : (Ω,P)→ Ω′, i ∈ I be a family of random elements on (Ω,P). We call

(5.26) σ
{

(Xi)i∈I
}

:= σ{Xi : i ∈ I} := σ{X−1
i (A′) : A′ ⊆ Ω′, i ∈ I}

the σ–algebra generated by the family of random elements (Xi)i∈I .

Proposition 5.5. ? Let X : (Ω,P)→ Ω′ be a random element and g : Ω′ → R.

• Let Z be the random variable ω 7→ Z(ω) := g
(
X(ω)

)
.

• Let B∗ ∈ Ω′ such that PX(B∗) = 1 and let C∗ := {g(x) : x ∈ B∗} be
the direct image g(B∗) of B∗ under g. (See Definition 2.29 on p.19.)

Ω Ω′

R

X

gZ = g ◦X

Then PZ(C∗) = 1.

Corollary 5.5. LetX : (Ω,P)→ Ω′ be a random element and g : Ω′ → R. Further, let Z be the random
variable g ◦X : ω 7→ Z(ω) = g

(
X(ω)

)
. In other words, Z is the composition of g with X . Then

(a) If ω 7→ X(ω) only assumes finitely many (distinct) values x1, . . . , xn, then ω 7→ Z(ω) only
assumes finitely many values z1, . . . , zm (and m ≤ n).

(b) If ω 7→ X(ω) only assumes an infinite sequence of (distinct) values (xj), then ω 7→ Z(ω)
assumes a countable set of function values. (This set forms a finite or infinite sequence. (See
Definition 2.25 (Countable and uncountable sets) on p.15).

(c) If X is a discrete random element, then Z = g(X) is a discrete random variable.

5.4 Independence of Random Elements

Definition 5.16 (Independence of arbitrarily many random elements). Given are a probability
space (Ω,FFF ,P) and a family

(
Xi

)
i∈I of random elements on Ω. Here, I denotes an arbitrary set

of indices. We say that this family is independent if, for ANY FINITE subselection of distinct
indices i1, i2, . . . , ik ∈ I and j = 1, 2, . . . , k,

P{Xi1 ∈A′i1 , Xi2 ∈ A′i2 , . . . , Xik ∈ A
′
ik
}

= P{Xi1 ∈ A′i1} · P{Xi2 ∈ A′i2} · · ·P{Xik ∈ A
′
ik
} , for all A′ij ⊆ Ω′. �

(5.27)

Fact 5.2 (Independence of discrete random elements). ? Assume that the random elements
Xi of Definition 5.16 are discrete and that Ω′∗ ⊆ Ω′ is countable and satisfies P{Xi ∈ Ω′∗} = 1. Then
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it suffices to show that (5.27) is satisfied for events of the form {Xij = ω′}, where ω′ ∈ Ω′∗. In other
words, it suffices to verify the following.

• For ANY FINITE subselection of distinct indices i1, i2, . . . , ik ∈ I and j = 1, 2, . . . , k,

(5.28) P{Xi1 = ω′i1 , . . . , Xik = ω′ik} = P{Xi1 = ω′i1} · · ·P{Xik = ω′ik}
is satisfied for all ω′ij ∈ Ω′∗.

From this general case, we obtain the case I = 1, 2 as follows.
Independence of two random elements, X1, X2: For all ω′, ω̃′ ∈ Ω′∗,

(5.29) P{X1 = ω′, X2 = ω̃′} = P{X1 = ω′} · P{X2 = ω̃′} .

For I = 1, 2, 3, we obtain

Independence of three random elements, X1, X2, X3:
(1) For all subselections i1 < i2 of k = 2 elements of {1, 2, 3} (there are 3 such subselections)

and for all ω′i1 , ω
′
i2
∈ Ω′∗,

(5.30) P{Xi1 = ω′i1 , Xi2 = ω′i2} = P{Xi1 = ω′i1} · P{Xi2 = ω′i2} ,

(2) For k = 3 (i.e., i1 = 1, i2 = 2, i1 = 3) and for all ω′1, ω
′
2, ω
′
3 ∈ Ω′∗,

P{X1 = ω′1, X2 =ω′2, X3 = ω′3}
= P{X1 = ω′1} · P{X2 = ω′2} · P{X3 = ω′3} .

(5.31)

For I = 1, 2, . . . , n, we obtain

Independence of n random elements, X1, X2, . . . , Xn:
For EACH k = 2, 3, . . . , n− 1, n, the following must be true: For all subselections
i1 < · · · < ik of k elements of {1, . . . , n} and for all ω′ij ∈ Ω′∗, (1 ≤ j ≤ k),

(5.32) P{Xi1 = ω′i1 , . . . , Xik = ω′ik} = P{Xi1 = ω′i1} · · ·P{Xik = ω′ik} .

For I = N, we obtain

Independence of an infinite sequence X1, X2, . . . , of random elements:
For EACH k = 2, 3, 4, . . . , the following must be true: For all subselections
i1 < · · · < ik of k elements of N and for all ω′ij ∈ Ω′∗, (1 ≤ j ≤ k),

(5.33) P{Xi1 = ω′i1 , . . . , Xik = ω′ik} = P{Xi1 = ω′i1} · · ·P{Xik = ω′ik} .
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Fact 5.3 (Independence of random variables). ? Assume that the random elements Xi of
Definition 5.16 are random variables. Then it suffices to show that (5.27) is satisfied for events of the
form {Xij ∈ ]−∞, βij ] }, for all βij ∈ R. In other words, it suffices to verify the following.

• For ANY FINITE subselection of distinct indices i1, i2, . . . , ik ∈ I and j = 1, 2, . . . , k,

(5.34) P{Xi1 ≤ βi1 , . . . , Xik ≤ βik} = P{Xi1 ≤ βi1} · · ·P{Xik ≤ βik} ,
is satisfied for all βij ∈ R.

From this general case, we obtain the case I = 1, 2 as follows.

Independence of two random variables, Y1, Y2: For all β1, β2 ∈ R,

(5.35) P{Y1 ≤ β1, Y2 ≤ β2} = P{Y1 ≤ β1} · P{Y2 ≤ β2} .

For I = 1, 2, 3, we obtain

Independence of three random variables, Y1, Y2, Y3:
(1) For all subselections i1 < i2 of k = 2 elements of {1, 2, 3} (there are 3 such subselections)

and for all βi1 , βi2 ∈ R,

(5.36) P{Yi1 ≤ βi1 , Yi2 ≤ βi2} = P{Yi1 ≤ βi1} · P{Yi2 ≤ βi2} ,

(2) For k = 3 (i.e., i1 = 1, i2 = 2, i1 = 3) and for all β1, β2, β3 ∈ R,

P{Y1 ≤ β1, Y2 ≤β2, Y3 ≤ β3}
= P{Y1 ≤ β1} · P{Y2 ≤ β2} · P{Y3 ≤ β3} .

(5.37)

For I = 1, 2, . . . , n, we obtain

Independence of n random variables, Y1, Y2, . . . , Yn:
For EACH k = 2, 3, . . . , n− 1, n, the following must be true: For all subselections
i1 < · · · < ik of k elements of {1, . . . , n} and for all βij ∈ R, (1 ≤ j ≤ k),

(5.38) P{Yi1 ≤ βi1 , . . . , Yik ≤ βik} = P{Yi1 ≤ βi1} · · ·P{Yik ≤ βik} .

For I = N, we obtain
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Independence of an infinite sequence Y1, Y2, . . . , of random variables:
For EACH k = 2, 3, 4, . . . , the following must be true: For all subselections
i1 < · · · < ik of k elements of N and for all βij ∈ R, (1 ≤ j ≤ k),

(5.39) P{Yi1 ≤ βi1 , . . . , Yik ≤ βik} = P{Yi1 ≤ βi1} · · ·P{Yik ≤ βik} .

Definition 5.17 (iid families). Let (Xi)i∈I be a family of random elements Xi : (Ω,P) → Ω′.
We speak of an independent and identically distributed family, aka iid family of random
elements, if

(1) the Xi are independent,
(2) they all have the same distribution:

PXi(B) = PXj (B) , for all i, j ∈ I and all B ⊆ Ω′.

Note that this can also be written

P{Xi ∈ B} = P{Xj ∈ B} , for all i, j ∈ I and all B ⊆ Ω′.

In the special case of a sequenceX1, X2, . . . of iid random elements we speak of an iid sequence
of random elements. �
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6 Advanced Topics – Measure and Probability ?

6.1 Random Variables as Measurable Functions

Definition 6.1 (Measurable functions). ?

(a) Let Ω be a nonempty set and F a σ–algebra on Ω. We call the pair (Ω,F) a measurable
space. (This is not worthwhile remembering, but the remainder of this definition is.)

(b) Let f : (Ω,F) −→ (Ω′,F′) be a function which has measurable spaces both as
domain and codomain. We call this function measurable with respect to F and F′,
a.k.a. (F,F′)–measurable, if

(6.1) A′ ∈ F′ ⇒ f−1(A′) ∈ F .

(c) If f is Rd–valued, in particular if f is real–valued, and if we refer to f as being
F–measurable or Borel measurable, then it is implied that F′ = Bd, the Borel
σ–algebra of Rd. �

Definition 6.2 (Simple Function on Ω). Let (Ω,F) be a measurable space, n ∈ N,A1, . . . , An ∈ F.
Further, let c1, c2, . . . , cn be a corresponding set of real numbers. Let

(6.2) f : Ω −→ R ; ω 7→ f(ω) :=
n∑
j=1

cj111Aj (ω)

Then we call f a simple function. We say that f is in standard form, if the numhers cj are
distinct, i.e., ci 6= cj , for i 6= j. �

Proposition 6.1. ? Let f =

n∑
j=1

cj 111Aj be a simple function. Then f has a representation in

standard form. This standard representation is

(6.3) f(ω) =
k∑
i=1

di111{f=di}(ω) , with distinct numbers d1, . . . , dk.

Theorem 6.1. Assume that f1, f2, . . . are Borel measurable functions, c1, c2, · · · ∈ R, B ∈ F.
Then each of the following also is a Borel measurable function:

• c1 (constant function) • c1f1 • f1 ± f2 • f1f2 • 111Bf1 • f1/f2 (if f2 6= 0) •
n∑
j=1

cjfj

• min(f1, f2) • max(f1, f2) • min
j=1,...,n

fj • max
j=1,...,n

fj • inf
j∈N

fj • sup
j∈N

fj �
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If they exist (see the subsequent remark), the following also are measurable functions:

• lim
j→∞

fj •
∞∑
j=1

fj • min
j∈N

fj • max
j∈N

fj

Theorem 6.2. Let (Ω,F) be a measurable space.
Let f : (Ω,F) −→ [0,∞[ be a nonnegative, (F,B1)–measurable function. Then there exists a sequence
0 ≤ f1 ≤ f2 ≤ · · · of simple functions such that fn ↑ f as n→∞. In other words,

lim
n→∞

fn(ω) = f(ω), for all ω ∈ Ω.

Theorem 6.3. Let (Ω,F,P) be a probability space, (Ω′,F′) a measurable space, and

X : (Ω,F,P) −→ (Ω′,F′,PX) .

an (F,F′)–measurable function. Then the formula

(6.4) PX(A′) := P{X ∈ A′} (A′ ∈ F′)

defines a probability measure on F′.

Only for the remainder of this chapter 6.1 (Advanced Topics – Measurable Functions), we
modify Definitions 5.14 on p.42 and ?? on p.?? as follows.

Definition 6.3 (Advanced level definition of random variables and random elements). ?

Given are a probability space (Ω,F,P), a measurable space (Ω′,F′), d ∈ N, and an
(F,F′–measurable function

X : (Ω,F,P) −→ (Ω′,F′) .

(a) We call X a random element.
(b) If (Ω′,F′) = (R,B)), we also call X a random variable.
(c) If (Ω′,F′) = (Rd,Bd)), we also call X a random vector. �

Theorem 6.4. ? Let Ω be a nonempty set and let EEE ,EEE1 and EEE2 be three collections of subsets of Ω.
Then
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EEE1 ⊆ EEE2 ⇒ σ(EEE1) ⊆ σ(EEE2) ,(6.5)
σ
(
σ(EEE)

)
= σ(EEE) ,(6.6)

σ(EEE1) ⊇ EEE2 and σ(EEE2) ⊇ EEE1 ⇒ σ(EEE1) = σ(EEE2) .(6.7)

Definition 6.4 (Advanced Definition of σ–algebras generated by random elements). ?

We define for a function f and a family of functions (fi)i ∈ I ,

f, fi : Ω −→ (Ω′,F′), i ∈ I :

(6.8) σ{f} := σ{f−1(A′) : A′ ∈ F′}

(6.9) σ
{

(fi)i∈I
}

:= σ{fi : i ∈ I} := σ{f−1
i (A′) : A′ ∈ F′, i ∈ I}

(a) We call σ{f} the σ–algebra generated by the function f .
(b) We call σ

{
(fi)i∈I

}
the σ–algebra generated by the family of functions (fi)i∈I . �

Theorem 6.5. ? Given is a function f with measurable spaces (Ω,F) as domain and (Ω′,F′) as
codomain:

f : (Ω,F) −→ (Ω′,F′) .

No assumption is made about (F,F′)–measurability. Then
(a) σ{f} = {f−1(A′) : A′ ∈ F′}. In particular, {f−1(A′) : A′ ∈ F′}is a σ–algebra for Ω.
(b) f is (F,F′)–measurable ⇔ σ{f} ⊆ F.
(c) We can strengthen assertion (b) as follows: Let EEE ′ be a generator of F′. Then

f is (F,F′)–measurable ⇔ {f−1(E′) : E′ ∈ EEE ′} ⊆ F.

Definition 6.5 (Independence of arbitrarily many random elements – advanced definition).
? Given are a probability space (Ω,F,P), a measurable space (Ω′,F′), and a family of

random elements,
Xi : (Ω,F,P) −→ (Ω′,F′) (i ∈ I).

Here, I denotes an arbitrary set of indices. We say that this family is independent if, for ANY
FINITE subselection of distinct indices i1, i2, . . . , ik ∈ I and j = 1, 2, . . . , k,

P{Xi1 ∈A′i1 , Xi2 ∈ A′i2 , . . . , Xik ∈ A
′
ik
}

= P{Xi1 ∈ A′i1} · P{Xi2 ∈ A′i2} · · ·P{Xik ∈ A
′
ik
} , for all A′ij ∈ F′. �

(6.10)
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Definition 6.6 (Independence of a family of sets of measurable sets). ?

Given are a probability space (Ω,F,P), and a family

EEE i ⊆ F (i ∈ I).

We say that this family is independent if, for ANY FINITE subselection of distinct indices
i1, i2, . . . , ik ∈ I and j = 1, 2, . . . , k, and for any choices Aij ∈ EEE ij ,

(6.11) P{Ai1 ∩Ai2 ∩ · · · , ∩Aik } = P(Ai1) · P(Ai2) · · ·P(Aik) , for all Aij ∈ EEE ij . �

Proposition 6.2. ? Given are a probability space (Ω,F,P), a measurable space (Ω′,F′), and a
family of random elements,

Xi : (Ω,F,P) −→ (Ω′,F′) (i ∈ I).

Then,

The family (Xi)i ∈ I is independent ⇔ the family σ{Xi}i∈I is independent.

Definition 6.7 (Independence of arbitrarily many random elements – precise definition).
REMOVED: This has already been covered in Definition 6.5 (Independence of arbitrarily many
random elements – advanced definition) on p.49.

6.2 Measures

This chapter is very selective and incomplete at this point in time. Additions will be made as
time allows.

Definition 6.8 (Abstract measures). Let (Ω,F) be a measurable space. A measure on F is an
extended real–valued function

µ : F→ [0,∞]; A 7→ µ(A) . such that

µ(∅) = 0 ,(6.12)
A,B ∈ F and A ⊆ B ⇒ µ(A) ≤ µ(B) , (monotony)(6.13)

(An)n∈N ∈ Fdisjoint ⇒ µ
(⊎
n∈N

An

)
=
∑
n∈N

µ(An) . (σ–additivity)(6.14)

• The triplet (Ω,F, µ) is called a measure space
• We call any set N ⊆ Ω with measure zero a µ Null set.
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• We call µ a discrete measure if there is a countable A∗ ∈ F such that µ
(
A∗{

)
= 0.

We then call (Ω,F, µ) a discrete measure space
• ? We call µ a finite measure on F if µ(Ω) <∞.

• We call µ a σ–finite measure on F if one can find a sequence An ∈ F such that
µ(An) <∞ and Ω =

⋃
nAn.

See these footnotes concerning measurable spaces, 8 extended real numbers, 9 and µ–null sets. 10

�

Definition 6.9 (Counting measure). ? Let (Ω,F) be a measurable space, A∗ 6= ∅ a count-
able subset of Ω

(a) We call the measure Σ∗ on F, defined by

Σ∗(A) := |A ∩A∗|

the counting measure on F with respect to A∗.
(b) In particular, if Ω ⊆ R and A∗ = N, we call Σ∗ the standard counting measure on F.
(c) If no reference to a σ–algebra is made, we set F := 2Ω. �

Fact 6.1. ?

• Let I = I5 or I = I8. Let the function µ0 : I→ [0,∞[ (so E ∈ I ⇒ µ0(E) <∞) satisfy
µ0(∅) = 0, µ0(Rd) = 1 and σ–additivity on I: En ∈ I disjoint such that
E :=

⊎
n∈N

En ∈ I ⇒ µ0(E) =
∑
n∈N

µ0(En).

Then µ0 can be uniquely extended to a measure on Bd, the Borel sets of Rd.

• One can drop the requirement that µ0(A) <∞ for all A ∈ I, but then the extension µ is no
more guaranteed to be unique.

• Note that for d = 1, the following sets are equal: I5 = I1, I8 = I4, B
1 = B. �

Theorem 6.6. Let f : Rn → R be nonnegative and Borel–measurable. Then the set function

(6.15) µ : Bd −→ [0,∞], µ(A) :=

∫
A
f dλd

defines a measure on Bd.

8See Definition 6.1 (Measurable functions) on p.47.
9See Definition 2.14 (Extended real numbers) on p.11.

10Strictly speaking any set N such that N ⊆ A and µ(A) = 0 is said to be µ Null. We ignore such fine points.
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Theorem 6.7 (Continuity property of measures). ? Let (Ω,F, µ) be a measure space. If
An, Bn ∈ F, then the following is true:

An ↑ ⇒ P(An) ↑ µ

(⋃
n∈N

An

)
,(6.16)

Bn ↓ and µ(B1) <∞ ⇒ P(Bn) ↓ P

(⋂
n∈N

Bn

)
.(6.17)

Proposition 6.3. Let (Ω,F, µ) be a measure space and (Ω′,F′) a measurable space.
Let f : Ω→ Ω′ be (F,F′) measurable. Then the set function

µf : F′ → [0,∞];A′ 7→ µ{f ∈ A′} = µ{ω ∈ Ω : f(ω) ∈ A′}(6.18)

defines a measure on (Ω′,F′). Moreover, if µ is a probability measure on F, i.e., µ(Ω = 1), then µf is a
probability measure on F′.

Definition 6.10 (Image measure).

(1) ? We call the measure µf of Proposition 10.11 the image measure of µ under f
aka the measure induced by µ and f .

(2) We now switch notation from f and µ to the more customary X and P for the sake
of clarity. In the case of a random element X on a probability space (Ω,F,P) with
codomain (Ω′,F′), we call the image measure PX of P under X which is, according
to (10.47), given by

(6.19) PX(B) := P{X ∈ B} = P{ω ∈ Ω : X(ω) ∈ B}, (B ∈ B1)

the probability distribution or simply the distribution of X . �

6.3 Abstract Integrals

Definition 6.11 (Abstract integral for simple functions). Let (Ω,F, µ) be a measure space. (see
Definition 6.8 (Abstract measures) on p.50)

Let n ∈ N, A1, . . . , An ∈ F, c1, . . . , cn ∈ [0,∞[. Let

f : (Ω,F, µ) −→ R; f(ω) =

n∑
j=1

cj111Aj (ω) .

The abstract integral aka integral of the simple function f with respect to µ is

(6.20)
∫
fdµ :=

∫
f(ω)dµ(ω) :=

∫
f(ω)µ(dω) :=

n∑
j=1

cjµ(Aj) . �
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Proposition 6.4. ? Let (Ω,F, µ) be a measure space. Let f, gn, hn : (Ω,F, µ) −→ R be nonneg-
ative, (F,B1)measurable functions. Assume further that the functions gn and hn are simple. Then the
following is true:

(6.21) If gn ↑ f and hn ↑ f , then lim
n→∞

∫
gndµ = lim

n→∞

∫
hndµ .

Definition 6.12 (Abstract integral for measurable functions).
(a) Let (Ω,F, µ) be a measure space, f, fn : (Ω,F, µ) −→ R (F,B1)measurable, and assume
that the functions fn are simple and • either 0 ≤ fn ↑ f • or 0 ≥ fn ↓ f . Then

(6.22)
∫
fdµ := lim

n→∞

∫
fndµ

is called the abstract integral aka integral of f with respect to µ. �

(b) Let (Ω,F, µ) be a measure space and f : (Ω,F, µ) −→ R (F,B1)measurable, such that

• both f+ and f− are limits of nondecreasing sequences of simple functions ≥ 0;

• at least one of
∫
f+dµ,

∫
f−dµ is finite. (According to (a), those integrals exist, but

neither of them was guaranteed to be finite.)

Then we define the abstract integral aka integral of f with respect to µ, as the expression

(6.23)
∫
f dµ =

∫
(f+ − f−) dµ :=

∫
f+ dµ −

∫
f− dµ .

(c) We call a real–valued function f µ–integrable, if
∫
f dµ exists and is finite. �

Assumption 6.1. Unless explicitly stated otherwise, we assume the following for the remainder
of this chapter (Chapter 6 (Advanced Topics – Measure and Probability)).

• The underlying measurable space is (Ω,F).
• The underlying measure is µ.
• “measurable” means “(F,B1)measurable”. �

Theorem 6.8. ? abstract integrals satisfy the following.

Let A ∈ F and assume that f is (F,B1)measurable. Then

(a) If
∫
f dµ exists, then

∫
111A f dµ exists.

(b) If f is µ–integrable, then 111Af is µ–integrable.

53 Math 447 - Version 2025-09-04



Math 447 – MF Lecture Notes Skeletal version: proofs omitted

Definition 6.13. Let A ∈ F and assume that f is a measurable function on (Ω,F, µ), for which
the abstract integral

∫
fdµ exists. The abstract integral of f on A or over A is defined by the

expression

(6.24)
∫
A
f dµ :=

∫
A
f(ω)dµ(ω) :=

∫
A
f(ω)µ(dω) :=

∫
111Af dµ .

We say that f is µ–integrable on A, if
∫
A f dµ exists and is finite. �

Proposition 6.5 (Integrability criterion). ? Let f be a measurable function and A ∈ F. Then

f is integrable on A ⇔
∫
A
|f | dµ <∞ ⇔ both

∫
A
f+ dµ <∞ and

∫
A
f− dµ <∞.

Theorem 6.9. Assume that f, g, f1, f2, . . . are measurable functions, c, c1, c2, · · · ∈ R, and A ∈ F.
Then µ–integrals on A satisfy the following.

(a) Positivity:
∫
A

0 dµ = 0; f ≥ 0 on A ⇒
∫
A
f dµ ≥ 0,

(b) Monotonicity: µ{ω ∈ A : f(ω) > g(ω)} = 0 ⇒
∫
A
f dµ ≤

∫
A
g dµ.

In particular, f ≤ g on A ⇒
∫
A
f dµ ≤

∫
A
g dµ,

and also, µ{ω ∈ A : f(ω) 6= g(ω)} = 0 ⇒
∫
A
f dµ =

∫
A
g dµ.

(b) Linearity I: f, g integrable on A ⇒
∫
A

(f ± g) dµ =

∫
A
f dµ±

∫
A
g dµ

and also,
∫
A

(cf) dµ = c

∫
A
f dµ.

Linearity II: f1 . . . , fn integrable ⇒
∫
A

( n∑
j=1

fj

)
dµ =

n∑
j=1

cj

∫
A
fj dµ.

(d) Monotone Convergence: Assume that 0 ≤ f1 ≤ f2 ≤ · · · , 0 ≥ g1 ≥ g2 ≥ · · · .

Then
∫
A
fn dµ ↑

∫
A

(
sup
n∈N

fn

)
dµ and

∫
A
gn dµ ↓

∫
A

(
inf
n∈N

gn

)
dµ as n→∞.

(e) Dominated Convergence: Assume that

• lim
n→∞

fn exists, • fn ≤ g for all n ∈ N, •
∫
A
g dµ < ∞.

Then lim
n→∞

∫
A
fn dµ =

∫
A

(
lim
n→∞

fn

)
dµ as n→∞.
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Definition 6.14 (Product measure space). ? Let (Ω1,F1, µ1) and (Ω1,F1, µ1) be measure
spaces with σ–finite measures µ1, µ2. Let

(6.25) F1 ⊗ F2 := σ{A1 ×A2 : A1 ∈ F1, A2 ∈ F2} .

Let µ1 × µ2 : F1 ⊗ F2 −→ [0,∞] be the measure which is uniquely determined by

(6.26) µ1 × µ2(A1 ×A2) = µ1(A1) · µ2(A2) , for A1 ∈ F1 and A2 ∈ F2.

We call the measure space (Ω1×Ω2,F1⊗F2, µ1×µ2) the product measure space aka product
space of the factors (Ω1,F1, µ1) and (Ω1,F1, µ1), F1 ⊗ F2 the product σ–algebra of the factors
F1 and F2, and µ1 × µ2 the product measure of the factors µ1 and µ2.

There are alternate ways to denote integrals with respect to µ1 × µ2.

∫
fdµ1 × µ2 =

∫
f(ω1, ω2) dµ1 × µ2(ω1, ω2)

=

∫
f(ω1, ω2)µ1 × µ2

(
d(ω1, ω2)

)
=

∫
f(ω1, ω2)µ1 × µ2(dω1, dω2)

(6.27)

See (6.20) and (6.24). �

Theorem 6.10 (Fubini’s theorem for abstract integrals). ? Let (Ω1,F1, µ1) and (Ω1,F1, µ1)

be measure spaces with σ–finite measures µ1, µ2. Let

f : (Ω1 × Ω2,F1 ⊗ F2, µ1 × µ2) −→ R; (ω1, ω2) 7→ f(ω1, ω2), be F1 ⊗ F2–measurable.

Assume that f is nonnegative and/or (µ1 × µ2)–integrable, and that A1 ∈ F1, A2 ∈ F2. Then∫
A1×A2

f dµ1 × µ2 =

∫
A1

(∫
A2

f dµ2

)
dµ1

=

∫
A2

(∫
A1

f dµ1

)
dµ2 .

(6.28)

When we supply the arguments, ω1 and ω2, (6.28) reads

∫
A1×A2

f
(
ω1, ω2

)
µ1 × µ2

(
d(ω1, ω2)

)
=

∫
A1

(∫
A2

f
(
ω1, ω2

)
µd2(dω2)

)
µd1(dω1)

=

∫
A2

(∫
A1

f
(
ω1, ω2

)
µd1(dω1)

)
µd2(dω2) .

(6.29)
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6.4 The ILMD Method

Theorem 6.11 (Integrals under Transforms). ? Let (Ω,F, µ) be a measure space and let (Ω′,F′)

be a measurable space. Assume that f : Ω → Ω′ is (F,F′)–measurable. and g : Ω′ → R is (F′,B1)–
measurable. µf denotes the image measure of µ under f on F′. It was defined in Definition 6.10 on p.52
as

µf (A′) = µ{f ∈ A′} = µ
(
f−1(A′)

)
.

If g ≥ 0 or g ◦ f is integrable then

(6.30)
∫
g ◦ f dµ =

∫
g dµf , i.e.,

∫
Ω
g
(
f(ω)

)
dµ(ω) =

∫
Ω′
g(ω′) dµf (ω′) .

Theorem 6.12. ? Let (Ω,F, µ) be a measure space and let f be a nonnegative, real–valued, Borel–
measurable function on (Ω,F, µ). Let ν be the measure defined by

(6.31) ν(A) :=

∫
A
f dµ

(see Theorem 6.6 on p.51). Further, let ϕ be a real–valued, Borel–measurable function on Ω, such that
ϕ ≥ 0 or ϕ is ν–integrable. Then

(6.32)
∫
A
ϕdν =

∫
A
ϕ · f dµ, i.e.,

∫
A
ϕ(ω) ν(dω) =

∫
A
ϕ(ω) f(ω)µ(dω); A ∈ F .

6.5 Expectation and Variance as Probability Measure Integrals

Definition 6.15 (Expected value of a random variable). Let Y be a random variable on a prob-
ability space (Ω, ,P).

(a) We call

(6.33) E[Y ] :=

∫
Y dP

the expected value, also expectation or mean of Y .
(b) We call

(6.34) V ar[Y ] := E
[
(Y − E[Y ])2

]
=

∫
(Y − E[Y ])2 dP

the variance, of Y .
(c) We call SD[Y ] := σY :=

√
V ar[Y ] The standard deviation of Y . �
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Theorem 6.13 (LOTUS: Expectations under Transforms). Let (Ω,F,P) be a probability space and
let (Ω′,F′) be a measurable space. Let X be a random element on Ω which takes values in Ω′. Moreover,
let g : Ω′ → R; x 7→ g(x), be a random variable on (Ω,F′,PX). Here, PX denotes the distribution of
X (this is the image measure of P under X on F′).
If g ≥ 0 or g ◦X is integrable, then

(6.35) E[g ◦X] =

∫
Ω
g ◦X(ω) P(dω) =

∫
Ω′
g(x) PX(dx) .

In particular, if X itself is a random variable and thus, (Ω′,F′) = (R,B1), then

(6.36) E[X] =

∫
Ω
X(ω) P(dω) =

∫
R
xPX(dx) .
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7 Combinatorial Analysis

7.1 The Multiplication Rule

Theorem 7.1 (Multiplication rule). (A) Assume that two actions A and B are performed such that
• the first one has m outcomes, {a1, a2, . . . , am},
• the second one has n outcomes {b1, b2, . . . , bn} for each outcome of the first one.

• Then the number of combined outcomes (ai, bj) is mn.

(B) Generalization. Assume that k actions A1, . . . , Ak are performed such that

··· action A1 has n1 outcomes, {a(1)
1 , a

(1)
2 , . . . , a

(1)
n1 },

··· action A2 has n2 outcomes, {a(2)
1 , a

(2)
2 , . . . , a

(2)
n2 } for each outcome of A1,

··· action A3 has n3 outcomes, {a(3)
1 , a

(3)
2 , . . . , a

(3)
n3 } for each combined outcome (x1, x2), where

x1 is one of the A1–outcomes and x2 is one of the A2–outcomes,
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

··· action Ak has nk outcomes, {a(k)
1 , a

(k)
2 , . . . , a

(k)
nk } for each combined outcome (x1, x2, xk−1),

where each xj is one of the Aj–outcomes, i.e., xj is one of a(j)
1 , . . . , a

(j)
nj .

• Then there are n1 · n2 · · ·nk combined outcomes (x1, x2, . . . , xk).
Here, each xj is one of the nj outcomes a(j)

1 , . . . , a
(j)
nj of Aj .

7.2 Permutations

Definition 7.1 (WMS Ch.02.6, Definition 2.7 - Permutation). An ordered arrangement of r dis-
tinct objects is called a permutation of size r. The number of ways of ordering n distinct objects
taken r at a time will be designated by the symbol Pnr . �

Theorem 7.2 (WMS Ch.02.6, Theorem 2.2).

(7.1) Pnr = n(n− 1)(n− 2) · (n− r + 1) =
n!

(n− r)!
.

Here, n! (“n factorial”) is defined as follows.

n! =

{
n(n− 1) · · · 2 · 1 , if n ∈ N ,

1 , if n = 0 .
(7.2)
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7.3 Combinations, Binomial and Multinomial Coefficients

Theorem 7.3. Let 0 ≤ k ≤ n. A set of size n has

n!

k!(n− k)!
.

subsets of size k.

Definition 7.2 (Number of combinations). We call the number of selections of size k from a
collection of n distinct items when the order in which those k items were selected is ignored,
the number of combinations of n objects taken k at a time. We write

(
n
k

)
for this number. �

Theorem 7.4. Given are n items of which n1 are alike, n2 are alike, . . . , nr are alike (n1 + · · ·+nr = n).
Then the number of distinguishable arrangements of those n items is(

n

n1, n2, . . . nr

)
=

n!

n1!n2! · · · nr!
.

Definition 7.3 (Multinomial coefficients). The numbers(
n

n1 n2 · · ·nr

)
=

n!

n1!n2! · · ·nr!
.(7.3)

that appear in Theorem 7.4 are called multinomial coefficients. If r = 2, then there is some
integer 0 ≤ k ≤ n such that n1 = k and n2 = n− k. We write(

n

k

)
:=

n!

k!(n− k)!
for

(
n

k, n− k

)
(7.4)

and speak of binomial coefficients. Convention: We define
(
n
k

)
:= 0 for k > n. �

Theorem 7.5. Let r, n ∈ N such r ≤ n and x1, x2, . . . xr ∈ R. Then

(
x1 + x2 + · · ·+ xr

)n
=

∑
n1,...,nr≥0
n1+···+nr=n

(
n

n1, n2, . . . nr

)
xn1

1 xn2
2 · · ·x

nr
r .(7.5)
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In particular, if r = 2, we obtain the binomial theorem:

(
x1 + x2

)n
=

n∑
j=0

(
n

j

)
xj1 x

n−j
2 .

Theorem 7.6. Given are n distinct items and r distinct bins of fixed sizes n1, n2, . . . , nr such that
n1 + · · ·+ nr = n.
Then the number of distinguishable placements of the n items into those r bins, when disregarding the
order in which the items were placed into any one of those bins, is(

n

n1, n2, . . . nr

)
=

n!

n1!n2! · · · nr!
.

Proposition 7.1. (A) There are
(
n− 1

r − 1

)
distinct integer–valued vectors ~x =

(
x1, x2, . . . , xr

)
such

that
x1 + x2 + · · ·+ xr = n and xi > 0, i = 1, . . . , r .

(B) There are
(
n+ r − 1

r − 1

)
distinct integer–valued vectors ~y =

(
y1, y2, . . . , yr

)
such that

y1 + y2 + · · ·+ yr = n and yi ≥ 0, i = 1, . . . , r .

Proposition 7.2. (A) There are
(
n− 1

r − 1

)
ways to select n indistinguishable items into r distinct bins

such that each bin contains at least one item.

(B) There are
(
n+ r − 1

r − 1

)
ways to select n indistinguishable items into r distinct bins.

Remark 7.1. The multinomial coefficients(
n

n1 n2 · · ·nk

)
=

n!

n1!n2! · · ·nk!
.

of Definition 7.3 appear in the following settings:
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• Distinct selections of n items of which n1 are alike, n2 are alike, ..., nk are alike.
Example: different rearrangements of the word “BANANA”.

• They are coefficients in the expansion of
(
x1 + x2 + · · ·xk

)n.
• Selections of n distinct items into k distinct bins of fixed sizes n1, . . . , nk, disregard-

ing order within each bin. That is the WMS definition in their Theorem 2.3 of Ch.02.6.
�
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8 More on Probability

This chapter corresponds to material found in WMS ch.2

8.1 Total Probability and Bayes Formula

Theorem 8.1 (Total Probability and Bayes Formula 11 ). Assume that {B1, B2, . . . } is a partition
of Ω and that A ⊆ Ω. such that P(Bj) > 0 for all j. Then

P(A) =

∞∑
j=1

P(A | Bj) P(Bj) .(8.1)

P(Bj | A) =
P(A | Bj)P(Bj)
∞∑
i=1

P(A | Bi) P(Bi)

. (Bayes formula)(8.2)

Note that the above also covers finite partitions {B1, B2, . . . , Bk} of Ω: apply the formulas with

Bk+1 := Bk+2 := · · · := ∅ .

8.2 Sampling and Urn Models With and Without Replacement

Definition 8.1.
(a) We call the action of picking n items x1, x2, . . . , xn from a collection of N items a

sampling action of size n. Aternatively, we also use the phrases sampling process
and sampling procedure. Here, n ∈ N and N ∈ N or N =∞.

(b) We call the specific outcome of such a sampling action (the list x1, x2, . . . , xn) a real-
ization of that sampling action. �

(c) In yet another instance of notational abuse, both the sampling action and an outcome
of this action (a realization) will be referred to as a sample of size n if this does not
lead to any confusion. Note that we had mentioned this previously in Example ??
on p.??. �

Definition 8.2 (Sampling as a Random element). Let (Ω,P) be a probability space. Let U 6= ∅
be a collection of N items (N ∈ N or N = ∞), which we can think of as the “population of
interest”. Let n ∈ N (so n <∞), such that n ≤ N .

(a) Let ~X : (Ω,P) −→ Un be a random element with codomain Un. If we interpret ~X as
the action of picking n items

~x = x1, x2, . . . , xn = ~X(ω) = X1(ω), X2(ω), . . . , Xn(ω)

from U , then we call ~X a sampling action of size n. Aternatively, we also use the
phrases sampling process and sampling procedure.

(b) We call a specific outcome (the list ~x = (x1, x2, . . . , xn)) a realization of that sam-
pling action. See Example ?? on p.??.
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(c) Both the sampling action and an outcome of this action (a realization) are called a
sample of size n if the context makes it clear what is being discussed.

(d) If there is a specific ~x∗ ∈ Un such that P{ ~X = ~x∗} = 1, (this certainly is the case if
~X(ω) = ~x∗ for all ω ∈ Ω), then we call both the sampling action ~X and the realization
~x∗ a deterministic sample. �

Definition 8.3 (Simple Random Sample).
(a) We call a sampling action of size n (n ∈ N) from a population of sizeN <∞ a simple

random sampling action, in brief, an SRS action, if there are no duplicates allowed
(i.e., we sample without replacement) and each of the potential outcomes has equal
chance of being selected.

(b) As in Definition 8.2 (Sampling as a Random element), we call both an SRS action and
a realization of this action a simple random sample of size n. (Briefly, an SRS.) �

Definition 8.4 (Random Sample).
(a) We call a sampling action of size n (n ∈ N) from a population of size N < ∞ a

random sampling action, if the picks are independent of each other. See Chapter
5.4 (Independence of Random Elements) for the definition of independent random
elements.

(b) As in Definition 8.2 (Sampling as a Random element), we call both a random sam-
pling action and a realization of this action a random sample of size n. �

Definition 8.5 (Urn models).
(a) An urn model without replacement describes a mechanism by which a blindfolded

person selects a fixed number of balls from an urn in which the balls have been well
mixed. Note that the resulting realizations will contain no duplicates.

(b) An urn model with replacement describes a mechanism by which a blindfolded
person selects a fixed number of balls from an urn as follows.
(1) The balls are well mixed.
(2) A ball is picked and the outcome is recorded.
(3) The ball is put back into the urn.
(4) Steps (1) through (3) are repeated until all n balls have been selected. �
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9 Discrete Random Variables and Random Elements

This chapter corresponds to material found in WMS ch.3

Assumption 9.1 (All series are absolutely convergent). We assume the following for the entire
remainder of these lecture notes.
• Unless explicitly stated otherwise, all sequences are either known to be absolutely

convergent or assumed to be absolutely convergent.

In particular, if pX(x) is the probability mass function of a discrete random element X which
takes values in a set Ω′, g : Ω′ → R is a real–valued function, and ω′n is a sequence in Ω′, then
we assume that the series

∑
g(ω′n)pX(ω′n) is absolutely convergent. �

9.1 Probability Mass Function and Expectation

Proposition 9.1. A real–valued function of a random element is a random variable.

Definition 9.1 (Probability mass function). For a discrete random element X on (Ω,P), define

p(x) := pX(x) := PX{x} = P{X = x} .(9.1)

We call pX the probability mass function (WMS: probability function ) for X . We also write
PMF for probability mass function. �

Theorem 9.1. If pX is the probability mass function of a discrete random element X , then

0 ≤ pX(x) ≤ 1; for all x(9.2) ∑
x s.t. pX(x)>0

pX(x) = 1(9.3)

Definition 9.2 (Expected value of a discrete random variable). Let Y be a discrete random
variable with probability mass function pY (y). Then

E[Y ] :=
∑
y

y pY (y) =
∑
y

y P{Y = y} ,

is called the expected value, also expectation or mean of Y . �
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Proposition 9.2. ? Let A1, A2, . . . , An a list of mutually disjoint events in a probability space
(Ω,P). Let y1, y2, . . . , yn ∈ R. Then

E

 n∑
j=1

yj111Aj

 =

n∑
j=1

yjP(Aj) .(9.4)

Theorem 9.2. Let Y be a discrete random variable and g : R→ R; y 7→ g(y) be a real-valued function.
Then the random variable g ◦ Y : ω 7→ g

(
Y (ω)

)
has the following expected value:

E[g(Y )] =
∑
all y

g(y) pY (y) =
∑
all y

g(y) P{Y = y} .(9.5)

Theorem 9.3. Let c ∈ R, Y be a discrete random variable and g1, g2, gn : R → R be a list of n
real-valued functions. Then

E[c] = c and E[cY ] = cE[Y ] ,(9.6)
E[cgj(Y )] = cE[gj(Y )] .(9.7)

Further, the random variable

n∑
j=1

gj ◦ Y : Ω −→ R; ω 7→
n∑
j=1

gj
(
Y (ω)

)
has the following expected value:

E

 n∑
j=1

gj ◦ Y

 =

n∑
j=1

E[gj ◦ Y ] .(9.8)

Theorem 9.4. Let Y1, Y2, . . . , Yn : Ω → R be discrete random variables which all are defined on the
same probability space (Ω,P) (n ∈ N). Then the random variable

n∑
j=1

Yj : Ω −→ R; ω 7→
n∑
j=1

Yj(ω)

has the following expected value:

E

 n∑
j=1

Yj

 =

n∑
j=1

E[Yj ] .(9.9)
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In other words, the expectation of the sum is the sum of the expectations.

Definition 9.3 (Variance and standard deviation of a random variable). Y be a random vari-
able. The variance of Y is defined as the expected value of (Y − E[Y ])2. In other words,

V ar[Y ] := σ2
Y := E

[
(Y − E[Y ])2

]
.(9.10)

We call SD(Y ) := σY :=
√
V ar[Y ] The standard deviation of Y . �

Theorem 9.5. If Y is a discrete random variable, then

V ar[Y ] = E
[
Y 2
]
−
(
E[Y ]

)2
.

Theorem 9.6. Let Y be a discrete random variable and a, b ∈ R. Then

V ar [aY + b] = a2V ar[Y ] .(9.11)

In other words, shifting a random variable by b, leaves its variance unchanged and multiplying it by a
constant multiplies its variance by the square of that constant.

Theorem 9.7 (Bienaymé formula). Let Y1, Y2, . . . , Yn : Ω → R be independent discrete random
variables which all are defined on the same probability space (Ω,P) (n ∈ N). Here we take the naive
definition of independence: The outcomes of any Yk are not influenced by the outcomes of the other Yj .
We will give a formulation of independence in terms of probabilities in a later chapter. Then

V ar

 n∑
j=1

Yj

 =
n∑
j=1

V ar[Yj ] .(9.12)

In other words, for independent random variables, the variance of the sum is the sum of the variances.

9.2 Bernoulli Variables and the Binomial Distribution

Definition 9.4 (Bernoulli trials and variables). A Bernoulli trial. is a random element with
only two outcomes, such as

��� S (success) or F (failure) ��� T (true) or F (false) ��� Y (Yes) or N (No) ��� 1 or 0
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• We call p := P{X = success } the success probability
and q := 1− p = P{X = failure } the failure probability of the Bernoulli trial.

• If a Bernoulli trial X has numeric outcomes, then we call X a Bernoulli variable.
• If those outcomes are 1 and 0, we say that X is a 0–1 encoded Bernoulli trial.
• A Bernoulli sequence is an iid sequence (Def. 5.17 on p.46) of Benoulli trials. �

Theorem 9.8 (Expected value and variance of a 0–1 encoded Bernoulli trial). Let X be a 0–1
encoded Bernoulli trial with p := P{X = 1}. Then

E[X] = p and V ar[X] = pq .(9.13)

Definition 9.5 (Binomial Distribution). Let n ∈ N and 0 ≤ p ≤ 1. Let Y be a random variable
with probability mass function

pY (y) =

(
n

y

)
py qn−y .(9.14)

Then we say that Y has a binomial distribution. with parameters n and p or, in short, a
binom(n, p) distribution. We also say that Y is binom(n, p). �

Theorem 9.9. Let X1, X2, Xn be a Bernoulli sequence of size n with success probability p. Let Y be the
number of successes in that sequence, i.e., Y (ω) = number of indices j such that Xj(ω) = S.
• Then Y is binom(n, p).

Theorem 9.10 (Expected value and variance of a binom(n, p) variable). Let Y be a binom(n, p)
variable. Then

E[Y ] = np and V ar[Y ] = npq .(9.15)

9.3 Geometric + Negative Binomial + Hypergeometric Distributions

Definition 9.6 (Geometric distribution). A random variable Y is said to have a geometric dis-
tribution with parameter 0 ≤ p ≤ 1 or, in short, a geom(p) distribution, if its probability mass
functions is as follows:

pY (y) = qy−1 p , for y = 1, 2, 3, . . . . �(9.16)

67 Math 447 - Version 2025-09-04



Math 447 – MF Lecture Notes Skeletal version: proofs omitted

Theorem 9.11. Let X1, X2, · · · : (Ω,P) → {S, F} be an infinite Bernoulli sequence with success
probability 0 ≤ p ≤ 1.
Let T (Ω,P)→ N be the random variable

T (ω) :=

{
smallest integer k > 0 such that Xk(ω) = S if such a k exists,
∞ , else.

• Then T is geom(p).

Theorem 9.12 (WMS Ch.03.5, Theorem 3.8). If Y is a geom(p) random variable, then

E[Y ] =
1

p
, and V ar[Y ] =

q

p2
.

Definition 9.7 (Negative binomial distribution). ? A random variable Y has a negative
binomial distribution with parameters p and r if

(9.17) pY (y) =

(
y − 1

r − 1

)
prqy−r , where r ∈ N, y = r, r + 1, r + 2, . . . , 0 ≤ p ≤ 1 . �

Theorem 9.13. Let X1, X2, · · · : (Ω,P) → {S, F} be an infinite Bernoulli sequence with success
probability 0 ≤ p ≤ 1.
Let t1 < t2 < · · · be the subsequence of those indices at which a success happens. In other words,

Xn(ω) =

{
S = success if n is one of t1, t2, . . . ,
F = failure , else.

Two points to note:
• There will be different subsequences t1, t2, . . . for different arguments ω ∈ Ω. In other words, we

are dealing with a sequence of random variables(!)

t1 = T1(ω), t2 = T2(ω), t3 = T3(ω), . . .

• It is possible that we are dealing with an ω for which there are only 18 successes in the entire
(infinite) sequence X1(ω), X2(ω), . . . . In this case, we define T19(ω) = T20(ω) = · · · =∞.
More generally, if r ∈ N and the sequence X1(ω), X2(ω), . . . has less than r successes, we define

Tr(ω) := ∞ .
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Now that we have defined Tr = Tr(ω), we are ready to state the theorem.
• The random variable Tr has a negative binomial distribution with parameters p and r.

Theorem 9.14. ?

If the random variable Y is negative binomial with parameters p and r,

E[Y ] =
r

p
and V ar[Y ] =

r(1− p)
p2

.

Definition 9.8 (Hypergeometric distribution). A random variable Y has a hypergeometric dis-
tribution with parameters N , R and n if its PMF is

(9.18) pY (y) =

(
R
y

)(
N−R
n−y

)(
N
n

) ,

where the nonnegative integers N,R, n and y are subject to the following conditions:
• y ≤ n • y ≤ R • n− y ≤ N −R �

Theorem 9.15.

• Given is an urn wich contains N well–mixed balls of two colors, Red and Black. We assume
that R are Red and thus, the remaining N −R are Black.

• A sample of size n is drawn without replacement from that urn, according to Definition
8.5(a).

Let the random variable Y denote the number of Red balls in that sample. Then Y is hypergeometric
with parameters N , R and n. In other words, its PMF is

pY (y) =

(
R
y

)(
N−R
n−y

)(
N
n

) .

Theorem 9.16 (WMS Ch.03.7, Theorem 3.10). ?

Let Y be a hypergeometric random variable with parameters N , R and n. Then

(9.19) E[Y ] =
nR

N
and V ar[Y ] = n

(
R

N

)(
N −R
N

)(
N − n
N − 1

)
.
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9.4 The Poisson Distribution

Proposition 9.3. Let λ > 0. Then the function

p(y) := e−λ
λy

y!

defines a probability mass function on [0,∞[Z= {0, 1, 2, . . . }.

Definition 9.9 (Poisson variable). Let Y be a random variable and λ > 0. We say that Y has a
Poisson probability distribution with parameter λ, in short, Y is poisson(λ), if its probability
mass function is

pY (y) =
λy

y!
e−λ , for y = 0, 1, 2, . . . , �

Proposition 9.4. Given is some event of interest, E.
(1) We define a random variable Y which counts how often E happen in a “unit”. We leave it open

whether this unit is a time interval (maybe a minute or a year) or a subset of d–dimensional space
(d = 1, 2, 3). Let us write A for that unit.

• Example: Y is the number of car accidents that happen in Binghamton during a day (unit of time),
• Example: Y is the number of typos on a randomly picked page of these lecture notes (“page” is a

twodimensional unit – square inches).
(2) Given n ∈ N, we subdivide the unit (A) into n parts of equal size. Let

~X(n) :=
(
X

(n)
1 , X

(n)
2 , . . . , X(n)

n

)
,

where X(n)
j = the number of times that E happens in subunit j.

• Assume that for all big enough, FIXED n,
� the X(n)

j are independent
� for each j, P{X(n)

j = 0 or 1} = 1: E (i.e., the event of interest) happens at most once in such a
small subunit
� pn := P{X(n)

j = 1} is constant in j (j = 1, 2, . . . , n)
� λ := n ·pn is constant in n: For large enough k, kpk = (k+1)pk+1 = (k+2)pk+2 = · · · = λ.

Given these assumptions, the following is true:

(a) The random variable Y (n) := X
(n)
1 +X

(n)
2 + · · · ,+X(n)

n is binom(n, pn) for large n.
(b) The binom(n, pn) probability mass functions pY (n) converge to that of a poisson(λ) variable:

(9.20) lim
n→∞

pY (n)(y) = lim
n→∞

(
n

y

)
pyn(1− pn)n−y = e−λ · λ

y

y!
, for y = 0, 1, 2, . . . ,

Theorem 9.17 (WMS Ch.03.8, Theorem 3.11).
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A poisson(λ) random variable has expectation and variance λ. In other words,

(9.21) E[Y ] = V ar[Y ] = λ .

9.5 Moments, Central Moments and Moment Generating Functions

Definition 9.10 (kth Moment). If Y is a random variable and k ∈ N,

µ′k := E[Y k](9.22)

is called the kth moment of Y . µ′k also is referred to as the kth moment of Y about the origin.
�

Definition 9.11 (kth Central Moment). If Y is a random variable and k ∈ N,

µk := E[(Y − E[Y ])k] = E[(Y − µ)k](9.23)

is called the kth central moment of Y aka the kth moment of Y about its mean. �

Proposition 9.5 (The moments determine the distribution). ? Under fairly slight assumptions
the following is true for two random variables Y1 and Y2.

If E[Y k
1 ] = E[Y k

2 ] for k = 1, 2, 3, . . . , then PY1 = PY2 .

In other words, the distribution of a random variable is uniquely determined by its moments.

Definition 9.12 (Moment–generating function). Let Y be a random variable for which one can
find δ > 0 (no matter how small), such that

m(t) := mY (t) := E
[
etY
]

is finite for |t| < δ .(9.24)

Then we say that Y has moment–generating function, in short, MGF, mY (t). �

Theorem 9.18. Let Y be a random variable with MGF mY (t) and k ∈ N. Then its kth moment is
obtained as the kth derivative of mY (·), evaluated at t = 0:

µ′k = m(k)(0) =
dkm(t)

dtk

∣∣∣
t=0

.(9.25)
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Proposition 9.6. ? If Y is a poisson(λ) random variable (λ > 0), its MGF is

mY (t) = eλ(et−1) .(9.26)
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10 Continuous Random Variables

10.1 Cumulative Distribution Function of a Random Variable

Definition 10.1 (Cumulative Distribution Function). Let Y denote any random variable (it
need not be discrete). The distribution function of Y , also called its cumulative distribu-
tion function or CDF (cumulative distribution function), is defined as follows.

F (y) := FY (y) := P{Y ≤ y} for y ∈ R . �(10.1)

Theorem 10.1 (Properties of a Cumulative Distribution Function). If FY (y) is the cumulative
distribution function of a random variable Y , then

(1) FY (−∞) = lim
y→−∞

P(Y ≤ y) = 0.

(2) FY (∞) = lim
y→∞

P(Y ≤ y) = 1.

(3) FY (y) s a nondecreasing function of y. In other words, if y1 < y2, then FY (y1) ≤ FY (y2)
See Definition 2.24 on p.15.

(4) y 7→ FY (y) is right continuous at all arguments y, i.e., F (y) = F (y+) for all y.

10.2 Continuous Random Variables and Probability Density Functions

Definition 10.2 (Continuous random variable). We call a random variable Y with distribution
function FY (y) continuous, if FY (y) is continuous, for all arguments y. �

Proposition 10.1. Let Y be a continuous random variable with CDF FY (y). Then its distribution
gives zero probability to all singletons {a}(a ∈ R). Also, it gives the same probability to an interval
with endpoints −∞ < a < b < ∞, regardless whether a and/or b do or do not belong to that interval.
In other words,

a ∈ R ⇒ P{Y = a} = PY {a} = 0 ,(10.2)

−∞ < a < b <∞ ⇒ P{a < Y < b} = P{a ≤ Y < b}
= P{a < Y ≤ b} = P{a ≤ Y ≤ b} .

(10.3)

Assumption 10.1 (All continuous random variables have a differentiable CDF). Unless explic-
itly stated otherwise, all continuous random variables are assumed to satisfy the following:
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The first derivative dFY
dy of FY exists and is continuous except for, at most, a finite number of

points in any finite interval.
All cumulative distribution functions for continuous random variables that we deal with in
this course satisfy this assumtion. �

Definition 10.3 (Probability density function). Let Y be a continuous random variable with
CDF FY (y). For all arguments y where the derivative F ′Y (y) = dFY (y)

dy exists, we define

f(y) := fY (y) :=
dFY (y)

dy
.

We call fY the probability density function or, in short, the PDF of the continuous random
variable Y . �

Theorem 10.2. Let Y be a continuous random variable with CDF FY (y) and PDF fY (y).

(1) If a, b ∈ R and a < b, then

(10.4) P{a < Y ≤ b} = FY (b)− FY (a) =

∫ b

a
f(y)dy .

(2) fY (y) ≥ 0 for −∞ < y <∞.

(3)
∞∫
∞
fY (y)dy = 1.

Theorem 10.3. Let ψ : R→ R satisfy the following:

(1) ψ is integrable:
b∫
a
ψ(x)dx exists for a < b.

(2) ψ(x) ≥ 0 for −∞ < x <∞.

(3)
∞∫
∞
ψ(x)dx = 1.

• Then, Q{a < Y ≤ b} :=
∫ b
a ψ(x)dx defines a probability measure Q on Ω.

Definition 10.4 (pth quantile). Let Y denote any random variable and 0 < p < 1. Let φp be the
number derived in the previous remark, i.e.,

φp = min{α ∈ R : FY (α) ≥ p}(10.5)

We call φp the pth quantile and also the 100pth percentile of Y .
Moreover, we call φ0.25 the first quartile, φ0.5 the median, and φ0.75 the third quartile, of the
random variable Y . �
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Proposition 10.2. Let Y be a continuous random variable with CDF FY (y). Then

φp = min{α ∈ R : FY (α) = p} .(10.6)

Proposition 10.3. Let Y be a random variable with an injective CDF FY (y). (Note that it is not
assumed that FY is continuous.) Then

φ
(
FY (y)

)
= y for all y ∈ R(10.7)

? Note that (10.7) states that φ is a left inverse of the injective function FY .

Proposition 10.4. Let Y be a random variable with a bijective CDF FY : R
∼−→]0, 1[. Then FY (y) and

φ(p) are inverse to each other, i.e.,

φ
(
FY (y)

)
= y , for all y ∈ R ,

FY
(
φ(p)

)
= p , for all 0 < p < 1 .

(10.8)

10.3 Expected Value, Variance and MGF of a Continuous Random Variable

Assumption 10.2 (All continuous random variables have Expectations). A. Unless explicitly
stated otherwise, all continuous random variables are assumed to to possess a probability den-
sity function fY (y) that satisfies ∫ ∞

−∞
|y|f(y) dy| < ∞ .

This technical condition guarantees the existence of
∞∫
−∞

yf(y)dy which is needed to define the

expected value of Y .
B. We further assume that, unless specifically stated otherwise, there is a common probability
space (Ω,P) for all random variables. In other words, all random variables Y , be they discrete,
continuous or neither, are of the form Y : (Ω,P)→ R. �
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Definition 10.5 (Expected value of a continuous random variable). Let Y be a continuous ran-
dom variable with PDF fY (y). We call

E(Y ) :=

∫ ∞
−∞

yfY (y) dy(10.9)

the expected value, also expectation or mean of Y . �

Theorem 10.4. ?

Let Y be a continuous random variable with CDF FY and PDF fY .
Then

E[Y ] =

∫ ∞
0

(
1− FY (y)

)
dy −

∫ ∞
0

FY (−y)dy(10.10)

=

∫ ∞
0

P{Y > y}dy −
∫ ∞

0
P{Y ≤ −y}dy .(10.11)

Corollary 10.1. ?

Let Y be a nonnegative, continuous random variable with CDF FY and PDF fY . Then

E[Y ] =

∫ ∞
0

(
1− FY (y)

)
dy =

∫ ∞
0

P{Y > y}dy .(10.12)

Theorem 10.5. Let Y be a continuous random variable with PDF fY and g : R → R; y 7→ g(y) be a
real-valued function. Then the random variable g ◦ Y : ω 7→ g

(
Y (ω)

)
has expectation

E[g(Y )] =

∫ ∞
∞

g(y)fY (y) dy .(10.13)

Theorem 10.6. Let c ∈ R, Y be a discrete or continuous random variable and g1, g2, gn : R→ R; y 7→
g(y) be a list of n real-valued functions. Then

E[c] = c ,(10.14)
E[cgj(Y )] = cE[gj(Y )] .(10.15)

Further, the random variable
n∑
j=1

gj ◦ Y : Ω −→ R; ω 7→
n∑
j=1

gj
(
Y (ω)

)
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has the following expected value:

E

 n∑
j=1

gj ◦ Y

 =

n∑
j=1

E[gj ◦ Y ] .(10.16)

Definition 10.6. ? If Y1, Y2, . . . , Ym is a list of discrete random variables and Y ′1 , Y
′

2 , . . . , Y
′
n

is a list of continuous random variables, all of which are defined on the same probability space
(Ω,P), then we define

E

 m∑
i=1

Yi +

n∑
j=1

Y ′j

 :=

m∑
i=1

E[Yi] +

n∑
j=1

E[Y ′j ] p . �(10.17)

Theorem 10.7. Let Y1, Y2, . . . , Yn : Ω → R be random variables. (which all are defined on the same
probability space (Ω,P) (n ∈ N by Assumption 10.2.B). Some may be continuous, others may be dis-
crete. Then the random variable

n∑
j=1

Yj : Ω −→ R; ω 7→
n∑
j=1

Yj(ω)

has the following expected value:

E

 n∑
j=1

Yj

 =
n∑
j=1

E[Yj ] .(10.18)

In other words, the expectation of the sum is the sum of the expectations.

Theorem 10.8. Let Y be a discrete or continuous random variable. Let Y1, Y2, . . . , Yn : Ω → R be
independent random variables (which all are defined on the same probability space (Ω,P) (n ∈ N by
Assumption 10.2.B). Some may be continuous, others may be discrete. Further, let a, b ∈ R. Then

V ar[Y ] = E
[
Y 2
]
−
(
E[Y ]

)2
,(10.19)

V ar [aY + b] = a2V ar[Y ] ,(10.20)

V ar

 n∑
j=1

Yj

 =

n∑
j=1

V ar[Yj ] .(10.21)
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Remark 10.1. Note that independence of Y1, . . . , Yn is required for the validity of (10.21)! �

Unless something different is stated, Y is a random variable Y : (Ω,P) → R on some probability
space (Ω,P). Further, µ = E[Y ], σ2 = V ar[Y ] and σ =

√
V ar[Y ] denote expectation, variance and

standard deviation of Y .

Definition 10.7. For k ∈ N, we define

µ′k := E[Y k] (kth moment of Y about the origin)(10.22)

µk := E[(Y − E[Y ])k] = E[(Y − µ)k] (kth central moment of Y )(10.23)

m(t) := mY (t) := E
[
etY
]

(moment–generating function of Y )(10.24)

As in the discrete case we assume that the expectations defining µ′k and µk exist and that there is
some δ > 0 such that mY (t) is defined (i.e., finite) for |t| < δ. �

Theorem 10.9. Let Y be a random variable with MGF mY (t) and k ∈ N. Then its kth moment is
obtained as the kth derivative of mY (·), evaluated at t = 0:

µ′k = m(k)(0) =
dkm(t)

dtk

∣∣∣
t=0

.(10.25)

Proposition 10.5. Let Y be a random variable with MGFmY (t). Let a, b ∈ R, Y ′ := Y +a, Y ′′ := bY .
Then

mY ′(t) = etamY (t) ,(10.26)
mY ′′(t) = mY (bt) .(10.27)

10.4 The Uniform Probability Distribution

Definition 10.8 (Continuous, uniform random variable). Let Y be a random variable and
−∞ < θ1 < θ2 < ∞. We say that Y has a continuous uniform probability distribution
with parameters θ1 and θ2 — also, that Y is uniform on [θ1, θ2] or Y ∼ uniform(θ1, θ2) — if Y
has probability density function

fY (y) =


1

θ2 − θ1
, if θ1 ≤ y ≤ θ2,

0 , else. �
(10.28)
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Theorem 10.10 (WMS Ch.04.4, Theorem 4.6). If θ1 < θ2 and Y is a uniform random variable with
parameters θ1, θ2, then

E[Y ] =
θ1 + θ2

2
and V ar[Y ] =

(θ2 − θ1)2

12
.

Theorem 10.11. Assume that Y is a continuous random variable with CDF FY (y). Let U := FY (Y ).
Then U ∼ uniform(0, 1).

Theorem 10.12. Given are a uniform(0, 1) random variable U and a continuous function F : R →
[0, 1] that satisfies the conditions of Theorem 10.1 (Properties of a Cumulative Distribution Function)
on p.73:
• F is nondecreasing • F (−∞) := lim

y→−∞
F (y) = 0 • F (∞) := lim

y→∞
F (y) = 1

Let G : [0, 1]→ R; p 7→ G(p) := min{y ∈ R : F (y) ≥ p} .(10.29)

Let Z := G(U) be the random variable ω 7→ Z(ω) := G
(
U(ω)

)
.

Then its CDF matches F . In other words, FZ(y) = F (y) for all y ∈ R.

10.5 The Normal Probability Distribution

Definition 10.9 (Normal random variable). Let σ > 0 and−∞ < µ <∞. We say that a random
variable Y has a normal probability distribution with mean µ and variance σ2 if its probability
density function is

fY (y) =
1

σ
√

2π
e−(y−µ)2/(2σ2), (y ∈ R) . �(10.30)

We also express that by saying that Y is NNN (µ, σ2). Moreover, we call Y standard normal if Y
is NNN (0, 1).

Proposition 10.6. Let the random variable Y be NNN (µ, σ2). Then

mY (t) = eµt+ (σ2t2)/2 .(10.31)
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Theorem 10.13 (WMS Ch.04.5, Theorem 4.7). If Y is a normally distributed random variable with
parameters µ and σ, then

E[Y ] = µ and V ar[Y ] = σ2 .

10.6 The Gamma Distribution

Definition 10.10 (Gamma random variable). Let σ > 0 and −∞ < µ < ∞. We say that a ran-
dom variable Y has a gamma distribution with shape parameter α > 0 and scale parameter
β > 0 if its probability density function is

fY (y) =


yα−1e−y/β

βαΓ(α)
, if 0 ≤ y <∞ ,

0 , else ,
(10.32)

where Γ(α) is the gamma function

Γ(α) =

∫ ∞
0

yα−1e−y dy .(10.33)

We also express that by saying that Y is gamma(α, β). �

Proposition 10.7. The gamma function satisfies the following:

Γ(1) = 1 ,(10.34)
Γ(α) = (α− 1)Γ(α− 1) for all α > 1 ,(10.35)
Γ(n) = (n− 1)! for all n ∈ N .(10.36)

Proposition 10.8. If the random variable Y is gamma(α, β) it has MGF

mY (t) =
1

(1− βt)α
for t <

1

β
.(10.37)

Theorem 10.14 (WMS Ch.04.6, Theorem 4.8). Let the random variable Y be gamma(α, β) with
α, β > 0. Then

E[Y ] = αβ and V ar[Y ] = αβ2 .
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Definition 10.11 (Chi–square distribution). Let ν ∈ N. We say that a random variable Y has a
chi–square distribution with ν degrees of freedom, in short, Y is chi–square with ν df , or
Y ∼ χ2(df=ν), or Y is chi–square(ν), or Y is χ2(ν), if Y is gamma(ν/2, 2). In other words, Y
must have a gamma distribution with shape parameter ν/2 and scale parameter 2. �

Theorem 10.15 (WMS Ch.04.6, Theorem 4.9). A chi–square random variable Y with ν degrees of
freedom has expectation and variance

E[Y ] = ν and V ar[Y ] = 2ν.

Definition 10.12 (Exponential distribution). We say that a random variable Y has an exponen-
tial distribution with parameter β > 0, in short, Y is expon(β), if Y ∼ gamma(1, β); in other
words, if Y has density

(10.38) fY (y) =


1

β
e−y/β , for 0 ≤ y <∞ ,

0 , else . �

Proposition 10.9. Let Y be an exponential random variable with parameter β and y ≥ 0. Then,

P{Y > y} = e−y/β . Thus, FY (y) = 1 − e−y/β .

Theorem 10.16. An exponential random variable Y with parameter β has expectation and variance

E[Y ] = β and V ar[Y ] = β2.

Proposition 10.10 (Memorylessness of the exponential distribution). Let Y be an exponential random
variable. Let t > 0 and h > 0. Then

(10.39) P{Y > t+ h | Y > t} = P{Y > h} .

Remark 10.2. The property (10.39) of an exponential distribution is referred to as the memoryless
property of the exponential distribution. It also occurs in the geometric distribution. �
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10.7 The Beta Distribution

Definition 10.13 (Beta distribution). ? A random variable Y has a beta probability distri-
bution with parameters α > 0 and β > 0 if it has density function

fY (y) =


yα−1(1− y)β−1

B(α, β)
, if 0 ≤ y ≤ 1 ,

0 , else ,
(10.40)

where

B(α, β) =

∫ 1

0
yα−1(1− y)β−1 dy =

Γ(α) Γ(β)

Γ(α+ β)
.(10.41)

We also express that by saying that Y is beta(α, β). �

Theorem 10.17. ? If Y is a beta–distributed random variable with parameters α > 0 and β > 0,
then

E[Y ] =
α

α+ β
and V ar[Y ] =

αβ

(α+ β)2(α+ β + 1)
.

10.8 Inequalities for Probabililities

Theorem 10.18. ? Let Y, Z be continuous or discrete random variables and a > 0. Assume
further that Y ≥ 0. Then

P{Y ≥ a}) ≤ E[Y ]

a
,(10.42)

P{|Z| ≥ a}) ≤ E[ |Z|n]

an
.(10.43)

(10.42) is known as the Markov inequality

Theorem 10.19 (Tchebysheff Inequalities). Let Y be a random variable with mean µ = E[Y ] and
standard deviation σ. Let k > 0. Then

P{|Y − µ| ≥ kσ} ≤ 1

k2
,(10.44)

P{|Y − µ| < kσ} ≥ 1 − 1

k2
.(10.45)
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Both (10.44) and (10.45) are known as the Tchebysheff inequalities

10.9 Mixed Random Variables

Definition 10.14 (Mixed random variables). Let Y be a random variable on a probability space
(Ω,F,P) as follows. There are a finite or infinite sequence y1 < y2 < · · · of real numbers and a
function f : R→ [0,∞[ such that, for all Borel sets B of R, its distribution PY satisfies

PY (B) = µd(B) + µc(B) , where

µd(B) =
∑
yj∈B

P{Y = yj} , and µc(B) =

∫
B
f(t) dt .(10.46)

We say that Y is a mixed random variable and PY is a mixed distribution. We call µd the
PMF part and µc the PDF part of both Y and PY . �

Proposition 10.11. ? Let µ, µ1, µ2 be measures on the Borel sets of R such that

µ = µ1 + µ2 , i.e., µ(B) = µ1(B) + µ2(B) , for all B ∈ B1 .

Further, let g : R→ R and A ∈ B1. Then

(10.47)
∫
A
g dµ =

∫
A
g dµ1 +

∫
A
g dµ2 .

Theorem 10.20 (Expectation of mixed random variables). Let Y be a mixed random variable on a
probability space (Ω,F,P). Let y1 < y2 < · · · and f : R→ [0,∞[ be such that
µd(B) =

∑
yj∈B P{Y = yj} is the PMF part of Y and µc(B) =

∫
B f(t) dt is the PDF part of Y .

Then the expectation E[g ◦ Y ] for a function g : R→ R is

(10.48) E[g ◦ Y ] =
∑
yj∈R

g(yj) · P{Y = yj} +

∫ ∞
−∞

g(y)f(y) dy .

We assume again as we did in Definition 10.14 (Mixed random variables) that the yj form a finite or infinite
list of real numbers.
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11 Multivariate Probability Distributions

11.1 Multivariate CDFs, PMFs and PDFs

Assumption 11.1 (Comma separation denotes intersection). Separating commas are to be in-
terpreted as “and” and not as “or”. Thus, for example,

{X ∈ B, Y = α, 5 ≤ Z < 8} = {X ∈ B and Y = α and 5 ≤ Z < 8}
= {X ∈ B} ∩ {Y = α} ∩ {5 ≤ Z < 8} . �

Definition 11.1 (Joint cumulative distribution function). Given are two random variables Y1

and Y2. No assumption is made whether they are discrete or continuous. We call

F (y1, y2) := FY1,Y2(y1, y2) := P(Y1 ≤ y1, Y2 ≤ y2) , where y1, y2 ∈ R ,(11.1)

the joint cumulative distribution function or bivariate cumulative distribution function or
joint CDF or joint distribution function of Y1 and Y2. �

Theorem 11.1. Let Y1 and Y2 be random variables with joint CDF FY1,Y2(y1, y2). Further, assume that
~a := (a1, a2) ∈ R2 and~b := (b1, b2) ∈ R2 satisfy a1 < b1 and a2 < b2. Then,

(11.2) FY1,Y2(−∞,−∞) = FY1,Y2(−∞, y2) = FY1,Y2(y1,−∞) = 0 .

(11.3) FY1,Y2(∞,∞) = 1 ,

P{a1 < Y1 ≤ b1, a2 < Y2 ≤ b2} = FY1,Y2(b1, b2) − FY1,Y2(a1, b2)

− FY1,Y2(b1, a2) + FY1,Y2(a1, a2) ,
(11.4)

(11.5) FY1,Y2(b1, b2) − FY1,Y2(a1, b2) − FY1,Y2(b1, a2) + FY1,Y2(a1, a2) ≥ 0 ,

Definition 11.2 (Joint probability mass function). Let Y1 and Y2 be discrete random variables.
We call

p(y1, y2) := pY1,Y2(y1, y2) := P{Y1 = y1, Y2 = y2} , where y1, y2 ∈ R ,(11.6)

the joint probability mass function or bivariate probability mass function or joint PMF of
Y1 and Y2. �
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Proposition 11.1 (WMS Ch.05.2, Theorem 5.1). If Y1 and Y2 are discrete random variables with joint
PMF pY1,Y2(y1, y2), then

(1) pY1,Y2(y1, y2) ≥ 0 for all y1, y2 ∈ R,
(2)

∑
y1,y2

pY1,Y2(y1, y2) = 1.

(3) FY1,Y2(y1, y2) =
∑

u1≤y1, u2≤y2

pY1,Y2(u1, u2) =
∑
u1≤y1

∑
u2≤y2

pY1,Y2(u1, u2) .

Definition 11.3 (Jointly continuous random variables). Let Y1 and Y2 be random variables with
joint CDF F (y1, y2). We call Y1 and Y2 jointly continuous if F (y1, y2) is a continuous function
of both arguments. �

Assumption 11.2 (Jointly continuous random variables have PDFs). We assume for all jointly

continuous random variables Y1 and Y2 that
∂2FY1,Y2
∂y1∂y2

exists and is continuous except for

(y1, y2) ∈ B∗, where the set B∗ ⊆ R2 satisfies that
B∗ ∩ B is finite for any bounded subset B ∈ R2 (bounded sets are those contained in a circle
with sufficiently large radius).

This assumption guarantees for all y1, y2 ∈ R, when we write fY1,Y2 for
∂2FY1,Y2
∂y1∂y2

, that

FY1,Y2(y1, y2) =

∫ y1

−∞

∫ y2

−∞
fY1,Y2(u1, u2) du2 du1

=

∫ y2

−∞

∫ y1

−∞
fY1,Y2(u1, u2) du1 du2 .

=

∫∫
]−∞,y1×]−∞,y2]

fY1,Y2(u1, u2) du1 du2 . �

(11.7)

Definition 11.4 (WMS Ch.05.2, Definition 5.3). Let Y1 and Y2 be continuous random
variables with joint distribution function F (y1, y2) and second derivative fY1,Y2(y1, y2) =
∂2FY1,Y2
∂y1∂y2

(y1, y2). We call fY1,Y2(y1, y2) the joint probability density function or joint PDF

of Y1 and Y2. �
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Theorem 11.2. Let Y1 and Y2 be jointly continuous random variables with joint PDF fY1,Y2(y1, y2),
then

(1) fY1,Y2(y1, y2) ≥ 0 for all y1, y2.

(2)
∞∫
−∞

∞∫
−∞

fY1,Y2(y1, y2)dy1dy2 = 1.

11.2 Marginal and Conditional Probability Distributions

Definition 11.5 (Marginal distribution of two random variables). Let ~Y = (Y1, Y2) be a vector
of two random variables with joint distribution

B1 ×B2 7→ PY1,Y2(B1 ×B2) = P{Y1 ∈ B1, Y2 ∈ B2} , where B1, B2 ⊆ R.

We call the probability measures

(11.8) Q1 : B1 7→ PY1,Y2(B1 × R) and Q2 : B2 7→ PY1,Y2(R×B2)

the marginal distributions of ~Y = (Y1, Y2). �

Proposition 11.2. The marginal distributions of ~Y = (Y1, Y2) are the distributions PY1 and PY2 of the
coordinates
Y1 and Y2. In other words, Q1 = PY1 and Q2 = PY2

Definition 11.6 (Marginal PMF and PDF). (a) Let Y1 and Y2 be discrete random variables
with joint PMF pY1,Y2(y1, y2). We call

(11.9) pY1(y1) =
∑
all y2

pY1,Y2(y1, y2) and pY2(y2) =
∑
all y1

pY1,Y2(y1, y2)

the marginal probability mass functions or marginal PMFs of Y1 and Y2.

(b) Let Y1 and Y2 be continuous random variables with joint PDF fY1,Y2(y1, y2). We call

(11.10) fY1(y1) =

∫ ∞
−∞

fY1,Y2(y1, y2) dy2 and fY2(y2) =

∫ ∞
−∞

fY1,Y2(y1, y2) dy1 .

the marginal density functions or marginal PDFs of Y1 and Y2. �

Definition 11.7 (Conditional probability mass function). Let Y1 and Y2 be discrete random
variables with joint PMF pY1,Y2(y1, y2) and marginal PMFs pY1(y1) and pY2(y2). Then we call

(11.11) pY1|Y2(y1 | y2) :=

{
P{Y1 = y1 | Y2 = y2} , if P{Y2 = y2} > 0 ,

undefined , if P{Y2 = y2} = 0 ,
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the conditional probability mass function or the conditional PMF of Y1 given Y2.
Likewise, we call

(11.12) pY2|Y1(y2 | y1) :=

{
P{Y2 = y2 | Y1 = y1} , if P{Y1 = y1} > 0 ,

undefined , if P{Y1 = y1} = 0 ,

the conditional PMF of Y2 given Y1. �

Definition 11.8 (Conditional probability density function). Let Y1 and Y2 be continuous ran-
dom variables with joint PDF fY1|Y2(y1, y2) and marginal densities fY1(y1) and fY2(y2). Then
we call

(11.13) fY1|Y2(y1 | y2) :=


fY1,Y2(y1, y2)

fY2(y2)
, if fY2(y2) > 0 ,

undefined , if fY2(y2) = 0 ,

the conditional probability density function or the conditional PDF of Y1 given Y2.
Likewise we call

(11.14) fY2|Y1(y2 | y1) :=


fY1,Y2(y1, y2)

fY1(y1)
, if fY1(y1) > 0 ,

undefined , if fY1(y1) = 0 ,

the conditional PDF of Y2 given Y1. �

Definition 11.9. ? Let Y1 and Y2 be two jointly continuous random variables. Then,

(11.15) FY1|Y2(y1 | y2) :=

∫ y1

−∞

fY1,Y2(u1, y2)

fY2(y2)
du1

defines the conditional distribution function or conditional CDF of Y1 given Y2 = y2. �

11.3 Independence of Random Variables and Discrete Random Elements

Theorem 11.3 (CDFs of Independent random variables). Let Y1 and Y2 be random variables with
CDFs FY1(y1) and FY2(y2) and with joint CDF FY1,Y2(y1, y2). Then Y1 and Y2 are independent if and
only if

FY1,Y2(y1, y2) = FY1(y1) · FY2(y2) for all y1, y2 ∈ R.(11.16)

We must treat discrete random elements separately since there are no CDFs.
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Let X1 and X2 be discrete random elements with PMFs pX1(x1) and pX2(x2) and with joint PMF
pX1,X2(x1, x2). Then X1 and X2 are independent if and only if

pX1,X2(x1, x2) = pX1(x1) · pX2(x2) for all x1, x2 ∈ R.(11.17)

Theorem 11.4 (Functions of independent random variables are independent).

Let ~Y = (Y1, . . . , Yk) : (Ω,P)→ R be a vector of k independent random variables and hj : R→ R.
• Then the random variables h1 ◦ Y1, . . . , hk ◦ Yk also are independent.

Theorem 11.5 (WMS Ch.05.4, Theorem 5.4). If Y1 and Y2 are discrete random variables with joint
PMF pY1,Y2(y1, y2) and marginal PMFs pY1(y1) and pY2(y2), then

Y1, Y2 are independent ⇔ pY1,Y2(y1, y2) = pY1(y1) · pY2(y2) for all y1, y2 ∈ R.(11.18)

If Y1 and Y2 are continuous random variables with joint PDF fY1,Y2(y1, y2) and marginal PDFs fY1(y1)
and fY2(y2), then

Y1, Y2 are independent ⇔ fY1,Y2(y1, y2) = fY1(y1) · fY2(y2) for all y1, y2 ∈ R.(11.19)

Theorem 11.6. If Y1 and Y2 are independent random variables, then

E[Y1 · Y2] = E[Y1] · E[Y2] .(11.20)

Theorem 11.7 (WMS Ch.05.4, Theorem 5.5). Let the continuous random variables Y1 and Y2 have a
joint PDF fY1,Y2(y1, y2) that is strictly positive if and only if there are constants a < b and c < d such
that

fY1,Y2(y1, y2) > 0 ⇔ a ≤ y1 ≤ b and c ≤ y2 ≤ d .

Then Y1, Y2 are independent ⇔ fY1,Y2(y1, y2) = g1(y1) · g2(y2)(11.21)

for suitable nonnegative functions g1, g2 : R → R such that the only argument of g1 is y1 and the only
argument of g2 is y2.
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11.4 The Mulitivariate Uniform Distribution

Definition 11.10 (Multivariate continuous, uniform random variable). (A) Let ~Y = (Y1, Y2) be
a twodimensional random vector of continuous random variables with a joint PDF f~Y (y1, y2)
that satisfies the following:

• There is a constant c > 0 such that either f~Y (y1, y2) = c or f~Y (y1, y2) = 0.

Let C := {(y1, y2) ∈ R2 : f~Y (y1, y2) > 0}. Then we say that ~Y has a continuous uniform
probability distribution on C.

(B) Let ~Y = (Y1, Y2, Y3) be a threedimensional random vector of continuous random variables
with a joint PDF f~Y (y1, y2, y3) that satisfies the following:

• There is a constant d > 0 such that either f~Y (y1, y2, y3) = d or f~Y (y1, y2, y3) = 0.

Let D := {(y1, y2, y2, y3) ∈ R3 : f~Y (y1, y2, y3) > 0}. Then we say that ~Y has a continuous
uniform probability distribution on D. �

11.5 The Expected Value of a Function of Several Random Variables

Notation 11.1 (Arrow notation for vectors).

• We write ~x as an abbreviation for a vector
(
x1, x2, . . . , xn

)
. The dimension n is either

explicitly stated or known from the context.
• If f : Rn → R is a function of n real numbers and U = [a1, b1] × · × [an, bn] is an

n–dimensional rectangle, we write∫
A
f(~x) d~x =

∫ b1

a1

· · ·
∫ b2

a2

∫ b1

a1

f(x1, x2, . . . , xn) dy1dy2 · · · dyn

Note that all integrands that occur in this course are so well behaved that the order in
which those n integrations take place can be switched around, just as you remember
it in the cases n = 2 and n = 3 from multidimensional calculus.

• Let a1 < b1, a2 < b2, . . . , an < bn for some n ∈ N. Then ~y ∈ ]a1, b1] × ·×]ad, bd]
denotes the following: ~y =

(
y1, y2, . . . , yd

)
and ai < yi ≤ bi for i = 1, . . . , d.

Theorem 11.8 (Expected value of g(~Y )). (a) Let k ∈ N and let ~Y =
(
Y1, Y2, . . . , Yk

)
be a vector of

discrete random variables on a probability space (Ω,P) with PMF p~Y (~y). Further, let g : Rk → R be a
function of k real numbers y1, y2, . . . , yk. Then

E
[
g(~Y )

]
= E

[
g(Y1, Y2, . . . , Yk)

]
:=

∑
· · ·
∑

y1, y2, ..., yk

g(~y) p~Y (~y)(11.22)

is called the expected value or mean of the random variable g(~Y ). As usual, the sum on the right is
countable summation over those ~y =

(
y1, y2, . . . , yk

)
for which p~Y (~y) 6= 0.
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(b) Let k ∈ N and let ~Y =
(
Y1, Y2, . . . , Yk

)
be a vector of continuous random variables on a probability

space (Ω,P) with PDF f~Y (~y). Further, let h : Rk → R be a function of k real numbers y1, y2, . . . , yk.
Then

E
[
h(~Y )

]
= E

[
h(Y1, Y2, . . . , Yk)

]
:=

∫ ∞
−∞
· · ·
∫ ∞
−∞

h(~y) f~Y (~y)d~y(11.23)

is called the expected value or mean of the random variable g(~Y ).

Theorem 11.9 (WMS Ch.05.6, Theorem 5.6).

c ∈ R ⇒ E[c] = c .(11.24)

Theorem 11.10 (WMS Ch.05.6, Theorem 5.7). Let c ∈ R and g : R2 → R Then the random variable
g(Y1, Y2) satisfies

E[cg(Y1, Y2)] = cE[g(Y1, Y2)] .(11.25)

Theorem 11.11 (WMS Ch.05.6, Theorem 5.8). Let g1, g2, . . . , gk : Rn → R and ~Y := (Y1, . . . , Yn).
Then the random variables gj(~Y ) (j = 1, . . . , k) satisfy

E[g1(~Y ) + g2(~Y ) + · · ·+ gk(~Y )]

= E[g1(~Y )] + E[g2(~Y )] + · · ·+ E[gk(~Y )] .
(11.26)

Theorem 11.12. Let g, h : R → R be functions of a single variable and assume that the random
variables Y1 and Y2 are independent. Then the random variables g(Y1) and h(Y2) also are independent
and they satisfy

(11.27) E[g(Y1)h(Y2)] = E[g(Y1)] E[h(Y2)] .

11.6 Covariance
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In this entire section, we consider two random variables Y1 and Y2 on a probability space (Ω,P).
As usual, we denote mean and standard deviation

µj := E[Yj ] , σj :=
√
V ar[Yj ] , for j = 1, 2.

Definition 11.11 (Covariance). The covariance of Y1 and Y2 is

Cov[Y1, Y2] = E
[
(Y1 − E[Y1]) (Y2 − E[Y2])] = E

[
(Y1 − µ1) (Y2 − µ2)] . �(11.28)

Definition 11.12 (Correlation coefficient). The correlation coefficient, of Y1 and Y2 is

ρ =
Cov(Y1, Y2)

σ1σ2
�(11.29)

We say that Y1 and Y2 have positive correlation if ρ > 0, (i.e., if Cov(Y1, Y2) > 0), they have
negative correlation if ρ < 0, (i.e., if Cov(Y1, Y2) < 0), and that they have zero correlation or
that they are uncorrelated if ρ = 0, (i.e., if Cov(Y1, Y2) = 0).

Proposition 11.3. The correlation coefficient satisfies the inequality

−1 ≤ ρ ≤ 1(11.30)

Theorem 11.13.

Cov[Y1, Y2] = E[(Y1 − µ1) (Y2 − µ2)] = E[Y1Y2] − E[Y1] E[Y2] .(11.31)

Theorem 11.14. Independent random variables are uncorrelated.

Definition 11.13 (Linear function). ? Let n ∈ N. We call a function ϕ : Rn → R; ~x =

(x1, . . . , xn) 7→ ϕ(~x), a linear function, of x1, . . . , xn, if there are constants a1, . . . , an ∈ R such
that

ϕ(~x) = a1x1 + a2x2 + · · ·+ anxn =

n∑
j=1

ajxj . �(11.32)
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Theorem 11.15 (WMS Ch.05.8, Theorem 5.12). Let ~X = X1, . . . , Xm and ~Y = Y1, . . . , Yn be
random variables on a probability space (Ω,P). For i = 1, . . . ,m and j = 1, . . . , n, let ξi := E(Xi)
and ηj := E(Yj). Further, let

U :=
m∑
i=1

aiXi and V :=
n∑
j=1

bjYj ,

where ~a = (a1, a2, . . . , am) and~b = (b1, b2, . . . , bn) are two constant vectors. Then

E[U ] =
m∑
i=1

aiξi ,(11.33)

V ar[U ] =
m∑
i=1

a2
iV ar[Xi] + 2

∑∑
1≤i<j≤m

aiajCov[Xi, Xj ] .(11.34)

Cov[U, V ] =
m∑
i=1

n∑
j=1

aibjCov[Xi, Yj ] .(11.35)

In (11.34),
∑∑

1≤i<j≤m
· · · refers to summation over all pairs (i, j) satisfying i < j.

Corollary 11.1 (Bienaymé formula for uncorrelated variables). ? Let Y1, Y2, . . . , Yn : Ω→ R

be uncorrelated random variables (which all are defined on the same probability space (Ω,P) (n ∈ N.
Then

V ar

 n∑
j=1

Yj

 =
n∑
j=1

V ar[Yj ] .(11.36)

11.7 Conditional Expectations and Conditional Variance

11.7.1 The Conditional Expectation With Respect to an Event ?

Assumption 11.3. In all of this subsection we deal with a fixed probability space (Ω,P) and
a fixed event B ⊆ Ω that satisfies P(B) > 0. We further assume that Q(·) is the probability
measure

A 7→ Q(A) := P(A | B), where A ⊆ Ω.(11.37)

The symbolsX,X1, X2, . . . denote random elements and Y, Y1, Y2, . . . denote random variables
on Ω. We need not be specific about whether we mean (Ω,P) or (Ω, Q), because the definition

92 Math 447 - Version 2025-09-04



Math 447 – MF Lecture Notes Skeletal version: proofs omitted

of random element and random variable does not involve the probability measure, only the
carrier space Ω. �

Theorem 11.16. If ~Y =
(
Y1, Y2, . . . , Yk

)
is a vector of k discrete or Q–continuous random variables,

then

EQ

 n∑
j=1

Yj

 =

n∑
j=1

EQ[Yj ] .(11.38)

Theorem 11.17. If Y is a discrete or Q–continuous random variable and ~Y =
(
Y1, Y2, . . . , Yk

)
is a

vector of k Q–independent discrete or Q–continuous random variables, then

V arQ[Y ] = EQ
[
Y 2
]
−
(
EQ[Y ]

)2
,(11.39)

V arQ [aY + b] = a2V arQ[Y ] ,(11.40)

V arQ

 n∑
j=1

Yj

 =
n∑
j=1

V arQ[Yj ] .(11.41)

Theorem 11.18. Let the events A1, A2, B ⊆ Ω satisfy P(A1 ∩ B > 0, P(A2 ∩ B > 0. (Hence,
P(B > 0). Then

(a) P(A1 ∩A2 | B) = P(A1 | B) · P(A2 | B)

⇔⇔⇔ (b) P(A1 | A2 ∩B) = P(A1 | B)

⇔⇔⇔ (c) P(A2 | A1 ∩B) = P(A2 | B) .

(11.42)

In other words, if Ai and Aj are independent with respect to “just” conditioning on B, then “further”
conditioning of Ai on both Aj and B has no effect. Here, either i = 1, j = 2 or i = 2, j = 1.

11.7.2 The Conditional Expectation w.r.t a Random Variable or Random Element
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Definition 11.14 (Conditional expectation). Let Y1 and Y2 be two random variables which are
either jointly discrete or jointly continuous and g : R→ R. Let

E[g(Y1) | Y2 = y2] :=
∑
y1

g(y1) p(y1 | y2) (discrete case),(11.43)

E[g(Y1) | Y2 = y2] :=

∫ ∞
−∞

g(y1) f(y1 | y2) dy1 (continuous case).(11.44)

We call E[g(Y1) | Y2 = y2] the conditional expectation of g(Y1), given that Y2 = y2. �

Theorem 11.19 (WMS Ch.05.11, Theorem 5.14). Let Y1 and Y2 be either jointly continuous or jointly
discrete random variables. Then

E[Y1] = E
[
E[Y1 | Y2]

]
.(11.45)

See Remark ?? concerning the interpretation of the right–hand side.

Definition 11.15 (Conditional variance). Let Y1 and Y2 be two random variables which are
either jointly discrete or jointly continuous. Let

V ar[Y1 | Y2 = y2] := E[Y 2
1 | Y2 = y2] −

(
E[Y1 | Y2 = y2]

)2
.(11.46)

We call V ar[Y1 | Y2 = y2] the conditional variance of (Y1), given that Y2 = y2. �

Theorem 11.20. Let Y1 and Y2 be jointly discrete or jointly continuous random variables. Then

V ar[Y1 | Y2] = E
[

(Y1 − E[Y1 | Y2])2 | Y2

]
,(11.47)

V ar[Y1] = E
[
V ar[Y1 | Y2]

]
+ V ar

[
E[Y1 | Y2]

]
.(11.48)

Lemma 11.1. ?

(A): Let X and Y be two jointly continuous r.v.s on (Ω,F,P and B a Borel set of R. Then,

(11.49)
∫
B

E[Y | X = x]fX(x) dx =

∫
B

∫ ∞
−∞

yf(X,Y )(x, y) dy dx .

(B): Let X and Y be two jointly discrete r.v.s on (Ω,F,P and B ⊆ R. Then,

(11.50)
∑
x∈B

E[Y | X = x]pX(x) =
∑

x∈B,y∈R

yp(X,Y )(x, y) .
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Theorem 11.21 (Conditional expectations preserve all partial averages ).

Let X and Y be two jointly continuous or jointly discrete r.v.s on (Ω,F,P) and B ⊆ R. 12 Then,∫
{X∈B}

E[Y | X] dP =

∫
{X∈B}

Y dP .

11.7.3 Conditional Expectations as Optimal Mean Squared Distance Approximations

Theorem 11.22. Assume that Y is a random variable and ~X = (X1, . . . , Xk) is a random vector on
(Ω,P). Then, either E

[
(Y −g◦ ~X)

]
= ∞ for all real–valued functions g : Rk → R of k real arguments,

or

E
[(
Y − E[Y | ~X]

)2] ≤ E
[
(Y − g ◦ ~X)2

]
,

for all such functions g. Further, this is a strict inequality if E[Y | ~X] 6= g ◦ ~X .

Note that, as always, we consider equations and inequalities involving random variables to be true as
long as they are satisfied on a set of probability 1.

We interpret random variables of the form g( ~X), where ~x 7→ g(~x) is a (deterministic) function
of ~x, as those random variables that only use the information available to ~X .

If we measure the quality of the approximation of a random variable Y by g( ~X) as their mean
squared distance, E

[(
Y − g( ~X)

)2], then

• E[Y | ~X] is the best approximation of Y which is based only on information pro-
vided by ~X .

11.8 The Multinomial Probability Distribution

Definition 11.16 (Multinomial Sequence). Let X1, X2, . . . be a finite or infinite sequence of
random elements on a probability space (Ω,P) which take values in a set Ω′. We call this
sequence a multinomial sequence, if the following are satisfied:

(1) The sequence is iid.
(2) There is some k ∈ N such that the outcome of each Xj is one of k distinct values

ω′1, ω
′
2, . . . , ω

′
k ∈ Ω′.

Since the Xj have identical distribution, there are probabilities p1, p2, . . . , pk such that
(3) pi := P{Xj = ω′i} is the same for all j and p1 + · · ·+ pk = 1.

If we consider a finite multinomial sequence X1, X2, . . . , Xn, we adopt the WMS notation and
speak of a multinomial experiment of size n wich consists of the trials Xj �
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Definition 11.17 (Multinomial distribution). Assume that ~Y =
(
Y1, Y2, . . . , Yk

)
is a vector of

random variables which possesses the joint probability mass function

p~Y (y1, y2, . . . , yk) =

(
n

y1, · · · , yk

)
py11 p

y2
2 · · · p

yk
k ,(11.51)

subject to the following conditions:

• pj ≥ 0 for j = 1, 2, . . . , k and
k∑
j=1

pj = 1.

• yi = 0, 1, 2, . . . , n for i = 1, 2, . . . , k and
k∑
i=1

yi = n.

Then we say that the random variables Yi have a multinomial distribution with parameters
n and ~p = (p1, p2, . . . , pk). �

Theorem 11.23. Let n ∈ N and X1, . . . , Xn be a multinomial sequence of size n. Let pj := P{Xi =
ω′j}. (That probability is the same for all i, since the Xi have identical distribution.)

Let ~Y =
(
Y1, . . . , Yk

)
be a vector of k random variables, such that each Yj equals the number of the n

trials resulting in an outcome that falls into class j. In other words,
(A) Yi(ω) = yi ⇔ Xj(ω) = ω′i for exactly yi of the multinomial items Xj .

Then ~Y has a multinomial distribution with parameters n and p~Y (y1, y2, . . . , yk).

Theorem 11.24 (WMS Ch.05.9, Theorem 5.13). Assume that the random vector ~Y =
(Y1, Y2, . . . , Yk) follows a multinomial distribution with parameters n and ~p = (p1, p2, . . . , pk). Then,
for i, i′ ∈ [1, k]Z and qi = 1− pi,

(a) E[Yi] = npi (b) V ar[Yi] = npiqi (c) If i 6= i′, then Cov[Yi, Yi′ ] = −npipi′

11.9 Order Statistics

• We will deal in this section exclusively with continuous random variables.
• When considering a finite or infinite sequence Y1, Y2, Y3, . . . of such random variables, we

assume that they are iid (independent and identically distributed).

Definition 11.18 (Order statistics). Given n iid continuous random variables ~Y =
(Y1, Y2, . . . , Yn), we sort them in inreasing order. The resulting sequence of random variables,
which we denote as Y(j), j = 1, . . . , n, then satisfies, for each (ω ∈ Ω,

Y(1)(ω) ≤ Y(2)(ω) ≤ Y(3)(ω) ≤ · · · ≤ Y(n)(ω) .(11.52)

We call Y(j) the jth order statistic of ~Y .
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See Example ??(b) why we may consider strictly increasing rather than nondecreasing. �

Assumption 11.4. Unless explicitly stated otherwise,

• ~Y = (Y1, Y2, . . . , Yn) denotes a list of n iid continuous random variables (n ∈ N).
• Y1 ∼ Y2 ∼ · · · ∼ Yn implies FY1 = FY2 = · · · = FYn and fY1 = fY2 = · · · = fYn

We write F (y) := FYj (y) and f(y) := fYj (y) for the common CDF and PDF. �

Theorem 11.25 (CDF and PDF of the jth order statistic). For y ∈ R, the CDF of the kth order
statistic (k = 1, . . . , n) satisfies the following:

FY(1)(y) = 1 − [1− F (y)]n ,(11.53)

FY(n)(y) = [F (y)]n ,(11.54)

FY(k)(y) = 1 −
k−1∑
j=0

(
n

j

)
[F (y)]j [1− F (y)]n−j =

n∑
j=k

(
n

j

)
[F (y)]j [1− F (y)]n−j .(11.55)

For y ∈ R, the PDF of the kth order statistic (k = 1, . . . , n) satisfies the following:

fY(1)(y) = n [1− F (y)]n−1 f(y) ,(11.56)

fY(n)(y) = n [F (y)]n−1 f(y) ,(11.57)

fY(k)(y) = n

(
n− 1

k − 1

)
f(y) ·

[
F (y)

]k−1 ·
[

1− F (y)
]n−k

.(11.58)

Theorem 11.26 (WMS Ch.06.7, Theorem 6.5). If two indices i and j satisfy 1 ≤ i < j ≤ n, the joint
density of Y(i) and Y(j) is

fY(i),Y(j)(yi, yj) =
n!

(i− 1)!(j − 1− i)!(n− j)!
[F (yi)]

i−1

×[F (yj)− F (yi)]
j−1−i × [1− F (yj)]

n−j f(yi)f(yj) , −∞ < yi < yj <∞ .

Theorem 11.27 (Joint PDF of the order statistic). A: Let ~y ∈ Rn satisfy
(11.59) y1 < y2 < · · · < yn .

For the vector ~Y =
(
Y1, . . . , Yn

)
, let ~Y(•) be the vector of its associated order statistics, i.e.,

(11.60) ~Y(•) =
(
Y(1), . . . , Y(n)

)
.

Then its density function at ~y is given by

(11.61) f~Y(•)
(~y) = n! ·

n∏
j=1

f(yj) = n! f(y1) · · · f(yn) .

B: If ~y does not satisfy (11.59), then f~Y(•)(~y) = 0.
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11.10 The Bivariate Normal Distribution

Definition 11.19 (Bivariate normal distribution). ? We say that two continuous random
variables Y1 and Y2 have a bivariate normal distribution, or that they have a joint normal
distribution, if their joint PDF is

fY1,Y2(y1, y2) =
e−Q/2

2πσ1σ2

√
1− ρ2

, −∞ < y1 <∞, −∞ < y2 <∞,(11.62)

where Q =
1

1− ρ2

[
(y1 − µ1)2

σ2
1

− 2ρ
(y1 − µ1)(y2 − µ2)

σ1σ2
+

(y2 − µ2)2

σ2
2

]
.

We then also write (Y1, Y2) ∼NNN (µ1, σ
2
1, µ2, σ

2
2, ρ). �

Theorem 11.28. If two random variables Y1 and Y2 are NNN (µ1, σ
2
1, µ2, σ

2
2, ρ), then

(a) Y1 ∼NNN (µ1, σ
2
1 and Y1 ∼NNN (µ2, σ

2
2 .

Thus, E[Y1] = µ1, V ar[Y1] = σ2
1, E[Y2] = µ2, V ar[Y2] = σ2

2 .
(b) Cov[Y1, Y2] = σ1 σ2 ρ. Thus, ρ is the correlation coefficient of Y1 and Y2.

Theorem 11.29. If two jointly normal random variables Y1 and Y2 are uncorrelated, then they are
independent.
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11.11 Blank Page after Ch.11

This page is intentionally left blank!
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12 Functions of Random Variables and their Distribution

12.1 The Method of Distribution Functions

12.2 The Method of Transformations in One Dimension

Theorem 12.1. Given are a continuous random variable Y with density fY (y) and a differentiable
function h(y) which is either strictly increasing or strictly decreasing for all y ∈ suppt(fY ), i.e., for all
y that satisfy fY (y) > 0. Then the PDF of U := h(Y ) is

(12.1) fU (u) = fY
(
h−1(u)

)
· |h−1′(u)| = fY

(
h−1(u)

)
·
∣∣∣∣ d[h−1(u)]

du

∣∣∣∣ .

12.3 The Method of Transformations in Multiple Dimension

Theorem 12.2.
• Let ~Y =

(
Y1, . . . , Yn

)
be a vector of randomvariables with joint PDF f~Y

(
~y
)

and let R be a
“nice” subset of Rn which is so big that it hosts all outcomes ~Y (ω) of ~Y .

• Let the function ~h : R→ Rn; ~y 7→ ~u = ~h
(
~y
)

satisfy the following.

� ~h has continuous partial derivatives
∂hi
yj

for all 1 ≤ i, j ≤ n.

� If the vector ~u is a function value ~u = ~h
(
~y
)

of some argument ~y that satisfies f~Y
(
~y
)
> 0,

then there is no other argument ~̃y that satisfies all those conditions.

Then ~h has an inverse ~h−1 = h−1
1 , h−1

2 , . . . , h−1
n which is defined by the relation

~u = ~h
(
~y
)
⇔ ~y = ~h−1

(
~u
)
.

We can write this for the coordinate functions hi(·) and h−1
j (·) as follows:

(12.2) u1 = h1

(
~y
)
, . . . , un = hn

(
~y
)

and y1 = h−1
1

(
~u
)
, . . . , yn = h−1

n

(
~u
)
.

Also, all partial derivatives
∂h−1

i

uj
exist and are continuous for 1 ≤ i, j ≤ n.

(12.3) Let
d~h

d~y
:=


∂h1
∂y1

∂h1
∂y2

· · · ∂h1
∂yn

∂h2
∂y1

∂h2
∂y2

· · · ∂h2
∂yn

· · · · · · · · · · · ·
∂hn
∂y1

∂hn
∂y2

· · · ∂hn
∂yn

 ,
d ~h−1

d~u
:=



∂h−1
1

∂u1

∂h−1
1

∂u2
· · · ∂h−1

1
∂un

∂h−1
2

∂u1

∂h−1
2

∂u2
· · · ∂h−1

2
∂un

· · · · · · · · · · · ·
∂h−1

n
∂u1

∂h−1
n

∂u2
· · · ∂h−1

n
∂un

 .

(12.4) Let J−1 := J−1(~y) := det

(
d~h

d~y

)
, J := J(~u) := det

(
d ~h−1

d~u

)
.

100 Math 447 - Version 2025-09-04



Math 447 – MF Lecture Notes Skeletal version: proofs omitted

• We add another assumption: J−1(~y) 6= 0 for all y that satisfy f~Y
(
~y
)
> 0.

(12.5) Then J
(
h(~y)

)
6= 0 and J

(
h(~y)

)
= 1

/
J−1

(
~y
)
.

Further, the density of the transform ~U = h
(
~Y
)

is computed as

(12.6) f~U (~u)
)

= f~Y
(
h−1(~u)

)
· |J(~u)| .

Definition 12.1 (Jacobian and Jacobian matrix). The matrix
d~h

d~y
of the partial derivatives of the

function ~y 7→ ~h(~y) is called the Jacobian matrix of ~h(·). We refer to its determinant, J−1(~y) =

det

(
d~h

d~y

)
, as the Jacobian, sometimes also the Jacobian determinant, of ~h(·). �

Notation 12.1 (Jacobian).

• Stewart writes
∂(u1, . . . , un)

∂(y1, . . . , yn)
:= det

(
d~h−1

d~u

)
and

∂(y1, . . . , yn)

∂(u1, . . . , un)
:= det

(
d~h−1

d~u

)
• Thus, the expression J = J(~u) = det

(
d ~h−1

d~u

)
, which appears in

(12.6) f~U (~u)
)

= f~Y
(
h−1(~u)

)
· |J(~u)|, is the Jacobian of h−1(~u) and not of h(~y)

.
• This author follows the great majority of books on multivariable calculus in defining

the the Jacobian as the determinant of
d~h

d~y
.

• Be aware that WMS chooses instead to call J = det
d~h−1

d~u
the Jacobian.

• The reason seems to be that most books on probability and statistics agree on using

the letter J for det
d~h−1

d~u
(without giving a name to that determinant) and WMS does

not want to use the somewhat lengthy “the reciprocal of the Jacobian” in its frequent
references to J

�

12.4 The Method of moment–generating Functions

Assumption 12.1. Unless stated otherwise, we will assume in this entire section that
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(a) ~Y = (Y1, Y2, . . . , Yn) denotes a list of n random variables (n ∈ N).
• Either all Yj are discrete, or they all are continuous random variables.

(b) h : D → R; ~y 7→ u = h(~y) = h(y1, . . . , yn)
is a function with domain D ⊆ Rn (this covers R = R1 for n = 1), such that
• there is no issue with the existence of the PMF or PDF of U := h(~Y ).
• All MGFs, mYj (t) = E

[
etYj

]
and mU (t) = E

[
etU
]

exist if |t| is small enough, i.e.,
there is some δ > 0 such that those MGFs exist for −δ < t < δ.

(c) Those assumptions also hold for differently named (vectors of) random variables

and functions, e.g. V = g
(~̃
Y
)

= g
(
Ỹ1, . . . , Ỹk

)
. �

Theorem 12.3 (The MGF determines the distribution). Given are two random variables Y and Ỹ .
If their moment–generating functions mY (t) and m

Ỹ
(t) exist and coincide in a small interval that is

centered at t = 0,

• Then PY = P
Ỹ

, i.e., Y and Ỹ have the same probability distribution.

Theorem 12.4 (MGF of a sum of functions of independent variables). Given are n independent
random variables Y1, Y2, . . . , Yn with MGFs mY1(t),mY2(t), . . . ,mYn(t). and n real–valued functions
h1(y1), . . . , hn(yn) of real numbers y1, . . . , yn.
Let U := h1(Y1) + h2(Y2) + · · ·+ hn(Yn). Then (under the conditions of Assumption 12.1 on 101)

mU (t) = mh1(Y1) +···+hn(Yn) =
n∏
j=1

mhj(Yj)(t) .(12.7)

Corollary 12.1 (WMS Ch.06.5, Theorem 6.2). Let Y1, Y2, . . . , Yn be independent random variables
with moment–generating functions mY1(t),mY2(t), . . . ,mYn(t), respectively. Then

mY1 +···+Yn(t) =

n∏
j=1

mYj (t) = mY1(t) ·mY2(t) · · ·mYn(t) .(12.8)

Theorem 12.5 (Linear combinations of uncorrelated normal variables are normal).

Given are n uncorrelated, NNN (µj , σ
2
j ) random variables Yj , (j = 1, . . . , n. In other words, each Yj is

normal with expectation µj and standard deviation σj . Let a1, . . . , an ∈ R. Then

n∑
j=1

ajYj ∼ NNN

 n∑
j=1

ajµj ,

n∑
j=1

a2
jσ

2
j

 .(12.9)
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Thus, the linear combination of uncorrelated normal random variables is normal with expectation and
variance being the linear combinations of the indivicual expectations and variances.

Theorem 12.6. Given are n independent, gamma(αj , β) random variables Yj , (j = 1, . . . , n. In other
words, each Yj is gamma with the same scale parameter β. Then

n∑
j=1

Yj ∼ gamma

 n∑
j=1

αj , β

 .(12.10)

Thus, the sum of independent gamma random variables with the same scale parameter β is gamma with
the shape parameter being the sum of the shape parameters, and scale parameter β.

Corollary 12.2. Let Y1, Y2, . . . , Yn be independent χ2 variables such that each Yj has νj degrees of
freedom. Then

mY1 +···+Yn(t) ∼ χ2

 n∑
j=1

νj df

 .(12.11)
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13 Limit Theorems

13.1 Four Kinds of Limits for Sequences of Random Variables

Definition 13.1 (Convergence of Random Variables). Let Yn (n ∈ N) and Y be random variables
on a probability space (Ω,P). We define

Yn
pw→Y or pw – lim

n→∞
Yn = Y , if lim

n→∞
Yn(ω) = Y (ω), for all ω ∈ Ω ,(13.1)

Yn
a.s.→Y or a.s. – lim

n→∞
Yn = Y , if P{ω ∈ Ω : lim

n→∞
Yn(ω) = Y (ω)} = 1 ,(13.2)

Yn
P→Y or P – lim

n→∞
Yn = Y , if ∀ ε > 0 lim

n→∞
P{ω ∈ Ω : |Yn(ω)− Y (ω)| > ε} = 0 ,(13.3)

Yn
D→Y, if lim

n→∞
FYn(y) = FY (y), ∀ y ∈ R where the CDF FY of Y is continuous.(13.4)

We also say:

If Yn
pw→ Y , Y is the pointwise limit of the Yn, or: Yn converges pointwise to Y .

If Yn
a.s.→ Y , Y is the almost sure limit of the Yn, or: Yn converges almost surely to Y .

If Yn
P→ Y , Y is the limit in probability; of the Yn, or: Yn converges in probability to Y .

If Yn
D→ Y , Y is the limit in distribution of the Yn, or: Yn converges in distribution to Y .

Theorem 13.1 (Relationship between the modes of convergence).

Let Y and Y1, Y2, . . . be random variables on a probability space (Ω,P). Then,

(13.5) Yn
pw→ Y ⇒ Yn

a.s.→ Y ⇒ Yn
P→ Y ⇒ Yn

D→ Y .

Theorem 13.2 (Slutsky’s Theorem). ? Let Y1, Y2, . . . ) and U1, U2, . . . be two sequences of
random variables. Let Y be another random variable and c a constant such that

• Yn
D−→ Y (convergence in distribution) • Un

P−→ c (convergence in probability)

Then,

Yn + Un
D−→Y + c ,(13.6)

Yn · Un
D−→cY ,(13.7)

Yn
Un

D−→ Yn
c
, assuming that c 6= 0.(13.8)
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Theorem 13.3 (Convergence is maintained under continuous transformations). ?

Let Y1, Y2, . . . ) and Y be random variables on some probability space (Ω,P). Let f : R → R be
continuous. Then,

Yn
a.s.−→ Y ⇒ f ◦ Yn

a.s.−→ f ◦ Y .

Yn
P−→ Y ⇒ f ◦ Yn

P−→ f ◦ Y .

Yn
D−→ Y ⇒ f ◦ Yn

D−→ f ◦ Y .

�

13.2 Two Laws of Large Numbers

Theorem 13.4 (Weak Law of Large Numbers). Let Y1, Y2, . . . be an iid sequence of random variables
on a probability space (Ω,P) with finite variance: σ2 := var[Yn] <∞. Let µ := E[Yn]. Then,

Y1 + Y2 + · · ·+ Yn
n

converges in probability to µ, i.e.,

[
ε > 0

]
⇒

 lim
n→∞

P


∣∣∣∣ 1n

n∑
j=1

Yj − µ
∣∣∣∣ > ε

 = 0.

(13.9)

Theorem 13.5 (Strong Law of Large Numbers). Let Y1, Y2, . . . be an iid sequence of random vari-
ables on a probability space (Ω,P) and µ := E[Yn]. Then,

Y1 + Y2 + · · ·+ Yn
n

converges almost surely to µ, i.e.,

P

 lim
n→∞

1

n

n∑
j=1

Yj 6= µ

 = 0 .
(13.10)

13.3 Sampling Distributions

Definition 13.2 (Random samples from a distribution).
Let Y be a random variable on a probability space (Ω,P). Let n ∈ N. We call a vector
~Y =

(
Y1, . . . , Yn

)
a random sampling action of size n on (or from) the distribution of Y , if

• the random variables Y1, . . . , Yn are iid with distribution PY .
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The following are alternate names for this kind of sampling action:
• random sampling action of size n on (or from) Y
• “random sampling action” can be shortened to “random sample”
• random sample also refers to a realization ~y = ~Y (ω) of a random sampling action.

Note that the last two bulleted items are consistent with earlier definitions of sampling where we
also use “sample” both for a sampling action and a realization of such an action. �

Definition 13.3 (Statistic ). Let Y be a random variable on a probability space (Ω,P) and ~Y =(
Y1, . . . , Yn

)
a random sampling action on Y . Let

T : Rn 7→ R ; ~y 7→ T (~y)

be some function that can be applied to the sampling action ~Y . We call the random variable

ω 7→ T
(
~Y (ω)

)
a statistic of that sampling action. We call the distribution of that random variable,

B 7→ PT◦~Y (B) = P{T (~Y ) ∈ (B)} = P{ω ∈ Ω : T
(
~Y (ω)

)
∈ B}(13.11)

its sampling distribution. Once the sampling action has been performed and a realization
~y = ~Y (ω) has been obtained, we call t = T

(
~Y (ω)

)
the realization of the statistic. �

Theorem 13.6. Let Y be a random variable on a probability space (Ω,P) and ~Y =
(
Y1, . . . , Yn

)
a

random sampling action on Y . Let T1, T2, . . . , Tk : Rn 7→ R be statistics for that sample action. Let

T ∗ : Rk 7→ R ; (t1, . . . , tk) 7→ T ∗(t1, . . . , tk) .

Then, setting ~t = (t1, . . . , tk) and ~T = (T1, . . . , Tk), the composition

T ∗ ◦ ~T ◦ ~Y : ω 7→ T ∗
(
~T [ ~Y (ω) ]

)
= T ∗

(
T1[ ~Y (ω) ], . . . , Tk[ ~Y (ω) ]

)
also is a statistic of ~Y .

A function of a function of the data is a function of the data.

Definition 13.4 (Sample variance). Let ~Y =
(
Y1, . . . , Yn

)
be a random sample action on a ran-

dom variable Y .
The sample variance is defined as the random variable
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(13.12) ω 7→ S2(ω) :=
1

n− 1

n∑
j=1

(
Yj(ω)− Ȳ (ω)

)2
.

We further call ω 7→ S(ω) :=
√
S2(ω) the The sample standard deviation.

We will often write s2 and s for the realizations S2(ω) and S(ω) that result from creating the
sample.
We write Sn, S2

n, sn, s
2
n for S, S2, s, s2, if we want to keep track of the sample size. That will

be the case, e.g., if we consider the sample variance of the first n picks of a sample of infinite
size. �

Theorem 13.7 (WMS Ch.07.2, Theorem 7.1). Let Y1, Y2, . . . , Yn be a random sample of size n from a
normal distribution with mean µ and variance σ2, i.e., we sample on a random variable Y ∼NNN (µ, σ2).
Then the sample mean Ȳ follows a normal distribution with mean µ and variance σ2/n.

Theorem 13.8 (WMS Ch.07.2, Theorem 7.2). Let ~Y =
(
Y1, . . . , Yn

)
be a random sample on Y ∼

NNN (µ, σ2). Let Zj = (Yj − µ)/σ for j = 1, 2, . . . , n. Then ~Z =
(
Z1, . . . , Zn

)
is a random sample on

a standard normal variable. (In particular, the Zj are iid.) Further,

(13.13)
n∑
j=1

Z2
i =

n∑
j=1

(
Yj − µ

σ

)2

follows a χ2 distribution with n degrees of freedom.

Proposition 13.1. ? Let Y1 and Y2 be independent standard normal random variables. Then
Y1 + Y2 and Y1 − Y2 are independent and normally distributed, both with mean 0 and variance 2.

Theorem 13.9 (Independence of sample mean and sample variance in normal populations).

Let ~Y =
(
Y1, . . . , Yn

)
be a random sample on Y ∼NNN (µ, σ2). Let Zj = (Yj − µ)/σ for j = 1, . . . , n.

Then, ~Z = (Z1, . . . , Zn) is a random sample on a standard normal variable. Moreover,

(a)
(n− 1)S2

σ2
=

1

σ2

n∑
j=1

(Yj − Ȳ )2 ∼ χ2(df = n− 1)

(b) Ȳ and S2 are independent random variables.
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Definition 13.5 (Student’s t–distribution). Let Z andW be independent random variables such
that Z is standard normal andW is χ2 with ν df. Let

(13.14) T =
Z√
W/ν

Then we refer to the distribution PT of T as a t–distribution or Student’s t–distribution with
ν df. We also write that as T ∼ t(ν) or T ∼ t(df = ν). �

The Student’s t–distribution is named after the English statistician William S. Gosset (1876 – 1937). Gosset was Head
Brewer of the Guinness Brewery in Dublin, Ireland and published his papers under the pseudonym "Student".

Theorem 13.10. Let Y ∼NNN (µ, σ2) and ~Y =
(
Y1, . . . , Yn

)
be a random sample on Y . Let

(13.15) T :=
Ȳ − µ

S/
√
n
.

Then T follows a t–distribution with (n− 1) df.

Definition 13.6 (F–distribution). Given are two independent random variables W1 ∼ χ2(df =
ν1) and W2 ∼ χ2(df = ν2). with ν1 and ν2 df, respectively. Then we say that

F =
W1/ν1

W2/ν2

follows an F distribution with ν1 numerator degrees of freedom and ν2 denominator degrees
of freedom. �

Theorem 13.11. Consider two random samples of sizes n1 and n2 from two independent populations,
on random variables Y1 ∼NNN (µ1, σ

2
1) and Y2 ∼NNN (µ2, σ

2
2) with sample variances S2

1 and S2
2 . Let

(13.16) F :=
S2

1/σ
2
1

S2
2/σ

2
2

.

Then F follows an F distribution with (n1 − 1) numerator df and (n2 − 1) denominator df.

13.4 The Central Limit Theorem

Theorem 13.12 (Lévy–Cramér continuity theorem). ? Let Y1, Y2, . . . ) be a sequence of random
variables (iid is not assumed) with associated CDFs FY1 , FY2 , . . . ) and MGFs mY1(t),mY2(t), . . . ).
Let Y be a random variable with associated CDF FY and MGF mY (t). Then,[

mYn(t) → mY (t) as n→∞, for all t ∈ R
]

⇒
[
FYn(y) → FY (y) as n→∞, for all y where FY (·) is continuous.

](13.17)
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Theorem 13.13 (Central Limit Theorem). Central Limit Theorem:
Let ~Y = (Y1, Y2, . . . , Yn) be a vector of iid random variables with common expectation E[Yj ] = µ and
finite variance V ar[Yj ] = σ2. Let Z be a standard normal variable and

Un :=

n∑
j=1

Yj − nµ

σ ·
√
n

=
Ȳn − µ
σ/
√
n
, where n ∈ N , Ȳn =

1

n

n∑
i=1

Yi .

Then, Un converges to Z in distribution as n→∞. In other words,

lim
n→∞

P{Un ≤ u} = P{Z ≤ u} =

∫ u

−∞

1√
2π

e−t
2/2 dt for all u .

Remark 13.1. Note that the CLT states the obvious if the iid sample picks Zj are NNN (µ, σ2):

• In this case, Ȳn ∼NNN (µ, σ2/n). Hence, Un =
Ȳn − E[Ȳn]

σȲn
∼ NNN (0, 1) .

• Thus, FUn(y) = FZ(y), for all y and n. Thus, lim
n→∞

FUn(y) = F (y), for all y. �

Theorem 13.14 (Student t converges to normal distribution). Let T1, T2, . . . ) be a sequence of
random variables such that Tj ∼ t(df = j). Then Tj converges in distribution to a standard normal
variable.

Lemma 13.1. ? Let ~y := (y1, . . . , yn) ∈ Rn, (n ∈ N), and ȳ := 1
n

n∑
j=1

yj the arithmetic mean of

~y. Then,

(a)
n∑
j=1

(yj − c)2 =

n∑
j=1

(yj − ȳ)2 +

n∑
j=1

(ȳ − c)2 ,

(b) ȳ minimizes the expression
n∑
j=1

(yj − c)2, where c ∈ R):

n∑
j=1

(yj − c)2 ≥
n∑
j=1

(yj − ȳ)2 for all c ∈ R ,

Corollary 13.1. ? The sample variance S2 =
1

n− 1

n∑
j=1

(
Yj − Ȳ

)2 of any sample

~Y := (Y1, . . . , Yn), (n ∈ N), satisfies

(n− 1)S2 =
n∑
j=1

Y 2
j − n Ȳ 2 .
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Theorem 13.15 (Sample variance converges to population variance).

Let ~Y := (Y1, . . . , Yn) ∈ Rn, (n ∈ N), be a random sample from the distribution of a random variable

Y with finite variance σ2 <∞. Then the sample variance S2
n =

1

n− 1

n∑
j=1

(
Yj − Ȳ

)2 converges a.s

(hence, also in probability and in distribution) to σ2.

Theorem 13.16 (CLT – Sample variance version). Let ~Y = (Y1, Y2, . . . , Yn) be a vector of iid random
variables with common expectation E[Yj ] = µ and finite variance V ar[Yj ] = σ2. Let Z be a standard
normal variable. For n ∈ N, let

Ȳn :=
1

n

n∑
i=1

Yi , S2
n :=

1

n− 1

n∑
i=1

(
Yi − Ȳn

)2
, Sn :=

√
S2 , Wn :=

Ȳn − µ
Sn/
√
n
.

(Thus, Ȳn and Sn are sample mean and sample standard deviation of the RSA ~Y ).

Then Wn converges to Z in distribution as n→∞.
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14 Sample Problems for Exams

14.1 Practice Midterm 1 for Math 447 - Chris Haines

Here are some commented excerpts of a practice exam for the first midterm. It was written by Prof.
Christopher Haines and forwarded to me by Prof. Adam Weisblat, both at Binghamton University
(October 2023).

Exercise 14.1. Practice Midterm 1 (C. Haines) – # 01
SKIPPED �

Exercise 14.2. Practice Midterm 1 (C. Haines) – # 02

The Lakers and Heat are playing in the NBA Finals. The series is a best–of–seven (first team to win
four games clinches the series). The Lakers will win each game with probability 3/4.

(a) Given that the Heat won game one, what is the probability the Lakers go on to win the
series?

(b) Given that the Heat win at least two games in the series, what is the probability the Lakers
go on to win the series?

�

111 Math 447 - Version 2025-09-04



Math 447 – MF Lecture Notes Skeletal version: proofs omitted

15 Other Appendices

15.1 Greek Letters

The following section lists all greek letters that are commonly used in mathematical texts. You do
not see the entire alphabet here because there are some letters (especially upper case) which look
just like our latin alphabet letters. For example: A = Alpha B = Beta. On the other hand there
are some lower case letters, namely epsilon, theta, sigma and phi which come in two separate forms.
This is not a mistake in the following tables!

α alpha θ theta ξ xi φ phi
β beta ϑ theta π pi ϕ phi
γ gamma ι iota ρ rho χ chi
δ delta κ kappa % rho ψ psi
ε epsilon κ kappa σ sigma ω omega
ε epsilon λ lambda ς sigma
ζ zeta µ mu τ tau
η eta ν nu υ upsilon

Γ Gamma Λ Lambda Σ Sigma Ψ Psi
∆ Delta Ξ Xi Υ Upsilon Ω Omega
Θ Theta Π Pi Φ Phi

15.2 Notation

This appendix on notation has been provided because future additions to this document may use
notation which has not been covered in class. It only covers a small portion but provides brief
explanations for what is covered.
For a complete list check the list of symbols and the index at the end of this document.

Notation 15.1. a) If two subsets A and B of a space Ω are disjoint, i.e., A ∩ B = ∅, then we often
write A ]B rather than A ∪B or A+B. The complement Ω \A of A is denoted A{. .
b) R>0 or R+ denotes the interval ]0,+∞[, R≥0 or R+ denotes the interval [0,+∞[,
c) The set N = {1, 2, 3, · · · } of all natural numbers excludes the number zero. We write N0 or Z+ or
Z≥0 for N ] {0}. Z≥0 is the B/G notation. It is very unusual but also very intuitive. �
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List of Symbols

An ↓ A – nonincreasing set seq. , 15
An ↑ A – nondecreasing set seq. , 15
FY (y) – CDF of random var. Y , 73
[a, b[, ]a, b] – half-open intervals , 11
[a, b] – closed interval , 11(
n
r

)
– nbr of combinations , 59

Pnr – permutation , 58
⇒ – implication , 7
P(Ω), 2Ω – power set , 9
∅ – empty set, 6
∃ – exists , 10
∃! – exists unique , 10
∀ – for all , 10
inf (xi), inf (xi)i∈I , inf

i∈I
xi – families , 20

inf (xn), inf (xn)n∈N, inf
n∈N

xn – sequences , 20

inf(A) – infimun of A , 19
sup (xn), sup (xn)n∈N, sup

n∈N
xn – sequences , 20

sup(A) – supremun of A , 19
|x| – absolute value , 12
]a, b[Q – interval of rational #s , 12
]a, b[Z – interval of integers , 12
]a, b[ – open interval , 11
x ∈ X – element of a set, 6
x /∈ X – not an element of a set, 6
xn ↓ x – nonincreasing seq. , 15
xn ↑ x – nondecreasing seq. , 15
A{ – complement of A , 8
N0 – nonnegative integers, 11
R+ – positive real numbers, 11
R>0 – positive real numbers, 11
R≥0 – nonnegative real numbers, 11
R 6=0 – non-zero real numbers, 11
R+ – nonnegative real numbers, 11
Z≥0 – nonnegative integers, 11
Z+ – nonnegative integers, 11

(xi)i∈I – family , 16
2Ω,P(Ω) – power set , 9(

n
n1 n2···nk

)
– multinom. coeff. , 59(

n
k

)
– binomial coeff. , 59

E[g(Y1) | Y2 = y2] – conditional expectation , 94
E(Y ) – expected value , 57
E[Y ] – expected value , 64

µk – kth central moment , 78
µ′k – kth moment , 78
µ′k – kth moment , 71
µk – kth central moment , 71
φp – pth quantile , 74
ρ – correlation coeff. , 91
σ2
Y – variance, discr. r.v. , 66
σY – standard dev, discr. r.v. , 57, 66
binom(n, p) , 67
Cov[Y1, Y2] – covariance , 91
E(Y ) – expected value , 76
m(t) – MGF , 71
S, Sn – sample standard deviation , 107
s, sn – sample standard deviation , 107
S2, S2

n – sample variance , 107
s2, s2

n – sample variance , 107
SD(Y ) – standard dev, discr. r.v. , 66
SD[Y ] – standard dev, discr. r.v. , 57
V ar[Y1 | Y2 = y2] – conditional variance , 94
V ar[Y ] – variance , 57
V ar[Y ] – variance, discr. r.v. , 66
Yn

a.s.→ Y – almost sure limit , 104
Yn

D→ Y – limit in distrib. , 104
Yn

pw→ Y – pointwise limit , 104
Yn

P→ Y – limit in probab. , 104
Γ(α) – gamma function , 80
inf
x∈A

f(x) – infimum of f , 20

infA f – infimum of f , 20
N,N0 , 112
P(A | B) – conditional probab , 39, 86, 87
R+,R>0 , 112
R+,R≥0 , 112
R>0,R+ , 112
R≥0,R+ , 112
Z+,Z≥0 , 112
R – [−∞,∞] , 11
111A – indicator function of A , 21
σ{AAA } – σ–algebra generated by AAA , 38
sup (xi), sup (xi)i∈I , sup

i∈I
xi – families , 20

sup
x∈A

f(x) – supremum of f , 20

supA f – supremum of f , 20
suppt(f) – support of f , 34
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|X| – size of a set , 10
NNN (µ, σ2) – normal with µ, σ2 , 79
NNN (µ1, σ

2
1, µ2, σ

2
2, ρ) – bivariate normal , 98

B – Borel σ–algebra of R , 38
B,Bd – Borel sets , 29
Bd – Borel σ–algebra of Rd , 38
{} – empty set, 6
A ∩B – A intersection B, 7
A \B – A minus B , 8
A ⊆ B – A is subset of B , 6
A ( B – A is strict subset of B, 6
A4B – symmetric difference of A and B , 8
A ]B – disjoint union , 5, 7
A{ – complement , 112
B ) A – B is strict superset of A, 6
B(α, β) , 82
f : X → Y – function, 13
f(A) – direct image , 19
f−1(B) – indirect image, preimage , 17
fY1|Y2(y1 | y2) – conditional PDF , 87
(Ω,F,P) – probability space , 35
(Ω,F, µ) – measure space , 51
(S,SSS ,P) – sample space , 36
χ2(df=ν) – chi–square with ν df , 81
χ2(ν) – chi–square with ν df , 81
∪j∈JAj – union of all Aj w. j ∈ J , 7
∪j∈JAj – union of all Aj w. j ∈ J , 16
µ(·) – measure , 50
σ{AAA } – σ–algebra generated by AAA , 37
Σ∗(·) – counting measure , 51
]j∈JAj – union of disjoint sets , 7
|f |, f+, f− , 12
A ∪B – A union B , 7
A ⊇ B – A is superset of B, 6
capj∈JAj – intersection of all Aj w. j ∈ J , 7
capj∈JAj – intersection of all Aj ; (j ∈ J) , 16
f
∣∣
A

– restriction of f , 14
f ∨ g, f ∧ g – max(f, g),min(f, g) , 13
FY1,Y2(y1, y2) – joint CDF , 84
P – measure , 35
pY1,Y2(y1, y2) – joint PMF , 84
uplusj∈JAj – – union of disjoint sets , 16
x ∨ y – max(x, y) , 13
x ∧ y – min(x, y) , 13
x+, x− – positive, negative parts , 12
X1 ×X2 · · · ×Xn – cartesian product , 21

Y(j) – jth order statistic, 96
beta(α, β) – beta with α, β , 82
chi–square(ν) – chi–square with ν df , 81
expon(β) – exponential with β , 81
gamma(α, β) – gamma with α, β , 80
geom(p) , 67
poisson(λ) , 70
uniform(θ1, θ2) – uniform distrib , 78

g.l.b.(A) – greatest lower bound of A , 19

l.u.b.(A) – least upper bound of A , 19
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Index

χ2(ν) (chi–square distribution), 81
P Null event, 35
µ Null set, 51
σ–algebra, 35

Borel σ–algebra, 38
σ–algebra generated by a collection of sets, 38
σ–algebra generated by a family of functions

(advanced def., 49
σ–algebra generated by a family of random ele-

ments, 43
σ–field, 35
σ–finite measure, 51
0–1 encoded Bernoulli trial, 67

closed rectangle, 24

absolute value, 12
absolutely convergent series, 23
abstract integral, 53
abstract integral on a subset, 54
almost sure convergence, 104
almost sure limit, 104
argument, 13
assignment operator, 13

Bayes formula, 62
Bernoulli sequence, 67
Bernoulli trial, 66

0–1 encoded, 67
failure probability, 67
success probability, 67

Bernoulli variable, 67
beta probability distribution, 82
beta(α, β), 82
bijective, 14
binom(n, p) distribution, 67
binomial coefficients, 59
binomial distribution, 67
binomial theorem, 60
bivariate cumulative distribution function, 84
bivariate normal distribution, 98
bivariate probability mass function, 84
Borel σ–algebra, 38
Borel function, 31
Borel measurable, 47

Borel measurable function, 31
Borel set, 29, 38
bounded, 19
bounded above, 19
bounded below, 19
box (3 dimensional rectangle), 24

carrier, 36
carrier set, 36
cartesian product, 21
CDF, 73

conditional, 87
joint, 84

central moment of a random variable, 71
characteristic function, 22
chi–square distribution, 81
chi–square with ν df (chi–square distribution),

81
chi–square(ν) (chi–square distribution), 81
closed interval, 11
codomain, 13
coefficient

binomial, 59
multinomial, 59

combination, 59
complement, 8
conditional CDF, 87
conditional distribution function, 87
conditional expectation, 94
conditional PDF, 87
conditional PMF, 87
conditional probability, 39
conditional probability density function, 87
conditional probability mass function, 87
conditional variance, 94
continuous random variable, 73
continuous unifurm probability distribution, 78,

89
convergence

almost surely, 104
in distribution, 104
in probability, 104
pointwise, 104

convergence in distribution, 104
convergence in probability, 104
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correlation
negative, 91
positive, 91
zero, 91

correlation coefficient, 91
countable set, 15
countably infinite set, 15
counting measure, 51
covariance, 91
cumulative distribution function, 73

bivariate, 84
joint, 84

De Morgan’s Law, 9, 16
decreasing, 15
degrees of freedom, 81

chi–square distribution, 81
denominator, 108
numerator, 108

denominator degrees of freedom, 108
density function

marginal, 86
determinant

Jacobian, 101
deterministic sample, 63
df = degrees of freedom, 81
direct image, 19
discrete measure, 51
discrete measure space, 51
discrete probability space, 36
discrete random variable, 42
discrete random vector, 42
disjoint, 7
distribution, 42, 52

binomial, 67
marginal, 86
mixed, 83
multinomial, 96
uniform, 78, 89

distribution function, 73
conditional, 87
joint, 84

domain, 13

element of a set, 6
empty set, 6
equiprobability, 36

event, 5
independence, 40, 41
mutually exclusive, 35

event (precise definition), 35
exclusive events, 35
expectation

conditional, 94
expectation - abstract integral, 57
expectation - continuous r.v., 76
expectation - discrete r.v., 64
expected value, 89, 90
expected value - abstract integral, 57
expected value - continuous r.v., 76
expected value - discrete r.v., 64
experiment

multinomial, 95
expon(β) (exponential distribution), 81
exponential distribution, 81
extended real numbers, 11
extension of a function, 14

F distribution, 108
failure probability, 67
family, 16

supremum, 20
finite measure, 51
finite sequence, 15
first quartile, 74
function, 13

µ–integrable, 53
argument, 13
assignment operator, 13
Borel measurable, 31
codomain, 13
domain, 13
extension, 14
function value, 13
infimum, 20
inverse, 13
Lebesgue integrable, 31
linear, 91
maps to operator, 13
measurable, 47
range, 13
restriction, 14
simple, 47
simple (preliminary), 30
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support, 34
supremum, 20

function value, 13

gamma distribution, 80
gamma function, 80
gamma(α, β), 80
geom(p) distribution, 67
geometric distribution, 67
Gosset, William S., 108
graph, 13
greatest lower bound, 19
greek letters, 112

half closed rectangle, 24
half open rectangle, 24
half-open interval, 11
hypergeometric distribution, 69

iid family, 46
iid sequence, 46
image measure, 52
improper Riemann integral, 27
increasing, 15
independence

random elements, 43, 49, 50
independent and identically distributed, 46
independent events, 40, 41
index set, 16
indexed family, 16
indicator function, 21
induced measure, 52
infimum, 19
infimum of a family, 20
infimum of a sequence, 20
infinite sequence, 15
injective, 14
integer, 10
integrable function (w.r.t. µ), 53
integrable function w.r.t. µ on a subset, 54
integral, 53

abstract integral, 53
Lebesgue integral, 30, 31

integral w.r.t. µ, 53
interval, 24

closed, 11
half-open, 11
open, 11

inverse function, 13
irrational number, 11

Jacobian, 101
Jacobian determinant, 101
Jacobian matrix, 101
joint CDF, 84
joint cumulative distribution function, 84
joint distribution function, 84
joint normal distribution, 98
joint PDF, 85
joint PMF, 84
joint probability density function, 85
joint probability mass function, 84
jointly continuous random variables, 85

Laplace probability, 36
least upper bound, 19
Lebesgue integrable function, 31
Lebesgue integrable function on a subset, 32
Lebesgue integral, 30, 31
Lebesgue integral on a subset, 32
Lebesgue measure, 25, 29

rectangle, 25
Lebesgue Null set, 29
limit

almost sure, 104
in probability, 104
pointwise, 104

limit in probability, 104
linear function, 91
lower bound, 19

maps to operator, 13
marginal density function, 86
marginal distribution, 86
marginal PDF, 86
marginal PMF, 86
marginal probability mass function, 86
Markov inequality, 82
maximum, 13, 19
mean, 89, 90
mean - abstract integral, 57
mean - continuous r.v., 76
mean - discrete r.v., 64
measurable

Borel measurable, 47
measurable function, 47
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measurable space, 47
measure, 50

σ–finite, 51
counting measure, 51
discrete, 51
finite, 51
induced, 52
product, 55

measure space, 51
discrete, 51
product, 55

median, 74
member of a set, 6
member of the family, 16
memoryless property, 81
MGF (moment–generating function), 71
minimum, 19
mixed distribution, 83
mixed random variable, 83

PDF part, 83
PMF part, 83

moment about about its mean, 71
moment about the origin, 71
moment of a random variable, 71
moment–generating function, 71
multinomial coefficients, 59
multinomial distribution, 96
multinomial experiment, 95
multinomial sequence, 95
mutually disjoint, 7
mutually exclusive, 35

natural number, 10
negative binomial distribution, 68
negative correlation, 91
negative part, 12
nondecreasing, 15
nonincreasing, 15
normal distribution

bivariate, 98
joint, 98

normal probability distribution, 79
Null event, 35
Null set, 51

λd, 29
µ (abstract measure), 51
Lebesgue, 29

numerator degrees of freedom, 108

open interval, 11
open rectangle, 24
or

exclusive, 10
inclusive, 10

order statistic, 96
outcome, 5

probability space, 5
sample space, 5

partition, 10, 16
partitioning, 10, 16
PDF

conditional, 87
joint, 85
marginal, 86

PDF (probability density function), 74
PDF part of a mixed random variable, 83
percentile, 74
permutation, 58
PMF

conditional, 87
joint, 84
marginal, 86

PMF (probability mass function), 64
PMF part of a mixed random variable, 83
pointwise convergence, 104
pointwise limit, 104
Poisson probability distribution, 70
poisson(λ), 70
positive correlation, 91
positive part, 12
power set, 9
preimage, 17
probability, 35

conditional, 39
probability density function, 74

conditional, 87
joint, 85

probability distribution, 42, 52
probability function, 64
probability mass function, 64

conditional, 87
joint, 84
marginal, 86
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probability measure, 5, 35
probability space, 5, 35

discrete, 36
product measure, 55
product measure space, 55
proper Riemann integral, 26

quad, 24
quantile, 74
quartile

first, 74
third, 74

r.v. = random variable, 42
random element, 48

σ–algebra generated by ..., 42
independence, 43, 49, 50

random sample, 63, 106
random sampling action, 63

on/from a distribution, 105
on/from a random variable, 106

random variable, 42, 48
central moment, 71
continuous, 73

expectation, 76
expected value, 76
mean, 76

discrete, 42
expectation, 64
expected value, 64
mean, 64
variance, 66

distribution function, 73
expectation - abstract integral, 57
expected value - abstract integral, 57
mean - abstract integral, 57
mixed, 83
moment, 71
moment about its mean, 71
moment about the origin, 71
moment–generating function, 71
standard deviation, 57, 66
standard normal, 79
uncorrelated, 91
uniform, 78
variance - abstract, 57

random variables

jointly continuous, 85
random vector, 42, 48

discrete, 42
range, 13
rational number, 10
real number, 11
realization, 62
rearrangement

sequence, 23
series, 23

rectangle
d–dimensional, 24
closed, 24
half closed, 24
half open, 24
Lebesgue measure, 25
open, 24

restriction of a function, 14
Riemann integrable, 27
Riemann integral, 25, 26

improper, 27
proper, 26

Riemann integral over a subset, 27
Riemann sum, 26
right continuous function, 73
rv = random variable, 42

sample, 62, 63
deterministic, 63
random sample, 106
realization, 62

sample point, 36
sample space, 5

sample space, 5, 36
sample standard deviation, 107
sample variance, 106
sampling action, 62
sampling distribution, 106
sampling procedure, 62
sampling process, 62
scale parameter, 80
sequence, 15

finite, 15
finite subsequence, 15
infimum, 20
infinite, 15
multinomial, 95
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start index, 15
subsequence, 15
supremum, 20

series
absolutely convergent, 23

set, 6
countable, 15
countably infinite, 15
difference, 8
difference set, 8
disjoint, 7
intersection, 7, 16
mutually disjoint, 7
proper subset, 6
proper superset, 6
size, 10
strict subset, 6
strict superset, 6
subset, 6
superset, 6
symmetric difference, 8
uncountable, 15
union, 7, 16

shape parameter, 80
sigma algebra, 35

generated by a collection of sets, 38
sigma algebra generated by a function (ad-

vanced def.), 49
sigma algebra generated by random elements, 42
sigma–field, 35
simple function, 47

standard form, 47
simple function (preliminary), 30
simple random sample, 63
simple random sampling action, 63
size, 10
SRS, 63
SRS action, 63
standard deviation, 57, 66

sample, 107
standard normal, 79
start index, 15
statistic, 106
step function, 25
strictly decreasing, 15
strictly increasing, 15

subsequence, 15
finite, 15

success probability, 67
support, 34
supremum, 19
supremum of a family, 20
supremum of a sequence, 20
surjective, 14

Tchebysheff inequalities, 83
third quartile, 74
triangle inequality, 13

uncorrelated random variables, 91
uncountable set, 15
uniform probability, 36
uniform probability distribution, 78
uniform random variable, 78
uniform random vector, 89
uniform(θ1, θ2), 78
universal set, 8
upper bound, 19
urn model with replacement, 63
urn model without replacement, 63

variance
conditional, 94
sample, 106

variance - abstract, 57
variance - discrete r.v., 66

zero correlation, 91
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