Math 447 - Probability - Section 1 - Spring 2025

Selected Solutions for Spring 2025 Quizzes

Quiz 01:

#1 (a): Obvious choice for Ω : $\Omega = \{RR, RB, RG, BR, BB, BG, GR, GB, GG \}$.

Then,
$$P\{\omega\} = \boxed{1/9, \ \forall \omega \in \Omega}$$
. **#1 (b)**: $P(A_1) = \boxed{5/9}$ **#1 (c)**: $P(A_2) = \boxed{5/9}$

#1 (b):
$$P(A_1) = 5/9$$

#1 (c):
$$P(A_2) = |5/9|$$

#2: See Definition 1.2 **#3**: See Definition 2.5

#4: 0.8: Use $(A \cup B) \setminus (A \triangle B) = A \cap B$ and $A^{\complement} \cup B^{\complement} = (A \cap B)^{\complement}$:

Quiz 02:

#1: False, False, True, False

160, 160

#3:
$$\left[\{\omega\in\Omega:Y(\omega)\in B\}\right]$$

#4:
$$\frac{9}{20}$$

Quiz 03:

#1: $h(x) = \begin{bmatrix} 0, \ \forall x \end{bmatrix} \int_{-\infty}^{\infty} h(x) dx = \begin{bmatrix} 0 \end{bmatrix} \int_{-\infty}^{\infty} h_n(x) dx = \begin{bmatrix} \infty, \ \forall n \end{bmatrix} \lim_{n \to \infty} \int_{-\infty}^{\infty} h_n(x) dx = \begin{bmatrix} \infty \end{bmatrix}$

#2: D is one half of the quad $[0,2] \times [0,2] \times [0,3]$ when one slices it diagonally with the plane that contains the points (0,0,0) and (0,2,2). Thus, $\lambda^3(D)=6$. Thus, $\int g(\vec{x}) \cdot \mathbf{1}_D(\vec{x}) d\vec{x} = \boxed{24}$

#3: See lecture notes